Description of the Wireless Communications Library

TWL-SDK

Version 1.2.3

The content of this document is highly confidential
and should be handled accordingly.

© 2005-2010 Nintendo TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

TWL-06-0005-001-D 2 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Table of Contents

1 Wireless Communications LIDrary OVEIVIEWccooiiiiiiiiiiiiiiiiie ettt 8
1.1 111 eTo [e i o o RO TP PP OPUPPPPPRPRN 8
1.2 Basic Specifications for Wireless Communication Hardwarecccocccviiiiiee i 8
1.3 Configuration of the Wireless Communications Library............cccccoiiiiiiiiiiiie e 8

P €1 (o= | oY PRSP PPPRPRPPPRRN 10

3 DS WIBIESS PIAY ...ttt ettt et e e e sttt e e e ettt e e e e n b e e e e aabe e e e e nae e e e e n bt e e e e nteeeeenaeeeeannee 13
3.1 L0 YT T 13

3.1.1 Connection CoNfIGUIALIONoiiiii bbb ee e 13
3.1.2 DS Wireless Play CharaCteriStiCS.........ciuiuuiiiiiiie ittt e e e e e e e e e e s enanes 13
3.1.3 Internal States of the Wireless Communications Librarycccovuieiiiiiiiiiiiie e 14
3.1.4 o) GO o T [PPSR 16
3.1.5 Asynchronous Function Callback and Asynchronous Notificationsc.cccccoiiiiiiinee, 16
3.1.6 MP Communications With Wii..........cueiiiiiii e seeee e 17
3.2 Initializing the Wireless Communications Librarycccoiiiiiiiiiee e 17
3.21 Initialization and Shutdown Function Differences ... 17
3.2.2 DS Wireless Communications ON Statec.cooiiiiiiiiiiiiiie e 18
3.2.3 Buffer for the Wireless Communications Library............coooueeeiiiiiiiiniiieceeec e 18
3.3 Connecting Parent and Child..............oooiiiiiiiiiiie e e e e e e e e e e e e nnrees 18
3.31 CONNECHION PrOCESSeiiiiiiiiee ittt ettt ettt e e sttt e e sttt e e e st e e e e smbaee e e snbeeeeeanbeeaeeanreeaeeas 18
3.3.2 Select @ ChanNEl t0 USE.... ...t e e e e e e e e e e e neneeeeaens 19
3.3.3 Beacon INfOrMEtioNcooiiiiii ettt e et e e e ee e 19
3.34 L= 10 0 =01 o SRR 20
3.3.5 (O70] g =Tex 110 a T @] oY =1 o] 13RS 20
3.3.6 Precautions for Ending ComMMUNICAtIONScccceiiiiiiiiiiiiee et e e e 21
3.4 MP Protocol SpecifiCations a e as 21
3.4.1 ComMMUNICAIONS OVEIVIEW.ciiuiiiieiiiiiee ettt ee et e sttt e e st e e e sset e e e s neeeeesnneeeesnneeeean 21
3.4.2 MP Communications OPEratioNS............cccuuiiiiiiie i e e e et e e e e s e e e e s e et eeaaeeesennnes 21
343 Operations When Communications Fail............cc.ooiiii e 23
344 TransSmMISSION CAPACILYcoieiueiiiiiie e e e e e e et e e e e e e e e e e e e e st e e e e aeessesnnbaaeeeeeeeseansnrens 24
3.4.5 Send and Receive Buffers for MP Communicationsoooiiiiiiiiiii e 25
3.4.6 V-Blank SynChronizationooiiiiiiiiiiiece e e e e 26
3.4.7 Frame Synchronous Communications Mode and Continuous Communications Mode 26
3438 Restrictions on the Number of MP Communications per Picture Frameccccoveeeeeiienns 27
3.4.9)Y (101 S PPPRTPPRR 27
3.5 o l O7o 10010 o101 T (o7= 1 1o] o = TR 28
3.5.1 About Port COMMUNICALIONSoeoiiiiieiiiiie e e et e e e enae e e e neeas 28
3.5.2 Port Receive CallDacKooi et e e e e 28
3.5.3 Raw and Sequential CommUNICAtIONSoiiiiiiiiiiiieiieee e e e e e e e ennes 28
© 2005-2010 Nintendo 3 TWL-06-0005-001-D

CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

3.54 Priority and SeNd QUEUEcoiiiiiiiiiiii ettt st e ettt e e e e aneeeas 29
3.5.5 Packet Headers and FOOLErSt 29
3.5.6 Packing MUIIPIE PACKETSeiiiiiiiie e 30
3.6 (D= =] = 1o T T PRSPPSO PRI 31
3.6.1 D=1 =] 0 F=1 1 oo [RSO PPOTPPPOP 31
3.6.2 HOW 10 USE ..ttt et e e e e oottt e e e e e sttt e e e e e e e e aanbneeeeaeas 32
3.6.3 Single and DoUDIE MOGES..........uiiiiiiie e e 33
3.6.4 Communications Data SiZeooiiuiiiiiiiiie e 34
3.6.5 Precautions Related to Function Call Order.......... ..o 34
3.6.6 Precautions for Operating at 30 FPS OF LESSviiiiiiiiiiiieiee ettt 35
3.6.7 General Information About Internal Operationsccoeeeiiiiiiiiiiiie e 35
3.7 Event Notifications Returned from the Wireless Communications Library...........ccccccviieiiiiiienennnn. 38
3.8 Error Codes Returned from the Wireless Communications Libraryccccccooviiiiiiiiiiiiiinie e, 41
3.8.1 Return Values of Functions That Return @ WMEITCode TYPE.......cocccuvrieeeieeiiiiciiieeee e 41
3.8.2 errcode Values Returned to Callback FUNCHONS ... 43
3.9 Precautions for Using the Wireless Communications Librarycccccceeeiiiiiiiieiie e 44
3.9.1 Load Due to the Use of Wireless COmMMUNICALIONSceiiiiiiieiiiiiee e 45
3.9.2 (07110 - To1 QSRR 45
3.9.3 (0= Lol s Lo o o o7 =TT TSRS 45
3.10 Taking Greater Control over CommUNICAtIONSccuuiiiiiiiiie it 46
3.10.1 Overview of the Timing Control Parameter of MP Communicationscccccevviieeeiniiee e, 46
3.10.2 parentVCount, ChildVCOUNLcoiiiiiiieiie e e e e e e e e e e e anraaee s 47
3.10.3 parentinterval, ChildINterval............ ... aaananananees 48
3.10.4 Changing Transmission Capacity DynamicCally...........c.cccooeeuriiiiieeiiiiciiiee e 49
3.10.5 Controlling POIBItMAPeeiiiiiiiiiiiieee et e s ab e e e 51

R Tt 8 USROS 52
3.11.1 INIHIANIZAtION PrOCESS ...t e e e e e eeeeas 52

R Tt e 7 @7 o | 1= Tex 1o g TN o o7 R 52
3.11.3 General MP COMMUNICATIONScoiuiiiiiiiiiie ettt e e e et e e s s nte e e e enneeeeeennee 55
T S B = 2= TS o = 4 T I S PP OTPPP 56

R Tt B I T © | =Y SR 57
3.12 Important Notes for RECENT REICASESueiiiiiiiiiiieiie e 57
3.12.1 Changes in MP Frame Send Conditions (NITRO-SDK 2.2 PR and Later).........ccoccceeiviienennnn. 57
3.12.2 Addition of Notification to WM_SetindCallback Function Callback (NITRO-SDK 3.0PR2
=g To I (=) o PR PSURRPRR 58

3.12.3 Change in Null Response Condition (NITRO-SDK 3.0PR2 and Later)cccccoviieeiiiiieeennen. 58
3.12.4 Addition of WM_STATECODE_DISCONNECT_FROM_MYSELF (NITRO-SDK 3.0RC
=TT [= (T PP OPPRPPPPR 58

3.12.5 Addition of WM_STATECODE_PORT_INIT (NITRO-SDK 3.0RC and Later)c.ccccuvereennnee. 58
3.12.6 Changed Conditions for Issuing a NULL Response (NITRO-SDK 3.1 PR and Later) 59
TWL-06-0005-001-D 4 © 2005-2010 Nintendo

Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Code
Code 3-1 Data Sharing SamPIe COAEooiiiiiiiiiiiie et e et e et e e aaee 32
Code 3-2 Shared Data Process Required When Operating at 30 FPS or Less......ccccccveevveiiiiieeee e, 35
Tables
Table 1-1 Basic Specifications for Wireless Communication Hardwareccccccuvveveviinieiniiiiinieieiiiennnnnn, 8
Table 1-2 Communication Modes of the Wireless Communications Libraryccccccoeciiiieiiieciiicciiieennn. 9
Table 2-1 Glossary for the Nintendo DS Wireless Communications Librarycccccoceiiiiiiniiinnn. 10
Table 3-1 Main Notification Types and Callback Configurations............ccccccoeiiiciiiiiie e, 16
Table 3-2 Functions Called by the Initialization and Shutdown Processesccccoiiiiiiiiii i, 17
Table 3-3 CONNECHON PrOCESSoiiiiiiiie ettt ettt e e s nt e e e sneee e e aneeeeesnneeeas 18
Table 3-4 Parent and Child CommUNICAtIONooiiiiiii e e 21
Table 3-5 Function Macros and Their Related Capacities.............occcuviiiiieiiiiiiiiieeiee e 26
Table 3-6 Maximum Shared Data Size for Each Child Device ... 34
Table 3-7 Wireless Communications Functions and Their Notifications.............ccccceeiiiiiiiie e, 38
Table 3-8 Return Values of Functions that Return a WMErCode TYPeovviiiiiiiiiiiiiieiieee e 41
Table 3-9 errcode Values Returned to the Callback FUNCLONcoooiiiiiiiiiii e 43
Table 3-10 MeMOry CaChe PrOCESSES........cciiiiiiiiiie ettt e e e e e e e e e e e s s et beeeeaaeeesenanreeeeens 46
Table 3-11 Changing Parent and Child Transmission Capacity...........ccccceriiieiiiiiieieiiee e 49
Table 3-12 Procedures for Determining Parameter Valuescccvvveiieeiii it 52
Figures
Figure 3-1 DS Wireless Play Connection Configuration...............cccoiiiiiiiiini e 13
Figure 3-2 Internal States of the Wireless Communications Librarycccoccovvieiiiiiiiciiieeee e, 15
Figure 3-3 MP Communications OPerationsS............ciiiiiiie it 22
Figure 3-4 Operations Flow When Communications Failccccccouiiiiiei i 23
Figure 3-5 Parent and Child Packet Size DifferenCescc.oooiiiiiiiiiiii e 29
Figure 3-6 Bit Assignments for Headers and FOOErS.............ueviiiiiiiiiiiiiiee e 30
Figure 3-7 Packing MUItiple PaCKetScoo i 31
Figure 3-8 Data Sharing (SiNgle MOE)ccci i e e e e e e e e e enareaeeeas 36
Figure 3-9 Data Sharing (Double MOGE)..........coiiiiiiiiiie e 37
Figure 3-10 Parameters That Can Be Used to Control MP Communications Timingccccccceevuvvneeen. 47
© 2005-2010 Nintendo 5 TWL-06-0005-001-D

CONFIDENTIAL Released: February 19, 2010

TWL-SDK

Description of the Wireless Communications Library

Revision History

Version

Revision Date

Description

1.2.3

2009/09/03

In section 3.2.1 Initialization and Shutdown Function Differences, added explanation of
when the DSi wireless communications LED is illuminated.

1.2.2

2009/07/29

Corrected errors in the Receive buffer size in the table in section 3.11.2 Connection
Process.

1.2.1

2008/10/01

Added information that had been omitted, stating that the 3.1 PR version of the SDK
was changed to return NULL responses.

1.2.0

2008/09/16

Changed descriptions from NITRO-SDK to TWL-SDK.
Added description related to TWL wireless.

2007/10/16

Added section 3.1.6 MP Communications with Wii.

Added a note about channels to use.

Changed the description about the V-Count variable range.

Mentioned that the WM StartsScan function is not recommended.

Removed a description of planned specification changes that were cancelled.

2007/02/20

Added a description of the conditions that cause the WM _ERRCODE_OVER MAX ENTRY
error.

2006/02/20

Made additions to section 3.1.3 The Library's Internal States.
Added section 3.3.4 Gamelnfo.

2006/01/13

Deleted old descriptions and cleaned up vague descriptions in anticipation of NITRO-
SDK 3.0.

2005/12/20

Clearly stated that the operations relating to when communication are not possible in
section 3.3.2 Select a Channel to Use.

Added section 3.3.5 Precautions to Note When Ending Communications.
Added section 3.4.5 Send and Receive Buffers for MP Communications.

Added section 3.10 Taking Greater Control Over Communications and moved some
items around.

In the FAQ, added examples of how to determine communications parameters.

2005/12/06

Added to text relating to V-Blank synchronization and changed it to a separate section.

Change in terminology: "Maximum number of bytes that can be sent" changed to
"transmission capacity."

Moved the section 3.4.4 Transmission Capacity.
Added section 3.4.5 Dynamically Changing the Transmission Capacity.
Added section 3.4.9 Timing Control Parameter of MP Communications.

2005/11/04

Updated Table of Contents.

2005/11/01

Indicated the addition of WM STATECODE DISCONNECT FROM MYSELF notification to
each of the WMStartParent, WMStartConnect, and WMSetPortCallback
functions.

Indicated the addition of the wM_STATECODE PORT_INIT notification to the
WMSetPortCallback function and the addition of the connectedAidBitmap field to
the WMPortRecvCallback structure.

TWL-06-0005-001-D
Released: February 19, 2010

6 © 2005-2010 Nintendo
CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Version | Revision Date | Description

Indicated the addition of WM STATECODE INFORMATION notification to
WMIndCallback function callback.

Revised descriptions in each section due to change in the condition for a NULL
response.

1.1.0 2005/07/29

Revised the return values of the WM Initialize function in the list “Error Codes
Returned from the Wireless Communications Library.

105 2005/07/12 In §ectiqn 3.4.3 Operations When Communjcations Fail, added description of the MP
notification that happens when there is a failure.

Added descriptions of changes in section 3.11.12 Changes in MP Frame Sending
Conditions.

Added to each Key Sharing related description that we plan to phase it out.
Changed the WM _StartKeySharing and WM_EndKeySharing functions in the list
1.04 2005/06/07 “Error Codes Returned from the Wireless Communications Library.”

Added section 3.4.5. Limitations to the number MP Communications related to picture
frames.

Added warning about repeated calling to section 3.1.5 Asynchronous Function Callback

103 2005/03/29 and Asynchronous Notifications.

Added note about CLASS1 state to section 3.1.3 The Library Internal State.

10.2 2005/03/22 Added note about CLASS1 state to section 3.10.2 Connection process.

Made changes to the “List of Error Codes Returned from the Wireless Communications
Library.”

Changed the number of levels in the send queue from 64 to 32.

Made changes to the items related to the WM SetMPData function in the “Event

1.0 2005/03/04 Notifications Returned from the Wireless Communications Library”: changed the
description related to the restBitmap field in the WMPortSendCallback structure,
and added a description related to the sentBitmap field.

Added items to “Important Notes for Recent Releases.”
1.0.0 2005/02/18 Initial version.
© 2005-2010 Nintendo 7 TWL-06-0005-001-D

CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

1 Wireless Communications Library Overview

1.1 Introduction

The TWL-SDK includes a set of functions for wireless communications. This document describes the
basic features of the Wireless Communications library.

1.2 Basic Specifications for Wireless Communication Hardware

Table 1-1 shows the basic specifications of wireless hardware in the Nintendo DS system.

