Crypto Manual
Software Encryption Library

2008/09/16

The content of this document is highly confidential

and should be handled accordingly.

O 2008 Nintendo TWL-06-0006-001-A
CONFIDENTIAL Released: October 20, 2008

Software Encryption Library Crypto Manual

Confidential
These coded instructions, statements, and computer programs contain proprietary information of
Nintendo and are protected by national and international copyright laws. They may not be disclosed to
third parties or copied or duplicated in any form, in whole or in part, without the prior written consent
of Nintendo.

TWL-06-0006-001-A 2 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Crypto Manual Software Encryption Library

Table of Contents

A Vo o To [Fod 1T o PP U UPPPPPPRTP 5
11 OVEBIVIBW ...ttt ettt ettt ettt ettt e oo bttt e e ettt e+ o2t bt e e e a2kt e e e ea b bt e e e aab bt e e e eab b e e e e aabb e e e e anbbe e e e ambbeeeeanbbeeeeanbbeeeeanees 5
1.2 CRYPTO LIDIary SITUCIUMciiieitieieeeee e e ettt e e e e e s sttt e e e e s e s st e e e e e e s s sant e eeeaaeessnnnananereeeessannnnnneenees 5
1.3 Characteristics of Each ENCryption MethOd..........cooiiiiiiiiiiiiieie e 5
1.4 OPErating ENVIFONMIENTcoiiiiiiiiieiee ettt e e e e e ettt e e e e e e e e e b bee e e e e e e e e e nbbbbeeeaaaeesannbereeaaens 6

A S (O o Tor o/ o] 110} o FA PP PPPUPPPRTP 7
2.1 PUrpOSE @nd RESIIICHONS ...t e e e e e e e e e s e s e e e e e e e e s snsaeaeeeeeeeeesnnsanreeeeees 7
2.2 Features of the RC AIGOItNM........ueiiiee e e e e e s e e s e e e e e e s e snnrereeeees 7
2.3 Principle of Operation of the RC AlGOITNM ... 7

I B o1 r= ST o g F= ViU =2 PUT T PPPUPPPRTP 9
3.1 What Is @ Digital SIgNAUIE?ccciiiieiieiieee e e e ettt s e e s st e e e e e e e st ee e e e e e s s ann e e e e e e e e s e snnsrneeeeeeeeannnnnenns 9
3.2 Digital Signature Features Provided by the CRYPTO Libraryccccccovvecvvieeiieee i 10
3.3 SIGNALUIE DAta FOMMIAL......ueiiieii e e e s e e s e e e e e e s s s s et e e e e e aeeesasnnnranreeeeessannnneees 10
3.4 Examples of Creating SIigNature Datacooiiiiiiiiiiiiieiee e e e ee s 10

34.1 Generating an RSA Key for the SIgNature ... 11
3.4.2 Checking the Contents 0f aN RSA KEYcccuiiiiiiiee it e e e e s seer e e e e s s en e e e e e e e 11
3.4.3 Creating a Digital SIGNATUIEo.ueieiiiii et e et e e e e e e e s abbbeeeaaaeaeaans 12
3.4.4 Verifying the Digital SIGNATUIEcceeii i e e e e e e e s e e e e e e e e e s nnnneees 12

N 3 AN = 4 o] 1Y o1 1o o R 13
o R Y o To 10 | 2 Y AN =l g Tox Y/ o 1T o E PP UPUPPPRRPT 13
4.2 Precautions About the Use of RSA ENCIYPLIONc.eviiiiiiie e e e e e e e 13
4.3 Key Format and Encryption/Decryption StHNGSccuvvverieeeeiiiiiieieeee e e s seiteee e e e e e s snnveeeee e e e e s s snnsnneeeees 13
4.4 [T 40 1= 1110] £ PR SR 14
4.5 NGV O == [0 I T U] o] S 14

