
 2008 Nintendo TWL-06-0041-001-A
CONFIDENTIAL Released: December 19, 2008

TWL-SDK
About Threads

Version 0.1.5

The content of this document is highly confidential

and should be handled accordingly.

About Threads TWL-SDK

TWL-06-0041-001-A 2  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

and/or its licensed developers and are protected by national and international copyright laws. They may not

be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

TWL-SDK About Threads

 2008 Nintendo 3 TWL-06-0041-001-A
CONFIDENTIAL Released: December 19, 2008

Table of Contents

1 Where Thread Information Is Stored...5

2 OSThreadInfo Thread System Information...7

3 The OSThread Thread Structure ..8

Figures

Figure 1-1 Thread Information ...6

Figure 3-1 Thread Information Example ..10

Figure 3-2 Thread Example ...11

About Threads TWL-SDK

TWL-06-0041-001-A 4  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

Revision History
Version Revision Date Description

0.1.5 2008/10/16 Changed wording for inclusion in the TWL SDK

2005/09/27 Added alarmForSleep to OSThread structure descriptions.

TWL-SDK About Threads

 2008 Nintendo 5 TWL-06-0041-001-A
CONFIDENTIAL Released: December 19, 2008

1 Where Thread Information Is Stored
Thread information (OSThreadInfo) is allocated in the main memory. The region storing the address

region that stores the thread information is located in the System Work Area, which is part of the main

memory. It can be accessed by both ARM9 and ARM7. The System Work Area start address is:
HW_MAIN_MEM_SYSTEM = HW_MAIN_MEM + 0xFFFC00 = 0x2FFFC00

To get this address from within user programs, use OS_GetSystemWork().

For ARM9, the pointer is stored at:
HW_THREADINFO_MAIN = HW_MAIN_MEM + 0x00FFFFA0 = 0x2FFFFA0

To get the store address of this pointer, call OS_GetSystemWork()->threadinfo_mainp.

For ARM7, the pointer is stored at:
HW_THREADINFO_SUB = HW_MAIN_MEM + 0x00FFFFA4 = 0x2FFFFA4.

You can acquire the store address of this pointer as OS_GetSystemWork()->threadinfo_subp.

If the pointer is NULL, the processor is not using the thread system.

About Threads TWL-SDK

TWL-06-0041-001-A
Released: Decembe

Figure 1-1 Thread Information

HW_M

HW

HW

Can acqu

OS_GetS

ARM9 threa

ARM7 threa

Sy
_THREADINFO_SUB Pointer to A
 6
r 19, 2008

00000000

AIN_MEM_SYSTEM

_THREADINFO_MAIN

ire with

ystemWork()

d system information

d system information

Poin

OS

OS

02000400
stem Work Region
RM7 thread information
ter to ARM9 thread information
If the pointer is NULL

the processor is not

using the thread

system
ThreadInfo
ThreadInfo
 2008 Nintendo
CONFIDENTIAL

TWL-SDK About Threads

 2008 Nintendo 7 TWL-06-0041-001-A
CONFIDENTIAL Released: December 19, 2008

2 OSThreadInfo Thread System Information
// ---------------- Thread & context packed structure

typedef struct OSThreadInfo

{

u16 isNeedRescheduling;

u16 irqDepth;

OSThread* current;

OSThread* list;

void* switchCallback;

} OSThreadInfo;

The following is a description of each member of the OSThreadInfo structure.

• isNeedRescheduling is a flag for remembering whether it is necessary to reschedule when a

thread switch request is generated at the time of an IRQ interrupt., and the IRQ interrupt is

terminated. This flag has two values: TRUE and FALSE. Since this value is used by the OS, do not

touch it.

• irqDepth stores the IRQ interrupt level. Since this variable is accessed by multiple interrupts and

is used internally by the OS, making manual changes is strongly discouraged.

• current is a pointer to the thread information of the current thread.

• list is a pointer to the thread list. Threads are connected in order from the one having the highest

priority, using the next member in OSThread. At the end, next = NULL. If no threads are

registered, the list will be NULL.

• switchCallback stores the callback value during thread switching; NULL if no callback has been

set.

