Profiler

Profiler

Version 0.3.0 2008/09/26

Table of Contents

1 Profiler MECRANISIMuuiiiiiiiiiiiie ettt e e e e eeeeeeseeeeees 2
1.1 PrOfile FEAUIEeei ittt e st e e e s aab et e e s sabbe e e e s bbeeaeeas 3
1.2 Specifying DUNG @ COMPIIEccciiiiiiiiiiece e e e s s e e e e e e ens 5
1.3 SWItChING WIth Pr agimB. ... e e e s e e e e e e s s s snaba e e e e aeeeeaans 6

S I8 R T 1= = (o B o Po Yot o =T [- PR USRPN 7

2 NItFO-SDK PrOfIEI ...t e e 8
2.1 FUNCHON Call TTACE .. .eiiiieiiiieee ittt ettt e e s ab e e s st e e e s nbee e e 8
2.2 FUNCHON COSt MEASUIEIMENTuviiieiitiite ettt ettt ettt e e s b e e s sbbe e e e s nne e e e 8

3 FUNction Call TracCeoooiiiiiiiiiii i 9
3.1 Mechanism Of Trace RECOIAINGcuiiiiiiiiiiiiiiiiie ettt e e e e s breeeeeeas 9
3.2 SAvVed INTOMMALION ..ot e e s b s 10
3.3 Two Modes of FUNCHON Call TraCE.........cviiiiiiieiiie ettt 11
3.4 Implementing in the PrOgramcoii i e e e e e e e s e aaeeeeees 12
3.5 Display Example With DUMPouviiiiii e e e e e e aae e e e 15

351 IN SACK MOGE ...ttt e 15
RS | o I o T 1Y o T [PP PSPPI 16
3.6 Specification WHeN LINKINGc.uoiiiiiiii et enbee s 17
T A @ o =1 = 11 o] o 1 o TN I 11T Uo IS 17
G T O o 11 AP EP TP UPRTPP 17

4 FUNCLION COSt MEASUIEIMENTvviiiiieieiiiiiieeieeeeeeeee ettt eeaeeeeeeeeeeeeees 18
4.1 Cost Measurement MEChANISMcoiuiiiiiiiii e 18
4.2 SaVed INFOMMEALION ...cooiiiiii bbb e e eabae e e eanes 19
4.3 Conversion to StatiStics BUFfErcooiiiiiiii e 20
4.4 Implementing iN the Programeeiio et e e e ennneees 21
4.5 Display Example With DUMP ... 24
4.6 Specification WHeN LINKINGooouiiiiiiiie ittt e e e e s s snnbre e e e e e e s s snnnnees 24
o A © o 1= 1= 1 To] Mo o N I] £=T= To PP 24
T O 1 AT O PP PEPPR PP 24

5 Other Profilers (NON-Nitro-SDK).........cciiiiiiiiiiie e eeaaeees 25
5.1 Specification WHhen LiNKINGoiiiiiiiieee e e e e e ssnnreeeee s 25

[J 2008 Nintendo 1 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and are protected by national and international copyright laws. They may not be disclosed to third parties or
copied or duplicated in any form, in whole or in part, without the prior written consent of Nintendo.

TWL-06-0016-001-A 2 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

1 Profiler Mechanism

1.1 Profile Feature

maccar m exe, the C compiler from Freescale Semiconductor, is set up to support the profile feature. This feature
automatically inserts the code for a specific function call in the entry and exit of the function. By taking records and
statistics about the call from within the function, you can acquire profile information; which is especially useful for things
like debugging. The profile feature can be enabled by adding the option —pr of i | e in mamccar m exe and compiling.

The profiler typically created lines of code like the following example.

u32 test(u32 a)
{

}

return a + 3;

If this function is compiled, usually an object with the following code is output.

test:
add r0, r0, #3 [/ Add 3
bx Ir

3 is simply added to the argument r 0. (Return value is also stored inr 0.)

Next, the case in which compiling with the profile feature ON is shown. __ PROFI LE_ENTRY and __ PROFI LE_EXI T are

called during entry and exit respectively. The following is an example of code created by this feature for a stack operation.

test:
stnfd sp!,{r0,Ir}
| dr ro, [pc, #32] /1 Assign the pointer to the character string “test”
tor0
bl __PROFILE _ENTRY // __PROFILE_ENTRY Cal |
| dnfd sp!,{r0,Ir}
add r0, ro, #3 [/ Add 3
sub sp, sp, #4
stnfd sp!,{lr}
bl _ PROFILE EXIT /[l __PROFILE EXIT Call
| dnfd sp!,{lr}
add sp, sp, #4
bx Ir
dcd .xxxx /'l pointer to the character string “test”
XXXX: 74 6;5 73 74 00 /1 character string “test”
O 2008 Nintendo 3 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

_PROFI LE_ENTRY and _PROFI LE_EXI T have only the code for calling functions, and the entity of the function must be
created in the application. For TWL-SDK, they are defined in os_cal | Trace. ¢ and os_f uncti onCost . ¢ so that you

can link them into your code if necessary.