Table 1-1 Basic Specifications for Wireless Communication Hardware

Item Description

2.4-GHz band. May receive interference from microwave ovens or other wireless

Communication band devices that use the 2.4-GHz band.

e |EEE 802.11 equivalent (Infrastructure mode)
Communication standards e Nintendo proprietary protocol (DS Wireless Play mode)
e Nintendo proprietary protocol (DS Download Play mode)

Communication speed 1 Mbps or 2 Mbps

10-30 m. This is highly variable and depends on the surrounding environment

Communication range and position of the system.

Remarks Not compatible with the Game Boy Advance Wireless Adapter.

In addition to the NTR wireless communications unit listed above, TWL has a TWL wireless
communications unit. The TWL wireless communications unit is used only for Infrastructure Mode; it
cannot be used for DS Wireless Play. This document deals only with the NTR wireless communications
unit.

1.3 Configuration of the Wireless Communications Library

The TWL-SDK Wireless Communications library processing is performed by both ARM9 and ARM7.
The ARM7 component controls the wireless communications hardware, and the ARM9 library transmits
requests from the application to ARM7. When creating an application, ARM7 does not have to be
considered. Caution is required for some cache-related processes, so follow instructions in the
reference manual when data is exchanged with the Wireless Communications library.

Table 1-2 provides descriptions of the three main communication modes in the Wireless
Communications library.

TWL-06-0005-001-D 8 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Table 1-2 Communication Modes of the Wireless Communications Library

Mode Description

Allows for wireless communications in which a single DS acts as the parent device,

DS Wireless Play mode and up to 15 other DS devices act as child devices.

Also known as wireless multiboot. Allows for program and data download from a
DS Single-Card Play mode | parent device to child devices that do not have Game Cards. The child device can
then start up that program.

Allows connection to the Internet through wireless access points that support the

Infrastructure mode IEEE 802.11b/g standard.

This document focuses on DS Wireless Play. For more information about DS Single-Card Play, see A
Description of DS Single-Card Play (rRboutMultiBoot .pdf).

© 2005-2010 Nintendo 9 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK

Description of the Wireless Communications Library

2 Glossary

Table 2-1 defines the terms used in this guide.

Table 2-1 Glossary for the Nintendo DS Wireless Communications Library

Term Definition

Association ID (the connection identifier). The parent's AID is always 0. Child devices
AID are assigned AIDs from 1 to 15 when they connect. If the maximum number of

children permitted to connect is set to n, assigned AlDs must be from 1 to n.

A wireless signal, separate from an MP sequence, sent periodically by the parent. A
Beacon child can receive the beacon even when it has not established a connection. A child

making a new connection selects the parent based on the GameInfo in the beacon.
Normally sent at intervals of several hundred ms.

Block transmission

Feature designed to transmit a chunk of data from the parent to multiple children at
the same time. For more information, see “WBT*” in the NITRO-SDK Function
Reference Manual.

BSS

Basic Service Set. Specifies a set that performs transactions for a single service. In
DS Wireless Play, refers to the group that includes a parent and the children
connected to it.

BSSID

Basic Service Set ID. This is an ID used to identify the BSS. For DS Wireless Play,
the MAC address of the parent device is used as is for BSSID. This is used to
designate a connection destination when a child device connects to the parent device.

Channel

A portion of the communication band. On the DS wireless communications hardware,
1 to 14 channels can be used, but the actual number of available channels is limited

by regulations in each country. Also, adjacent channels can interfere with each other,
so we recommend setting up channels with roughly five intervals between them.

Child device

The devices (1-15) that connect to a parent device in DS Wireless Play.

Continuous
communication mode

The communication mode sustained using continuous MP sequences. (This contrasts
with frame-synchronous communication mode.) It is effective for sending large
amounts of data, but consumes lots of power and should not be used for long periods.
It differs from frame-synchronous communications mode in that it starts MP
sequences continuously, but from a control standpoint, the two modes are virtually
identical. Thus, a single program can switch between the two modes.

Data sharing

Enables the sharing of data with a user-defined size in addition to key input.

Frame-synchronous
communication mode

Communication mode that synchronizes MP communications with the picture frame.
(This contrasts with continuous communications mode.) The number of times to
communicate during each picture frame is specified. However, if signal conditions are
poor and a resend is necessary, the transmission is resent without synchronizing with
the frame (if possible).

The period defining a unit of game processing. If a game is running at 30 frames per

Game frame second, the game frame is 1/30 of second.
A data structure that indicates the type of game offered by a parent and contains the
Gamelnfo data needed to connect. Contains the GGID, TGID, maximum transmission capacity

of the parent, and so on. It can also contain user-defined information. For example,
with Single-Card play, the GameInfo contains the game name, icon data, and so on.

TWL-06-0005-001-D
Released: February 19, 2010

10 © 2005-2010 Nintendo
CONFIDENTIAL

Description of the Wireless Communications Library

TWL-SDK

Term Definition

Game Group ID. A unique four-byte ID assigned by Nintendo to each game title and
GGID oo)

series title. Used when connecting.

A wireless communications standard defined by the IEEE. It defines a wireless

communication method that permits speeds of up to 2 Mbps. (802.11b, which is in the
IEEE 802.11 same family of standards, allows a maximum speed of 11 Mbps and is a popular
Specification standard for wireless PC communications. 802.11b is backward compatible with

802.11.) The Nintendo DS system uses the 1-2 Mbps backward compatibility mode

defined in the 802.11b standard.

A notification sent automatically from the wireless hardware to the application in
Indication response to receiving data or another event. Differentiated from a response to a

request from the application.

Key response frame

The type of frame a child uses to respond to an MP frame from the parent.

Functionality common to key input data. Enables you to use wireless communications

Key sharing without worrying about the details. We plan to discontinue key sharing and
recommend that you use Data Sharing instead.
An ID number for the wireless communication hardware. Each Nintendo DS system
MAC address

has a different 6-byte MAC address.

MP communications

A generic term for communications that use multi-poll (MP) sequences. In some
cases, it refers to the communication for a single MP sequence.

MP frame

The frame at the beginning of an MP sequence, in which the parent broadcasts to the
child.

MP sequence

Multi-Poll sequence. Nintendo's proprietary extension of 802.11 enables wireless
communications with a low latency time. For more information, see the chapter on DS
Wireless Play.

MP_ACK frame

The frame broadcast by a parent to its children at the end of an MP sequence.

Null response frame

The frame that a child uses to respond to an MP frame sent by the parent. Sent when
the response data cannot be sent within given time constraints.

Packet

A unit of communication that contains a header and footer. It contains a port number,
a packet size, and when necessary, destination information, a sequential number, and
so on. In actual communications, within a single MP sequence, a payload contains
multiple packets.

Parent device

Device that controls all communications in DS Wireless Play.

Payload

Area in the MP and key response frames that carries data.

Picture frame

Time elapsed between one V-Blank interrupt signal and the next (1/60 of a second).

A 16-bit bitmap in which each bit corresponds to the AID of a child device. In an MP
frame, the bits of the children from which a response is desired are enabled. In an

PollBitmap MP_ACK frame, the bits of the children from which the parent received no response
are enabled.
A concept used in the Wireless Communications library to realize multiple

Port communication channels. If a transmission specifies a port that is an integer from 0

through 15, the destination calls a callback that corresponds to the number. Note that
this port has a lower level of abstraction than ports used in TCP/IP.

© 2005-2010 Nintendo
CONFIDENTIAL

11 TWL-06-0005-001-D
Released: February 19, 2010

TWL-SDK

Description of the Wireless Communications Library

Term

Definition

Raw communication

A communication method that does not perform additional controls like those in
sequential communications. Data may not reach its destination and the same data
may be transmitted several times. If ports 0 through 7 are selected, raw
communication is used.

Sequential
communication

The upper layer of MP communications, which guarantees the integrity of
communication. The Wireless Communications library uses sequential numbers to
eliminate long packets and insure that packets reach their destination. If ports 8
through 15 are selected, sequential communication is used.

Session

The period of time from a single WM StartParent to WM EndParent.

SSID

Info used to screen children connecting to a parent. The child uses the GGID and
TGID from GameInfo to generate an SSID. The parent connects only to children that
have a matching GGID and TGID based on the SSID. The latter half of the user area
that is not used for matching can be used for child-to-parent communications.

TGID

Temporary Group ID. A two-byte ID assigned when a new game or session is started.
When the same DS continues to be used as the parent device, the TGID splits
communications into new and old, because the BSSID and GGID are identical.

TWL-06-0005-001-D
Released: February 19, 2010

12 © 2005-2010 Nintendo
CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

3 DS Wireless Play

3.1 Overview

3.1.1 Connection Configuration

Figure 3-1 DS Wireless Play Connection Configuration

ENSE
H oo

In DS Wireless Play, the network is configured in a hub-and-spoke arrangement. Communication is
limited to that between parent and children; children cannot communicate with each other. However, a
parent can transmit data to multiple children at the same time.

3.1.2 DS Wireless Play Characteristics

e Low latency

When communications are being performed normally, the send data that is set in the beginning of
the picture frame will be received by the communications partner application at the end of the
picture frame.

e Data is transmitted at a specified time in one picture frame

Rather than visualizing that the data is sent at the timing desirable to the parent and child, consider
that if the send data is set in advance with the wM_setMpDataToPort function, the parent and child
send data will be exchanged in fixed sizes when communication occurs.

© 2005-2010 Nintendo 13 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

e The more child devices there are, the smaller the data size that can be sent from each child device

Because the maximum communication time that a single MP sequence can use is defined in the
programming guidelines, the maximum size that can be sent decreases as more child devices are
added.

If there is only one child device, the maximum send size in the Wireless Communications library of
512 bytes can be sent on both the parent and child. If 15 child devices are connected, the parent
device can send 256 bytes, and the child devices can only send 8 bytes each. For more information,
see section 3.4.4 Transmission Capacity.

e The efficiency is better if broadcasting from the parent device

A particular child device can be selected to send data with the WM setMpDataToPort function. As a
characteristic of MP, however, even if there is a broadcast to multiple child devices, the
appropriation time for a wireless channel will not change (except when data is resent or when a
special communication mode is used).

e The efficiency is better for communications of a fixed volume

Communications from a child device during a single MP sequence cycle always occupy a wireless
channel for just the amount of time required for the child send size (the maximum size that a child
can send on a single MP sequence). Therefore, thinking of this as a fixed-length communication
allows for more efficient signal use. The initial value of the send size for a child device is set by the
parent when the connection is established.

Currently, no logic is implemented to increase the number of communications according to how full
the send queue is. It is possible for the application to dynamically change the communication
frequency, but we recommend that you use communication specifications that do not cause
fluctuations in communication volume.

3.1.3 Internal States of the Wireless Communications Library

Figure 3-2 shows the internal states of the Wireless Communications library. The functions it can call
depend on its state. Calling the wv_1nit function after starting the Nintendo DS system makes it
transition to a READY state. To determine the state in which a function can be called, see its
description in the Function Reference Manual.

TWL-06-0005-001-D 14 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Figure 3-2 Internal States of the Wireless Communications Library

WM Init()

————

WM Enable WM Finish()

WM_Disable () WM StartScan()

WM StartScan (

)
WM PowerOn ()
WM EndScan ()
WM PowerOff ()

WM Reset ()

WM SetParentParameter c WM _StartConnect ()
WM StartParent ()
WM EndParent ()
WM Disconnect (

WM StartMP () WM StartMP ()

WM_EndMP ()

MP_PARENT

WM SetMPDataToPort ()

In Figure 3-2, the DCF_CHILD state cannot be used in DS Wireless Play.

Strictly speaking, during transitions between IDLE and CHILD and between IDLE and SCAN, the
library temporarily exists in the CLASS1 state. However, WM asynchronous functions that have been
state-transitioned are never in the CLASS1 state when they quit normally or when a callback is
reported, so there is usually no need for concern about this state. However, the library will transition to
the CLASS1 state when the wM startConnect function has failed during a specific stage of the
connection process or when the child has disconnected from the parent during the connection.

© 2005-2010 Nintendo 15 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

The only function that can be executed from the CLASS1 state is wM Reset. Therefore, when
WM_StartConnect fails or when a child receives a disconnect notification, use WM _Reset to transition to
the IDLE state before moving to the next operation.

3.1.4 Error Codes

With a few exceptions, the Wireless Communications library functions return the wMErrcode
enumerated structure as its error code. Basically, when operations are normal, synchronous functions
return wM_ERRCODE_SUCCESS, While asynchronous functions return wvM ERRCODE OPERATING.

For more information, see wMErrCode in the Function Reference Manual or section 3.8 Error Codes
Returned from the Wireless Communications Library.

3.1.5 Asynchronous Function Callback and Asynchronous Notifications

Because the Wireless Communications library sends instructions to the ARM7 driver, many of those
instructions are asynchronous functions. These asynchronous functions take callback, a
WMCallbackFunc type argument, and once the asynchronous process has ended, they call callback.

When an asynchronous function is called and its return value is wM ERRCODE OPERATING, the
completion callback is always called.

Due to the nature of the communications, there are many asynchronously generated notifications.
These notifications are sent as callback function calls. Table 3-1 shows the correspondence between
the main notification type and its callback configuration function.

Table 3-1 Main Notification Types and Callback Configurations

Function that Configures Communications

Communications Type Callback Destination

Notification of a connection or a disconnection | WM StartParent, WM StartConnect*

MP sequence-related notification WM StartMP*
Reception to a port WM SetPortCallback
All other notifications WM_SetIndCallback

The callback function types in the Wireless Communications library are defined as wMcallbackFunc
types. The wMcallbackFunc type function takes the sole argument wMcallback* arg, but because
some functions pass a structure unique to that function (for example, wMportRecvCallback), you
should use them as needed after casting them to that type. The type of callback argument returned by
each function is described in $TWLSDK ROOT/man/en_US/wm/wm/WMCallbackFunc.html.

There may be instances where a field-called state has been defined in the structures of the callback
arguments for some functions. This state field is used to express notification types that cannot be
expressed with the errcode field alone. For more information, see section 3.7 Event Notifications
Returned from the Wireless Communications Library.

TWL-06-0005-001-D 16 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

With a few exceptions, each asynchronous function in the Wireless Communications library registers

its callback individually. Use caution, because if different callbacks are assigned to the same function
at the same time, only the later assigned callback will be valid. This is not true for the wM_SsetMpPData*
functions, which store callbacks separately each time they are called. They can be called repeatedly,

setting a different callback each time without a problem.

Avoid making multiple calls to asynchronous functions that change the internal state of the Wireless
Communications library. This can cause bugs that are difficult to reproduce.

3.1.6 MP Communications with Wii

Fundamentally, to communicate with Wii, a DS program can use the same implementation that it uses
to communicate with another Nintendo DS system. However, there are specific limitations; for example,
the Wii console can only be a parent device. For more information on communication limitations with
Wii, see the MP Library Reference included in Revolution SDK Extensions (RevoEX).

3.2 Initializing the Wireless Communications Library

3.2.1 Initialization and Shutdown Function Differences

There are two procedures for initializing the Wireless Communications library: calling the three
functions (wM_Init, WM Enable, and wM_PowerOn) in order or calling the wM Initialize function.
Similarly, there are two procedures for the shutdown process: calling the three functions (WM PowerOff,
WM Disable, and wM_Finish) in order or calling the wv_End function.

The wM Initialize function performs the same process as calling the three functions (WM 1Init,
WM _Enable, and wM_PowerOn), and the wM_End function performs the same process as calling the three
fUhCﬁOhS(WMﬁPowerOff,WMiDisable,and WM;Finish)

Table 3-2 Functions Called by the Initialization and Shutdown Processes

Allocates the buffer used by the Wireless

WM Init o ;
- Communications library.

Transitions the wireless communication
hardware to a usable state. (The POWER LED
will begin to blink irregularly [Note: Nintendo DS
or Nintendo DS Lite].)

Starts providing power to the wireless
WM_PowerOn communication hardware. (Power consumption
will go up.)

itializati o WM Enabl
Initialization WM Tnitialize | Enable
Process -

Stops providing power to the wireless
WM PowerOff | communication hardware. (Power consumption
will go down.)

