

 2004-2010 Nintendo TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

About Profiler
Version 0.4.0

The content of this document is highly confidential
and should be handled accordingly.

 About Profiler

TWL-06-0016-001-B 2  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not

be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

About Profiler

 2004-2010 Nintendo 3 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

Table of Contents

1 How Profiler Works ...4
1.1 The Profile Feature ...4
1.2 Compile-Time Options ..6
1.3 Switching with pragma ...7

1.3.1 Where to Place pragmas ...8

2 TWL-SDK profiler ..9
2.1 Function Call Tracing ..9
2.2 Function Cost Measurement ...9

3 Function Call Tracing ... 10
3.1 How Trace Recording Works ... 10
3.2 Saved Information ... 11
3.3 Two Modes of Function Call Tracing ... 11
3.4 Implementing in the Program ... 12
3.5 Display Example with OS_DumpCallTrace() ... 14

3.5.1 In Stack Mode ... 14
3.5.2 In Log Mode ... 15

3.6 Settings When Linking ... 16
3.7 Threaded Operations ... 16
3.8 Cost .. 16

4 Function Cost Measurement .. 17
4.1 How Cost Measurement Works ... 17
4.2 Saved Information .. 18
4.3 Conversion to Statistics Buffer ... 18
4.4 Implementing in the Program ... 20
4.5 Display Example with OS_DumpStatistics() .. 22
4.6 Settings When Linking ... 22
4.7 Threaded Operations ... 22
4.8 Cost .. 23

5 Profilers Other Than TWL-SDK ... 24
5.1 Settings When Linking ... 24

 About Profiler

TWL-06-0016-001-B 4  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

1 How Profiler Works

1.1 The Profile Feature
The profile feature automatically inserts calls to profiling functions at the entry and exit points of
functions. By recording information and statistics about the call from within the function, you can obtain
profile information, which is especially useful for things like debugging. The Freescale Semiconductor
C compiler mwccarm.exe is designed to support the profile feature. To enable this feature, add the
option –profile to mwccarm.exe and compile.

Let’s look at an example of how profiler code is added to functions.

u32 test(u32 a)
 {
 return a + 3;
 }

When this function is compiled, an object with the following code is normally output.

 test:
 add r0, r0, #3 // Add 3
 bx lr

The function adds 3 to the argument r0. (The return value is also stored in r0.)

If this code is compiled with the profile feature ON, a call to __PROFILE_ENTRY is added to the entry
point of the function and a call to__PROFILE_EXIT is added to the exit point. The feature also adds
other lines of code that are needed for profiling, such as code that handles stack operations.

About Profiler

 2004-2010 Nintendo 5 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

 test:
 stmfd sp!,{r0,lr}
 ldr r0,[pc,#32] // Assign the pointer to the character string “test”
to r0
 bl __PROFILE_ENTRY // __PROFILE_ENTRY Call
 ldmfd sp!,{r0,lr}

 add r0,r0,#3 // Add 3

 sub sp,sp,#4
 stmfd sp!,{lr}
 bl __PROFILE_EXIT // __PROFILE_EXIT Call
 ldmfd sp!,{lr}
 add sp,sp,#4
 bx lr
 :
 dcd xxxx // pointer to the string “test”
 :
 xxxx: 74 65 73 74 00 // string “test”

_PROFILE_ENTRY and _PROFILE_EXIT only call the profiling functions. The actual functions must be
created in the application. For TWL-SDK, _PROFILE_ENTRY and _PROFILE_EXIT are defined in
os_callTrace.c and os_functionCost.c, so if necessary you can link them.

Functions that call __PROFILE_ENTRY and __PROFILE_EXIT and functions that do not call
__PROFILE_ENTRY and __PROFILE_EXIT can exist in the linked objects. Functions that don't make
these calls will simply not be profiled. The decision to add these calls is made per function at compile
time. Normally, a function would have calls to both __PROFILE_ENTRY and __PROFILE_EXIT, and
would not contain only one of these calls.

 About Profiler

TWL-06-0016-001-B 6  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

 test1()

__PROFILE_ENTRY()

__PROFILE_EXIT()
xxxx
xxxx
xxxx

main()

xxxx
xxxx
xxxx

test2()

xxxx
xxxx
xxxx

test3()

__PROFILE_ENTRY()

__PROFILE_EXIT()
xxxx
xxxx
xxxx

__PROFILE_ENTRY()

xxxx
xxxx
xxxx

__PROFILE_EXIT()

xxxx
xxxx
xxxx

Objects that have _PROFILE functions and objects that do not have _PROFILE functions can be
mixed. (The _PROFILE function itself does not have any calls to the _PROFILE functions.)