Functions that call __PROFI LE_ENTRY and __PROFI LE_EXI T and functions that do not call __PROFI LE_ENTRY and

__PROFI LE_EXI T can exist in the link object. Functions that don't make these calls will simply not be profiled. Since the

compiler enters profiling calls function by function, there are no function that calls only __ PROFI LE_ENTRY or

__PROFI LE_EXI T unless such function is created deliberately.

test1()

XXXX

XXXX

XXXX

main()

__PROFILE_ENTRY()

__PROFILE_EXIT()

XXXX

XXXX

XXXX

test2()

XXXX

XXXX

XXXX

test3()

__PROFILE_ENTRY()
XXXX

XXXX

XXXX
__PROFILE_EXIT()

— PROFILE_ENTRY()

XXXX

XXXX

XXXX

— PROFILE_EXIT()

XXXX

XXXX

XXXX

The object that has the _PROFI LE function and the object that do not have the _PROFI LE function
can be mixed. (The _PROFI LE function itself does not have the calls to the _PROFI LE function.)

TWL-06-0016-001-A
Released: October 20, 2008

0 2008 Nintendo
CONFIDENTIAL

Profiler

1.2 Compile-Time Specifications

With TWL-SDK, if you define either the TW._PROFI LE or Nl TRO_PROFI LE build switches when you run nake, the —

prof i | e option will be added when the C source is compiled. For functions in source compiled with the —pr of i | e option,
the calls for __ PROFI LE_ENTRY and __PROFI LE_EXI T are entered at the entry and exit points of functions in the object
code.

We used the phrase “TW._PROFI LE or Nl TRO_PROFI LE” in the description above. Because only the NI TRO_PROFI LE
build switch is valid for NITRO-SDK, we have made provisions for the sake of compatibility so that either build switch can

be defined. When creating a NITRO ROM using TWL-SDK, it's perfectly fine to define TW._PROFI LE. Likewise, when
creating a TWL LIMITED ROM, defining either Nl TRO_PROFI LE or TW._PROFI LE will have the same effect.

If a simple make is executed

mwccarm - test.c

function()

XXXX

XXXX
XXXX

If make TW._PROFI LE=TRUE or
make NI TRO PROFI LE=TRUE is executed

mwccarm —profile - test.c Mo

__PROFILE_ENTRY()
XXXX

XXXX

XXXX
__PROFILE_EXIT()

O 2008 Nintendo 5 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

Profiler

It is okay to include this in the makefile.

Makefile | tw._pRroFILE = TRUE

1.3 Switching with pr agma

When temporarily switching the profile feature in the C source use #pr agma.

#pragma profil e on turns it ON.

#pragma profile off turns it OFF.

#pragma profile reset returns it to the original status before switching to ON or OFF.

(Example)

void test1(void)
{

}

void test2(void)
{

}

#pragma profile off
void test3(void)
{

}

#pragma profile reset

void test4(void)
{

}

If this source is compiled with —pr of i | e, the profile feature fort est 1(),test 2(), and t est 4() are ON. (without -

profil e, the profile feature will be OFF with all functions.)

TWL-06-0016-001-A 6 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

1.3.1 Where to Place Pragmas

If the profile pragma is turned on before a given function ends, the profiler feature will be enabled for that function. If the
profile pragma is turned off at the moment it ends, the profiler feature will be disabled for that function. Normally this

pragma should be set outside the function so that it is easier to follow.

(Example)

#pragma profile off

void test1(void) .
profile off
ixiig Profiling is enabled for this function.
xxxxx(); A\ 4
#pragma profile on
void test2(void) profile on
§§§§§8 Profiling is disabled for this function
xxxxx(); v
#pragma profile off
profile off
v
0 2008 Nintendo 7 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

2 TWL-SDK profiler

By setting up PROFI LE functions for objects with calls for __ PROFI LE_ENTRY() and __PROFI LE_EXI T(), the following

mechanisms for debugging with TWL-SDK are available:
Function Call Trace (OS_Cal | Tr ace)
Function Cost Measurement (OS_Funct i onCost)

These features are built separately from the OS library. More specifically, the OS library is | i bos. a (or
i bos. t hunb. a). The function call trace library is | i bos. CALLTRACE. a (or | i bos. CALLTRACE. t hunb. a), and the
function cost measurement is | i bos. FUNCTI ONCOST. a (or | i bos. FUNCTI ONCOST. t hunb. a).