Transitions the wireless communication
hardware to an unusable state. (Stops the
irregular blinking of the POWER LED [Note:
Nintendo DS or Nintendo DS Lite].)

Frees the buffer used by the Wireless
Communications library.

Shutdown

WM End
Process —

WM Disable

WM Finish

© 2005-2010 Nintendo 17 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK

Description of the Wireless Communications Library

Note: On the Nintendo DSi, the POWER LED does not blink irregularly; instead, the newly added
wireless communications LED blinks for 2 seconds when wireless communications are initiated.

3.2.2 DS Wireless Communications ON State

The DS Wireless Communications ON state is defined as the period that begins when the wv_Enable
function is called and ends when the WM _Disable function is called. Limitations, such as the need for
user confirmation, apply when transitioning to the DS Wireless Communications ON state. For more

information, see the DS Programming Guidelines.

3.2.3 Buffer for the Wireless Communications Library

During the period that begins when the wv_1nit function is called and ends when the wM Finish
function is called, the Wireless Communications library holds the buffer that will be used inside the
library. From the main memory, pass the wM_SYSTEM BUF SIZE-byte region aligned with the 32-byte
boundary to the argument of the wM_1nit function.

3.3 Connecting Parent and Child

3.3.1 Connection Process

Table 3-3 shows the process leading up to a connection.

Table 3-3 Connection Process

Parent Child
1. | Initialize the wireless communication hardware. Initialize the wireless communication hardware.
> Set the parent's GGID, TGID, and other data for
" | communications.
3 Measure the degree of congestion on each of the
" | wireless channels and select a channel to use.
Send the beacon on the specified channel. The
beacon's GameInfo contains the GGID, TGID, Scar.1 th_e beacons on all channels tha.t the
4. o . . application can possibly use and obtain the parent
and a flag indicating that it is available for device GameInfo
connection. ’
Based on the data in GameInfo, list the parent
devices for the user and prompt for a selection.
Generate an SSID using the GGID and TGID
contained in GameInfo and connect to the parent
based on the BSSID (the parent's MAC address)
and SSID.
Compare the SSID of the incoming child with its
5. | own GGID and TGID, and OK the connection if
there is a match.
6 Assign an AlD to the child and complete the Receive the assigned AID from the parent and
" | connection. complete the connection.
TWL-06-0005-001-D 18 © 2005-2010 Nintendo

Released: February 19, 2010

CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

3.3.2 Select a Channel to Use

The 802.11 specifications define 14 channels, but the usable channels may be limited depending on
regulations of the country or region in which they are used. Also, even if a channel can be used,
neighboring channels may cause mutual interference, so try to use channels that are as far apart as
possible.

The Nintendo DS system keeps its usable channels internally, and the wM GetaAllowedChannel
function was prepared to present channels that are sufficiently spaced apart within those channels. In
the application, a channel must be selected from the channels obtained with this function. The
application has the responsibility to select from the presented channels the channel that has the lowest
possible signal usage rate. The signal usage rate of a specific channel can be obtained with the
WM_MeasureChannel function.

As of October 2007, the international unified specification states that the Nintendo DS system can use
channels 1-13. However, this specification is subject to change, and in some situations, WM is
forbidden from using any special channels internally. Avoid any programming that makes assumptions
based on the currently permissible channels and rely on the results of the wM GetallowedChannel
function instead.

Note: If the wM GetallowedChannel function returns 0, wireless communications are unavailable. Do
not commence communications if this value is returned.

In addition, for some countries and regions, the usable channels are more restricted for a Wii console
than for a Nintendo DS system. In this case, the parent device may be able to use only some of the
channels obtained by the wM_GetallowedChannel function on a Nintendo DS child device. Because
the Nintendo DS system cannot tell the difference, implement scanning of the parent device in the
same manner as used for DS-to-DS connections.

3.3.3 Beacon Information

While the parent device is in the PARENT or MP_PARENT state, it will transmit a signal known as a
beacon at regular intervals (the wMParentParam.beaconPeriod [ms] interval). The child device that is
trying to connect to a parent device will get this beacon with the wM startscankx function. The child
device will connect to that parent device by passing the included wMBssDesc structure as is to the
argument of the wM_StartConnect* function.

WMBssDesc contains a variety of fields, but the three most important bits of information are the
WMBssDesc.bssid, WMBssDesc.gameInfo.ggid, and TGID.

BSSID is an identifier for BSS. During DS Wireless Play, the parent device’s MAC address is used as
the BSSID. GGID and TGID are used to identify details of the services provided by the parent device.
GGID is an ID assigned by Nintendo to each game or series (if communications are possible among
the same series). The child device looks for the WwMBssDesc.gameInfo.ggid of the scan results to
confirm that it can connect to the parent device (a code for authorization must be described in the
application). TGID, on the other hand, is assigned by the parent device in each new session so that
connections for old sessions are not mistakenly made to new sessions.

© 2005-2010 Nintendo 19 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

3.3.4 Gamelnfo

Included in the beacon is the wMGameTnfo structure, which stores the GameTnfo information. GameInfo
includes descriptions for GGID and TGID, as mentioned previously, as well as parent attributes such
as the entry reception state and information about the transmission capacity of the parent and child.
There is also a region called userGameInfo where the application is free to set data.

The wMGameInfo structure has a field called magicNumber and a field called ver. The magicNumber
field is fixed to the wM_GAMEINFO MAGIC NUMBER (=0x0001) value. Check to make sure this field is
correct before accessing any other GameInfo field. This verification process is done internally by the
WM IsValidGameInfo and WM IsvalidGameBeacon functions. The ver field indicates the GameInfo
structure’s version. As long as the magicNumber checks out OK, consider any GameInfo structure that
has a meaningless value for the ver field to have the same functionality as the current version,
because the structure is expanded to maintain backward compatibility.

The upper-limit size of the userGameInfo region is wvM SIZE USER GAMEINFO (=112) bytes. As for the
possible applications of userGameInfo, one idea would be for the parent to use it to report information
to a selected child about the current stage and participants. Before referencing userGameInfo, check
the ggid field to determine if the information is on a known parent.

The initial value for the cameInfo sent by the parent on the beacon is specified using the
WM_SetParentParam function. To change the cameInfo content on the beacon after the state becomes
PARENT, use the wM_sSetGameInfo function.

For more information about the fields, see the wMcameInfo structure reference.

3.3.5 Connection Operations

Inside the library, the BSSID and SSID are used when a child device connects to a parent device. As
described in the previous section, BSSID is the parent device’s MAC address. SSID is a total of 32
bytes; however, in DS Wireless Play the first 4 of these bytes are used to store GGID, and the next 2
bytes store TGID. A 2-byte reserved region is added to these and used as an 8-byte service identifier.
To determine if a child device is an appropriate connection partner, the parent device compares its own
GGID and TGID with the first 8 bytes of the SSID declared by the child device. If the child device is not
an appropriate partner, it is automatically rejected during the initial steps of the connection process.
Because the connection between the parent and child is maintained throughout this confirmation
process, the number of connected clients may temporarily reach the parent device’s limit. When this
happens, a WM _ERRCODE OVER MAX ENTRY error is returned to any child device that attempts to make
new connection to that parent device.

Because the first 8 bytes of the SSID are automatically set in the wM_SstartConnect function by the
library based on the wMBssDesc.gameInfo.ggid and TGID, there is no need for the application to be
aware of them. However, the latter 24 bytes in the SSIDs that are not used in the service identifier are
released to the application and can set user data as arguments of the wM_StartConnect* function that
is to be sent to the parent device. When the wM_startparent function’s callback function receives the
WM_STATECODE CONNECTED notification, the parent device receives the data that the child device sets
as WMStartParentCallback.ssid in the latter 24 bytes of the SSID.

TWL-06-0005-001-D 20 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

3.3.6 Precautions for Ending Communications

Either parent or child can perform disconnection. Try to avoid both of them disconnecting at the same
time because, if this occurs, one of the two processes will fail and in some cases it may take a while for
this result to be returned.

Note: There is a possibility that once the process for ending communications has been entered, some
of the WM functions, depending on their states, may return errors. The end process may go into
an infinite loop if it starts on the error “abnormal end process due to communication
error’. If the error occurs, try calling the wM Rreset function once and make sure that the error
process does not cascade indefinitely.

3.4 MP Protocol Specifications

3.4.1 Communications Overview

Data can be sent once a connection has been established between a parent and child.
Communications are performed in each picture frame in the order shown in Table 3-4.

Table 3-4 Parent and Child Communication

Parent Device Child Device

1. Set the send data with the WM _SetMPDataToPort | 1. Setthe send data with the WM SetMPDataToPort
function. function.

2. MP communications are automatically performed on the designated timing in each picture frame.

3. The data reception notification from the child device | 3. The data reception notification from the parent

arrives at the callback function designated to the device arrives at the callback function designated
WM_SetPortCallback function. to the WM_SetPortCallback function.

4. A notification that the send was a success is sent to | 4. A natification that the send was a success is sent to
the callback function designated with the callback function designated with
WM_SetMPDataToPort in step 1, above. WM_SetMPDataToPort in step 1, above.

3.4.2 MP Communications Operations

Read this section as needed. You can use the Wireless Communications library even if you do not
understand all of the MP protocol’s details. Figure 3-3 shows the MP communications operations,
which allow for DS Wireless Play mode.

© 2005-2010 Nintendo 21 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

Figure 3-3 MP Communications Operations

Confirm that child
data was received
and send the low-
power setting

Parent data and
transmit request
from parent

Broadcast

MP (Data + Req)
Parent {

Broadcast
If parent confirms

receipt of own data,
— shift to low-power mode

RS ACK+Data

Confirm receipt of
parent data
(ACK) and send
child data
- ACK+Data
Child 2

16.7msec

Emm— Active mode

——— Low-power mode

N, Due to automatic V-Blank A
@”y synchronization, the V-Blanks of A%\'&
child 1 and child 2 start at the same
timing as the parent.

MP communications is a protocol where the parent completely controls the transmission timing.
1. The parent broadcasts an MP frame to all child devices.

The MP frame includes not only the data to send from parent to child, but also the control data, such
as pollBitmap, Which indicates which children should respond, and Txop, which determines how
many bytes of transmission time are assigned to the children.

Data in the MP frame determines the overall time distribution for that MP sequence.

2. Each child receives the MP frame, looks at Po11Bitmap and Txop, and then sends the Key
response frame to the parent after waiting for its turn to respond.

The child's Key response contains confirmation that it has received data from the parent in addition
to data it is sending to the parent. Because the Key response frame is sent by hardware
automatically as the response to MP frame, the child needs to set the data in the Key response
frame ahead of time. It is not possible to look at the data inside a received MP frame and then alter
contents of the data that will be sent in the response during the same sequence.

If the TxoP (the allowable transmission time) given by the parent is shorter than the set length of
data, the child cannot send the data. If so, the child transmits a NULL response frame instead of the
Key response frame. This occurs when the child's transmission capacity as specified by the parent
is smaller than the transmission capacity as recognized by the child.

The child will return a NULL response frame even if the send data is not set in the child when the MP
frame is received from the parent.

TWL-06-0005-001-D 22 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

3. The parent broadcasts an Mp_ack frame to all children to acknowledge receipt.

This Mp_ack frame also has a field called po11Bitmap that, in contrast to MP frames, indicates the
children from which the parent failed to get either a Key response or a NULL response. To see
whether the bit representing its own AID is enabled, each child checks po11Bitmap in the received
vMp_Ack frame. If its AID bit is not enabled, it is guaranteed to send data to the parent successfully. If,
however, its bit is enabled or if the child does not receive the mp_ack frame within a set period of
time, the transmission has failed.

Because the wireless communication hardware consumes a lot of power when active, it enters low-
power mode frequently during MP communications. This occurs automatically and normally, so the
application can ignore the power mode.

Also, be aware of the child device designated with Po11Bitmap not being given the chance to respond.
To secure a child-to-parent communication band, designate all connected child devices on WM as
PollBitmap and perform an MP sequence. However, exceptions exist with resending (described in the
next section) and with designating special communications.

3.4.3 Operations When Communications Fail

Figure 3-4 shows the flow of operations when the parent receives no acknowledgment from a child.

Figure 3-4 Operations Flow When Communications Fail

!

= 2 i

If reception fails, the mp_ack frame will indicate the children from which no response has been received
and then an MP sequence for a resend will be started. The resend MP sequence targets only the
children from which a response was not received. The resend MP sequence sends packets that need

© 2005-2010 Nintendo 23 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

to be resent from the packets that just failed. Depending on the communication mode and the type of
packet that was not received, the resend process may not be performed, and the application is notified
that a transmission failure occurred. The resend will continue while communications have failed and
there are still packets that need to be resent.

If only the Mp_ack frame communications fail, the parent device will be unable to learn about the failure,
and the MP sequence for resending will not be performed. However, because the child device is

unable to determine whether the send was a success, the failed packets will be resent in the next MP
sequence.

The resend process differs depending on the type of communications packet. For more information,
see section 3.5.3 Raw and Sequential Communications.

In addition, with the MP sequence for resending, the send destination is limited to the resend partner
due to the Pol1Bitmap setting. However, the rest of the process is the same as for a normal MP
sequence, so receipt notifications are generated each time an MP frame is received.

The Port Receive callback (described later) only gets called when new data is received.

3.4.4 Transmission Capacity

In MP communications, the parent determines the transmission capacities for itself and for the child;
these capacities are specified as the default values at the start of communications. To be specific, the
default values for transmission capacity are set by the parent's parameter setting

WM SetParentParameter function. In the wMParentParam structure passed to the
WM_SetParentParameter function, the parentMaxsize field indicates the default send capacity value
for sending data from parent to child, and the chiildmaxsize field indicates the default send capacity
value for sending data from child to parent. However, at the time of connection, the child initializes its
own transmission capacity setting to the chi1dMaxsize value found in the parent’s beacon.

The transmission capacity value must meet these three requirements.
1. It must be a multiple of 2.
2. The maximum capacity cannot exceed 512 bytes for parent or child.

3. The time duration of one MP communication, as calculated from the parent and child transmission
capacities, must not exceed 5600 microseconds. In other words, the following expression must be
satisfied.

96 + (24 + 4 + [parent's transmission capacity] + 6 + 4) *4 + (10 + 96 + (24 + [child's transmission
capacity] + 4 + 4) * 4 + 6) * [number of children] + 10 + 96 + (24 + 4 + 4) * 4 <= 5600
=

[parent's transmission capacity] + ([child's transmission capacity] + 60) * [number of children] < 1280

(For more information, see section 6.3.3 Data Size of One MP Communication [Recommended] in the
Nintendo DS Programming Guidelines.)

TWL-06-0005-001-D 24 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

If wMParentParam.KS Flag is setto TRUE, the number of transmission bytes for Key Sharing will be
added internally, so the actual value that can be set for the transmission capacity is smaller than what
is calculated by the above expression. In your calculation, include the bytes that will get secured
internally for Key Sharing, this is [36 bytes + 6 bytes] (header and footer) for the parent and [6 bytes +
4 bytes] (header and footer) for the child.

A script for calculating restrictions on communications time can be accessed at
STWLSDK ROOT/man/ja JP/wm/wm/wm time calc.html.

The above expression is used to determine the maximum time required by communications. The
amount of time taken by each MP sequence will actually be shorter, depending on the parent send
data size. However, on the child side, the amount of time needed is based on the child send volume
size. This happens because when an MP sequence starts, the parent sets timing on the information it
has. A summary is shown below.

Amount of time needed to send parent Related to the time for the data size that the parent sent in the
data sequence. Not influenced by the parent send volume.

Amount of time needed to send child data Related to the size that the parent configures as the child send
volume. Not influenced by the size sent by the child.

