
 2008-2009 Nintendo TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK
File System Library Manual

Version 1.0.3

The content of this document is highly confidential

and should be handled accordingly.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 2  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

and/or its licensed developers and are protected by national and international copyright laws. They may

not be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior

written consent of Nintendo.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 3 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Table of Contents

1 Introduction ...7

1.1 Overview ...7

1.2 How to Use the File System..7

1.3 NitroROM Format..8

2 The File/Directory Interface ..10

2.1 Definitions of Terminology...10

2.1.1 Entry ..10

2.1.2 Directory ..10

2.1.3 File...11

2.1.4 Archive...11

2.1.5 Path ...12

2.1.6 File ID ..13

2.2 Explanation of the API...14

2.2.1 Common Operations ...14

2.2.2 Manipulating Directories..16

2.2.3 Manipulating Files ...18

3 Archive System ...21

3.1 The Purpose of the Archive System ...21

3.2 Archive Configuration..21

3.2.1 Unique Address Space and Offsets...21

3.2.2 Commands and User Procedures...22

3.3 Archive Operations ...22

3.3.1 Archive State Transitions...22

3.3.2 Command Process Sequence ..24

3.4 Archive Designs ..25

3.4.1 Standard Specifications ...25

3.4.2 Default Procedure ...26

3.4.3 Implementing Archives ..27

3.5 Explanation of the API...31

3.5.1 Manipulating the State...31

3.5.2 User Procedures ...33

3.5.3 Asynchronous Processes..34

4 Overlay Interface...36

4.1 Starting Segment and Overlay Segments...36

4.2 Characteristics of Overlays ...37

4.2.1 Idiosyncratic Life Management ...37

4.2.2 Competing for Position ..37

File System Library Manual TWL-SDK

TWL-06-0015-001-B 4  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

4.3 Explanation of the API .. 38

4.3.1 Specifying in the LSF File ... 38

4.3.2 Overlay ID Declaration and Definition... 39

4.3.3 Loading and Unloading Overlays.. 39

4.3.4 Dividing the Load Process .. 40

Code

Code 1-1 ROM Header Information Structure.. 9

Code 2-1 FSFile Object Initialization .. 14

Code 2-2 Initializing the FSFile Object ... 14

Code 2-3 Getting the Path from the FSFile Object .. 15

Code 2-4 Changing the Current Directory.. 15

Code 2-5 Getting the Directory List .. 16

Code 2-6 Listing Entries ... 17

Code 2-7 Example of a Recursive Search Process ... 17

Code 2-8 Opening and Closing Files ... 19

Code 2-9 Getting the File's Size and Seek Position .. 19

Code 2-10 File Reading/Writing ... 20

Code 2-11 Asynchronous Read of File... 20

Code 3-1 Initializing FSArchive Object... 31

Code 3-2 Registering Archive Name.. 31

Code 3-3 Releasing Archive Name .. 32

Code 3-4 Loading Archive .. 32

Code 3-5 Unloading Archive... 32

Code 3-6 Suspending and Resuming Archive ... 33

Code 3-7 Configuring the User Procedure ... 33

Code 3-8 Describing the User Procedure .. 34

Code 3-9 Desynchronizing Access Callback.. 34

Code 3-10 Desynchronizing User Procedure... 35

Code 4-1 Specifying Overlay Segment with an LSF File ... 38

Code 4-2 Overlay ID Declaration and Definition .. 39

Code 4-3 Loading an Overlay .. 39

Code 4-4 Unloading an Overlay ... 40

Code 4-5 Dividing up the Load Process... 40

Tables

Table 3-1 File System State Set ... 22

Table 3-2 Transitions Between States .. 23

TWL-SDK File System Library Manual

 2008-2009 Nintendo 5 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Figures

Figure 1-1 Schematic Overview of File System..7

Figure 1-2 FNT and FAT in the Application ROM ...9

Figure 2-1 A Typical Entry ...10

Figure 2-2 A Typical Directory...10

Figure 2-3 A Typical File..11

Figure 2-4 A Typical Archive..11

Figure 2-5 Example of Correspondence Between File, File Path, and File ID ...13

Figure 3-1 Transitioning Through Archive States..23

Figure 3-2 Archive Operating-State Transitions ..24

Figure 3-3 Command Process Flow ...25

Figure 3-4 Default Procedure ...27

Figure 3-5 ROM Archive Procedure..28

Figure 3-6 Procedure for Archive in Your Own Format in Memory...29

Figure 3-7 Archive Procedure via Wireless Communication ..30

Figure 4-1 Segment Composition ...36

Figure 4-2 Static Segment and Overlay Segments...36

Figure 4-3 Life of an Overlay Segment...37

Figure 4-4 Competition Among Overlay Segments ..38

File System Library Manual TWL-SDK

TWL-06-0015-001-B 6  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Revision History

Version Revision Date Description

1.0.3 2009/04/13 Added a section (1.3 NitroRom Format)

1.0.2 2008/09/26 Changed references to NITRO-SDK, since this document is included
in TWL-SDK.