2.1 Function Call Trace

There are two modes for the mechanism that records the results of a PROFILE function to a specified memory location.

One is a stack mode that records the call of the function with __PROFI LE_ENTRY() and deletes the record with
__PROFI LE_EXI T() . By checking the record at a certain point you can find out what function wrote to the record at that

point (what type of call was used).

The other is a log mode that records the call of the function with __ PROFI LE_ENTRY() and does nothing with
__PROFI LE_EXI T() - The buffer for recording is used repeatedly so the most recent record is always maintained. This

allows display of the function that was called (was being called when the record was written).

To enable this profile feature, you must specify TW._ PROFI LE_TYPE=CALLTRACE (or
NI TRO_PROFI LE_TYPE=CALLTRACE) as a nake option. (It can be specified in the Makefile also.)

2.2 Function Cost Measurement

This mechanism measures the time in the ENTRY and EXIT areas of the PROFILE function and checks the duration of

the function based on the difference between the two.

If you are using a thread system, the time while the thread is switched and another thread is running is subtracted from
the duration. This allows you to compare the cost of a particular function. In addition, the number of calls is recorded so it
is useful for measuring the frequency of calls.

To enable this profile feature, you must specify TW._ PROFI LE_TYPE=FUNCTI ONCOST (or
NI TRO_PROFI LE_TYPE=FUNCTI ONCOST) in the make option. (It can be specified in the Makefile also.)

TWL-06-0016-001-A 8 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

3 Function Call Trace

3.1 Mechanism of Trace Recording

The function call trace works in the following way.

Function Call Trace Buffer

__ PROFILE_ENTRY
> Record for
function()
function() /
__PROFILE_ENTRY()
XXXX
__PROFILE_EXIT
XXXX /v
XXXX /
__PROFILE_EXIT() |
__PROFILE_ENTRY()
Records that “function was called” in the function call trace buffer. Specifically,
the pointer to the function name character string, return address from the
function, and argument (options) are recorded together.
__PROFILE_EXIT()
(Stack Mode) — Deletes the record that states the “function was called” most
recently written to the function call trace buffer.
(Log Mode) — Performs no processes.
O 2008 Nintendo 9 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

3.2 Saved Information

The following information is saved with the function call trace:

Pointer to the function name character string

Value of | r Register at the point from which the function was called

Value of r 0 Register at the point from which the function was called (optional)
Value of r 1 Register at the point from which the function was called (optional)
Value of r 2 Register at the point from which the function was called (optional)

Value of r 3 Register at the point from which the function was called (optional)

The memory address from which the function was called is stored in the | r register. In other words, if the value of the | r

register is known, you can use that value to determine the address from which the function was called.

The r 0 —r 3 registers are used for the passing of the values of argument for the function that has arguments. This allows
you to see what type of argument was specified when the function is called. However, the values of registers not used in
passing arguments do not have much meaning. Saving the values of r 0 —r 3 is optional. These require a dedicated 4-

byte area for each register. Keep these memory requirements in mind when allocating your buffer.
The buffer is used in the following manner.

Function Call Trace Buffer

I Control Area

A

0x02010040 | 0x02010080 |0x00000040 | 0X00000060 | 0X00000703 | OX80001FFF
0x0212C764 | 0x02120184 | 0x00000001 | 000000001 | 0X00000001 | OX00000002

L] 0000 00O0OGOOGOSOGIEOGIEOGOSNOSNOSNOSNOSIO ‘...‘...‘...‘......‘...‘...‘...‘...‘...1.

+ | 0x02035678 | 0x0201D174 | 0x00000003 | 0X00000003 | 0x00000023 | 0x00000023 ¢ Trace

: 0000 000OCGOGOSOGIEOSIEOGONOSONOGNOSNOSNOIO 00 00000000000 OOCOONONOSNOSOGINOSNOGINOSNONONOSNONONONPONOSNONONONONEOSNIOS |. Information
0x020211F8 | 0x02009F10 | 0x00008000 | 000004000 | 0X00000018 | 0X0000090C

Pointer to Ir ro rl r2 r3
Function Name
TWL-06-0016-001-A 10 ST 0 2008 Nintendo

Released: October 20, 2008 CONFIDENTIAL

Profiler

In the preceding diagram, r 0 —r 3 are saved so a 24-byte information region is required for one call. If r 0 — r 3 do not

need to be saved, the buffer size required for one call is 8 bytes.