1.2 Compile-Time Options
With TWL-SDK, if you define either the TWL_PROFILE or NITRO_PROFILE build switches when you
run make, the –profile option will be used when the C source code is compiled. If the –profile
option is used, the compiler adds calls for __PROFILE_ENTRY and __PROFILE_EXIT at the entry and
exit points of functions in the resulting object code.

As we mentioned, in TWL-SDK, both the TWL_PROFILE and NITRO_PROFILE build switches are valid,
but in NITRO-SDK, only the NITRO_PROFILE switch is valid. For compatibility reasons, we allow either
build switch to be defined in TWL-SDK. When creating a NITRO ROM using TWL-SDK, it’s perfectly
fine to define TWL_PROFILE. Likewise, when creating a TWL LIMITED ROM, defining either
NITRO_PROFILE or TWL_PROFILE will have the same effect.

About Profiler

 2004-2010 Nintendo 7 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

It is okay to include this in the makefile.

Makefile

TWL_PROFILE = TRUE

:

:

1.3 Switching with pragma
To temporarily switch the profile feature ON or OFF in the C source code, use the #pragma directive.

#pragma profile on turns it ON.

#pragma profile off turns it OFF.

#pragma profile reset returns it to the original status before switching to ON or OFF.

function ()

__ PROFILE _ ENTRY ()

__ PROFILE _ EXIT ()
xxxx
xxxx
xxxx

function ()

xxxx
xxxx
xxxx

If make TWL _ PROFILE = TRUE or make
NITRO _ PROFILE = TRUE is executed

If a simple make is executed

mwccarm ... test . c

mwccarm - profile ... test . c

 About Profiler

TWL-06-0016-001-B 8  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

(Example)

 void test1(void)
 {
 ：
 }

 void test2(void)
 {
 ：
 }

#pragma profile off
void test3(void)
 {
 ：
 }
#pragma profile reset

 void test4(void)
 {
 ：
 }

If this source code is compiled using –profile, the profile feature for test1(), test2(), and
test4() are ON (if -profile is not used, the profile feature will be OFF for all functions).

1.3.1 Where to Place pragmas
If the “#pragma profile off” directive is added to the end of a function, the profiler feature will be enabled
for that function. If the “#pragma profile off” is added to the end of a function, the profiler feature will be
disabled for that function. Normally this pragma should be placed outside the function for readability.

(Example)

 #pragma profile off
 void test1(void)
 {
 xxxxx();
 xxxxx();
 xxxxx();
 #pragma profile on
 }

 void test2(void)
 {
 xxxxx();
 xxxxx();
 xxxxx();
 #pragma profile off
 }

profile off

profile off

profile on

Profiling is enabled for this function.

Profiling is disabled for this function

About Profiler

 2004-2010 Nintendo 9 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

2 TWL-SDK profiler
If you add calls to __PROFILE_ENTRY() and __PROFILE_EXIT() to an object, you can use the
following mechanisms for debugging with TWL-SDK:

• Function call trace (OS_CallTrace)
• Function cost measurement (OS_FunctionCost)

These features are not provided by the OS library, libos.a (or libos.thumb.a). The function call
trace library is libos.CALLTRACE.a (or libos.CALLTRACE.thumb.a), and the function cost
measurement is libos.FUNCTIONCOST.a (or libos.FUNCTIONCOST.thumb.a).

2.1 Function Call Tracing
Function call tracing provides two ways to record profiling information to a buffer.

• In stack mode, __PROFILE_ENTRY()records the invocation of the function and
__PROFILE_EXIT()deletes the record of the invocation. By checking the records at any point in
time, you can find out the function that called the current function and view the sequence of calls
up to that point.

• In log mode, __PROFILE_ENTRY() records the invocation of the function and __PROFILE_EXIT()
does nothing. The same recording buffer is used each time. When the buffer is full, the newest
records overwrite the oldest records. This allows the display of the most recently called functions
(and the function that was in the middle of being called.)