1.0.1 2005/08/19 2.2.1 Added a section (2.2.1.1 Initializing the FS Library).

2.2.3.2 Revised code (revised sample code in the list).

1.0.0 2005/01/11 Initial release.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 7 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

1 Introduction
The TWL-SDK has a File System library to handle the files and overlays of applications created in the

NitroROM format and to make your own extensions to these files and overlays.

This document explains the basic organization of the File System library and how to use the library.

1.1 Overview

With the TWL-SDK, when the TWL_MAKEROM build switch is enabled for building, the makerom tool

generates the application in the NitroROM format. (This build switch is enabled by default, so

applications are normally created in this format.) The generated application stores one set of directories,

along with information on the files that are included in those directories and, if specified, overlay

information as well.

The "File System" is the name used for the mechanism for accessing and manipulating this data from

the application. In broad terms, this File System is composed of the module blocks listed below. The

following chapters provide explanations of these blocks.

• File/Directory Interface Mechanism for transparent access to files and directories

• Archive System A collection of data-access processes built into the File System in a

format compatible with the File/Directory Interface

• ROM Archive Interface A standard internal definitions archive for accessing TWL Cards

• Overlay Interface General operations for overlay

Figure 1-1 Schematic Overview of File System

1.2 How to Use the File System

In order to use the File System from your application, you need to build the application with the settings

described below. (These specifications are simply ignored when the TWL-SDK library itself gets built.)

File System Library Manual TWL-SDK

TWL-06-0015-001-B 8  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

• To enable the File System in the application, enable the TWL_MAKEROM build switch. This specification

is necessary in order to execute the makerom tool as described in commondefs from the make

command. (Since this build switch is enabled by default, the application is normally built this way.)

• If directories and files are to be used in the application, specify a .rsf file in the ROM_SPEC build

switch. The makerom tool will store the information on directories and files (as described in the .rsf

file). To read more about .rsf files, see the makerom item of Tools in the TWL-SDK Function

Reference Manual.

• If the application uses overlays, specify .lsf files with the LCFILE_SPEC build switch, and specify the

source file for the overlay in the SRC_OVERLAY build switch. These specifications get passed to the

makelcf tool as described in commondefs from the make command. To read about the notation rules

for .lsf files, see the makelcf item of Tools in the TWL-SDK Function Reference Manual.

• If the application makes use of overlays, in special situations, enable the TWL_DIGEST build switch.

These are situations where the TWL Card storing the overlay information cannot be accessed

directly, so the information must be acquired indirectly via wireless communications or some other

means of communications. For overlay information obtained under such circumstances, it is

necessary to guarantee the correctness of execution code. This build switch must be specified so

the TWL-SDK can act internally to determine this correctness. (For details, see the DS Download

Play Manual.)

1.3 NitroROM Format

The TWL-SDK File System is designed based on the NitroROM format. As mentioned previously,

applications built using the makerom tool are built in this format. In the NitroROM format, management

information is contained in one FNT and one FAT, and these are referenced to track down the file name,

size and other information from the root directory. A broad sketch of the internal structure of ROM is

given in Table 1 below.

You can ascertain the addresses where FNT and FAT are stored by casting the starting region of the

ROM image (the ROM header information) to the CARDRomHeader structure. Developers normally do

not need to directly handle this information because the NitroROM format is analyzed automatically as

an internal process in the FS library. However, you may at some point want to use some ROM image by

directly mounting it to the File System, so the sample demo $TwlSDK/build/demos/fs/arc-1 has

been prepared for your reference purposes.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 9 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Figure 1-2 FNT and FAT in the Application ROM

Application ROM

ROM header

Various ROM information (Locations of FNT and FAT)

FNT

Directory hierarchy information

FAT

Table of file IDs and location of corresponding data

Address

File ID

Address

Files

Code 1-1 ROM Header Information Structure

// nitro/card/types.h:

typedef struct CARDRomHeader

{

char game_name[12];

u32 game_code;

...

// 0x040-0x050 [Parameters for file tables]

CARDRomRegion fnt; // File name table

CARDRomRegion fat; // File allocation table

...