Information such as the area of the buffer currently in use and the location of the upper limit is stored in the Control Area.

3.3 Two Modes of Function Call Trace

There are two modes for the function call trace, stack mode and log mode. In stack mode, information is saved by
__PROFI LE_ENTRY() and deleted by __ PROFI LE_EXI T() . In log mode, __PROFI LE() does not delete the information.

Also, the same region is used for saving information and the old information is deleted.

The buffer stores the following information:

Stack Mode
mai n0) Function Call Trace Buffer
g function() i ()
g function()
b ti
subrouti ne() subrouti ne()

If you check the function call trace buffer, you can view the information about a
function call at a particular point. In the diagram above, you can see that
mai n() called function(),andfunction() called subroutine().

Log Mode
mai n() Function Call Trace Buffer
function() mai n()
subroutine() function()

function() subrouti ne()

function()

¥ subroutine()
subrouti ne()

If you check the function call trace buffer, you can view the information for
functions called up to that point. In the diagram above, you can see that
mai n(), function(),subroutine(),function(),andsubroutine()

were called.

O 2008 Nintendo 11 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

Profiler

3.4 Implementing in the Program

The call trace begins with the initialization of the call trace buffer at the beginning of the program. In stack mode, the
functions carrying out initialization must be at the highest level (not called from within other functions). This consideration

is not particularly necessary in log mode.

// Function call trace initialization
void OS_ InitCall Trace(void* buf, u32 size, OSCall TraceMbde node);

buf Function call trace buffer
si ze Buffer size
nmode stack mode or log mode

As described previously, the function call trace buffer stores the information necessary for controlling the buffer and the
actual trace information. The mode is specified by OSCal | Tr aceMode with a value of either OS_CALLTRACE_STACK
(stack mode) or OS_CALLTRACE_LOG (log mode).

If you know the size of a Cal | Tr ace buffer and want to know how many lines it can store, use the following function.

// Calculate the nunber of trace information sets based on the size of the buffer.
int OS_Cal cCall TraceLi nes(u32 size)

si ze Buffer size
Return Value Number of lines that can be secured (number of trace information sets)

Use the following function to determine the minimum size required for your buffer based on the number of lines you want it
to contain.

// Cal cul ate the buffer size based on the number of
// trace information sets that can be stored.
u32 OS Cal cCal | TraceBufferSize(int lines);

i nes Number lines in the buffer (number of trace information sets)
Return Value required size of your buffer

The following function is used for displaying the contents of a trace buffer. The displayed content is described later in this

document.
/! Function call trace display
u32 OS _DunpCal | TraceBufferSize(void);
TWL-06-0016-001-A 12 0 2008 Nintendo

Released: October 20, 2008 CONFIDENTIAL

Profiler

You can temporarily stop recording information or restore the setting by using the following functions. Recording of
information remains disabled even if __ PROFI LE_ENTRY() or __ PROFI LE_EXI T() are called. If you are using stack

mode, the information inside the buffer may be invalid or corrupt depending on when the __ PROFI LE function is stopped.

// Function call trace enabl e/ di sabl e/restore
BOOL OS_Enabl eCal | Trace(void);

BOOL OS _Disabl eCal | Trace(void);
BOOL OS RestoreCal |l Trace(BOOL enable);

enabl e Enable (TRUE) or Disable (FALSE)
Return Value Status prior to this function call. Enable (TRUE)/ Disable (FALSE)

To clear the contents of the buffer in log mode, use the following function. (You can also use this function in stack mode.
However, it is strongly recommended that you develop a full understanding of the way in which this function operates
before using it in stack mode.)

/!l Function call trace buffer clear
void OS CearCall TraceBuffer (void);

The following are actual in-program examples.

In stack mode:

#def i ne TRACEBUFSI ZE 0x300
u32 traceBuffer[TRACEBUFSIZE / sizeof (u32)];

void NitroMain(void)

{
CS Init();
[l---- init call Trace (STACK node)
OS InitCall Trace(& raceBuffer, TRACEBUFSI ZE, OS CALLTRACE STACK);
}
voi d function()
{
[l---- display callTrace
OS_DunpCal | Trace(); [// Displays status of function call at this point
}
0 2008 Nintendo 13 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

In log mode:

#def i ne TRACEBUFSI ZE 0x300
u32 traceBuffer[TRACEBUFSIZE / sizeof (u32)];

void NitroMain(void)
{
oS _Init();

[l---- init call Trace (LOG nobde)
OS InitCall Trace(& raceBuffer, TRACEBUFSIZE, OS CALLTRACE LOG);

/1 Location to be | ogged

[l---- display callTrace
OS_DunpCal | Trace();
}
TWL-06-0016-001-A 14 0 2008 Nintendo

Released: October 20, 2008 CONFIDENTIAL

Profiler

3.5 Display Example with OS_DumpCallTrace()

3.5.1 In Stack Mode

The following is an example of the output from a OS_DunpCal | Trace() function call.