3.4.5 Send and Receive Buffers for MP Communications

The Send and Receive buffers for MP communications are passed to the wM_startmp function when
MP communications begin. The sizes of these two buffers depend on the parent and child transmission
capacities and the maximum number of connected children.

There are two ways to calculate sizes of the two buffers. One way is to call the
WM_GetMPSendBufferSize OF WM_GetMPReceiveBufferSize function in the PARENT or CHILD state.
The other way is to make static calculations by passing the values for transmission capacity and the
maximum number of connected children to the function macros shown in Table 3-5.

Based on the parent information being used in the current connection, the WM GetMPSendBufferSize
and wM_GetMPReceiveBufferSize functions dynamically calculate the sizes required of the Send and
Receive buffers for MP communications. For the parent information, the value that was set by the
WM_SetParentParameter function prior to the start of communications is referenced. For the child, the
information in the beacon obtained from the parent during connection is used. Note that the value
obtained by the child with these functions is a value obtained from an external source. If memory is to
be secured based on this value, you must verify that the memory size you plan to secure is in the
proper range or that the memory has been secured successfully. For more information on these
functions and function macros, see the NITRO-SDK Function Reference Manual.

The Send and Receive buffers for MP communications that get passed to the wv_startmp function
must have a 32-byte alignment.

© 2005-2010 Nintendo 25 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

Table 3-5 Function Macros and Their Related Capacities

Related Communications Parameters
g : A Parent's Child's AL
Function Macros for Static Calculations b oS Number of
Transmission | Transmission
Capacity Capacity Con_nected
Children
Send WM SIZE MP PARENT SEND BUFFER o)
Buffer size - - = - -
Parent Recel
€CeIVe | wM STZE MP PARENT RECEIVE BUFFER o o)
Buffer size - - = - -
Send WM SIZE MP CHILD SEND BUFFER o
. Buffer size - - = - -
Child Roce
€CeIVe | wM STZE MP CHILD RECEIVE BUFFER o)
Buffer size - - = - -

3.4.6 V-Blank Synchronization

When MP communications start, the Wireless Communications library automatically synchronizes
V-Blanks between the parent and child. While the timing of V-Blanks is being adjusted, the period
between V-Blanks is longer than 16.7 ms. Each frame is prolonged by as much as 0.5 ms. At this time
the V-Alarm count value varies between 202 and 210 counts, so do not use a V-Alarm with a count
value in this range during communications.

The timing adjustment of V-Blank synchronization is mainly performed right after the connection is

established, but it can occur at any time during communications.

3.4.7 Frame Synchronous Communications Mode and Continuous Communications
Mode

Depending on the timing that starts the MP sequence, the parent device may be operating either in
frame-synchronous communications mode or in continuous communications mode.

Frame-synchronous communications mode starts the MP sequence on a specific V-Count for each
picture frame. After the MP sequence starts, the power-saving mode wait state is entered after the set
number of MP sequences has continuously started.

Here, the number of MP sequences in the frame-synchronous mode is counted as the number of times
an ACK was received from child devices. This count is done to secure a communications band for
communications from the child devices. Even when there is no send data from the parent device, the
MP sequence continues to be started so that the child devices can perform a prescribed number of
sends. Also, if there is a failure in receiving the response frame from a child device, communications
will be performed with the number of communications for resends tacked on to that prescribed number.
If at this time there are too many communications and it goes into the next picture frame, the counter
value for the remaining number of communications will increase cumulatively. However, if the counter
exceeds a fixed value, it will not advance any further.

Continuous communications mode is a communications mode in which the next MP sequence starts
immediately after the last MP sequence ends. This mode blocks transmissions and other instances

TWL-06-0005-001-D 26 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

where large volumes of data are sent at once. This mode consumes relatively large amounts of power
because there is little opportunity to enter into power-saving mode.

The reason there is a time limit of 5600 microseconds on individual MP sequences is to keep
operations stable even when multiple parents and children reside on the same channel. When
numerous MP sequences run during the same picture frame, the exclusive time on the wireless
channel lengthens, destabilizing operations with multiple parents and children on the channel. We
recommend keeping the frequency of MP sequences to one per picture frame and working to minimize
the frequency to the bare minimum for communications in your applications.

3.4.8 Restrictions on the Number of MP Communications per Picture Frame

Whether frame-synchronous communication or continuous communication is set, the number of MP
communications that may occur in one picture frame is limited. Use the WM _setMPParameter function
to set the upper limit. The default value is six.

The MP frequency in frame-synchronous communications mode is set to the number of
communications to succeed in each picture frame. However, a limit on the number of communications
is a limit for the total number of communications, including those that failed. This limit is set because if
few children are connected, and the size of the parent send data temporarily becomes small, one MP
communication would become as short as a few hundred microseconds, and the frequency of MP
communications could increase more than expected by the application.

This restriction feature is how the £ixFregMode argument of the wM startMpEx function gets realized.
The fixFreqgMode argument can be set to place an upper limit on the number of communications.
When the argument is set to TrRUE, the upper limit is set to the same value as the MP frequency value.

3.4.9 Lifetime

If a communications partner suddenly disappears and communications do not take place for a fixed
amount of time, the wireless communications driver will automatically disconnect from that partner
according to the current lifetime setting. The two lifetimes for DS Wireless Play, cam and MP
communications, can both be configured with the wM_setLifeTime function.

The cau lifetime, which is normally set to 4 seconds, is a value that determines the length of wait
before disconnecting if there is no wireless parent-to-child or child-to-parent device communications
frame.

MP communications lifetime, which is normally set to 4 seconds, is a value that determines the length
of wait before disconnecting if there is no key response frame sent from the child device to parent
device or no MP frame sent from the parent device to the child device.

For the cam lifetime only, the child ARM7 will not disconnect properly if it freezes. Because this
depends on the freeze timing, the wireless communication hardware will automatically return a NULL
response frame in response to an MP frame. The MP communications lifetime was created to avoid
this problem.

© 2005-2010 Nintendo 27 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

Even if a connection is established using wM_StartParent Or WM_StartConnect, communications will
not begin between the parent and child until the parent device calls the wM_startmp function; thus, the
lifetime may run out. However, because the child device will not respond until the wM_startmp function
is called, the MP communications lifetime may run out. Make sure to call wM_startmMp immediately after
communications begin.

It is possible to disable automatic disconnection according to the lifetime, but it should always be used
with the standard values because it is required in certain situations (such as when the power of a
communications partner is suddenly turned off during communications).

3.5 Port Communications

3.5.1 About Port Communications

Due to the multiplexing of communication pathways in MP communications, the concept of the port has
been introduced in the Wireless Communications library. Both parents and children have 16 virtual
ports. By designating a port number and sending data, you can sort the processes on the receiving end.

3.5.2 Port Receive Callback

After wireless communications have been initialized, the receiving end configures the reception
callback function to the port number being used with the wM_SetPortcallback function. After that,

once the send data set by the send side with the wM_setMpDataToPort™ function arrives via MP
communication, the receive callbacks that correspond to the port number are called on the receive side.

If there is a new connection or if a communications partner is disconnected, this is communicated to
the receive callbacks of all ports.

For more information about notifications, see the entry for the wM_setpPortcallback function in section
3.7 Event Notifications Returned from the Wireless Communications Library.

3.5.3 Raw and Sequential Communications

There are two types of port communications, sorted by the port to use. Ports 0-7 perform raw
communications, and ports 8-15 perform sequential communications.

There are practically no communication controls applied to raw communications. Sometimes data will
not arrive at the communications partner, or the same data will arrive several times. On the other hand,
sequential communication performs guaranteed and non-repetitive communication; it checks for
duplication at the Wireless Communication library level by attaching a sequence number to each
packet and by using a low-level resend process.

If communication by raw communications fails, resends will be attempted up to the number specified in
the defaultRetryCount argument of the wM startMpEx function. If wM startmp is used to start MP
communications, no resends will be attempted. Sequential communications will resend until successful.

When communications are successful or when communications fail even after the specified number of
resends, the send-complete callback, which is specified when calling the wM_setMpDataToPort®

TWL-06-0005-001-D 28 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

function, is called. Do not overwrite the memory region where the send data specified with the
WM_SetMPDataToPort™ function is located until the send-complete callback arrives.

Unlike the relationship between TCP and UDP, latency and throughput for raw and sequential
communications are similar. Select between them according to whether resends are required. With
sequential communications, resends to a child device may become a bottleneck if that child device has
a poor signal.

3.5.4 Priority and Send Queue

Port communications include the concept of four levels of priority: levels 0 to 3. The send data set by
the wM_setMpPDataToPort™ function is processed with a FIFO (First In, First Out) send queue, but there
are four send queues with differing priorities. As long as a queue with a high priority is not empty, data
will never be sent from a lower priority queue. Communications that are more likely to be performed in
real time, such as Data Sharing, are set to priority 1; communications that are less likely to be
performed in real time, such as block transfer, are set to priority 3.

With raw communications, the priority can be changed and the data set while the same port number is
specified. With sequential communications, however, inconsistencies in the order control can be
caused by the sequence number if the data is set while the priority is changed. Specifically, if higher
priority data is set later, the send will still be performed in the order of priority, but lower priority items
that were skipped may not be properly sent (in the current implementation, skipped data is sometimes
discarded).

If the wM_setMPDataToPort® function is called when the send queue is full,

WM _ERRCODE SEND QUEUE FULL Will be returned to the callback, and the function will fail. Up to 32 send
packets of differing priorities can be placed in the queue. However, when performing controls that wait
for the send-complete callback for the wM setMpDataToPort™ function before setting the next data,
only one level of the send queue is used, so it is unlikely that the queue will overflow with a normal use
of this method. Data Sharing also uses a maximum of two levels.

3.5.5 Packet Headers and Footers

To make port communications work, a data structure for communications known as a packet is used in
the Wireless Communications library layer.

Figure 3-5 Parent and Child Packet Size Differences

Packet Header Packet Footer
(2bytes) (4bytes)
T T
£ parent | | Packet Body
Packet Header Packet Footer
(2bytes) (2bytes)
I
“Tohid |} Packet Body
© 2005-2010 Nintendo 29 TWL-06-0005-001-D

CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

A single packet consists of a 2-byte header, data to be sent, and a footer (a maximum of 4 bytes for a
parent and 2 bytes for a child).

The bit assignments for headers and footers are shown in Figure 3-6. With the Wireless
Communications library, there is no need for concern about the structure shown.

Figure 3-6 Bit Assignments for Headers and Footers

. Packet Header

‘VS nc Flag (Used internally by libra)‘
15 Y g y by ry. 87

Port Length

‘ DestBitmap Flag (Parent only) [
Port

==+==
iPacket Footer

‘ If DestBitmap Flag == TRUE ‘
15 87 0

Destination AID Bitmap (Only for parent transmission)

‘ If Port >=8

15 87 0
Sequential Number

The header contains data length (in 2-byte units), port number, and control flags. The footer contains a
bitmap of the destination children as well as sequential numbers. If the data length is 0, it is treated as
512 bytes.

Packets sent from parent to children normally contain a destination bitmap. However, if the header's
DestBitmap Flag is set to 0, the parent is broadcasting to all children, and the footer does not contain a
destination bitmap.

The sequential number is used to control sequential communication. If the highest-order bit of the
header's four-bit port number is enabled (that is, the port number is 8 or higher), a sequential number
is added.

3.5.6 Packing Multiple Packets

In MP communications, only a method for transmitting data payload has been defined, but with this
method, small amounts of data cannot be transmitted efficiently. Therefore, in port communications,
multiple packets are packed as much as the maximum transmission capacity will allow, and then sent.

TWL-06-0005-001-D 30 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Figure 3-7 Packing Multiple Packets

Send capacity

/ Not included in send capacity

=

Not included in send capacity

Y
Sendable if only a single packet of send capacity is used

\ /

Note that sizes of the header and footer portions of one packet are added internally, based on the
value that has been set for the transmission capacity. The transmission capacity should be viewed as
the maximum number of bytes available for user data.

Accordingly, when sending multiple packets, in addition to the actually transmitted data, the size of in-
between headers and footers uses more space. For each packet, the size for each packet addition is
up to 6 bytes for a parent transmission and up to 4 bytes for a child transmission.

When sending multiple packets at the same time, use this formula to determine the number of bytes.

[number of bytes used] = [total user data size to pack] + [added headers and footers] x ([number of
packets to pack]-1)

[Added headers and footers] = 6 bytes for parent device or 4 bytes for child device

To simplify this document, consistent numeric values are used for the bytes added to headers and
footers that assume all packets are sent using sequential communications. However, the raw
communications footer is 2 bytes smaller; thus, in raw communications, you can send each packet with
2 bytes fewer than what is calculated in the above expression.

3.6 Data Sharing
3.6.1 Data Sharing

For games that rely on real-time communications, you can periodically share the same data (such as
positional and movement information) with all participants. A Data Sharing library is available for this.
We are planning to discontinue Key Sharing and the current implementation that uses Data Sharing
internally.

Both Data Sharing and Key Sharing are the libraries that operate on ARM9 and use only the public
Wireless Communications library functions.

© 2005-2010 Nintendo 31 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

3.6.2 How to Use

Code 3-1 Data Sharing Sample Code

#define DS_SIZE 8 // Share each 8 bytes
#define DS MAX 8 // Max of 7 child devices + parent device
#define DS_BITMAP 0x00ff // aidBitmap for 8 devices

WMDataSharingInfo dsInfo; // This structure is about 2 KB; be careful where to allocate it
ul6 sendData[DS_SIZE/sizeof (ul6)]; // Send data
WMDataSet receiveData; // Receive data

BOOL fUpdate;

// Initialize wireless communications and perform WM StartMP ()

WM StartDataSharing(&dsInfo, DS _PORT, DS BITMAP, DS SIZE, TRUE);

// Main loop
while (TRUE)
{
0S WaitIrg(TRUE, OS IE VBLANK); // V-blank wait

// Create sendData from PAD input and so on

if (WM StepDataSharing(&dsInfo, sendData, &receiveData)
== WM _ERRCODE_SUCCESS)

int i;
for (i=0; i<DS MAX; i++)
{
ulé* p = WM GetSharedDataAddress(&dsInfo, &receiveData, i);
if (p !'= NULL)
{
// Use p to configure the input from AID i

}
fUpdate = TRUE;

else

fUpdate = FALSE;

// Execute the render process with the current internal state

if (fUpdate)

...... // Update the game state based on the input

TWL-06-0005-001-D 32 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

First, immediately after MP communications have been started with the wM startmp function, call the
WM_StartDataSharing function to initialize Data Sharing. Data can then be shared on the parent and
child simply by calling the wM stepDatasharing function at the start of each game frame.

If the wM_sStepDatasharing function returns wM ERRCODE SUCCESS, this indicates that all participants in
the Data Sharing are able to share data, so use that shared data to start a new game frame. The
shared data can be obtained from the wM StepDataSharing function as wMpataset-type data. Use the
WM_GetSharedDataAddress function to get data from this data set that was made by individual
Nintendo DS systems.

On the other hand, if wM_ERRCODE_NO_ DATASET is returned, this indicates that one of the
communications partners is experiencing performance problems, so delay the game frame update and
wait one picture frame.

For more information about this method, see the Data Sharing model demo in
$TWLSDK_ROOT/build/demos/wm/dataShare-Model and Wireless Communications Tutorial
(WmTutorial.pdf).

3.6.3 Single and Double Modes

The two operational modes in Data Sharing are Single and Double. To designate them, use the
doubleMode argument of the wM StartDatasSharing function.

e Single Mode

If the game frame is 30 fps or if the game frame is 60 fps but the frequency of the MP sequence is
twice or more per picture frame, single mode can be used. It gets the data that was set with the
previous WwM_StepDataSharing function. When Data Sharing starts, a single empty data set that
does not contain any AID data will be loaded.

e Double Mode

Double mode is used when the game frame is 60 fps and the frequency of MP sequence is once per
picture frame. It takes in the data that is set with the second wM StepDatasharing function. When
Data Sharing starts, two empty data sets that do not contain any AID data will be loaded.