About Threads TWL-SDK

TWL-06-0041-001-A 8  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

3 The OSThread Thread Structure
// ----------------- Thread structure

typedef struct _OSThread OSThread;

struct _OSThread

{

OSContext context;

OSThreadState state;

OSThread* next;

u32 id;

u32 priority;

void* profiler;

OSThreadQueue* queue;

OSThreadLink link

OSMutex* mutex;

OSMutexQueue mutexQueue;

u32 stackTop; // for stack overflow

u32 stackBottom; // for stack underflow

u32 stackWarningOffset;

OSThreadQueue joinQueue;

void* specific[OS_THREAD_SPECIFIC_MAX];

OSAlarm* alarmForSleep;

OSThreadDestructor destructor;

void* userParameter;

int systemError;

};

The following is a description of each member of the OSThread structure.

• context is the location at which context is stored during the time that threads are being switched.

• state indicates thread status:

o OS_THREAD_STATE_WAITING (=0) indicates that a thread is stopped.

o OS_THREAD_STATE_READY (=1) indicates that the thread is ready to run.

For a thread that has ended, state is OS_THREAD_STATE_TERMINATED.

• next is a pointer to the next thread when constructing a thread list. It will be NULL at the end.

• id indicates thread id. Its values are 0 – 0x7fffffff. The value is increased each time a thread is

created.

TWL-SDK About Threads

 2008 Nintendo 9 TWL-06-0041-001-A
CONFIDENTIAL Released: December 19, 2008

• priority indicates the priority level of a thread. Values are 0–31. 0 indicates the thread that has

the highest priority. The thread list is ordered by this thread priority. The idle thread created by

OS_InitThread() is assigned a priority value of 32. The priority of the idle thread cannot be

altered.

• profile is a pointer used by the profile function routines (e.g. function call tracing and function cost

measurement) to store thread information. When the profile function is not used, it does nothing.

• queue and link are areas for the thread queue. queue stores a pointer to the thread queue specified

when a thread is sleeping; link is link information for linking sleeping threads to the same thread

queue.

• ｍutex and mutexQueue are parameters used for the automatic execution of the mutex de-

allocation when the thread ends. Since the OS uses these values internally, please do not touch

them.

• stackTop, stackBottom, stackWarningOffset are parameters used in the stack leak

check. Since the OS uses these values internally, please do not touch them. They may be

referenced.

• JoinQueue, a queue that is used to resume threads that have been sleeping when the current

thread stops.

• specific is used internally by the system.

• alarmForSleep is a pointer to the alarm used when a thread sleeps.

• destructor is a thread destructor. It specifies the function called when the thread ends.

• userParameter is the user parameter. The user can use this area freely. It is neither changed nor

referenced by the system.

• systemError is the system error value. It is used internally by the system.

Threads t1, t2, and t3 are present in the following example, t2 being the current thread.

About Threads TWL-SDK

TWL-06-004
Released: D

Figure 3-1 Thread Information Example

For

the O

next=&t3

li

pr

10

OSThread t2

context

OSThreadInfo

id=30

current = &t2

:

isNeedReschedul

OSThread t1
st = &t2
1-001-A
ecember 19, 2008

ARM9, the thread that is i

SThread structure is OSi

next=&t1

next=NULL

NU

priority=3

pr

OSThread t3

context

id=200

id depends on the location where

it is stored in entry[] in

OSThreadInfo. The thread stored

in entry[n] has an id of n.
LL
10

dle (priority of 32) sh

IdleThread in os

2id
iority=
iority=3
 2008 Nintendo
CONFIDENTIAL

ould be the last in the list. (Although t3 is used here,

thread.c.) ARM7 does not have idle threads.

context

=1

TWL-SDK About Threads

 2008 Nintendo 11 TWL-06-0041-001-A
CONFIDENTIAL Released: December 19, 2008

Figure 3-2 Thread Example

In the following example, threads t1, t2, and t4 are linked to thread queue tq.

About Threads TWL-SDK

TWL-06-0041-001-A 12  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

All company and product names in this document are the trademarks or registered trademarks of the respective companies.

© 2008 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed, or loaned in whole or in part without

the prior approval of Nintendo.

	1 Where Thread Information Is Stored
	2 OSThreadInfo Thread System Information
	3 The OSThread Thread Structure