OS_DunpCal | Trace: |r=0200434c
test3: [r=02004390, r0=00000103, r1=00000080, r2=00000080, r3=2000001f
test2: |[r=020043c4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f
testl: |r=02004254, r0=00000100, r1=00000080, r2=00000080, r3=2000001f

In this example, the | r = value shows that OS_DunpCal | Trace() was called immediately before 0x0200434c. You can
also see thattest 1() callstest2() andtest2() callstest 3(). The position returning from t est 3() is before
0x2004390.

The example also shows that when t est 3() is called, r 0 is 0x103, r 1 is 0x80, r 2 is 0x80, and r 3 is 0x2000001f .
Therefore, if t est 3() is a function that uses an argument, you can apply these values and figure out the arguments

when the functions are called. The same analysis is possible with other functions.

(Note) In the example above, descriptions like “t est 1() called t est 2() " are based on the premise that this executable
file has the profile feature enabled for all the objects and is compiled. So, ift est 1() callst est 4() whent est 4() does
not have an enabled profile feature. Then, t est 4() callst est 2() which does have an enabled profile feature. The

result will be what you see in the example—t est 2() above t est 1() with no t est 4() displayed at all.

The display above was output from the program below.

int testl(int a){ return test2(a + 1); }
int test2(int a){ return test3(a + 2); }
int test3(int a){ OS DunpCallTrace(); return a + 4; }

void NitroMain(void)

{
s Init();
CS_InitCall Trace(&buffer, BUFFERSI ZE, OS_CALLTRACE_STACK);
(void) test1(0x100);
}
O 2008 Nintendo 15 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

3.5.2 InLog Mode

The following is an example of the output from a OS_DunpCal | Trace() function call.

test3: |r=020043a0, r0=00000103, r1=00000080, r2=00000080, r3=2000001f
test2: |r=020043d4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f
test1l: |r=0200423c, r0=00000100, r1=00000080, r2=00000080, r3=2000001f
test3: |r=020043a0, r0=00000203, r1=00000080, r2=00000080, r3=2000001f
test2: |1r=020043d4, r0=00000201, r1=00000080, r2=00000080, r3=2000001f
testl1l: |r=02004244, r0=00000200, r1=00000080, r2=00000080, r3=2000001f

Since the newest information is displayed first, you can see that for the functions that have an active profile feature, the
callingorderistest1l,test2,test3,test1,test?2, andtest 3. Return address, argument and other information can

be determined from the | r register or r 0 —r 3 registers at that point.

Looking at the display of t est 1, t est 2, and t est 3 you can see thatt est 2 and t est 3 are indented. This happens
because t est 2 was called before the __ PROFI LE_EXI T() oftest 1, and t est 3 was called before the
__PROFILE_EXI T() oftest2.

The display above was output from the program below.

int testl(int a){ return test2(a +1); }
int test2(int a){ return test3(a +2); }
int test3(int a){ return a + 4; }

void NitroMain(void)

{
as Init();

OS InitcCall Trace(&buffer, BUFFERSI ZE, OS CALLTRACE LGOG);
(void) test1(100);

(void) test1(100);

OS_DunpCal | Trace();

TWL-06-0016-001-A 16 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

3.6 Specification When Linking

To enable the function call trace feature, TW._PROFI LE_TYPE=CALLTRACE (or Nl TRO_PROFI LE_TYPE=CALLTRACE)
must be specified for the make option. Due to this requirement, | i bos. CALLTRACE. a (or
i bos. CALLTRACE. t hunb. a) is included when linking. This can also be described in the Makefile.

3.7 Operation on Thread

If a thread system is being used, the function call trace information runs independently for each thread. Therefore,
initialization of a particular buffer declared with OS_InitCallTrace() only records information from the thread in which it was

generated. Status settings for functions like OS_Enabl eCal | Trace() are also independent for each thread.

Avoid declaring the same buffer with a different thread using CS_I ni t Cal | Trace() .

3.8 Cost

Because the function calls are saved in the buffer, function calls cost more than the normal operation. Since every
function must include the __ PROFI LE_ENTRY/EXI T calls, the optimization during compile is not as much as expected,
compared to a situation where there is no restrictions. Further, to save the pointer to the function name in the buffer, the

function name string is placed on the memory, which causes additional memory usage.