}

CARDRomHeader;

File System Library Manual TWL-SDK

TWL-06-0015-001-B 10  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

2 The File/Directory Interface
A series of basic capabilities has been built into the File System Library to specify and manipulate

directories and files. This chapter explains the interface to those capabilities.

2.1 Definitions of Terminology

Terms like "file" and "directory" that are adopted by the File System Library and appear in this document

are generally used in the same way they are used by the operating system on a standard PC.

This section presents the strict definitions of these terms as they pertain to the File System Library.

2.1.1 Entry

An entry is a hierarchical element. It holds information for identifying a single specific file or a single

specific directory. Each entry must have a name that does not duplicate the names of other entries at

the same hierarchical level. The name can be composed of up to 127 characters of ASCII code.

Uppercase and lowercase are not distinguished, and the following characters cannot be used: ¥ / : ;

* ? " < > |

Figure 2-1 A Typical Entry

2.1.2 Directory

A directory expresses information for a single level in the hierarchy. It contains zero or more entries and

information that identifies each entry. It also has information that identifies the directory at the top of the

hierarchy (the parent directory).

Figure 2-2 A Typical Directory

TWL-SDK File System Library Manual

 2008-2009 Nintendo 11 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

2.1.3 File

A file is the information for referencing a unique object possessing binary data. "Opening" the file

commences operation of the object, and "closing" the file ends operations. The file behaves like linear

memory when using the "read" and "write" operations.

Figure 2-3 A Typical File

file

2.1.4 Archive

An archive is an object that has information for files, directories, and entries, as well as the means to

control these files, directories, and entries.

Each archive has a single name that does not duplicate the name of any other archive inside the File

System. This name is composed of up to 3 alphanumeric characters. Names are not case-sensitive.

The archive encompasses a single hierarchical relationship, with an unnamed directory at the highest

level (the root directory).

Figure 2-4 A Typical Archive

name

root directory

entry

entry

entry file

file

File System Library Manual TWL-SDK

TWL-06-0015-001-B 12  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

2.1.5 Path

An arbitrary number of archives can exist in parallel in the File System. Each entry can be uniquely

identified by using a combination of the archive name and the entry name for each hierarchical level

from the root directory. This combination of names is called the "path." (It is also sometimes called the

path name or the path string.)

If the entry information indicates a directory, then the path is called a "directory path." Similarly, if the

entry information indicates a file, then the path is called a "file path."

2.1.5.1 Path Format

A path is expressed as a character string, entered in any of the following formats:

1) " (Archive name) : / "

2) " (Archive name) : / Entry name / Entry name / ... / Entry name / "

3) " (Archive name) : / Entry name / Entry name / ... / Entry name "

All entries that are not at the end of the path must be entries that indicate directories.

If there is a slash character ("/") at the end of the path, this means it is a directory path.

Paths 1) and 2) above are both examples of directory paths. The 1) format is the only format that can

express the root directory path of an archive. Path 3) can be either a directory path or a file path. If the

final entry in this path indicates a directory, then the path is equivalent to path 2). In other words, there is

no distinction between directory paths with and without a slash ("/") at the path end.

2.1.5.2 Relative File Format

The File System allows parts of the path to be omitted. When parts of the path are omitted, the File

System uses the directory path in memory as the base from which to supplement the omitted parts. This

path in memory is called the "current directory," and a path with omissions is called a "relative path." A

normal path with nothing omitted is called an "absolute path."

The relative path is supplemented from the current directory by following these rules:

1. If the entry starts with a slash ("/"), then the path is supplemented with the root directory of the

archive to which the current directory belongs.

2. If not, then the path is supplemented by simply attaching it to the end of the current directory path.

Thus, if the current directory is rom:/text/ then the relative path /snd/dat gets changed to the

absolute path rom:/snd/dat, whereas the relative path snd/dat gets changed to the absolute path

rom:/text/snd/dat.

2.1.5.3 Notation of Special Paths

Two special entry names are reserved for use with both absolute paths and relative paths:

1. The entry name “." indicates the directory in which this entry resides.

2. The entry name ".." indicates the directory one level above the directory in which this entry resides.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 13 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

2.1.6 File ID

Each archive has unique index values that identify the files that belong to the archive. The entries in the

directory hierarchy specify files using these index values. From the set of information about the archive

and the index value, every file in the entire File System can be uniquely identified. This set of

information is called the “file ID.”

2.1.6.1 Correspondence Between File, File Path, and File ID

In the documentation relating to the File System, the term "file" may be used to refer to the file path, the

file ID or the file itself, depending on the context of the sentence. The relationship between these three

terms is as follows:

• “File” indicates the file itself, and only one such file exists in a given archive.