To enable this profile feature, you must specify TWL_PROFILE_TYPE=CALLTRACE (or
NITRO_PROFILE_TYPE=CALLTRACE) as a make option. (You can also specify it in the Makefile.)

2.2 Function Cost Measurement
Function cost measurement records the times that __PROFILE_ENTRY() and __PROFILE_EXIT()
functions were called and uses the difference between the two times to determine the time spent in the
function.

If you are using the thread system, the mechanism subtracts the time required to switch execution from
one thread to another. This allows you to accurately compare the costs of functions. In addition, the
number of invocations is recorded so it is useful for measuring the frequency of calls.

To enable this profile feature, you must specify TWL_PROFILE_TYPE=FUNCTIONCOST (or
NITRO_PROFILE_TYPE=FUNCTIONCOST) as a make option. (You can also specify it in the Makefile.)

 About Profiler

TWL-06-0016-001-B 10  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

3 Function Call Tracing

3.1 How Trace Recording Works
The function call trace works in the following way.

function()

__PROFILE_ENTRY()

__PROFILE_EXIT()
xxxx
xxxx
xxxx

Record for
function()

__PROFILE_ENTRY

__PROFILE_EXIT

Function Call Trace Buffer

__PROFILE_ENTRY()

Records that “function was called” in the function call trace buffer. Specifically, the pointer to the
function name character string, return address from the function, and argument (options) are recorded
together.

__PROFILE_EXIT()

(In stack mode) — Deletes the most recent record of invocation in the function call trace buffer.

(In log mode) — Does nothing.

About Profiler

 2004-2010 Nintendo 11 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

3.2 Saved Information
Function call tracing saves the following information:

• Pointer to the function name string
• Value of register lr at the time the function was called
• Value of register r0 at the time the function was called (optional)
• Value of register r1 at the time the function was called (optional)
• Value of register r2 at the time the function was called (optional)
• Value of register r3 at the time the function was called (optional)

Register lr stores the address to which control returns after it leaves the function. In other words, if
the value of register lr is known, you can determine the address from which the function was called.

Registers r0 – r3 are used to pass argument values for functions that have arguments. This allows
you to see what arguments were specified when the function was called. However, the values of
registers that were not used to pass arguments are not meaningful. Saving the values of registers r0 –
r3 is optional. These require a dedicated 4-byte area for each register. Keep these memory
requirements in mind when allocating your buffer.

The buffer is used in the following manner.

Function Call Trace Buffer

 Management area

0x02010040 0x02010080 0x00000040 0x00000060 0x00000703 0x80001FFF

0x0212C764 0x02120184 0x00000001 0x00000001 0x00000001 0x00000002 Trace information

0x02035678 0x0201D174 0x00000003 0x00000003 0x00000023 0x00000023

0x020211F8 0x02009F10 0x00008000 0x00004000 0x00000018 0x0000090C

Function
name pointer lr r0 r1 r2 r3

 Trace data for
one call

In the preceding diagram, registers r0 – r3 are saved so each invocation requires a buffer of 24 bytes.
If registers r0 – r3 do not need to be saved, each invocation requires only 8 bytes.

The control area stores the area of the buffer currently in use, the upper limit of the buffer, and other
information.

3.3 Two Modes of Function Call Tracing
Function call tracing can be used in two modes: stack mode and log mode. In stack mode,
__PROFILE_ENTRY() saves information and __PROFILE_EXIT()discards information. In log mode,
__PROFILE() does not discard information. Because the same buffer is used repeatedly, the oldest
information discarded as needed.

 About Profiler

TWL-06-0016-001-B 12  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

The buffer stores the following information:

Stack Mode

main()

function()

subroutine()

Function Call Trace Buffer

main()

function()

b ti ()
If you check the function call trace buffer, you can view information about function calls at that point in
time. In the diagram above, you can see that main() called function(), and function() called
subroutine().

Log Mode

 main(
) function
() subroutine()

function(
) subroutine()

Function Call Trace Buffer

main()

function()

subroutine()

If you check the function call trace buffer, you can view the information for functions called up to that
point. In the diagram above, you can see that main(), function(), subroutine(), function(),
and subroutine() were called.

3.4 Implementing in the Program
Call tracing begins with the declaration and initialization of the call trace buffer at the beginning of the
program. In stack mode, the function that performs initialization should be called at the highest level in
the call hierarchy and not called from within other functions. This consideration is not necessary in log
mode.