One of the characteristics of MP communications is that two MP sequences are needed to collect data
from a child and then return that data to the child device. Therefore, if there is one MP sequence in one
picture frame, to call the wM_StepbDataSharing function at a frequency of 60 fps (in other words, 1
game frame = 1 picture frame), a single buffer must be placed in the interval. This is Double Mode.

For the diagram, see section 3.6.7 General Information About Internal Operations. Essentially, the
difference between Single Mode and Double Mode is the initial preparation of some empty data sets
for loading.

© 2005-2010 Nintendo 33 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

3.6.4 Communications Data Size

The send data size used by Data Sharing is calculated as follows.
[parent device data size] = [shared data size] x [number of devices sharing data
(including parent device)] + 4
[child device data size] = [shared data size]

As a limitation on the library, the parent data size must be 512 bytes or less. This means that [Shared
data size] * [Number of shared devices] must be less than or equal to 508. Also, the shared data size
must be an even number. For example, if there are 5 child devices, the shared data size is up to 84
bytes.

(84*6 + 4 =508 <= 512, 866 + 4 = 520 > 512)

When the number of children is 6 or more, the 5600-us limitation for the required communication time,
as explained in section 3.4.4 Transmission Capacity, determines the maximum size of shared data. For
example, if there are 15 child devices, the shared data size is up to 12 bytes.

(1216 + 4) + (12+60)*15 = 1276 < 1280, (14*16 + 4) + (14+60)*15 = 1338 >= 1280)

Table 3-6 contains a list of the maximum size of shared data for each number of child devices.

Table 3-6 Maximum Shared Data Size for Each Child Device

Number of Child Devices 1 2 3 4 5 6 7 8 9 10 | 1 12 | 13 | 14 | 15

Maximum shared size due
to restriction of the parent’s | 254 | 168 | 126 | 100 | 84 72 62 56 50 | 46 | 42 38 | 36 32 30
data size <= 512 bytes.

Maximum shared size due

to restriction of the required
time for communication <=

5600 ps

When using this at the same time as a normal wM_setMpData* function, multiple packets are packed.

Note: When calculating the respective maximum sizes for each parent and child device, the header
and footer portion of the packet (6 bytes for parent, 4 bytes for child) must be added.

3.6.5 Precautions Related to Function Call Order

You must attempt to call the wM_startbDatasSharing function immediately after calling the completion
callback of wM startmp, and you must attempt to call the wM EndbataSharing function immediately
before the wM_Endmp function. This is a current limitation for Data Sharing.

To delay the start of Data Sharing, try not calling the wM_StepbataSharing function. No alarms or
timers are used inside Data Sharing; its processes are driven by library function calls and send/receive
callbacks. Even after the wM startDatasSharing function is executed, as long as the

WM _StepDataSharing function is not called, extra processes and communications are not carried out.

TWL-06-0005-001-D 34 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

However, because nothing like a timer is being used, there are limits to the timing that calls the
WM_StepDataSharing function. To perform stable Data Sharing, the wM_StepDatasSharing function
must be called at the earliest timing possible after a V-Blank interrupt. This way, the send data can be
set up to the timing (in V-Count terms, child device 240 / parent device 260) that will carry out the
preparation of the next MPS sequence on ARM7.

3.6.6 Precautions for Operating at 30 FPS or Less

With an application that has a game frame of 30 fps, the wM_stepbatasharing function is called once
every two frames, but if wM_ERRCODE NO DATASET is returned, the next call must be performed in the
very next frame.

Code 3-2 Shared Data Process Required When Operating at 30 FPS or Less

0l: WM StepDataSharing() == WM ERRCODE SUCCESS
025 ====

03: WM StepDataSharing() == WM ERRCODE SUCCESS
04: ----

05: WM StepDataSharing() == WM ERRCODE NO DATASET
06: WM StepDataSharing() == WM ERRCODE SUCCESS
075 ====

08: WM StepDataSharing() == WM ERRCODE SUCCESS
09: ----

Perform the process in Code 3-2 when there is a failure and make sure that a one-frame interval is not
placed between the 5th and 6th frames. Otherwise, if the parent and child are off by one frame, a fix
will not be possible.

When at 30 fps and calling in the manner described above, the parent/child game frame timing
discrepancy can be fixed, but at 20 fps and below, the timing cannot be completely brought into line.
This is one of the current limitations for Data Sharing. However, even at 20 fps and below, the
consistency of shared data is maintained. So even if the timing is a bit off, it is possible to share only
the data and Data Sharing can be used.

3.6.7 General Information About Internal Operations

Figure 3-8 and Figure 3-9 illustrate the internal operations of Data Sharing. The wM stepDataSharing
function is noted as stepDs in these diagrams.

© 2005-2010 Nintendo 35 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

Figure 3-8 Data Sharing (Single Mode)

DataSharing
(Single Mode) .
Parent m ,_._—-L___f'@ Child

— el

V-Blank]]
———— &] ot e =
o Eg T smrs T
« L4 on Mot § >
3 H
H Ve 1
i l In Single Mode, 2 dummy
! [= LB 3 data read occurs once at the
H i start
Per ! 1)
)ﬁ: Raceive o >— sPorE1 —
B -GSeiMﬂDaia-'-b en
‘When the data for the parent .
and all the children is ready, !
pack it into a single DataSet and 1
send it to all the children H
]
;._ LAD 5.
([0 & Hecere TP [:
If a DataSet transmission is ! - t :D
successful, it is assumed that all the] S
children have received it and it)
becomes readable from the parent Port i
i-" Send %
St N '
(SR 1)
- 21} ;
H 1= 1
‘:n%atlLZfr?et\?vp[ﬁev:w‘t”dsaut;cviﬁ\dbe H UL] Acall of StepDS will succeed and the
t onlv Wi P dabl H il y | new child data will be set only when the
sel only wnen a readable H] R W next DataSet has been received
DataSet exists. ¥ FPef—r it +
2 1_' Receive » o— Port —g
gl e send
]
1
]
]
;.._ =R
124) ¢ Mt PP [ZIE}
')
]]
Port]
= Seng -
] 1
1 |
-3 (3) [: Bl
& (SRR L) P i iiecam) -
-« O] oDl 3
H 1=) o1
; i
[[e P H
W .
H Pear ! MBACK »
Srale-Ressi o Fot
B -lB-eiMPDaia—l-b en
]
(1
]
]
;__ 1= —
$ f5 op E-‘
I - L 3
! e
]]
- £5 Le !
] 1
[!
[, LR
-+ &
v Y v v
TWL-06-0005-001-D 36 © 2005-2010 Nintendo

Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Figure 3-9 Data Sharing (Double Mode)

DataSharing

(Double Mode) R c .
Parent — Child
IQ ¢ \/: >
V-Blank 1
.
[St y
« {4 (o) S et D g
i 1= 1
1 1 :
i [HAREEL i ‘Receive
i .
¥]
When the data for the parent)@‘_‘-D P rlt R ARAC P NS
and all .the children is ready, T et Dt Send
pack it into a single DataSet and | b Porn Le
send it to all the children - Send
1 .
= 1
! el
) H
H ; RTle] []
H H - = T ;] In Double Mode, a dummy
] I'J-' L = e . Recoer;tve data read occurs twice at the
If a DataSet transmission is ! . start.
successful, it is assumed that all the @ et bR T Fot —»))
children have received it and it L . Send .
becomes readable from the parent -‘t&tﬁaﬁt?’ !
Sendl]
[i T
] Rt em) .
H gt FEalee LT
=. iR 1
1 - T 2;:2] Acall of StepDS will succeed and the
A call of StepDS will succeed and [| o - e . Réjc%\ve next child data will be set only when the
the next parent data will be set only ' \ next DataSet has been received
when a readable DataSet exists. Fort HeHP A
lgR.aceie o g [S gortd —
en

Send

!

!

!

]
py it e
qgemmale{:m--b

b4
g
-
o -.p.-.-.-._-.ﬂt.-.'

iR 1
[—EiE
[tealiben T li REC%TVE ;]
e b fn
1| send 1
=-=-»5h ¥ ! H Ere----
S ' —‘:am:,@
-« FE o i e thiPEaleg -
i - f e i I?J
(] .
M it]
E ! i < " Receive
H I RACH
ST}l e — Lot)
(=] --I}Setéﬂ-PD?t?b Send i
!' Send | i
] . 1
—m{Eh, * 1 : G
S = o
+- : wipEk >
H : e r A
: LA I s 43
i ! i Receive
CEIE =DF'uul H - gor& o
-q:@ii\d’;{‘at?’ =al !
H T Send))
i i j
PR L.
< v PS>
v k4 ¥ v
© 2005-2010 Nintendo 37 TWL-06-0005-001-D

CONFIDENTIAL Released: February 19, 2010

TWL-SDK

Description of the Wireless Communications Library

3.7 Event Notifications Returned from the Wireless Communications

Library

For some asynchronous function callbacks, an event notification call from the Wireless
Communications library is issued, in addition to the "operation complete" notification corresponding to
the call. The trigger for the callback is stored as the value of the wMstatecode enumerated type in the
state field of the wM*callback structure of the callback argument.

Table 3-7 defines the notifications associated with various functions and the type of wMstateCodes for
the notifications. With the exception of the wvM_setMpData* function, asynchronous functions have an

internal table of callback functions by function, so do not assign a different callback function to the
same function each time it is called.

Table 3-7 Wireless Communications Functions and Their Notifications

Function

WMStateCodes

WM StartParent

WM STATECODE PARENT START: Asynchronous notification that the function
call is complete.

WM_STATECODE_ BEACON_SENT: The beacon is sent. No special processing is
required.

WM STATECODE CONNECTED: Child device connected to the parent. At
connection time, the following data is sent through callback.

— AID of the child connected to WMStartParentCallback.aid.
— MAC address of the child in WMStartParentCallback.macAddress.

— User region (the second 24 bytes) of the SSID declared by the child in
WMStartParentCallback.ssid.

WM_STATECODE DISCONNECTED: A child disconnected from the parent.
WMStartParentCallback.aid and
WMStartParentCallback.macAddress behave as in

WM STATECODE CONNECTED.

WM STATECODE DISCONNECTED FROM MYSELF: This notification is used
when a WM function is called within an application and a parent disconnects its
own child. The same values that are used with

WM_STATECODE DISCONNECTED are used in notifications.

WM StartConnect
WM StartConnectEx

WM_STATECODE CONNECT_ START: Asynchronous notification that the function
call is complete. If no more entries are being received because the parent’s
entry flag is set to FALSE, or the device has reached its maximum number of
connections, WM_ERRCODE_NO_ENTRY or WM_ERRCODE_OVER MAX ENTRY
may be returned in errcode. Even if WM_ERRCODE SUCCESS is returned in
this state, it does not necessarily mean that the connection is complete.

The completion of a connection is notified with WM_STATECODE CONNECTED.
Caution is also needed for the wM_ERRCODE _OVER MAX ENTRY returned
when the parent device exceeds its maximum number of connections, because
the notification is issued after a single WM ERRCODE SUCCESS is returned.
WM_ERRCODE_OVER_MAX ENTRY may be returned temporarily by a parent
device when a connection is attempted by another client whose GGID or TGID
does not match that of the parent. In this event, it is recommended to perform a
retry. Specifically, this error occurs frequently when a child device in Download
Play mode attempts a connection immediately after rebooting its program and
another IPL child is attempting a download connection based on an old parent
beacon.

TWL-06-0005-001-D
Released: February 19, 2010

38 © 2005-2010 Nintendo
CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Function WMStateCodes

WM_STATECODE BEACON_ LOST: A connected parent device beacon fails to be
received for a fixed amount of time. There is a high possibility that the signal
has degraded and the V-blank period is damaged, but there is no further
processing required.

e WM STATECODE CONNECTED: Connection was made with the parent device. At
connection time, the following data is sent through callback:

— AID of the child connected to WMStartConnectCallback.aid

e WM STATECODE DISCONNECTED: A parent disconnected from a child.
WMStartConnectCallback.aid behaves asin
WM STATECODE CONNECTED.

e WM STATECODE DISCONNECTED FROM MYSELF: Used when a WM function
is called in an application and a parent disconnected its own child. The same
values that are used with WM _STATECODE _DISCONNECTED are used in
notifications.

e WM STATECODE MP START: Asynchronous notification that the function call is
complete.

e WM _STATECODE MPEND IND: Parent device sends outthe MP_ACK frame and
successive MP sequences are finished. Normally, there is no specific need to
perform this process. This notifies the pointer to the WMMpRecvHeader
structure that stores the contents of the frame received from the child in
WMStartMPCallback.recvBuf. To receive the data, we recommend using
the port-receive callback. However, because the recvBuf field is defined as a
pointer to a WMMpRecvBuf type, you must forcibly recast the field type.

e WM _STATECODE MP_ IND: Child received the MP frame from parent. Notifies
the pointer to the WMMpRecvBuf structure that stores the contents of the frame
received from the parent in WMStartMPCallback.recvBuf. To receive the
data, we recommend using the port-receive callback. If the port was not
assigned with the Po11Bitmap of the MP frame, the errcode is

WM StartMp WM_ERRCODE_INVALID POLLBITMAP. Because this occurs most often when

WM StartMPEx multiple child devices are connected, it should not be handled as an
- unrecoverable error. Also, if counting the header information and nothing was

included in the received MP frame, WM ERRCODE_NO_ DATA is notified as the

errcode. Normally, as long as the WM library is operating, this cannot occur.

e WM STATECODE MPACK IND: The child received the MP ACK frame from the
parent device. Normally, there is no particular need to perform this process. If
not primarily self-designated with the Po11Bi tmap of the MP frame that
corresponds to this MP_ACK, the errcode is
WM_ERRCODE_INVALID POLLBITMAP. Because this occurs most often when
multiple child devices are connected, it should not be handled as an
unrecoverable error. Otherwise, if the parent is not notified with the
PollBitmap field of the MPACK frame that the Key (Null) response frame
was not received, the errcode is WM_ERRCODE_SEND_ FAILED. Evenifa
given time passes after receiving the MP frame, if the MPACK frame could not
be received, this indication occurs, the errcode is WM_ERRCODE_TIMEOUT,
and there is a notification.

© 2005-2010 Nintendo 39 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK

Description of the Wireless Communications Library

Function

WMStateCodes

WM _SetIndCallback

WM_STATECODE_ FIFO_ERROR: This WMStateCode is sent to the ARM7 when
the execution control queue overflows due to a process overload on the ARM7.
Treat as a non-recoverable fatal error.

WM STATECODE INFORMATION: Notification about some type of internal
event. The notification is stored in WMIndCallback.reason.

WM INFOCODE FATAL ERROR, which is sent as notification when a fatal error
occurs and the ignoreFatalError argument of the WM_StartMPEx function
is set to TRUE, is defined as the value placed in reason.

WM STATECODE BEACON RECV: Beacon from the connected parent is
received. Normally, there is no need to perform this process. If
WMIndCallback.state was this value, by recasting the type in
WMBeaconRecvIndCallback, the GameInfo can be obtained from
WMBeaconRecvIndCallback.gameInfolLength,
WMBeaconRecvIndCallback.gameInfo, and so on.

WM_STATECODE DISASSOCIATE: Used for debugging. Normally, you can
ignore this constant.

WM_STATECODE REASSOCIATE: Used for debugging. Normally, you can ignore
this constant.

WM _STATECODE AUTHENTICATE: Used for debugging. Normally, you can
ignore this constant.

WM_SetPortCallback

WM_STATECODE_PORT_ INIT: This is called with the interrupts disabled while
WM SetPortCallback is called. This notification stores the AID bitmap for the
partner currently connected to
WMPortRecvCallback.connectedAidBitmap. If the connection has not
started yet, 0 is stored in connectedAidBitmap. In addition, void* arg,
passed to an argument to WMSetPortCallback, is passed to *.arg.