The operational cost varies based on factors such as: whether there is a thread or not, the information saved, and the
mode. With __ PROFI LE_ENTRY() extra 60 — 70 instructions are passed, and with __PROFI LE_EXI T() an extra 20 — 40

instructions.

O 2008 Nintendo 17 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

4 Function Cost Measurement

4.1

Cost Measurement Mechanism

Profiler

Two buffers are used with function cost measurement. As shown below, they are the “Function Cost Measurement

Buffer” and “Function Cost Statistics Buffer”.

Function Cost Measurement

Buffer

PROFILE_ENTRY

function()

| P —— Current Time 0045

i function() Current Time 0030

__PROFILE_ENTRY()

XXXX

__PROFILE_EXIT /

XXXX /v
XXXX /

__PROFILE_EXIT()

/

__PROFILE_ENTRY()

This records the pointer to the function name character string and the current

time to the cost measurement buffer the user specified.

__PROFILE_EXIT()

This records the tag written by _ PROFI LE_EXI T() and the current time.

Function Cost Measurement Buffer

Function Cost Statistics Buffer

function() Current Time 0030
------------ Current Time 0045
function() Current Time 0070
test() Current Time 0080
------------ Current Time 0090
———————————— Current Time 0120

Summarize

_— >

function() 2 times Time Duration 55
test() 1time Time Duration 10

0 2008 Nintendo

TWL-06-0016-001-A
Released: October 20, 2008

18

CONFIDENTIAL

Profiler

4.2 Saved Information

The following information is recorded with the function cost measurement.
With __PROFI LE_ENTRY:

Pointer to function name character string

Current time, value of OS_Get Ti ckLo()

With __PROFI LE_EXI T:
Special value for area where pointer was saved with __PROFI LE_ENTRY (called the EXIT tag value.).
Current time, value of OS_Get Ti ckLo()

Interval due to thread switch if required (optional)

The current time is a value that can be obtained with OS_Get Ti ckLo() . The Tick feature of the OS has a 64-bit value,
but it is sufficient to only check the lower half when calling a function so it is managed as a 32-hit value.

The special value (called the EXIT tag) for distinguishing the pointer to the character string of __ PROFI LE_ENTRY with
__PROFI LE_EXI T is secured in the pointer to the function name character string.

The amount of time it takes to change threads (including the time spent in any other thread) is deducted from the total
time elapsed from __PROFI LE_ENTRY to __PRCFI LE_EXI T.

Function Cost Measurement Buffer

I Control Area

A

0x02010040 0x00008000 0

OXFFFFFFFF 0x02120184 300
qecccccccccccjooccccccccccohoccccccccccooe Measurement

0x02035678 0x0201D174 0 Information

LN N)

pa

OXFFFFFFFEF 0x02009FCO 0

7 2 i '
/ / |

Pointer to function Time Interval due to thread switch
name
Information for one set of __PROFI LE_ENTRY and __PROFI LE_EXI T
EXIT Tag
O 2008 Nintendo 19 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

Types of information stored in the “Control Area” include: the part of the buffer currently being used, location of the upper

limit of the buffer, the counter value for the duration of a thread switch, etc.

4.3 Conversion to Statistics Buffer

It is difficult to obtain cost information only with the function cost measurement data since the measurement data needs to
be summarized as statistics buffer data.

The summary relates the call information of the function and the EXIT tag, then totals the number of calls and the time
spent in the function. When the control is transferred to a separate thread due to a switch in threads, the amount of time
until it returns to the original thread is recorded as an interval line of the EXIT tag. Calculations are carried out to take this
into consideration.

Summarizations must be carried out explicitly. When summarized, the contents of the function cost measurement buffer
are cleared. Repeatedly storing these results in the summarization buffer (before the function cost measurement buffer
overflows) helps to ensure accurate measurement for long processes. Since the same summarization buffer can be

shared with multiple threads, avoid summarizing a separate thread while summarizing on another thread.

Thread 1 Function Cost
Measurement Buffer

function() Current Time 0030

function() Current Time 0070
test() Current Time 0080

____________ Current Time 0120

____________ Current Time 0045 interval 7

------------ Current Time 0090 interval 5

Thread 3 Function Cost
Measurement Buffer

function() Current Time 0083
------------ Current Time 0088
function() Current Time 0135
------------ Current Time 0145

Thread 2 Function Cost

Measurement Buffer

XxxXX() Current Time 0035
------------ Current Time 0042
function() Current Time 0130
------------ Current Time 0150 interval 10

Function Cost Statistics Buffer

function() 5 times Time Duration 70

Summarize test() 1time Time Duration 5

_— > XxXxX () 1time Time Duration 7

The results of multiple measurements can be written to the

statistics buffer

TWL-06-0016-001-A 20 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

4.4 Implementing in the Program

Cost measurement begins recording to the buffer as soon as a function is initialized. The Tick system of the OS is used for
cost measurement so you must call OS_1 ni t Ti ck() before initializing any cost measurement buffers.