• When some entry indicates a file (including the index value), the path for that entry is the “file path,”

but sometimes this will be simply referred to as the “file,” meaning "the File specified by the file

path."

• The same goes for the term “file ID.” Sometimes this will be simply referred to as the “file,” meaning

"the File specified by the file ID."

• If there is a “file path” and a “file ID,” then a unique “File” exists. However, this does not mean that

the file path or file ID that identifies an arbitrary file always exists.

This means that the archive does not require an index value and an entry for each file. Thus, the archive

is permitted to contain files that cannot be pinpointed. (Such files are typically created for temporary

use.) The following figure shows the example of each file path and ID of the archive that has two files

with entries on the directory hierarchy, and three files for which index values have been provided, and

four files that actually exist.

Figure 2-5 Example of Correspondence Between File, File Path, and File ID

File System Library Manual TWL-SDK

TWL-06-0015-001-B 14  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

2.2 Explanation of the API

The previous section discussed various definitions for the TWL-SDK File System. This section uses

those definitions to explain ways of using the File System Library's interface functions (API) to actually

manipulate files and directories from the application.

2.2.1 Common Operations

FSFile structure objects are used when calling functions in the File/Directory Interface. The FSFile

object saves information related to the file or directory, and the internal state of the FSFile object is

updated in accordance with the current process.

2.2.1.1 Initializing the FS Library

Before using any function in the FS library, you must initialize the FS library with the FS_Init function.

Calling this function once is sufficient.

During initialization the FS library performs card accesses internally, so a single DMA channel must be

allocated for this. Notice that this DMA channel will be used exclusively internally until the FS library is

released by the FS_End function. Also, because the IO register is the card access transfer source, DMA

channel 0 cannot be used.

If you are not going to allocate a DMA channel to the FS library, you can explicitly specify

FS_DMA_NOT_USE as a special value. In this case, the CPU will process card access.

Code 2-1 FSFile Object Initialization

/* Initialize before using FS library */

#define DMA_CHANNEL_FOR_FS 2 /* DMA to use with FS */

FS_Init(DMA_CHANNEL_FOR_FS);

2.2.1.2 Initializing the FSFile Object

The internal state of an FSFile object must be initialized with the FS_InitFile function before the

object is used. The user does not need to directly operate on any of the various internal members of the

FSFile object.

Code 2-2 Initializing the FSFile Object

/* Must initialize FSFile object before using it first time * /

FSFile file;

FS_InitFile(&file);

If the FSFile object stores file-related information, that object can also be called the “file handle.” If the

object stores directory-related information, that object can also be called the “directory list.” A single

FSFile object cannot store multiple sets of file or directory information.

2.2.1.3 Getting the Path

If the FSFile object stores file or directory information, you can use the FS_GetPathName function to get

the file path or the directory path.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 15 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Code 2-3 Getting the Path from the FSFile Object

/* Get path length for content held by FSFile object */

const s32 len = FS_GetPathLength(&file);

/* If -1 is returned here, either the specified object is a file without an entry

(as described in 2.1.6.1 Correspondence between file, file path and file ID) or the

FSFile object holds no information. */

if(len >= 0)

{

/* Prepare enough memory to store path name */

char *buf = (char*)OS_Alloc(len);

if(buf)

{

/* Actually get the path name */

BOOL ret = FS_GetPathName(&file, buf, len);

if(ret)

{

OS_Printf("path=%s¥n", buf);

}

OS_Free(buf);

}

}

2.2.1.4 Manipulating the Current Directory

Almost all functions that obtain file or directory information for an FSFile object require a path. As

described in 2.1.5 Path, there are both absolute paths and relative paths, and the File System internally

manages a single "current directory" that gets used to supplement a relative path.

When the FS Library is initialized, the current directory gets set to the ROM Archive's root directory

"rom:/" by default. Users can change the setting using the FS_ChangeDir function.

Code 2-4 Changing the Current Directory

/* The current directory is "rom:/" */

BOOL ret;

/* If a relative path has been specified, it gets supplemented with the current

directory */

ret = FS_ChangeDir("dir_1");

/* If a directory named "rom:/dir_1/" exists, the current directory gets changed

and TRUE is returned to ret. */

/* If an absolute path has been specified, the current directory is ignored */

ret = FS_ChangeDir("arc:/");

/* If an archive named "arc" exists, the current directory gets changed to be

that archive's root directory.*/

File System Library Manual TWL-SDK

TWL-06-0015-001-B 16  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

...