WM_STATECODE PORT RECV: Data is received from the communication
partner. The following data is sent through callback.

— AID of the child connected to WwMStartConnectCallback.aid

— AID of the send source in WMPortRecvCallback.aid

— Pointer to the receive data in WMPortRecvCallback.data

— Size of the receive data in WMPortRecvCallback.length

— The void* arg given to the argument of WMSetPortCallbackin *.arg

WM_STATECODE CONNECTED: Immediately after notification in the callbacks of
the WMStartParent and WMStartConnect* functions that the connection
was established, similar notifications are sent to the receive callbacks of every
port. Whether it is a parent or child, WMPortRecvCallback.aid always takes
the AID of the connection partner at that time (the child device is fixed at 0, and
the parent takes the AID of the connected child). Its own AID is stored in

* .myAid. Also, the MAC address and user region SSID (for the parent device)
of the respective communication partners are set to * .macAddress and
*.ssid.

WM_STATECODE DISCONNECTED: Immediately after notification in the
callbacks of the WMStartParent and WMStartConnect functions that the
connection was terminated due to an external cause, similar notifications are
sent to the receive callbacks of every port. The same notes apply to AID as to
WM_STATECODE CONNECTED. Also, the MAC address of the disconnected
partner is stored in * .macAddress.

WM STATECODE DISCONNECTED FROM MYSELF: This notification is used
when a WM function is called in an application and a parent disconnects its
own child. The same values used with WM_STATECODE DISCONNECTED are
used in notifications.

TWL-06-0005-001-D
Released: February 19, 2010

40 © 2005-2010 Nintendo
CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Function WMStateCodes

e WM STATECODE PORT SEND:

Only one kind of WMStateCode is notified as the completion callback of an
asynchronous function, but because it is an important notification in the
communication controls, it is described separately here.

In WMPortSendCallback.errcode, the following data is sent through
callback.

— WM _ERRCODE_SUCCESS if the send succeeds.
— WM _ERRCODE_SEND FAILED if the send fails.
— WM _ERRCODE_SEND QUEUE_ FULL if the send queue is full.

With sequential communications, WM ERRCODE_SEND FAILED will not be
returned except when communications have been terminated. Bitmap of the
AID of the partner that must retry is stored in * . restBitmap.

WM SetMPData AID bitmap of the communications partner for which the send was a success is
WM SetMPDataToPort stored in * . sentBitmap. The send destinations that are not connected or that
WM SetMPDataToPortEx become disconnected during a send are not included in * . restBitmap or

*.sentBitmap. The condition for WM ERRCODE SUCCESS to return to

* ,errcode is that *. restBitmap is 0. In other words, communications are
successfully sent to all designated send destinations which are still connected.
To confirm that everything was sent to the designated send destination, re-
check *.sentBitmap (except when the partner has called the wM_EndMP
function). While it is guaranteed that the send is a success for communications
partners that are included in *. sentBitmap, there is no such guarantee for
communications partners that are not included there.

Exactly one callback will be called each time the WM SetMPData* function is
called. At this time, during the interval between the call to the function to the call
to callback, do not overwrite the memory region for the send data. It is also
possible to get the address of the set send data with
WMPortSendCallback.data. The argument of the

WM SetMPDataToPortEx function is passed to *.arg.

3.8 Error Codes Returned from the Wireless Communications Library
3.8.1 Return Values of Functions That Return a WMErrCode Type

In Table 3-8, the rows contain functions, and the columns contain their return values. They are
abbreviated by omitting the wM ERrRCODE prefix from the wMErrCode enumerated values.

Table 3-8 Return Values of Functions that Return a WMErrCode Type

E w |- =
O olZ|H|0 2 g2
W lw|kE "’, < < | Fle
Ol Z2|2\ 5|4 0 W
o< <|Q|g|2|2| Al
Slu|¥W o =13 |o|0
o S wis|o|L|z|k
J(2|z|2 i
Function Name = =z
WM Initialize oo |o o [¢)
WM Init o o|o o
WM Enable o | o o
WM PowerOn o | o ¢}
WM End o | o o
WM PowerOff o|o o
© 2005-2010 Nintendo 41 TWL-06-0005-001-D

CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

o Elw|-|% 3
BlalZz E | é 3 2
g S| w 5 9, e, g o o
7] S w 5 2 <|z|k
Function Name = =
WM Disable °l° ©
WM Finish © ©
WM Reset °l° ©
WM StartMP* oo o o
WM SetMPParameter °l° ©
WM SetMPData* o]0 oo’ o
WM EndMP oo o
WM SetParentParameter o]0 © ©
WM StartParent °ol©° ©
WM EndParent o]0 ©
WM StartScan* °ol©° o ©
WM EndScan o]0 ©
WM StartConnect* °ol©° o ©
WM Disconnect o]0 oo’ o
WM DisconnectChildren °l° o' o
WM SetIndCallback © ©
WM SetPortCallback © ©
WM StartDataSharing oo o o
WM EndDataSharing ° © o
WM StepDataSharing oo o o' o
WM SetGameInfo °ol©° o ©
WM SetBeaconIndication o]0 © ©
WM SetLifeTime °l° °
WM MeasureChannel o]0 ©
WM InitWirelessCounter °ol©° °
WM GetWirelessCounter o]0 ©
WM SetEntry °l° °
WM StartKeySharing oo o o
WM EndKeySharing © © ©
WM GetKeySet oo o o' o
WM ReadStatus © © o
WM SetWEPKey oo o o
WM SetWEPKeyEx 10 o o

1: This error code is generated based on a variety of conditions, even if the application process is appropriate. Communications
will continue as normal, so this is not treated as a fatal error.

TWL-06-0005-001-D 42 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library

TWL-SDK

3.8.2 errcode Values Returned to Callback Functions

The rows in Table 3-9 contain the functions and values of the state field of the wM*cal1back structure

returned to their callbacks. The columns contain the values of the wM*Ccallback structure’s errcode

field. They are abbreviated by omitting the wv sTaTECODE and wM ERRCODE _ prefixes. A indicates that

the wM*callback. state values are sometimes indefinite.

Table 3-9 errcode Values Returned to the Callback Function

= = gl & E 12
ol 4D = Ll D ElE B o
AnEHEHHEHRREBEREE
g12|2(2|2|5||5|uE|5|82|R(2|5)5
2222 |0|2|2|2|F|2|2|e|2|2|%
d21%12|z] |B| |2|7|Y|2] |o|2
Function Name WM*Callback.state - 7 o 2
WM Initialize o |© o
WM Enable o o
WM PowerOn o |o o o
WM End o |o o o
WM PowerOff o o o o
WM Disable o o o
WM Reset o |0 o
WM_StartMP* MP_START o o o A
MPEND IND1 °
MP IND' [¢) 02| o3
MPACK IND' o o? o? 02
WM SetMPParameter o ° o °
WM SetMPData* PORT SEND o ° ° A o? o?
WM EndMP o |o o o
WM SetParentParameter o |0 S S
WM StartParent PARENT START ° |A ° ° A
BEACON SENT, o
CONNECTED °
DISCONNECTED o
DISCONNECTED FROM MYSELF|®
WM EndParent o |o o o
WM StartScan* PARENT NOT FOUND ° |A ° ° A
PARENT FOUND °
WM EndScan © |© o o
WM_StartConnect* CONNECT START o |A] o o A o |of
CONNECTED °
DISCONNECTED °
DISCONNECTED FROM MYSELF|®
BEACON LOST; °

© 2005-2010 Nintendo
CONFIDENTIAL

43

TWL-06-0005-001-D
Released: February 19, 2010

TWL-SDK

Description of the Wireless Communications Library

SUCCESS
FAILED
OPERATING
ILLEGAL_STATE

Function Name

WM*Callback.state

WM_DISABLE

NO_DATASET

INVALID_PARAM

NO_CHILD

FIFO_ERROR

TIMEOUT
SEND_QUEUE_FULL

NO_ENTRY
INVALID_POLLBITMAP
SEND_FAILED
FLASH_ERROR

OVER_MAX_ENTRY
NO_DATA

WM Disconnect

[¢]

[¢]

WM DisconnectChildren

WM SetGameInfo

WM SetBeaconIndication

WM SetLifeTime

WM MeasureChannel

WM InitWirelessCounter

WM GetWirelessCounter

WM SetEntry

WM StartDCF

DCEF START

DCE IND

WM SetDCFData

WM EndDCF

WM SetWEPKey

WM SetWEPKeyEx

WM SetIndCallback

FIFO ERROR

INFORMATION

BEACON RECV,

DISASSOCIATE;

REASSOCIATE;

AUTHENTICATE,

UNKNOWN

WM SetPortCallback

PORT RECVINIT

PORT RECV

CONNECTED

DISCONNECTED

DISCONNECTED FROM MYSELF|©

1: It is OK if processing is not normally performed on this state notification.

2: This errcode is generated based on a variety of conditions, even if the application process is appropriate.

3: Communications will continue as normal, so this is not treated as a fatal error.

4: This is an errcode that should not be generated as long as the library is operating normally. After the WM ERRCODE SUCCESS
notification arrives, there may be a notification for this error again.

3.9 Precautions for Using the Wireless Communications Library

This section describes precautions for using the Wireless Communications library.

TWL-06-0005-001-D
Released: February 19, 2010

44

© 2005-2010 Nintendo
CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

3.9.1 Load Due to the Use of Wireless Communications

Because the wireless communications driver in the current SDK is 100 KB or larger, the wireless
communication driver codes cannot be loaded into the ARM7 working memory and are stored in main
memory. Therefore, when performing wireless communications, ARM7 frequently accesses main
memory. With continuous access from ARM9 to main memory, as happens with rendering, this results
in large overhead (normally, ARM7 has a higher access priority to main memory than ARM9).

Conversely, if ARM9 is given priority to main memory access (for example, when HDMA is used),
execution of the wireless communication driver may be adversely affected because ARM9 frequently
accesses main memory. In particular, if multipurpose DMA accesses main memory, execution of ARM7
program is likely to be delayed for a long time. If the wireless communication drivers are operated
when ARM9 has the higher access priority to main memory, try not to use the multipurpose DMA.

One effective method is allocating VRAM-C or VRAM-D for use by ARM7 and storing the wireless
communication driver there to reduce the amount of time during which ARM7 uses the main memory
bus. This method decreases the time for ARM7 to appropriate the main memory bus. For more
information, see the WVR library reference or the ichneumon component of Component Description
(AboutComponents.pdf).

3.9.2 Callback

The callback is called inside the PXI interrupt handler. Functions that cannot be called when interrupts
are forbidden cannot be used. Also, try not to call any long-term processes. If another ARM9 interrupt
is delayed, there are times when the ARM7 wireless communication driver waits for the ARM9 callback
to finish. This wait time negatively impacts the wireless communications process.

3.9.3 Cache Process

Forced cache storage is performed in some functions to pass data to ARM7. We recommend that 32-
byte aligned data be passed to the relevant function and that the data region be allocated as a multiple
of 32 bytes. If this is not done, the surrounding memory regions are also forcibly stored together in the
cache and unforeseen operations might occur.

On the other hand, two kinds of data are passed from the library to application: the data passed after
the cache is invalidated and the data that requires the cache to be invalidated by the application.

© 2005-2010 Nintendo 45 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

Table 3-10 Memory Cache Processes

Description Memory Regions
The given memory region is that which is stored in The WM_SetParentParameter function argument
the internal cache of the library. pparaBuf or pparaBuf->userGamelInfo,

WM StartConnect*, WM SetMPData*,
WM StartDCF, WM SetDCFData, WM SetWEPKey*.

The given memory region is that which is not stored | WM SetGameInfo, WM StartScan*,
in the cache. (It is stored after being copied to an WM SetMPParameter.

internal buffer) Other functions that pass only small memory regions.

The region that takes in the data is that which is Data fields of the port reception callback set with the
passed after the cache is invalidated inside the WM SetPortCallback function, WM ReadStatus.
library.

The region that takes in the data is that which is The region designated with the param->scanBuf
passed without the cache being invalidated inside argument of the WM StartScan* function.

the library. B

Passed after WMStartScan*Callback is invalidated.

3.10Taking Greater Control over Communications

This section describes higher-use wireless communications and ways to fine-tune performance.

3.10.1 Overview of the Timing Control Parameter of MP Communications

Figure 3-10 shows how a number of parameters can be used to control the timing of MP
communications. Configure each of these parameters by setting their values in specific fields of the
wWMMPParam structure and calling the WM _setMPParentParameter function.

TWL-06-0005-001-D 46 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Figure 3-10 Parameters That Can Be Used to Control MP Communications Timing

WMMPParam. WMMPParam.
arentInterval
VBlank parentVCount p ,/
; / -
Port | MPEND ‘ Port | MPEND
Start Recv | IND Start Recv | IND
r)ext MP Port r)ext MP Port
(internal) Send (internal) Send

v

Parent : I — I

.
H .
.

Child ey ,. i

f Port Port f Port Port
Set Recv Send Set Recv Send
next data next data
(internal) MP MPACK (internal) mP MPACK
IND IND ‘ IND IND
«
N
WMMPParam. WMMPParam.
childVCount childInterval

3.10.2 parentVCount, childVCount

In frame-synchronous communications mode, wMMPParam.parentvVCount defines the V-Count value for
internally starting the first MP sequence in each frame. The default value is 260. Similarly,
WMMPParam.childvCount defines the V-Alarm value for internally setting the first Response data in
each frame on the child side. The default value is 240. These two values can also be set by the
WM_SetMPParameter function's wrapper function, wM SetMPTiming.

By changing the values of parentvCount and childvCount, you can adjust the timing of MP sequence
occurrences in frame-synchronous communications mode. Because the wireless driver on the ARM7
side frequently accesses main memory around the time of the MP sequence, applications on the ARM9
side will often stall when accessing main memory. You can sometimes lessen the impact of this stalling
by adjusting the MP sequence to a time when the application on the ARM9 side is not heavily
accessing main memory. The value of parentvcount is irrelevant to the timing of communications
when the communications environment is poor or when communications are carried out in continuous
communications mode. Also note that if the ARM7's internal processing is delayed, the MP sequence
will actually occur later than the value set in parentvCount.

© 2005-2010 Nintendo 47 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

3.10.3 parentinterval, childinterval

In frame-synchronous communications mode, WMMPParam.parentInterval defines the time interval
(in microseconds) that passes between the end of one MP sequence and the internal start of the next
MP sequence by the parent. It affects the second and all subsequent MP sequences that occur.
Similarly, wMMPParam.childInterval defines the interval between the end of one MP sequence and
the internal setting of Response data to prepare for the next MP sequence by the child. The default
value is 1000 microseconds for parentInterval and O microseconds for childInterval. Both of
these values can also be set by the wM_setMpPParameter function's wrapper function,

WM SetMPInterval.

Note: If the ARM7's internal processing is delayed, the actual transmission interval between MP
sequences during continuous communications will be longer than the value set in

parentInterval.

In continuous communications, the Send data that will be transmitted in the next MP sequence is
determined at the end of the interval period for both the parent and child and is based on the Send
data set in the Send queue. In current implementation, the interval period does not begin until the Port
Receive and Port Send callbacks of the previous MP sequence have ended on the ARM9 side.
Because of this specification, data that gets set in the Send queue by the wM SetMpDataToPort
function during these callbacks will be set in time for transmission in the next MP sequence.

The default interval period is longer for the parent than for the child because this ensures that the
child's Response data is set in time for the next MP sequence. Setting the parent and child to the same
interval period will result in numerous communication errors when the child has a weighty callback
process. This is because the wireless communication driver on the child's side waits for the ARM9's
processing to end, so the next MP sequence can come before the child has had time to set the
Response data. The child MP frame will stop responding until the response data is set, so the result

will be a communication failure during that interval. An example of this can be observed in the wbt-fs
demo, where the callback process on the child side occasionally takes around 700 microseconds, and
communications fail with high frequency if the parent and child are set to have the same interval period.