/! Function cost neasurenent initialization
voi d OS_InitFunctionCost(void* buf, u32 size);

buf Function cost measurement buffer
size Buffer size (byte)

As described previously, the information for controlling the buffer and the actual time information are stored. If you know
the size of a buffer and want to know how many lines it can store, use the following function.

// Cal cul ate the nunber of information sets based on the size of the buffer.
i nt OS_Cal cFuncti onCost Li nes(u32 size)

si ze Buffer size (bytes)
Return Value Number of lines that can be secured (number of information sets for cost measurement)

Use the following function to determine the minimum size required for your buffer based on the number of lines you want it
to contain.

// Cal cul ate the buffer size based on the number of
// measurenent information that can be stored.

u32 OS _Cal cFuncti onCostBufferSize(int lines);

l'i nes Number of lines in the buffer
Return Value required size of you buffer (in bytes)

Initialize the cost statistics buffer with the following function.

// Function cost statistics buffer initialization
void OS InitStatistics(void* statBuf, u32 size);

st at Buf Buffer
si ze Buffer size (bytes)

The following function stores the value of the cost statistics buffer.

// Summarize function cost
OS CalcStatistics(void* statBuf);

st at Buf Statistics buffer

The current contents of the function cost measurement buffer are cleared when OS_Cal cStati sti cs() is called.

O 2008 Nintendo 21 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

Profiler

The following function displays the summarization results. The output of this function is described later in this document.

/1 Function cost sunmarization display
OS DispStatistics(void* statBuf);

st at Buf Statistics buffer

You can temporarily stop recording profiling data or restore the setting by using the following functions. Recording of
information remains disabled even if __ PROFI LE_ENTRY() or __PROFI LE_EXI T() are called. If a thread switch takes
place so that only the information recorded with __ PROFI LE_ENTRY() or the information recorded with

__PROFI LE_EXI T() is written to the buffer, the cost measurement data may be invalid. It is strongly suggested that you
pay particular attention when using these functions.

/! Function cost neasurenent enabl e/ di sabl e/restore
BOOL OS_Enabl eFuncti onCost (void);

BOOL OS_Di sabl eFuncti onCost(void);

BOOL OS_Rest oreFuncti onCost(BOOL enable);

enabl e Enable (TRUE), Disable (FALSE)
Return Value Status prior to function call. Enable (TRUE)/disable (FALSE)

If you want to explicitly clear the contents of the function cost measurement buffer, call the following function.

// Function cost neasurenent buffer clear
voi d OS_d ear Functi onCostBuffer (void);

TWL-06-0016-001-A 22 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

The following is an in-program example.

#defi ne COSTSI ZE 0x3000
#def i ne STATSI ZE 0x300

u32 CostBuffer[COSTSIZE / sizeof (u32)]
u32 StatBuffer[STATSIZE / sizeof (u32)];

void NitroMain(void)

{
CS Init();
OS_I nitTick();
/[/---- init functionCost

OS | nitFunctionCost (&Cost Buffer, COSTSIZE);
OS InitStatistics(&StatBuffer, STATSIZE); [// This initialization can be
done after neasurenent

// This is the location to be nmeasured

/l---- cal cul at e cost
OS CalcStatistics(&StatBuffer);

[l---- display functionCost
OS DunpStatistics(&StatBuffer);

}
OS_InitFunctionCost() OS_InitStatistics()
Measurement Buffer Initialization Statistics Buffer Initialization
OS_CalcsStatistics()
Summarize the contents of
measurement buffer to statistics buffer
OS_DumpsStatistics()
Statistics Buffer Display
0 2008 Nintendo 23 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

4.5 Display Example with OS_DumpStatistics()

A following is an example of the output of an OS_DunpSt ati sti cs() function call.

testl: count 1, cost 25
test2: count 3, cost 185
test3: count 4, cost 130

In the example, there was one call for t est 1() with an elapsed time (duration) of 25. (The units of this value are the

same as those used in the Tick system of the OS.)

There were three calls for t est 2() with a total duration of 185. For t est 3(), there were four calls with a total duration
130.

4.6 Specification When Linking

To enable the function cost measurement feature, TW._PROFI LE_TYPE=FUNCT| ONCOST (or
NI TRO_PROFI LE_TYPE=FUNCTI ONCOST) must be specified for the make option. Due to this setting,
I'i bos. FUNCTI ONCOST. a (or | i bos. FUNCTI ONCOST. t hunb. a) is included when linking. This can also be described in

the makefile.