 // Function call trace initialization
 void OS_InitCallTrace(void* buf, u32 size, OSCallTraceMode mode);

 buf Function call trace buffer
 size Buffer size
 mode stack mode or log mode

As described previously, the function call trace buffer stores the information for managing the buffer as
well as the actual trace information. Specify the mode to use. The mode parameter is of type
OSCallTraceMode and should have a value of either OS_CALLTRACE_STACK (for stack mode) or

About Profiler

 2004-2010 Nintendo 13 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

OS_CALLTRACE_LOG (for log mode).

If you know the size of the buffer and want to know how many calls (lines) it can store, use the
following function.

 // Calculate the number of calls using the size of the buffer
 int OS_CalcCallTraceLines(u32 size)

 size Buffer size
 Return Value Number of lines that can be stored (number of trace information sets)

If you know the number of lines you want the buffer to hold and want to know the minimum buffer size
required, use the following function.

 // Calculate the buffer size based on the number of lines to store
 u32 OS_CalcCallTraceBufferSize(int lines);

 lines Number of lines in the buffer (number of trace information sets)
 Return Value Required size of the buffer

The following function is used to display the contents of the trace buffer. The displayed content is
described later in this document.

 // Function call trace display
u32 OS_DumpCallTrace(void);

You can temporarily disable or restore call tracing by using the following functions. Call tracing remains
disabled even if __PROFILE_ENTRY() or __PROFILE_EXIT() is called. If you are using stack mode,
note that disabling the profiling functions at the wrong time could corrupt the information inside the
buffer.

 // Function call trace enable/disable/restore
 BOOL OS_EnableCallTrace(void);
 BOOL OS_DisableCallTrace(void);
 BOOL OS_RestoreCallTrace(BOOL enable);

 enable Enable (TRUE) or Disable (FALSE)
 Return Value Status prior to this function call. Enable (TRUE)/ Disable (FALSE)

To clear the contents of the buffer in log mode, use the following function. (You can also use this
function in stack mode. However, it is strongly recommended that you develop a full understanding of
the way in which this function operates before using it in stack mode.)

 // Function call trace buffer clear

 void OS_ClearCallTraceBuffer (void);

The following are actual in-program examples.

 About Profiler

TWL-06-0016-001-B 14  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

In stack mode:

 #define TRACEBUFSIZE 0x300
 u32 traceBuffer[TRACEBUFSIZE / sizeof(u32)];

 void NitroMain(void)

{
 OS_Init();

 //---- init callTrace (STACK mode)
 OS_InitCallTrace(&traceBuffer, TRACEBUFSIZE, OS_CALLTRACE_STACK);
 ：
 }

 void function()
 {
 //---- display callTrace
 OS_DumpCallTrace(); // Displays function call traces at this point
}

In log mode：

 #define TRACEBUFSIZE 0x300
 u32 traceBuffer[TRACEBUFSIZE / sizeof(u32)];

 void NitroMain(void)
 {

 OS_Init();

 //---- init callTrace (LOG mode)
 OS_InitCallTrace(&traceBuffer, TRACEBUFSIZE, OS_CALLTRACE_LOG);

 ： // Code to be logged

 //---- display callTrace
 OS_DumpCallTrace();

 }

3.5 Display Example with OS_DumpCallTrace()

3.5.1 In Stack Mode
The following is an example of the output from a OS_DumpCallTrace() function call.

OS_DumpCallTrace: lr=0200434c
 test3: lr=02004390, r0=00000103, r1=00000080, r2=00000080, r3=2000001f
 test2: lr=020043c4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f
test1: lr=02004254, r0=00000100, r1=00000080, r2=00000080, r3=2000001f

The results indicate that OS_DumpCallTrace() was called immediately above the position stored in
the lr register, so we know that it was called immediately above 0x0200434c. We can also see that
test1() calls test2() and test2() calls test3(). From test3()control should return to the
position above 0x2004390.

The example also shows that when test3() is called, r0 was 0x103, r1 was 0x80, r2 was 0x80,
and r3 was 0x2000001f. If test3() is a function that uses arguments, you can use these values to

About Profiler

 2004-2010 Nintendo 15 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

determine the values of the arguments at the time the function was called. The same analysis is
possible with other functions.