451 Create an RSA PFIVALE KeY ..ottt e et e e e e e e e s abb e e e e e e e e e anns 14

45.2 Create an RSA PUDIC KEY ...oiiiiiiiiiiiiiie ettt et e e e e e st r e e e e e e s e nnnarnneneaeeeanns 14

453 Check the Functionality Of the KEYS.......coiiiiiiiiiiii e 14
Figures

Figure 3-1 Digital Signature BIOCK DIagQramceuieeiiiiiiiiieieeeesssitieereeeeesssssnreeeeeeeesssnsssaeeeeeesssssssnneeeeees 9
0 2008 Nintendo 3 TWL-06-0006-001-A

CONFIDENTIAL Released: October 20, 2008

Software Encryption Library

Crypto Manual

Revision History

Revision Date

Description

2008/09/16

Initial version.

TWL-06-0006-001-A

Released: October 20, 2008

[2008 Nintendo
CONFIDENTIAL

Crypto Manual Software Encryption Library

1 Introduction

1.1 Overview

The Crypto library is used for encryption. By encrypting data used in a game it is possible to hide data
and use digital signatures to authenticate, which will detect tampering. The TWL-SDK library contains
another encryption library: the AES library. However, the AES library is used for the AES encryption
feature that is in TWL hardware. The Crypto library provides software encryption using types of
encryption other than AES.

Note: To export this product from Japan, you must obtain permission by applying to the Ministry of
Economy, Trade and Industry for permission to export. Permission is required due to the fact
that the Crypto library includes built-in features that function as an encryption device as
defined under the Foreign Exchange and Trade Law and Export and Trade Control Act of
Japan. Use proper care and caution when using this library. The export regulations and laws
of each nation involved must be observed when exporting this library package.

1.2 CRYPTO Library Structure

The Crypto library consists of the following modules.

« RC4 Encryption: Encryption and decryption are performed using an RC4 private key.

« Digital Signatures: Performs digital signature verification. It is also possible to create a signature on
TWL.

« RSA encryption: Provides encryption and decryption using a public key code.

« UTIL: Provides the functions that are required to operate the Crypto library, but that are not provided
in the other modules.

1.3 Characteristics of Each Encryption Method

The TWL-SDK provides the following encryption algorithms (ciphers) in the Crypto library RC4, RSA,;
in the AES library AES.

Compared to other ciphers provided in the TWL-SDK, RC4 is faster, and encryption and decryption
can be done with the same routine, making it easy to use. However, the same key is used for
encryption and decryption. If the key were disclosed, users could easily decipher, which defeats the
purpose of encryption. Therefore, RC4 cannot be used alone to encrypt highly confidential data. RC4
has existed since Nitro-Crypto, so use RC4 for applications that include data transfer on Nitro.

AES is a stronger cipher than RC4. We recommend using AES to encrypt data that will only be used
in TWL. However, take care to avoid disclosing the key because AES also uses the same key for
encryption and decryption.

O 2008 Nintendo 5 TWL-06-0006-001-A
CONFIDENTIAL Released: October 20, 2008

Software Encryption Library Crypto Manual

The RSA cipher uses a public key method. Since disclosing a public key is not a risk, key
management is significantly safer than shared key methods such as RC4 and AES. Also, RSA key
length in the Crypto library can be up to 4096 bits, making encryption stronger than that of other
encryption methods. However, processing speed is much slower. Therefore the normal method is to

limit using RSA to encrypt only the AES key, for which there is a key transmission risk, and to encrypt
the data with AES.

1.4 Operating Environment

RC4, digital signature verification, and UTIL run in TWL and Nitro.

RSA and digital signature creation do not run in Nitro due to licensing restrictions on the encryption
core that they use. They also do not run on Nitro even for Hybrid applications.

TWL-06-0006-001-A 6 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Crypto Manual Software Encryption Library

2 RC4 Encryption

2.1 Purpose and Restrictions

Encryption functions that use the Crypto library RC4 cipher have been prepared to work with both
Nitro and TWL. We assume that they will be used for data that must also be handled by Nitro, such as
when it is sent over a network. We recommend AES when it is not necessary for Nitro to handle the
data.