4.7 Operation on Thread

If a thread system is being used, the function cost measurement information runs independently for each thread.
Therefore, initialization of a particular buffer declared with OS_I ni t Funct i onCost () only records information from the
thread in which it was generated. Status settings for functions like OS_Enabl eFunct i onCost () are also independent
for each thread.

Avoid declaring the same measurement buffer with a different thread using OS_I ni t Functi onCost ().

4.8 Cost

Because time information is saved in the buffer every time the function is called, function calls cost more than the normal
operation. Since every function must include the __ PROFI LE_ENTRY/EXI T calls, the optimization during compile is not as
much as expected, compared to a situation where there is no restrictions. Further, to save the pointer to the function name

in the buffer, the function name string is placed on the memory, which causes additional memory usage.

The operational cost changes based on factors such as if there is a thread or not. With __PROFI LE_ENTRY() an extra 25
— 35 instructions, and with __PROFI LE_EXI T() an extra 20 — 30 instructions are passed. Also, interval calculation is
done when the thread is switched so an extra 30 — 40 instructions are required. The time is obtained by reading the 32-bit

timer value from the 10 register so the cost of obtaining the time is not significant.

TWL-06-0016-001-A 24 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

5 Other Profilers (other than TWL-SDK)

Preparing __ PROFI LE_ENTRY() and __PROFI LE_EXI T() allows you to use a profiler other than the one provided in the
Nitro-SDK OS.

For example, if you use the profiler offered as the CodeWarrior Example, __PROFI LE_ENTRY() and
__PROFI LE_EXI T() are defined within it so the ones provided in the OS should not be defined..

5.1 Specification When Linking

TWL_PROFI LE_TYPE (or NI TRO_PROFI LE_TYPE) must be specified for elements other than CALLTRACE or
FUNCTI ONCOST during an OS compile (In other words, nothing needs to be specified). Due to this, profile libraries such
as | i bos. CALLTRACE. a or | i bos. FUNCTI ONCOST. a) will not be linked.

Note that TW._ PROFI LE=TRUE or Nl TRO_PROFI LE=TRUE must be specified in order to insert the __PROFI LE functions

at the entry and exit points of each function.

User Program

test()

Executable File
__PROFILE_ENTRY()

XXXX

XXXX

__PROFILE_EXIT()

Use the TW._PROFI LE_TRUE (or Nl TRO_PROFI LE=TRUE)
build switches where necessary since we want to insert the

",‘_PROFILE_ENTRY()..’.

__PROFI LE functions in each function

LJ
. o
*0
0'0

__PRQFILE_BXIT()
o A

__PROFILE_ENTRY()

* *

CodeWatrrior's _PROFILE functions +* OS __ PROFILE Function ‘e,

(InProfileLibrary_ ARM LE. a) _ PROFILE_EXIT()
Use PROFI LE functions that are not in the
SDK. Therefore, TW._PROFI LE_TYPE or
NI TRO_PROFI LE_TYPE is not specified.
O 2008 Nintendo 25 TWL-06-0016-001-A

CONFIDENTIAL Released: October 20, 2008

Profiler

TWL-06-0016-001-A 26 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

Revision History

2008/09/26, 0.3.0, Revised document to reflect TWL.
2004/08/11, 0.2.0, Revised the error in 3.4 where “stack mode” was “trace mode”
2004/, 0.1.0, Initial version.

O 2008 Nintendo 27 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

	1 Profiler Mechanism
	1.1 Profile Feature
	1.2 Compile-Time Specifications
	1.3 Switching with pragma
	1.3.1 Where to Place Pragmas

	2 TWL-SDK profiler
	2.1 Function Call Trace
	2.2 Function Cost Measurement

	3 Function Call Trace
	3.1 Mechanism of Trace Recording
	3.2 Saved Information
	3.3 Two Modes of Function Call Trace
	3.4 Implementing in the Program
	3.5 Display Example with OS_DumpCallTrace()
	3.5.1 In Stack Mode
	3.5.2 In Log Mode

	3.6 Specification When Linking
	3.7 Operation on Thread
	3.8 Cost

	4 Function Cost Measurement
	4.1 Cost Measurement Mechanism
	4.2 Saved Information
	4.3 Conversion to Statistics Buffer
	4.4 Implementing in the Program
	4.5 Display Example with OS_DumpStatistics()
	4.6 Specification When Linking
	4.7 Operation on Thread
	4.8 Cost

	5 Other Profilers (other than TWL-SDK)
	5.1 Specification When Linking