Note that in the example above, we said that “test1() called test2()”, but this assumes that
profiling was enabled for all objects in the executable file. If test1() called test4(),which did not
have profiling enabled, and then test4() called test2(), which did have profiling enabled, the call
tracing information would look exactly like the snippet above, with test2() directly above test1(),
and test4() would not be displayed at all.

The trace information above was generated from the program below.

int test1(int a){ return test2(a + 1); }
int test2(int a){ return test3(a + 2); }
int test3(int a){ OS_DumpCallTrace(); return a + 4; }

void NitroMain(void)
{

 OS_Init();
 :
 OS_InitCallTrace(&buffer, BUFFERSIZE, OS_CALLTRACE_STACK);
 (void) test1(0x100);
 :
}

3.5.2 In Log Mode
The following is an example of the output from a OS_DumpCallTrace() function call.

 test3: lr=020043a0, r0=00000103, r1=00000080, r2=00000080, r3=2000001f
 test2: lr=020043d4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f
test1: lr=0200423c, r0=00000100, r1=00000080, r2=00000080, r3=2000001f
 test3: lr=020043a0, r0=00000203, r1=00000080, r2=00000080, r3=2000001f
 test2: lr=020043d4, r0=00000201, r1=00000080, r2=00000080, r3=2000001f
test1: lr=02004244, r0=00000200, r1=00000080, r2=00000080, r3=2000001f

The function calls are displayed in reverse chronological order, with the most recently called functions
at the top of the trace. Of the functions that have profiling enabled, the call sequence was: test1,
test2, test3, test1, test2, and test3. The address to return to, arguments, and other
information can be determined from registers lr and r0 through r3.

Looking at the display of test1, test2, and test3, you can see that test2 and test3 are
indented. This means that test2 was called before the __PROFILE_EXIT() of test1, and test3
was called before the __PROFILE_EXIT() of test2. This provides information about the
relationships between the calls.

The display above was output by the following program.

int test1(int a){ return test2(a + 1); }
int test2(int a){ return test3(a + 2); }
int test3(int a){ return a + 4; }

void NitroMain(void)
{

 OS_Init();
 :

 About Profiler

TWL-06-0016-001-B 16  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

 OS_InitCallTrace(&buffer, BUFFERSIZE, OS_CALLTRACE_LOG);
 (void) test1(100);
 (void) test1(100);

 OS_DumpCallTrace();
}

3.6 Settings When Linking
To enable the function call trace feature, use the TWL_PROFILE_TYPE=CALLTRACE (or
NITRO_PROFILE_TYPE=CALLTRACE) make option. This setting tells the linker to link to
libos.CALLTRACE.a (or libos.CALLTRACE.thumb.a). You can also set this option in the makefile.

3.7 Threaded Operations
If the thread system is being used, the function call trace information runs independently for each
thread. When you initialize a buffer by using OS_InitCallTrace(), only the thread that made the call can
write trace information to that buffer. Status settings made using OS_EnableCallTrace()and other
functions are also independent for each thread.

Avoid declaring the same buffer with a different thread using OS_InitCallTrace().

3.8 Cost
Calling a function that has profiling enabled costs more than it normally would because a process
saves function call information to the buffer each time the function is called. Because the
__PROFILE_ENTRY and __PROFILE_EXIT calls in profiled functions must be processed, you
cannot expect to obtain the degree of compiler optimization that you would without these restrictions.
Furthermore, function name strings are saved in memory when pointers to function names are saved
to the buffer, resulting in additional memory usage.

The operational cost depends on factors, such as whether threading is used, the nature of the
information saved, and the selected mode. A call of __PROFILE_ENTRY() results in the processing of
an additional 60 to 70 instructions; a call of __PROFILE_EXIT() results in the processing of an
additional 20 to 40 instructions.

About Profiler

 2004-2010 Nintendo 17 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

4 Function Cost Measurement

4.1 How Cost Measurement Works
Two buffers are used with function cost measurement. As shown below, they are the function cost
measurement buffer and function cost statistics buffer.

Function Cost Measurement Buffer

function()

__PROFILE_ENTRY()

__PROFILE_EXIT()
xxxx
xxxx
xxxx

function() Current Time 0030

------------ Current Time 0045

__PROFILE_ENTRY

__PROFILE_EXIT

__PROFILE_ENTRY()

A pointer to the function name string and the current time are saved in the cost measurement buffer the
user specified.