However, because shared key encryption is used with RC4, the key data used for both encryption
and decryption must be stored in the software. Therefore, if the key is discovered through analyzing
the ROM binary, encryption will be threatened. Do not use this function alone for encrypting
highly sensitive data or for verifying the data's author.

2.2 Features of the RC Algorithm

The RC4 algorithm has the following features.

» Public key encryption

e Stream encryption

» High-speed encryption/decryption

< An efficient analysis technique has not been announced

Using stream encryption is simple because the number of input bytes matches the number of output
bytes. However, it may not remain robust if certain precautions are not followed. Be sure to note the
precautions described below.

2.3 Principle of Operation of the RC Algorithm

The RC4 algorithm works by creating a uniquely defined random number string from the key, then
XOR-ing the original data with the random number string. As a result, the same key always generates
the same encryption random number string. This is described as follows:

1. The same encrypted data is always generated given the same key and the same source data. It is
possible to know when two sets of encrypted text represent the same plain text (dictionary attack).

2. When two sets of encrypted data generated using the same encryption key are XOR-ed, the same
result is obtained as when the original plain text data is XOR-ed (one type of differential attack).

3. Reversing one bit of data anywhere in the encrypted text will result in the reversal of one bit of data
after data is decrypted (bit inversion attack).

In order to foil the dictionary attacks and differential attacks, a unique initialization vector (V) is
created each time and added to the public key to create a real key for RC4 algorithm to use. When
the encrypted data is sent, the unencrypted IV must also be sent. For example, out of the 128 bits

O 2008 Nintendo 7 TWL-06-0006-001-A
CONFIDENTIAL Released: October 20, 2008

Software Encryption Library Crypto Manual

passed as a key to the RC4 function, 96 are handled as a true private key, while the remaining 32 are
filled with a different number each time the function is invoked for use as the initialization vector.

To avoid bit inversion attacks, a message digest value such as MD5 or SHA-1 is attached to any data
to be sent. Because an attacker does not know the original data, he or she cannot calculate the
correct message digest value even if he or she manages to change any bits. Functions for finding
MD5 and SHA-1 are provided in the NITRO-SDK.

For more information, refer to any basic text on encryption technology.

TWL-06-0006-001-A 8 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Crypto Manual Software Encryption Library

3 Digital Signatures

3.1 What Is a Digital Signature?

A digital signature is a mechanism that is used to verify the authenticity of data that has been
received via an untrusted route such as the Internet.

Figure 3-1 Digital Signature Block Diagram

(a—l:lewluper -,

Intemet

< The signing party (the developer) and the verifying party (the user's DS) participate as working
subjects.

« The data involved consists of the private key, public key, send data, and digital signature for the
send data.

e The private key is a secret known only to the signing party.

« A public key must be obtained ahead of time by the verifying party using some reliable means (such
as having it burned onto the game card).

« The send data is a binary file of any size.
The process flow used to verify the integrity of data when using digital signatures is as follows.

1. The signer uses the private key to create a fixed-length digital signature from the send data.
(Actually, a hash value for the send data is obtained and operations are performed on that.)

2. The verifying party receives the send data and the digital signature for that data via the Internet or
other means.

3. The verifying party can verify the authenticity of the data based on the send data and the signature
using only the public key information obtained ahead of time.

O 2008 Nintendo 9 TWL-06-0006-001-A
CONFIDENTIAL Released: October 20, 2008

Software Encryption Library Crypto Manual

Digital signatures have the following features.

< As long as the verifying party has the public key ahead of time, he or she can determine authenticity
with only the data and the signature associated with it without any further external communications.

» Aslong as the private key is not leaked, a signature cannot be forged even if the public key is
known. (In other words, signatures cannot be forged even if the ROM binary on the DS is somehow
analyzed.)

3.2 Digital Signature Features Provided by the CRYPTO Library

The two main digital signature features are as follows.