/* If the archive has been released from the File System or for any other reason

the target indicated by the current directory has become invalid, then the

current directory automatically changes to rom:/, which is always guaranteed

to exist. */

FS_ReleaseArchiveName(FS_FindArchive("arc", 3));

2.2.2 Manipulating Directories

To search the directory structure from the application at the time of execution, use the FSFile object as

a directory list to enumerate entries to obtain the information. The directory list is stored inside the

FSFile object as the combined information that consists of directory and enumeration location. This

combination of information is expressed by the FSDirPos structure. It also goes by the name of

"directory position."

The directory list is normally manipulated by the procedures described below. Use these operations as

you deem best for your application.

2.2.2.1 Getting the Directory List

There are two ways to get the directory list into the FSFile object. The first way is to use FS_FindDir

function to specify a known path in the File System. When this function is used, the obtained directory

list is always initialized with the enumeration position pointing to the first entry in the list. The second

way is to use to FS_SeekDir function to specify the directory position. When this function is used, the

obtained directory list is initialized with the specified directory-position information, which includes

information about its position in the list. You can use the FS_TellDir function to get this directory

position from the already obtained directory list, or you can follow the procedure described below and

get it using the FS_ReadDir function.

Code 2-5 Getting the Directory List

BOOL ret;

FSFile dir;

FS_InitFile(&dir);

/* Get directory list from known path */

if(FS_FindDir(&dir, "rom:/"))

{

/* Get and store directory location using several prepared procedures */

FSDirPos pos;

ret = FS_TellDir(&dir, &pos);

SDK_ASSERT(ret);

/* Get directory list from an directory location already obtained */

ret = FS_SeekDir(&dir, &pos);

SDK_ASSERT(ret);

TWL-SDK File System Library Manual

 2008-2009 Nintendo 17 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

2.2.2.2 Enumerating Entries from the Directory List

Entry information can be obtained one set at a time from the current list position by using the

FS_ReadDir function. The entry information is obtained in the form of the FSDirEntry structure, and

the list position then advances to point to the next entry. This process can be repeated until the end of

the list is reached.

Code 2-6 Listing Entries

FSDirEntry entry;

/* When end of list is reached, FS_ReadDir() returns FALSE */

while(FS_ReadDir(&dir, &entry))

{

/* The information in the obtained entry includes the entry name and whether

the entry is a file or a directory */

OS_Printf("<%c>%s¥n",

entry.is_directory ? 'F' : 'D', entry.name);

}

2.2.2.3 Searching in Lower-Level Directory Lists

There may be times when you want to include a directory's subdirectories in your target search. This is

generally done by using recursive functions on obtained entries that prove to hold directory information,

and you need to be careful about stack overflow, which is a problem that all sorts of recursive processes

have in common. Note that the FSDirEntry object consumes a lot of stack memory because it includes

a buffer that is the size of the largest entry name, and that the FSFile object used for searching is also

relatively large. Because of this, it is best that you write you code so neither of these is maintained for

every level.

Following is an example of a recursive kind of search process that does not consume a lot of stack

memory.

Code 2-7 Example of a Recursive Search Process

/* Recursive function that dumps entries from specified directory positions.

Uses FSFile and FSDirEntry arguments */

void DumpDirEntriesSub(int tab,

FSFile *p_dir, FSDirEntry *p_entry)

{

/* Output directory names */

OS_TPrintf("%*s%s/¥n", tab, "", p_entry->name);

tab += 4;

/* Enumerate the entries in the directory */

if(FS_SeekDir(p_dir, &p_entry->dir_id))

{

while(FS_ReadDir(p_dir, p_entry))

{

File System Library Manual TWL-SDK

TWL-06-0015-001-B 18  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

if((p_entry->is_directory == 1))

{

/* Recursion to lower subdirectory, then return.

Uses FSFile and FSDirEntry entities*/

FSDirPos cur_pos;

if(FS_TellDir(p_dir, &cur_pos))

{

DumpDirEntriesSub(tab, p_dir, p_entry);

(void)FS_SeekDir(p_dir, &cur_pos);

}

}

else

{

/* Output file names */

OS_TPrintf("%*s%s¥n", tab, "",

p_entry->name);

}

}

}

}

/* This function is the starting point for recursive dumping */

void DumpEntries(const char *dir_path)

{

/* Secure the only entity used inside recursive processes */

FSFile work_dir;

FSDirEntry work_entry;

FS_InitFile(&work_dir);

if(FS_FindDir(&work_dir, dir_path) &&

FS_TellDir(&work_dir, &work_entry.dir_id))

{

work_entry.name[0] = '¥0';

DumpDirEntriesSub(0, &work_dir, &work_entry);

}

}

2.2.3 Manipulating Files

To handle files within your application, use the FSFile object as a file handle and call functions to

access the file and its data. The file handle is kept as the combination of binary data information and the

seek position inside the FSFile object. (The binary data itself is stored not inside the FSFile object but

rather inside some archive.)