__PROFILE_EXIT()

This records the tag written by __PROFILE_EXIT()and the current time.

function()　 Current Time 0030
------------　 Current Time 0045
function() Current Time 0070
test() Current Time 0080
------------ Current Time 0090
------------ Current Time 0120
 ：

function() 2 times Time Duration 55
test() 1 time Time Duration 10
 :

Summarize

Function Cost Measurement Buffer Function Cost Statistics Buffer

 About Profiler

TWL-06-0016-001-B 18  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

4.2 Saved Information

The following information is recorded by function cost measurement.

With __PROFILE_ENTRY:

• A pointer to function name string
• The current time (the return value of OS_GetTickLo())

With __PROFILE_EXIT:

• A special value, called an “exit tag,” is saved to the area where __PROFILE_ENTRY saved the
pointer.

• The current time (the return value of OS_GetTickLo())
• Interval needed for thread switching if required (optional)

The current time is the value obtained using OS_GetTickLo(). The tick feature of the OS uses 64-bit
values, but profiler uses 32-bit values, as the lower-order 32 bits are sufficient for the purposes of
profiling.

__PROFILE_ENTRY stores a pointer to the function name string. __PROFILE_EXIT replaces this
pointer with a special value, called “an exit tag”.

The “thread switching interval” information is used to subtract the amount of time it takes to change
threads (including the time spent in other functions).

Function Cost Measurement Buffer

 Management area

0x02010040 0x02010080 0

0xFFFFFFFF 0x02120184 300 Trace information

0x02035678 0x0201D174 0

0xFFFFFFFF 0x02009FC0 0

Function
name pointer Time

Interval for
thread
switch

Exit tag

Data for one
set of entry
and exit
functions

The management area stores information, such as current buffer usage, the upper limit of the buffer,
and the counter value used to measure the thread switching interval.

4.3 Conversion to Statistics Buffer
It is difficult to obtain cost information only with the function cost measurement. The measurement data
needs to be converted to statistics buffer data.

The summary links the call information for each function to the exit tag, then totals the number of calls
and the time spent in each function. When the control is transferred to a separate thread due to a

About Profiler

 2004-2010 Nintendo 19 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

switch in threads, the amount of time until it returns to the original thread is recorded as the interval
value of the exit tag. Calculations take this into consideration.

Summarizations must be carried out explicitly. When summarized, the contents of the function cost
measurement buffer are cleared. Repeatedly storing these results in the summarization buffer (before
the function cost measurement buffer overflows) helps to ensure accurate measurement for long
processes. The same summarization buffer can be shared among multiple threads. However, avoid
creating a separate thread to perform summarization.

Thread 3 Function Cost
Measurement Buffer

function() Current Time
0083

------------ Current Time 0088

function() Current Time
0135

Function Cost Statistics Buffer

function() 5 times Time Duration
70

test() 1 time Time Duration 5

xxxx() 1 time Time Duration 7

 ：

Summarize

Thread 1 Function Cost
Measurement Buffer

function() Current Time 0030

------------ Current Time 0045 interval
7

function() Current Time 0070

test() Current Time 0080

Thread 2 Function Cost
Measurement Buffer

 xxxx() Current Time 0035

------------ Current Time 0042

function() Current Time 0130

------------ Current Time 0150 interval
10

The results of multiple measurements can be written to the statistics buffer.

 About Profiler

TWL-06-0016-001-B 20  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

4.4 Implementing in the Program
Cost measurement begins recording to the buffer as soon as the buffer is initialized. The tick system of
the operating system is used for cost measurement so you must call OS_InitTick() before
initializing any cost measurement buffers.

 // Function cost measurement initialization

 void OS_InitFunctionCost(void* buf, u32 size);

 buf Function cost measurement buffer
 size Buffer size (byte)

As described previously, the information for managing the buffer and the actual time information are
stored. If you know the size of a buffer and want to know how many calls it can store, use the following
function.

 // Calculate the number of calls based on the size of the buffer.

 int OS_CalcFunctionCostLines(u32 size)

 size Buffer size (bytes)
 Return Value Number of calls that can be stored (number of sets of call information for cost
 measurement)

Use the following function to determine the minimum size required for your buffer based on the number
of calls you want it to contain.