 Verify digital signatures on the system (Nitro and TWL)
» Create digital signatures on the system (only TWL)

The CRYPTO Veri fySi gnat ur e and CRYPTO Veri f ySi gnat ur eW t hHash functions are provided for
digital signature verification. These have been in existence since Nitro-Crypto, so they can also be
used with Nitro.

CRYPTO _RSA_Si gn and other functions are provided for creating digital signatures. This feature uses
RSA Security's BSAFE Micro Edition Suite and for licensing reasons can only be used in TWL.

The Crypto library does not have certificate management features such as certificate expiration date
management. If you need such features, implement them from the application.

A digital signature only verifies the legitimacy of the data. Data encryption is not performed. We have
provided RC4 and RSA encryption in the Crypto library, and the AES library, so you may use any of
them depending on the encryption strength that you need. If you want to have safe communication
with a server using the TwIWiFi library, use the NSSL library (SSL communication library).

3.3 Signature Data Format

Signature data passed to the CRYPTO Veri f ySi gnat ur e* function can be created according to any
method as long as it satisfies the conditions listed below.

» Conforms to PKCS#1
» Uses SHA-1 as the hash algorithm.
» Uses RSA for the public key encryption algorithm with a key length of 1024 bits.

» The public exponent of the public key is 65537.

3.4 Examples of Creating Signature Data

Digital signatures can also be created on a TWL system. The following is an example of the
procedure for generating a digital signature using OpenSSL, the open source SSL toolkit.

TWL-06-0006-001-A 10 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Crypto Manual Software Encryption Library

3.4.1 Generating an RSA Key for the Signature

Input the following commands on the command line when OpenSSL is installed to generate a 1024-
bit long RSA key file, pri vkey. pem

> openssl genrsa -out privkey. pem 1024

If this file were leaked, anyone would be able to sign data with it. The private key file therefore needs
to be maintained with the strictest care.

Password-based encryption for pri vkey. pemis possible by specifying the encryption method when
generating the key. In the following example, a newly generated pri vkey. pemfile is encrypted with
the 3DES algorithm.

> openssl genrsa -des3 -out privkey. pem 1024

For more information, see the OpenSSL reference material.

3.4.2 Checking the Contents of an RSA Key

Use the following command to confirm the content of pri vkey. pem
> openssl rsa -in privkey.pem -text -noout

It includes the private information needed for signing, but there are also two values needed for
verification (via the public key): modul us and publ i cExponent .

The following is an example of extracted nodul us and publ i cExponent values output from the
command.

nmodul us:

00: eb: 95: be: 33: 19: 73: 64: f 2: 72: 2c: 87: ¢8: Oa: f 3:
1c: ba: e0: 4c: e0: 3e: 1d: f 6: e2: 09: aa: 70: f 0: b3: b9:
Oc: 86: 36: 62: 2d: 12: 13: 86: f a: a5: 3d: 93: ch: 5f : Ob:
45: 64: 9b: 7b: eb: b5: c6: f9: 42: 99: 70: 46: f 3: 14: 6d:
8f: f9: b9: ec: 38: 30: a0: 1c: 28: 0d: 30: d9: 86: 1a: 4d:
1b: f 2: €9: 05: 1b: 43: 06: b2: c0: 55: ed: c4: bb: 8e: 1a:
ab: ab: 2b: 54: e5: dc: 8d: 70: cf: af: 91: 94: c9: e9: 8f :
7f:9f : 29: 28: be: e7: 01: b0: 20: d4: f 2: 71: 58: 93: db:
25: 1c: 26: bc: 98: f 3: a2: b3: 47

publ i cExponent: 65537 (0x10001)

Since the public exponent used by the CRYPTO Veri f ySi gnat ur e* function is fixed at 65537, confirm
that the publ i cExponent has a value of 65537.

The nodul us value can also be generated with the following command.