TWL-SDK File System Library Manual

 2008-2009 Nintendo 19 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Operations done with the file handle are performed with the procedures broadly outlined below. Use

these operations as you deem best for your application.

2.2.3.1 Opening and Closing Files

You need either a file path or a file ID to specify a file from the application. (See 2.1.6.1 Correspondence

between file, file path and file ID.)

Content of the FSFile object becomes a file handle when you specify a file path with the FS_OpenFile

function or a file ID with the FS_OpenFileFast function. In either case, the operation is tantamount to

opening the file. All manipulations on files are done using this file handle. After you are done with the file

handle, use the FS_CloseFile function to release it. This operation is tantamount to closing the file.

These operations are necessary for appropriate management of internal resources in archives, where

there are restrictions on the total number of files that can be open.

Code 2-8 Opening and Closing Files

FSFile file;

FSFileID file_id;

FS_InitFile(&file);

/* Open/close file from known file path */

if(FS_OpenFile(&file, "rom:/"))

(void)FS_CloseFile(&file);

/* Open/close file from File ID */

if(FS_ConvertPathToFileID(&file_id, "rom:/"))

{

if(FS_OpenFileFast(&file, file_id)

(void)FS_CloseFile(&file);

}

2.2.3.2 Getting File Size and Setting Seek Position

There are only two basic operations performed on files: reading and writing. For these operations you

always need the "seek position" and the "size." Use the FS_GetLength function to get the overall size of

the file. Get the current seek position maintained by the file handle using the FS_GetPosition function.

Move around using the FS_SeekFile function.

Code 2-9 Getting the File's Size and Seek Position

/* Compute remaining bytes from total size and current position */

const u32 pos = FS_GetPosition(&file);

const u32 len = FS_GetLength(&file);

const u32 rest = (u32)(len - pos);

void *enough_buf = OS_Alloc(rest);

/* Move seek position to the start */

(void)FS_SeekFile(&file, 0, FS_SEEK_SET);

File System Library Manual TWL-SDK

TWL-06-0015-001-B 20  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

2.2.3.3 Reading and Writing Binary Data

Use the FS_ReadFile function to read binary data from the current seek position of the file. Use the

FS_WriteFile function to write binary data from the current seek position of the file.

With either function, after the process ends the seek position moves by an amount equal to the size of

the data that was actually accessed.

Code 2-10 File Reading/Writing

/* Read text file and output for debugging */

char string_buf[256 + 1];

string_buf[sizeof(string_buf) - 1] = '¥0';

/* Read size becomes zero when end of file is reached */

while(FS_ReadFile(&file, string_buf, sizeof(string_buf) - 1) > 0)

OS_PutString(string_buf);

Depending on how the archive is implemented the read/write process may not end immediately and the

processor itself may conduct some other task during the reading/writing. Typically, the application side

uses threads to control this kind of asynchronous process. But asynchronous versions of the read and

write functions have been prepared to perform these operations with respect to the archive. If the

archive has been implemented to suit asynchronous processes, you can use the FS_ReadFileAsync

and FS_WriteFileAsync functions to return control immediately without waiting for the process to end.

To check whether the process has actually ended, use the FS_IsBusy function. To wait for the process

to end, use the FS_WaitAsync function.

If the archive does not perform asynchronous process, these asynchronous functions will operate the

same way as the synchronous functions. In cases like this, the FS_IsBusy function always returns

FALSE, and the FS_WaitAsync function returns control without doing anything, so this can be

considered the same as the case where the asynchronous process completed immediately.

Code 2-11 Asynchronous Read of File

/* Execute other processes at the same time as the asynchronous read process. This

is more effective when it is a serial processes relating to the file data. */

while(FS_ReadFileAsync(&file, string_buf, sizeof(string_buf) - 1) > 0)

｛

DrawScreen();

FS_WaitAsync(&file);

OS_PutString(string_buf);

｝

TWL-SDK File System Library Manual

 2008-2009 Nintendo 21 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

3 Archive System
Chapter 2 talked about the File/Directory Interface and how it is used. This chapter introduces the

Archive System, which is the framework for implementing internal operations by following the interface.

This chapter explains the configuration and operations of the Archive System, as well as the archive

interface.

3.1 The Purpose of the Archive System

As depicted by its position in the File System in 1.1 Overview, the Archive System only provides

functions for implementing archives. In using the File System library, the user application has no need

for the Archive System alone without the other module blocks.