 // Calculate the buffer size based on the number of
 // information sets (calls) that can be stored.

 u32 OS_CalcFunctionCostBufferSize(int lines);

 lines Number of lines in the buffer
 Return Value Required size of your buffer (in bytes)

Initialize the cost statistics buffer with the following function.

 // Function cost statistics buffer initialization

 void OS_InitStatistics(void* statBuf, u32 size);

 statBuf Buffer
 size Buffer size (bytes)

The following function stores the values from the cost measurement buffer in the cost statistics buffer.

 // Summarize function cost
 OS_CalcStatistics(void* statBuf);

 statBuf Statistics buffer

About Profiler

 2004-2010 Nintendo 21 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

The current contents of the function cost measurement buffer are cleared when
OS_CalcStatistics() is called.

The following function displays the summarization results. The output of this function is described later
in this document.

 // Function cost summarization display
OS_DumpStatistics(void* statBuf);

 statBuf Statistics buffer

You can temporarily stop or resume recording of profiling data by using the following functions.
Recording of information remains disabled even if __PROFILE_ENTRY() or __PROFILE_EXIT() are
called. If you use these functions in an inconsistent way so that only the information recorded with
__PROFILE_ENTRY() or the information recorded with __PROFILE_EXIT() is written to the buffer,
the cost measurement data may be invalid. It is strongly suggested that you pay particular attention
when using these functions.

 // Function cost measurement enable/disable/restore

 BOOL OS_EnableFunctionCost(void);
 BOOL OS_DisableFunctionCost(void);
 BOOL OS_RestoreFunctionCost(BOOL enable);

 enable Enable (TRUE), Disable (FALSE)
 Return Value Status prior to function call. Enable (TRUE)/disable (FALSE)

If you want to explicitly clear the contents of the function cost measurement buffer, call the following
function.

 // Function cost measurement buffer clear

 void OS_ClearFunctionCostBuffer (void);

The following is an in-program example.

#define COSTSIZE 0x3000
#define STATSIZE 0x300

u32 CostBuffer[COSTSIZE / sizeof(u32)]
u32 StatBuffer[STATSIZE / sizeof(u32)];

void NitroMain(void)
{

 OS_Init();
 OS_InitTick();

 //---- init functionCost
 OS_InitFunctionCost(&CostBuffer, COSTSIZE);
 OS_InitStatistics(&StatBuffer, STATSIZE); // This initialization can be done after
measurement

 ： // This is the code to be profiled
 //---- calculate cost
 OS_CalcStatistics(&StatBuffer);

 About Profiler

TWL-06-0016-001-B 22  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

 //---- display functionCost
 OS_DumpStatistics(&StatBuffer);

 ：

}

 OS_InitFunctionCost()

Measurement Buffer Initialization

OS_InitStatistics()

Statistics Buffer Initialization

OS_CalcStatistics()

Summarize the contents of measurement
buffer to statistics buffer

4.5 Display Example with OS_DumpStatistics()
A following is an example of the output of an OS_DumpStatistics() function call.

test1: count 1, cost 25
test2: count 3, cost 185
test3: count 4, cost 130

In the example, there was one call of test1() with an elapsed time (duration) of 25. (The units are
those used in the Tick system of the OS.)

There were three calls of test2() with a total duration of 185. For test3(), there were four calls
with a total duration 130.

4.6 Settings When Linking
To enable the function cost measurement feature, use the TWL_PROFILE_TYPE=FUNCTIONCOST (or
NITRO_PROFILE_TYPE=FUNCTIONCOST) option. Due to this setting, the linker will link to
libos.FUNCTIONCOST.a (or libos.FUNCTIONCOST.thumb.a). This can also be specified in the
makefile.

4.7 Threaded Operations
If the thread system is being used, function cost measurement information is maintained independently
for each thread. Therefore, when a buffer is initialized in OS_InitFunctionCost() only the
initializing thread can write to that buffer. Status settings for functions like
OS_EnableFunctionCost() are also independently maintained for each thread.

Avoid initializing a single measurement buffer from different threads using OS_InitFunctionCost().

About Profiler

 2004-2010 Nintendo 23 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

4.8 Cost
Because a process saves time information to the buffer every time the function is called, function calls
using profiler cost more than the normal operation. Since every function must include the
__PROFILE_ENTRY/__PROFILE_ EXIT calls, you cannot expect the code to be optimized during
compilation to the degree that it would be without these restrictions. Furthermore, to save the pointer to
the function name in the buffer, the function name string must be saved to memory, which causes
additional memory usage.