If you know that the processing load inside the callbacks for parent and child will always be the same,
you can shorten parentInterval and raise the throughput of MP communications during continuous
communications. Conversely, if the child's Port Send and Port Receive callback processes take longer
than 1000 microseconds, you will need to set parentInterval longer than the default value. Of
course, you do not really want to have a process like a callback that takes longer than 1000
microseconds inside the interrupt handler. If this situation arises, you will need to rethink your design.

For heavy Send and Receive processes, limit your process requests from inside the Port Send and
Receive callbacks to a thread for communications and immediately exit the callbacks. You can perform
continuous communications without wasting time by using this thread to configure parentInterval
and childInterval for the worst-case longest duration it should take to set the next Send data.
Because the Send queue has 32 steps, an alternative strategy is a design where multiple sets of Send
data in the Send queue are always buffered.

TWL-06-0005-001-D 48 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

3.10.4 Changing Transmission Capacity Dynamically

Communications normally proceed using the transmission capacities that were set by the parent in
parentMaxSize and childMaxSize using the wM SetParentParameter function. However, the parent
can use the wM_SetMpPParentSize and WM_SetMPChildsize functions as required to reconfigure the
transmission capacities of the parent and child.

Note:These values cannot exceed the initial values set by the wM_setpParentParameter function. Also,
the child's transmission capacity gets updated to the value set by the parent every time the
parent sends an MP sequence. As a result, even though the child can set its own transmission
capacity using the wM_setMpChildsSize function, that value can only be used when Send data is
prepared for the MP sequence that follows immediately.

Table 3-11 Changing Parent and Child Transmission Capacity

ies LR How to Reset Value on How to Reset Value on
Initial Value Value That . . .
Parent Side Child Side
Can Be Set
Parent parentMaxSize .
transmission value in the i?tme as WM _SetMPParentSize (2?elyr/1th:izen;eanlng on the
capacity parent's beacon P
Child . } WM SetMPChildSize
t issi childMaxSize Same as Thg ets overwritten b
ransmission value in the WM SetMPChildSize g,) y
capacity ' left - parent's setting when MP
parent's beacon . .
frame is received

Be careful about clashes between the child transmission capacity set for the child and the child
transmission capacity configured in the parent for the child. Communications can proceed without
trouble if the child's transmission capacity is set smaller than the setting configured in the parent for the
child. However, if the child transmission capacity is set larger than this configuration, the parent will not
give sufficient time for the sending child data and the data will not return from the child to parent. For
more information, see the description in section 3.4.2 MP Communications Operations. In the example
MP sequence, the child transmission capacity on the child side gets updated by the MP sequence, so
the subsequent resending of data proceeds without communication problems between parent and child.
Unnecessary communications can be avoided through cooperation between parent and child and
through use of the wM_setMpChildSize function to simultaneously update the child transmission
capacity.

Changing transmission capacity would be meaningful in two cases.
e When you want to cut unnecessary child transmission capacity.

According to the MP Communications specifications, if the child transmission capacity was set to 32
bytes, each communication would take [32 bytes] x [number of children] amount of time. This occurs
even when the child is sending only 2 bytes of data every time. By designing the application to
reduce the child transmission capacity according to the communications mode, you can reduce the
overall time needed for communications, which will make communications more stable.

© 2005-2010 Nintendo 49 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

The parent transmission capacity does not need to be controlled because the time spent for sending
data in communications on the parent side only takes as long as is necessary for the amount of
Send data.

e When you want to maximize transmission capacity based on the number of connected children.

Assume the parent transmission capacity is 512 bytes and you want to connect a maximum of five
children. When five children are connected to the parent, the child transmission capacity calculates
out to 92 bytes because the limitation on communications time is 5600 microseconds. If the
transmission capacity is fixed, it does not change even when only one child is connected. But if
transmission capacity is set dynamically, it can be maximized depending on the number of
connected children. With this setup, the transmission capacity calculates out to 512 bytes for one
child, 322 bytes for two children, 194 bytes for three, and so on. However, the TWL-SDK does not
have an upper-level protocol that can make use of this kind of dynamically set transmission capacity.

If your goal of changing transmission capacity is consistent with case 1, you can use these functions
relatively safely. However, if your goal is more in line with case 2, you should be cautious about many
points, and it is normally recommended to avoid this method. Here are some of the many points to
heed for case 2.

Normally, when the wM_startmp function executes, a pre-check is carried out on the transmission
capacity and the buffer size used for the maximum number of children. You must disable this pre-check
by using the wM_setMPParameter function to set wMMPParam. ignoreSizePrecheckMode to TRUE. This
results in two things: suppression of the warning related to the 5600-microsecond restriction on needed
communications time and prevention of errors by pre-calculating the receive buffer size.

Taking case 2 as an example again, assume that wMparentParam sets both the parent and child
transmission capacities to 512 bytes and the maximum number of connected children to five. If
ignoreSizePrecheckMode is set to FALSE, when the wv_startmp function executes, the pre-check
will display a warning for debug output because the communications time totals 13970 microseconds
(exceeding the 5600-microsecond limitation). Also, the maximal receive buffer size on the parent is
1408 bytes when having two children whose child send capacity is 322 bytes when actually changing
the child send capacity within the 5600 microsecond limitation. However, when the wM_StartMp
function runs the pre-check, it calculates that 5312 bytes are required (that is, the 512 bytes of child
transmission capacity x 5 children). Thus, when a Receive buffer of 1408 bytes is passed to the
wM_StartMp function, it generates the wvM ERRCODE INVALID PARAM error. To avoid this error and to fit
the data into the smallest required buffer size, set ignoreSizePrecheckMode t0 TRUE.

When the pre-check is disabled, the parent will enter the Mp_PARENT state even when the Receive
buffer size appears too small. If a check for the Receive buffer size fails at execution, the MP sequence
will not execute. If the transmission capacity and other parameters are not corrected to appropriate
values, the MP lifetime will expire after a certain period and the connection will be dropped.

If more children are added and the transmission capacity is immediately adjusted to keep the Receive
buffer size sufficient, communications can proceed without problems. However, if the child's Receive
buffer is too small, communications will not operate normally nor be able to proceed. Because of this,

TWL-06-0005-001-D 50 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

you need to prepare a Receive buffer for the child that can accommodate the maximum value for the
parent transmission capacity as defined by parentMaxsize in the beacon.

Unlike the parent's Receive buffer, the child's Receive buffer is not affected by the number of
connected children. Thus, even if you prepare this maximum-size buffer, it will not always affect the
amount of memory used. With the pre-check disabled, the library will not check the 5600-microsecond
limitation on communications time. Therefore, you will need to be very careful when setting parameters
with your application.

As these points suggest, setting parameter values with ignoreSizePrecheckMode must be done
carefully because mistakes will cause unusual behavior during execution. If any of these points are
unclear, refrain from using ignoreSizePrecheckMode.

3.10.5 Controlling PollBitmap

The parent may want responses from all or specific children; po11Bitmap in the MP frame indicates the
children from which the parent wants a response. By controlling po11Bitmap from the beginning, you
can cut down on the overall communications time by restricting responses to specific children.
However, a child not specified by Po11Bitmap cannot send out a Key Response frame, so note that the
child will not get an opportunity to send data to the parent. For this reason, in normal MP
communications the pol11Bitmap is always sent with the bit standing for all connected children at all
times other than for retransmissions; this way, a window of opportunity exists for communications from
each child.

To provide fine control over pPo11Bitmap, the Wireless Communications library has prepared the
minPollBmpMode and singlePacketMode operation flags in the WM StartMPEx and
WM_SetMPParameter functions. However, to use these operating modes, the complex restrictions
below must be cleared. If you do not have thorough understanding of the wireless communications
protocol, do not enable the flags under normal circumstances.

When minPol1BitmapMode is enabled, specify as Po11Bitmap the logical OR of the send destination
for the packet(s) that the parent is attempting to send in a particular sequence. In this case, use the
flag along with singlePacketMode to prevent mistaken attempts to communicate with more partners
than it is designed for. If a large send volume is specified under the assumption that the simultaneous
communications partner is limited, and if the set value of Po11Bitmap is greater than intended, the
parent receive buffer can overflow. If this happens, an insufficient buffer is detected when the MP
sequence starts, and the sending will stop. After such a stop, it is possible to recover by reducing the
send volume and avoiding limitations on the receive buffer, but it is difficult to determine any causal
factors from the application side.

To use minPol1BmpMode, you must perform communication once every 60 seconds with ports 8
through 15 on every child. This way, the sequence numbers used in Sequential communication do not
cycle through. To avoid mistaken attempts to communicate with more partners than designed, use
minPollBmpMode With singlePacketMode.

© 2005-2010 Nintendo 51 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

3.11FAQ

Some of the common questions asked by Wireless Communications library users are shown below in
question-and-answer format.

3.11.1 Initialization Process

Q: A valid value is not returned for the WM _GetAllowedChannel function.

A: The wM_GetAllowedChannel function does not return a valid value until after the wv_Init function
is called. If it was called before the initialization, it returns 0x8000, which indicates an error.

3.11.2 Connection Process

Q: How do | determine the values for transmission capacities, Send and Receive Buffer sizes, and all
other communication parameters?

A: Table 3-12 lists procedures for determining typical parameter values.

Table 3-12 Procedures for Determining Parameter Values

Typical Determinations Example

Determine the maximum number of | Assuming that 3 children are connected to the parent, set
connected children. WMParentParam.maxEntry to 3.

If using data sharing, determine the | Set 16 bytes for data sharing.
number of shared bytes.

To calculate the data size used by The data size used by the parent for data sharing is 16 x (3+1) +4 = 68
parent and child for data sharing, bytes. The data size for each child is 16 bytes.

use the expression described in
section 3.6.4 Communications Data
Size.

Determine the number of packets To do a block transfer using WBT, have the parent use 128 bytes and
and the size for communications in | each child use 14 bytes. For event notifications from the parent, use 32
situations other than data sharing. bytes in an independent Sequential communication.

(When making these
determinations, be aware that by
increasing the maximum size of
data that can be sent
simultaneously from the children,
the transmission time will always be
consumed to this maximum value,
even when there is only a small
amount of data to send.)

Count up the number of packets For the parent, data sharing is 68 bytes, WBT is 128 bytes, and the

that can be sent at the same time, independent communication for event notification is 32 bytes. So the total
and use the expression in section is 128 + 68 + 32 + 6 x 2 = 240 bytes. For the child, the total is 16 + 14 + 4
3.5.6 Packing Multiple Packets to x 1 = 34 bytes.

calculate the number of bytes WBT is normally used on ports 4-7 for RAW communications, so WBT is

needed for the parent's 2 bytes smaller, or 238 bytes for the parent and 32 bytes for the child.
transmission capacity.

TWL-06-0005-001-D 52 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Typical Determinations Example

Use the value calculated above for | WMParentParam.parentMaxSize is setto 240, and childMaxSize
the parent's and child's is set to 34.

transmission capacity. Verify that Neither value exceeds 512 bytes, so it is OK.

you have not exceeded the 512-
byte limitation for transmission
capacity.

Use the expression in section 3.4.4 | The calculation is:

Transmission Capacity to calculate | 96+(24+4+240+6+4)*4+(10+96+(24+34+4+4)*4+6)*3+10+96+(24+4+4)*4
the required time for one MP The result is 2570 microseconds. Because this is below the 5600-
sequence based on the parentand | microsecond limit, there is no problem.

fhh"d trapsmission Eapacf:ities anc: d (This expression is easy to calculate if you use the "Wireless
€ maximum number of connected | commynications Time Calculation Sheet" in the "Figures, Tables and

children. Check whe?her the result | htormation” part of the Function Reference Manual.)
exceeds the 5600-microsecond

limit; if this limit is exceeded,
redesign the data sizes so that
calculation result falls within the
limit.

Based on the maximum number of | For the parent, the size of the Receive buffer passed to the WM StartMP
connected children, and the parent | function is WM_SIZE MP PARENT RECEIVE BUFFER (34, 3,
and child transmission capacities, FALSE), and the Send buffer size is
calculate the sizes of the Send and |y STzZE MP PARENT SEND BUFFER (240, FALSE).
Soerz?%iiﬂif;eeded for MP For the child, the Receive buffer size is

WM SIZE MP CHILD RECEIVE BUFFER(240, FALSE), and the Send
buffer size is WM_SIZE MP CHILD SEND BUFFER (34, FALSE).

Determine the frequency of MP The data volumes sent in block transfer are not very large, so there
communications. should not be a problem with always performing MP communications at a
frequency of once per picture frame. Set the mpFreq parameter passed
to the function WM StartMP to 1.

Determine the operations mode for | The MP communications frequency is set to 1, and you want the game
data sharing, taking into frame to move at a rate of 60 fps, so set doubleMode passed to the
consideration the frequency of MP | M startDataSharing function to TRUE.

communications and what the
game frame fps will be.

Q: | don’t know the value to set to WwMParentParam.tgid.

A: Ideally, it should be a different value every time, even when the power is restored. An easy and
convenient way to do this is to generate a pseudo-random number by combining return values of the
0S_GetVBlankCount and GX_ GetvCount functions. Also, by using the value for seconds or minutes on
RTC, it is possible to guarantee this value to be different for some time even after power is restored. If
a child reconnects to the parent multiple times, a secure connection may be achieved by sending some
bits of TGID to the phase information of the parent to prevent a child from connecting to the parent with
a different phase.

Q: When creating a list of parents from the scan result, a parent is sometimes difficult to find.

A: If all parents have the same beacon intervals and the beacon send timing happens immediately
after the other parent’s beacon, that parent may be difficult to find. Also, processing overhead and the
parent’s beacon interval matching the child’s scan interval can have an effect.

© 2005-2010 Nintendo 53 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

As a preventive measure, it is possible to achieve an overall resolution of this sort of problem by first
using the wM_startscankx function, which can get multiple parent devices at one time. Use of the
WM_StartScan function is no longer recommended.

You can also try to mix random numbers into the parent beacon interval and child scan interval.

The WM GetDispersionBeaconPeriod and WM GetDispersionScanPeriod functions were prepared
for this purpose. Each of these functions returns random values that are about 200 ms and 30 ms,
respectively. By setting a value of wM_GetDispersionBeaconPeriod to
WMParentParam.beaconPeriod, the frequency of getting the same beacon intervals on the parents can
be reduced. Set the beacon interval only once when starting the parent device. Changing the beacon
interval dynamically affects the child device connection.

In the same way, variation in the child device scan timing can be achieved by resetting the
maxChannelTime parameter to the WM GetDispersionScanPeriod return value each time a child
device calls the wM_startScan or wM_StartScanEx function.

Q: The connection process with the WM Startconnect* function is not stable.

A: Make sure that you did not forget to call w1 _Reset when retrying a failed connection attempt. If the
connection process has already made progress before failing, the internal state may be CLASS1, so
wWM_Reset must be used to restore the internal state to IDLE before wvM_startcConnect is called again.

Also, to prevent unintentional connection to the child device after the parent stops accepting entries,
you can call the wM_setEntry function to disable the entry flag when the parent device stops accepting
child device entries. To determine if the parent is accepting entries, the child device can check the

WM _ATTR FLAG ENTRY bit of gameInfo.gameNameCount attribute in the beacon before attempting to
connect.

Q: When | end the communication once and reconnect to the same parent, the process sometimes
fails.

A: When trying to reconnect after scanning, the timing of the child device reconnection process is too
fast, and there are cases where an old beacon from the pre-shutdown parent device gets picked up.
Before connecting, use the beacon information to check if the parent device has started a new
connection. To figure out the parent device state from the beacon information, use a method such as
including the parent device phase information in userGameInfo or checking for changes in TGID. After
starting up in DS Download Play, the child device re-scans the parent device and makes a connection
by checking the wM ATTR FLAG MB of gameInfo attribute. This enables you to determine if the parent
device is still in the DS Download Play mode.