The Archive System is primarily used by those who are implementing application middleware and

utilities.

The Archive System may prove useful in the following applications:

• For the sharing, extension, or reuse of program code between existing modules and newly

introduced modules

• To hide from users the internal implementation of a data-storage medium where complex controls

are required

3.2 Archive Configuration

An archive is defined as an object that holds information for a number of basic parameters and callback

functions. Explanations for some terms are presented below.

3.2.1 Unique Address Space and Offsets

The File System is designed with the expectation that the information stored in the archive has a linear

data structure conforming to the NitroROM format. For this reason, there must be a unique address

space that begins from 0 inside the archive, and there must be a means provided for accessing the data

images of the FNT, FAT, and each files in that space.

This means is provided through a pair of callback functions for reading and writing. For the remainder of

this document, these functions will be called the "read callback" and the "write callback." Together, the

pair will be called the "access callbacks.”

Addresses in the unique address space are called "offsets" in order to distinguish them from the address

map in the CPU.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 22  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

3.2.2 Commands and User Procedures

By providing the access callbacks and FNT and FAT offsets in the correct manner, the archive can

transparently satisfy user requests even if the user does not have a firm handle on the actual processes

of the File System.

But a method has also been prepared that can resolve issues when a part or all of the unique address

space cannot be made to conform to the NitroROM format. There is a set of defined processes called

"commands" that can be used to access the archive from the File/Directory Interface. Each of these

commands can be set to query the archive before the access callback is executed. The archive can

process these query-making commands using callback functions called "user procedures" and directly

replace the commands with an independent implementation. In this way, even an archive that does not

strictly conform to the NitroROM format can be created that satisfies all requests from the File System.

There is also a set of standard processes called the "default procedure" that is executed without the

replacement step of user procedures.

3.3 Archive Operations

Archive processes run automatically from the File System driven by callbacks. This section explains

how the archive operates inside the File System. The functions shown in the figures and tables are

explained in 3.5 The API.

3.3.1 Archive State Transitions

The archive's internal state has two components: its state set in the File System, and its own operating

state.

3.3.1.1 Transitioning Through Archive States

The archive can transition through three states in the File System, as shown in Table 3-1.

Table 3-1 File System State Set

State in File System Meaning

Unregistered
The archive does not have any association with the File System. The archive
begins in this state immediately after initialization.

Registered
The archive has been registered with a unique name in the File System. In this
state, the archive is included in the File System but it is not operating.

Loaded
Access callback has been executed and archive is loaded to the File System. Only
in this state can commands be issued from the File/Directory Interface.

The transitions between these states are depicted in Figure 3-1.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 23 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Figure 3-1 Transitioning Through Archive States

3.3.1.2 Transitioning Through Operating States

The archive itself transitions through three different operating states according to the operation of the

archive itself.

Table 3-2 Transitions Between States

Operating State Meaning

Suspended
Archive operations have been stopped. Commands from the File/Directory Interface
are kept on hold until the archive begins operating again.

Idle
Archive is operating, but there are no unprocessed commands.
This is the timing when the first command is generated.

busy
Command is being processed. The archive moves to this state after the first
command is issued.

The transitions between these states are depicted in Figure 3-2.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 24  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Figure 3-2 Archive Operating-State Transitions

3.3.2 Command Process Sequence

Command requests are sent in series from the File System to the archive, and if unprocessed

commands pile up, they get reserved in first-come order. The File System drives callbacks so that every

archive always processes commands one at a time, but it is nevertheless possible to operate multiple

archives in parallel in the File System without the archives interfering with each others' states.

When an archive is in the busy state, the processing of single commands is executed with either user

procedures or the default procedure, as described above in 3.2.2 Commands and user procedures.

With either procedure, after the process is executed one of the result values gets returned. Normally the

command ends at this point.

If the process in the archive is an asynchronous process (as mentioned in 2.2.3.3 Reading and writing

binary data), then the procedure returns "asynchronous processing" as a result value. If this is the case,

the archive itself will need to notify the File System of the result when the process has ended. Until the

File System receives this notification it will suspend busy-state processes. If the command that gets

suspended here is not a command that was issued from the call to an API for an asynchronous process

like file reading or writing, then the File System will block process-end notifications inside that call.

The command process flow for this is shown in Figure 3-3.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 25 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Figure 3-3 Command Process Flow

3.4 Archive Designs

This section covers the broad guidelines you should consider when implementing your own archives

and presents several implementation examples.

3.4.1 Standard Specifications

Basically speaking, implementing an archive involves just properly describing three callback functions

for the access callback and user procedures. The main task is to wrap the target-specific characteristics

in these callbacks so that they are created as close as possible to the standard specifications expected

by the File system.