The operational cost depends on factors, such as whether threading is used. A call of
__PROFILE_ENTRY() results in the processing of an additional 25 to 35 instructions; a call of
__PROFILE_EXIT() results in the processing of an additional 20 to 30 instructions. Also, interval
calculations are done when thread are switched, which require an additional30 – 40 instructions.

The time is obtained by reading the 32-bit timer value from the IO register so the cost of obtaining the
time is not significant.

 About Profiler

TWL-06-0016-001-B 24  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

5 Profilers Other Than TWL-SDK
Preparing __PROFILE_ENTRY() and __PROFILE_EXIT() allows you to use a profiler other than the
one provided in the TWL-SDK OS.

For example, if you use the profiler provided by CodeWarrior,__PROFILE_ENTRY() and
__PROFILE_EXIT() are defined within it. Do not define the ones provided by the OS.

5.1 Settings When Linking
You must set TWL_PROFILE_TYPE (or NITRO_PROFILE_TYPE) to something other than
‘CALLTRACE’ or ‘FUNCTIONCOST’ during compilation of the operating system. (In other words, you
don’t have to specify anything.). This will prevent linking to the libos.CALLTRACE.a and
libos.FUNCTIONCOST.a profile libraries.

Note that TWL_PROFILE=TRUE or NITRO_PROFILE=TRUE must be specified in order to insert the
__PROFILE functions at the entry and exit points of each function.

Use the TWL_PROFILE_TRUE (or
NITRO_PROFILE=TRUE) build switches where

necessary since we want to insert the __PROFILE

__PROFILE_ENTRY()

__PROFILE_EXIT()
Use PROFILE functions that are not in
the SDK. Therefore,

TWL_PROFILE_TYPE or

NITRO PROFILE TYPE is not

__PROFILE_ENTRY()

__PROFILE_EXIT()

OS __PROFILE Function

Link

User Program

Executable File

test()

xxxx

xxxx

__PROFILE_ENTRY()

__PROFILE_EXIT()

Use the TWL_PROFILE_TRUE (or
NITRO_PROFILE=TRUE) build switches where
necessary since we want to insert the __PROFILE
functions in each function.

Uses PROFILE functions that are not in the
SDK. Therefore, TWL_PROFILE_TYPE or
NITRO_PROFILE_TYPE is not specified.

CodeWarrior’s _PROFILE
functions (In
ProfileLibrary_ARM_LE.a)

About Profiler

 2004-2010 Nintendo 25 TWL-06-0016-001-B
CONFIDENTIAL Released: August 26, 2010

Revision History

Version Revision Date Description

0.4.0 2010/01/15 Corrected typo (Changed OS_DispStatistics to OS_DumpStatistics).

0.3.0 2008/09/26 Revised document to reflect TWL.

0.2.0 2004/08/11 Revised the error in section 3.4 where “stack mode” was “trace mode.”

0.1.0 2004 Initial version.

 About Profiler

TWL-06-0016-001-B 26  2004-2010 Nintendo
Released: August 26, 2010 CONFIDENTIAL

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

© 2004-2010 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	1 How Profiler Works
	1.1 The Profile Feature
	1.2 Compile-Time Options
	1.3 Switching with pragma
	1.3.1 Where to Place pragmas

	2 TWL-SDK profiler
	2.1 Function Call Tracing
	2.2 Function Cost Measurement

	3 Function Call Tracing
	3.1 How Trace Recording Works
	3.2 Saved Information
	3.3 Two Modes of Function Call Tracing
	3.4 Implementing in the Program
	3.5 Display Example with OS_DumpCallTrace()
	3.5.1 In Stack Mode
	3.5.2 In Log Mode

	3.6 Settings When Linking
	3.7 Threaded Operations
	3.8 Cost

	4 Function Cost Measurement
	4.1 How Cost Measurement Works
	4.2 Saved Information
	4.3 Conversion to Statistics Buffer
	4.4 Implementing in the Program
	4.5 Display Example with OS_DumpStatistics()
	4.6 Settings When Linking
	4.7 Threaded Operations
	4.8 Cost

	5 Profilers Other Than TWL-SDK
	5.1 Settings When Linking