If not rescanning, update TGID by the predetermined rule when reconnecting. Use some of the bits in
TGID for the phase information of the parent and rewrite that section of wMparentpParam and
WMBssDesc on parent and child to reconnect. When doing so, the child cannot be reconnected if the
parent accidentally changed the channel with the connection immediately before.

TWL-06-0005-001-D 54 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

Q: My application has a parent device for DS Wireless Play rather than a parent device for DS
Download Play. However, when | start it up, the mb_child simple.srl that started up on another DS
responds (“Gamelnfo Receiving...” keeps appearing).

A: Check if the multiBootFlag field of the wMparentParam structure specified by WM SetParentParam
is set to other than 0. To wait for the DS Download Play child device, make sure that multiBootFlag is
not enabled on anything other than a parent that is sending out a beacon for DS Download Play.

3.11.3 General MP Communications

Q: How do | send out data with the shortest delay for MP communication?

A: With the frame synchronization communication mode, the first MP sequence start process is
performed when the V-Count is 260 lines. When a child receives MP frame from the parent, the
transmission data should already be set, so the transmission data setting process starts a little earlier
at 240 lines. Therefore, to reduce the latency as much as possible, call the WM SetMPDataToPort*
function just before 260 lines for the parent and 240 lines for a child. However, immediate sending is
not guaranteed due to possible unpredictable delays between the time the library function is called
from ARM9 and from ARM7 wireless communication driver processing. In addition, if there is other data
in send queue, that data is sent first.

Values of 260 and 240 lines can be reconfigured using the wM_SsetMPTiming function.

In continuous communications mode and in frame synchronization mode, the parent starts the next MP
sequence and the child sets the next group of Response data after an interval following the previous
MP sequence. By calling the wM_setMpDataToPort* function during this waiting period, you can get
the Response data set in time for the next MP sequence.

Note: Depending on the state of the ARM7 Wireless Communications library, the Response data may
not get set in time. The waiting period can be configured using the wM setMPInterval function.

Q: | received unpredictable results when continuously calling the M setMpDataToPort function.

A: Did wM_ERRCODE_FIFO ERROR get returned by the function? If there is an overflow in the FIFO used
for sending commands from ARM9 to ARM?7, this error will be returned. Try reducing the number and
frequency of the calls so that the ARM7 processing can catch up.

Q: When | try to send large amounts of small data packets, the communications state degrades and
things do not work well.

A: Is WM _ERRCODE_FIFO ERROR being returned to some callback? When large amounts of small data
packets are sent, the processing capacity of the child-side ARM7 is sometimes exceeded because the
communication state degrades and remaining communications accumulate.

If wi_ERRCODE_FIFO ERROR is returned to the callback in this way, there will be too many processes
and the ARM7-side FIFO for internal processing will overflow. The communication state cannot
generally be recovered from here, so try to immediately transition to the communications error screen
to reset the communications. If heavy processing is being performed inside communication-related
callback on the side of a child device, this problem will occur more frequently because ARM7 is waiting

© 2005-2010 Nintendo 55 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

for those processes to finish. Also, in comparison, there are times when the child device processes
overflow if the parent device processing is too light. There are a variety of measures for avoiding this
problem, such as reducing the processing load inside the child device-side callback, avoiding sending
large amounts of small data packets, and using the wM_setMpInterval function to increase the
minimal send interval for the parent.

3.11.4 Data Sharing

Q: The wM_StepDataSharing function frequently returns wM ERRCODE NO DATASET.

A: There are a few possibilities. If either the parent or child is always successful, the Step may fail
because the device that continues to succeed experiences a performance slow down and the other
device is waiting for the performance slow down. If wM_StepDataSharing is set to be called at every
frame, and it always fails every other frame, check if doubleMode of the wM StartDataSharing
function is set to TRUE. If the wM_StepDataSharing function is set to be called every other frame and it
fails on a regular basis, there may be a problem with the retry process if wM_ERRCODE NO DATASET was
returned. Check to see if the next wM StepbDataSharing function is called in the frame immediately
after the failure.

If it fails with parent and child randomly and at about the same frequency, the wM stepDataSharing
function may have been called using bad timing. Make sure to call the function at the earliest possible
time immediately after V-blank. The wM_stepbatasharing function calls the wM_setMPDataToPort
function internally, but to perform data sharing with the least MP communication frequencies, it requires
data to be on every MP sequence. Therefore, as explained in the previous item, data sharing may not
be stable because of the communication timing if it is not 260 lines with the parent and 240 lines with a
child. This is the same with Key Sharing because it performs data sharing internally.

Q: The code does not work properly when pausing with the wM_Endpatasharing function and
restarting with the wM_startDataSharing function.

A: The wM_EndDatasharing function is designed to be called as a series of processes for ending
communication, and it may cause a problem if the termination during MP communications and
restarting were performed in a row. If you want to interrupt Data Sharing, set a flag in the shared data
in advance; once interrupt timing is determined on the parent and child, you can simply stop calling the
WM StepDataSharing function. Unless the wM sStepbDataSharing function is called, excess processing
time and communications related to Data Sharing will not be generated. Be aware that when restarting,
the last data set before the interruption will still get through.

In the future, the API for pausing will be provided.
Q: Can the shared data size be changed by using the same port?

A: This feature is not currently available. Call the wM_StartDataSharing and WM EndDataSharing
functions once, for starting and ending communication, respectively, and use one port for data sharing
of the same setting during the communication. Instead, the same process is achieved by performing
two sets of data sharing with different shared sizes at different ports, and switching them. Precautions
for switching are as shown above.

TWL-06-0005-001-D 56 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

3.11.5 Others

Q: Sometimes the communication stops for unknown reasons.

A: There may be various causes such as the destruction of memory in the application. Check the
following.

o Are you using a process that takes a while in the callback? Callback is in the interrupt handler
so it may be in interrupt-prohibited state, and the wireless communication driver of ARM7 may
be waiting for the callback to complete. It would cause negative effects in some areas, so
avoid using processes that take some milliseconds.

o Are there multiple levels of nesting of function callbacks within a callback? Are you calling a
function such as os_printf that consumes many stacks in a deeper level of nesting? Make
sure to reduce the consumption of stacks because the IRQ stack used while the callback is
executing is not very big. If it freezes during debug output, the situation may be improved by
using the os_Tprintf function instead of 0s_pPrintf.

o Has the calling of the wM_startbDatasSharing function been separated from the calling of the
wM_StartMp* function in the child? These child functions must be called consecutively
because of the current restrictions on the implementation.

Q: Is there anything that requires special attention when debugging the wireless communication
portion?

A: First, make sure to allocate enough time for debugging wireless communication. It may seem to be
working properly, but a problem that occurs once every few dozen times is very common.

For debugging, change to fixed channels by temporarily disabling the automatic channel selection
feature and start multiple groups of parent and children on the same channel. By repeating this test,
you may have a better chance of recreating the problem.

3.12Important Notes for Recent Releases

Several important changes to the Wireless Communications library are explained below. Note that
some changes are not obvious with compilation.

3.12.1 Changes in MP Frame Send Conditions (NITRO-SDK 2.2 PR and Later)

Previously, a parent in the Mp_pPARENT state sent MP frames regardless of the child’s connection status.
This has been changed so that nothing gets sent if a child is not connected. This eliminates
occurrences of MPEND notifications when the number of connected children is 0. When using port send
and receive callbacks, there is no change in behavior. MP frames may be sent immediately after a
child is disconnected, even though the number of connected children becomes 0.

Arestriction was added so that no more than 6 MP frames will be sent in one picture frame. Normally,
this restriction will not be an issue during meaningful communication. For more information, see
section 3.4.8 Restrictions on the Number of MP Communications per Picture Frame.

© 2005-2010 Nintendo 57 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

3.12.2 Addition of Notification to WM_SetindCallback Function Callback (NITRO-SDK
3.0PR2 and Later)

WM_STATECODE INFORMATION is now returned to the wM SetIndcallback function callback. Its purpose
is to provide notification of internal events. This type of event can be determined from
WMIndCallback.reason, Which is passed to the callback as an argument.

WM_INFOCODE FATAL ERROR is defined as the value placed in wMIndCallback.reason. This indicates
that a fatal error occurred with the ignoreFatalError argument of the wv startMpPEx function set to
TRUE. In general, ignoreFatalError is set to FALSE, so there is no such natification.

3.12.3 Change in Null Response Condition (NITRO-SDK 3.0PR2 and Later)

Previously, if processing by the ARM7 for a child device in the MP_CHILD state was not fast enough, a
null response was issued when the MP frame was received. However, no response is returned now. If
no response is returned, no MP receive notification is generated internally by the child device. Although
this somewhat decreases transmission efficiency, it may alleviate overloading of the child device.

In addition, because return of no response can be guaranteed if the child device is not in the
MP_CHILD state, there are no longer problems that result from gaps between the calls to the
WM_StartConnect and wM_startMP functions. Be cautious, however, as much time between the calls
will cause a disconnection due to lifetime expiration.

3.12.4 Addition of WM_STATECODE_DISCONNECT_FROM_MYSELF (NITRO-SDK
3.0RC and Later)

Until now, specifications did not include the generation of a disconnect notification when terminating
one’s own connection by explicitly calling the wM DisconnectChildren, WM Reset, WM_EndParent, OF
WM Disconnect function. This was changed by adding wM STATECODE DISCONNECTED FROM MYSELF to
WMStateCode SO that such notifications can be made.

WM_STATECODE DISCONNECTED FROM MYSELF has the same callback structure as
WM_STATECODE DISCONNECTED and is used for notifications to the callback of the wvM_startparent,
WM_StartConnect, and WM_SetPortCallback functions.

This change increases the state codes that may be used to fill the state field of
WMStartParentCallback, WMStartConnectCallback, OFf WMPortRecvCallback. Thus, care must be
taken in a case where a program has been coded so that its execution is halted when anything other
than an existing wM_STATE CODE_* is received.

In addition, data sharing will no longer stop even when a child is explicitly disconnected from a parent
using this notification.

3.12.5 Addition of WM_STATECODE_PORT_INIT (NITRO-SDK 3.0RC and Later)

WM_STATECODE PORT INIT was added to wMStateCode and specifications were changed so that a port-
receive callback is called if this state code is in effect when wM_SetpPortcallback is called. It is

TWL-06-0005-001-D 58 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

Description of the Wireless Communications Library TWL-SDK

designed to be used for initialization processing that uses the myaid and connectedaidiitmap fields
of WMPortRecvCallback.

Note: When the wM_setpPortcallback function is called before connection, the value of 0 is stored in
both the connectedAaidBitmap and myaid fields.

To maintain consistency among connection notifications, do not perform too much processing, as calls
made under WM _STATECODE PORT INIT are made while interrupts are disabled.

3.12.6 Changed Conditions for Issuing a NULL Response (NITRO-SDK 3.1 PR and
Later)

NITRO-SDK 3.0 PR 2 was changed so that child devices in the mp_cHILD state would not return a
NULL response when receiving an MP frame if ARM7 processing did not complete in time. However,
unstable behavior would occur on rare occasions in some environments, so this change was cancelled

and specifications reverted to returning a NULL response.

Specifications and processing for parent devices were changed to match this: If a child returns a NULL
response, it will be treated as if the response failed. As a result, a child can only send successfully from
the MP_CHILD state, so there are no issues with an interval between calls to the wM StartConnect
and wM_startMp functions.

Functionality from the wM_sSetInterval function was added as well, so there will be no problem with
overloaded child processing even if a NULL response is returned.

© 2005-2010 Nintendo 59 TWL-06-0005-001-D
CONFIDENTIAL Released: February 19, 2010

TWL-SDK Description of the Wireless Communications Library

All company and product names in this document are the trademarks or registered trademarks of the respective companies.

© 2005-2010 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

TWL-06-0005-001-D 60 © 2005-2010 Nintendo
Released: February 19, 2010 CONFIDENTIAL

	1 Wireless Communications Library Overview
	1.1 Introduction
	1.2 Basic Specifications for Wireless Communication Hardware
	1.3 Configuration of the Wireless Communications Library

	2 Glossary
	3 DS Wireless Play
	3.1 Overview
	3.1.1 Connection Configuration
	3.1.2 DS Wireless Play Characteristics
	3.1.3 Internal States of the Wireless Communications Library
	3.1.4 Error Codes
	3.1.5 Asynchronous Function Callback and Asynchronous Notifications
	3.1.6 MP Communications with Wii

	3.2 Initializing the Wireless Communications Library
	3.2.1 Initialization and Shutdown Function Differences
	3.2.2 DS Wireless Communications ON State
	3.2.3 Buffer for the Wireless Communications Library

	3.3 Connecting Parent and Child
	3.3.1 Connection Process
	3.3.2 Select a Channel to Use
	3.3.3 Beacon Information
	3.3.4 GameInfo
	3.3.5 Connection Operations
	3.3.6 Precautions for Ending Communications

	3.4 MP Protocol Specifications
	3.4.1 Communications Overview
	3.4.2 MP Communications Operations
	3.4.3 Operations When Communications Fail
	3.4.4 Transmission Capacity
	3.4.5 Send and Receive Buffers for MP Communications
	3.4.6 V-Blank Synchronization
	3.4.7 Frame Synchronous Communications Mode and Continuous Communications Mode
	3.4.8 Restrictions on the Number of MP Communications per Picture Frame
	3.4.9 Lifetime

	3.5 Port Communications
	3.5.1 About Port Communications
	3.5.2 Port Receive Callback
	3.5.3 Raw and Sequential Communications
	3.5.4 Priority and Send Queue
	3.5.5 Packet Headers and Footers
	3.5.6 Packing Multiple Packets

	3.6 Data Sharing
	3.6.1 Data Sharing
	3.6.2 How to Use
	3.6.3 Single and Double Modes
	3.6.4 Communications Data Size
	3.6.5 Precautions Related to Function Call Order
	3.6.6 Precautions for Operating at 30 FPS or Less
	3.6.7 General Information About Internal Operations

	3.7 Event Notifications Returned from the Wireless Communications Library
	3.8 Error Codes Returned from the Wireless Communications Library
	3.8.1 Return Values of Functions That Return a WMErrCode Type
	3.8.2 errcode Values Returned to Callback Functions

	3.9 Precautions for Using the Wireless Communications Library
	3.9.1 Load Due to the Use of Wireless Communications
	3.9.2 Callback
	3.9.3 Cache Process

	3.10 Taking Greater Control over Communications
	3.10.1 Overview of the Timing Control Parameter of MP Communications
	3.10.2 parentVCount, childVCount
	3.10.3 parentInterval, childInterval
	3.10.4 Changing Transmission Capacity Dynamically
	3.10.5 Controlling PollBitmap

	3.11 FAQ
	3.11.1 Initialization Process
	3.11.2 Connection Process
	3.11.3 General MP Communications
	3.11.4 Data Sharing
	3.11.5 Others

	3.12 Important Notes for Recent Releases
	3.12.1 Changes in MP Frame Send Conditions (NITRO-SDK 2.2 PR and Later)
	3.12.2 Addition of Notification to WM_SetIndCallback Function Callback (NITRO-SDK 3.0PR2 and Later)
	3.12.3 Change in Null Response Condition (NITRO-SDK 3.0PR2 and Later)
	3.12.4 Addition of WM_STATECODE_DISCONNECT_FROM_MYSELF (NITRO-SDK 3.0RC and Later)
	3.12.5 Addition of WM_STATECODE_PORT_INIT (NITRO-SDK 3.0RC and Later)
	3.12.6 Changed Conditions for Issuing a NULL Response (NITRO-SDK 3.1 PR and Later)