> openssl rsa -in privkey. pem -nodul us -noout

O 2008 Nintendo 11 TWL-06-0006-001-A
CONFIDENTIAL Released: October 20, 2008

Software Encryption Library Crypto Manual

This command outputs a text string similar to the following.

Modul us=EB95BE33197364F2722C87C30AF31CBAE04CEO3E1DF6E209AA70F0B3B90C8636622D121386F
AA53D93CB5F0B45649B7BEBB5C6F942997046F3146D8FFOBIEC3830A01C280D30D9861A4D1BF2E9051B
4306B2C055EDCABB8E1LAASAB2B54E5DC8D7 0CFAF9194COE98F7FOF2928BEE701B020D4F2715893DB251
C26BCO8F3A2B347

The hexadecimal value following "Modul us=" must be converted to an u8 array in C and passed as
mod_pt r to the CRYPTO Veri f ySi gnat ur e* function. In the example above, the modulus is 127 bytes
long because the leading zeros are omitted when the length is less than 128 bytes. When passing the
value to nod_pt r, be sure to restore any leading zeros to maintain a length of 128 bytes.

3.4.3 Creating a Digital Signature

Once the above steps have been completed, all that remains is to create a digital signature for the
target data.

Digital signatures can be created on the TWL using CRYPTO_RSA_Si gn, and can also be created on
PC.

The following command uses the pri vkey. pemprivate key to generate the signature data, hoge. si gn,
used to sign hoge. t xt .

> openssl dgst -shal -sign privkey. pem-out hoge.sign hoge.txt
Confirm that the resulting file size is 128 bytes.

This 128-byte binary data is transferred to a DS and passed to the CRYPTO Veri f ySi gnat ur e*
function as si gn_ptr.

Run the following command to confirm on the PC whether the generated signed data forms a valid
digital signature.

> openssl dgst -shal -prverify privkey. pem -signature hoge.sign hoge. txt

3.4.4 Verifying the Digital Signature

By embedding public key data in a DS program in advance, it can then receive data and digital
signature data. Providing the CRYPTO Ver i f ySi gnat ur e function with the data, the data size, the
digital signature data (128 bytes), and the embedded public key data (the 128-byte modulus) allows
the digital signature to be verified. This function returns a value of TRUE if the data is determined to
be valid.

TWL-06-0006-001-A 12 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Crypto Manual Software Encryption Library

4 RSA Encryption

4.1 About RSA Encryption

The encryption functions that use the RSA algorithm were prepared for encryption using public keys.

The RSA algorithm has the following characteristics.

e ltis a type of public-key encryption.

» Encryption is stronger than the RC4 or AES ciphers that can be used in the TWL-SDK.
» The processing for encryption and decryption is extremely slow.

One advantage of public-key cryptography is that, compared to shared-key cryptography, the risk
associated with key transmission is low. A disadvantage is that the processing speed is slow relative
to some other cryptographic methods. As a result, it is common to encrypt the data you want to
encrypt using some algorithm other than RSA, then use RSA to encrypt the key that was used for that
encryption and send that.

4.2 Precautions About the Use of RSA Encryption

The RSA encryption algorithm has the following properties.

* The encryption is completely circumvented if the private key is compromised.

» Decryption is possible if one can identify the private exponent (brute-force attack).

» ltis possible to spoof data if one were to abuse the key transmission (man-in-the-middle attack).

If the private key is compromised, it is possible both to defeat the encryption and to falsify signatures,
and the safety provided by the encryption is lost. You must therefore be careful about how you
manage your private keys.

Increasing the key length makes it easy to defend against brute-force attacks, but the longer you
make your keys, the slower the encryption will become.

Verification (signatures) of public keys is useful for preventing man-in-the-middle attacks.

For more information, refer to any basic text on encryption technology.

4.3 Key Format and Encryption/Decryption Strings

The DER format is used for both public and private keys. There is no limit on the length of the keys.

The encryption strings must be shorter than the key length. (For example, if the key length is 1024
bits, the string to encrypt must be less than 1024 bits.) If the strings to decrypt were not encrypted
with the Crypto library, they must meet all of the following requirements.

e It conforms to PKCS #1.
» The public exponent of the public key is 65537.

O 2008 Nintendo 13 TWL-06-0006-001-A
CONFIDENTIAL Released: October 20, 2008

Software Encryption Library Crypto Manual

4.4 Limitations

Due to software licensing restrictions, the RSA encryption algorithm can only be used in TWL. It
cannot be used in Nitro. When used in Hybrid applications, it will only function in TWL.

4.5 Key Creation Example

The following is an example of the procedure for generating public and private keys for encryption
with OpenSSL from the open source SSL toolkit.

4.5.1 Create an RSA Private Key

Input the following commands in a command line on a system on which OpenSSL has been installed.
This will generate a 1024-bit-long RSA private key file in PEM format, pri vkey. pem

> openssl genrsa -out privkey.pem

In the event that pri vkey. pemwere to be leaked or compromised, anyone would be able to break or
falsify the encryption. The private key file therefore needs to be maintained with the strictest care.

Once the private key has been created in PEM format, convert it to DER format.

> openssl rsa -outform DER -in privkey. pem-out privkey. der

When specifying a private key with the CRYPTO API, convert the content of this pri vkey. der file to a
C-language u8 array. The pri vkey. der file is a private key just like pri vkey. pem so it should be
handled in an equally strict manner.

4.5.2 Create an RSA Public Key

Create a public key in DER format with the following command.

> openssl rsa -pubout -informDER -in privkey.der -outform DER -out pubkey. der

When specifying a public key with the CRYPTO API, convert the content of this pubkey. der file to a
C-language u8 array.

4.5.3 Check the Functionality of the Keys

Make sure the pair of private and public keys you generated is functioning properly.

1. First, prepare a text file (t est . t xt) that contains a string that is shorter than the key, and encrypt it
using the public key, converting it to t est . t xt . enc.

> openssl rsautl -encrypt -in test.txt -out test.txt.enc -pubin -keyform DER -inkey pubkey. der
Make sure the pair of private and public keys you generated is functioning properly.
2. Next, decode t est . t xt . enc using the private key, converting itto t est . t xt . dec.

> openssl rsautl -decrypt -in test.txt.enc -out test.txt.dec -keyform DER -inkey privkey. der

If the content of t est . t xt matches that of t est. t xt . dec, you have confirmed that the keys are
functioning properly.

TWL-06-0006-001-A 14 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Crypto Manual Software Encryption Library

All company names, product names, etc., included in this document are the trademarks or registered trademarks of their respective

companies.

O 2008 Nintendo 15 TWL-06-0006-001-A
CONFIDENTIAL Released: October 20, 2008

Software Encryption Library Crypto Manual

© 2008 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

TWL-06-0006-001-A 16 O 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

	1 Introduction
	1.1 Overview
	1.2 CRYPTO Library Structure
	1.3 Characteristics of Each Encryption Method
	1.4 Operating Environment

	2 RC4 Encryption
	2.1 Purpose and Restrictions
	2.2 Features of the RC Algorithm
	2.3 Principle of Operation of the RC Algorithm

	3 Digital Signatures
	3.1 What Is a Digital Signature?
	3.2 Digital Signature Features Provided by the CRYPTO Library
	3.3 Signature Data Format
	3.4 Examples of Creating Signature Data
	3.4.1 Generating an RSA Key for the Signature
	3.4.2 Checking the Contents of an RSA Key
	3.4.3 Creating a Digital Signature
	3.4.4 Verifying the Digital Signature

	4 RSA Encryption
	4.1 About RSA Encryption
	4.2 Precautions About the Use of RSA Encryption
	4.3 Key Format and Encryption/Decryption Strings
	4.4 Limitations
	4.5 Key Creation Example
	4.5.1 Create an RSA Private Key
	4.5.2 Create an RSA Public Key
	4.5.3 Check the Functionality of the Keys