The standard specifications that the File System expects of the target are shown below. The three sets

of conditions are presented in order of appropriateness; a target that meets the first set of conditions

has the easiest time being implemented as an archive.

• The internal data structure conforms entirely to the NitroROM format

In this case the implementation is easiest because all of the commands can be processed with the

default procedure by using only the access callback. As long as no special device will be handled

by the archive, there is no need for any user procedures.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 26  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

If the format does not fully conform to the NitroROM format or is an entirely different format, you will

need to appropriately replace the FNT and FAT-related low-order commands and access callback.

• The directory structure and the file information are fixed

In this case, you can implement a standard archive that can be used without a problem at least on

the user side. However, the characteristics are such that the File/Directory Interface are not

suitable for incorporating an environment where directories are dynamically changed and the

information in files is freely altered. As a result, for targets like this there are a number of limitations

on commands and some commands may not even be supported.

• Generally speaking, the concept of the directories and files conform to that of the File System

If the target does not even meet this third set of conditions, there is very little merit to using the File

System except in the case of very special applications. One example would be for a network,

where the communications socket and URI path were generally in agreement with a number of

individual commands of the File/Directory Interface.

3.4.2 Default Procedure

The default procedure is a set of standard processes for each command available in the File System. Of

these commands, the low-level ones make use of access callbacks as well as FNT and FAT, or

implement processes that depend on nothing at all, and there are also some high-level commands that

make use internally of other low-level commands.

The figure below shows the dependency relationships of the various commands that make up the

default procedure for basic archive processing. The upper level of this dependency relationship should

be taken into consideration for the implementation of access callbacks and user procedures. Read the

function reference to learn about the strict specifications required of each command and how they are

actually supported in the SDK.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 27 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Figure 3-4 Default Procedure

Read

Write

F A T

CloseFile

OpenFileDirect

Activate

Idle

Directory commands File commands

Notification of state

Access callbacks

Independently implemented command

F N T

OpenFileFast

WriteFile

ReadFile

Commands implemented by default

Commands that are not supported or necessary

Commands that depend on internal implementation

SeekDir

ReadDir

FindPath

GetPath

3.4.3 Implementing Archives

This section explains the implementation of several types of archives by showing the difference from the

default procedure.

3.4.3.1 ROM Archive

After the File System is initialized, the standard practice is to load the rom archive, which is the system

definition archive. The rom archive is for accessing the file group stored in the ROM region that was

created in the TWL Card by the makerom tool, and also for processing some of the Overlay operations.

The figure shows in broad terms the processes that get replaced internally in the case of the rom archive.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 28  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Because the medium is ROM, the process of writing to files is made explicitly not to be supported. All

other processes are left to the defaults. State notifications are used to lock and unlock the CARD bus.

The actual code for this implementation is presented in the SDK sample demo /build/demos/fs/arc-1.

Figure 3-5 ROM Archive Procedure

Read

Write

F A T

CloseFile

OpenFileDirect

Activate

Idle

Directory commands File commands

Notification of state

Access callbacks

Independently implemented command

F N T

OpenFileFast

WriteFile

ReadFile

Commands implemented by default

Commands that are not supported or necessary

Commands that depend on internal implementation

SeekDir

ReadDir

FindPath

GetPath

3.4.3.2 Archive in Your Own Format in Memory

The following figure is an example of an archive that has been implemented by defining a format of your

own that is different from the NitroROM format and then placing a directory structure that conforms to

that format in memory.

Since the format differs from the NitroROM format, neither FNT nor FAT is specified. Instead, user

procedures are used to replace these with four commands that are dependent on FNT and FAT.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 29 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Because the substituted commands operate according to the correct specifications, higher-order

commands can use the default procedure. Access callbacks are used only for file reading and writing.

The actual code for this implementation is presented in the SDK sample demo /build/demos/fs/arc-2.

Figure 3-6 Procedure for Archive in Your Own Format in Memory

Read

Write

F A T

CloseFile

OpenFileDirect

Activate

Idle

Directory commands File commands

Notification of state

Access callbacks

Independently implemented command

F N T

OpenFileFast

WriteFile

ReadFile

Commands implemented by default

Commands that are not supported or necessary

Commands that depend on internal implementation

SeekDir

ReadDir

FindPath

GetPath

3.4.3.3 Archive via Wireless Communication

The figure below is an example of an archive that has been implemented so that a child program booted

from a wireless download can use wireless communications to reference the directory information in the

parent's TWL Card and obtain dynamic data.

All of FNT and FAT is received and stored in memory before getting data, and all commands other than

file access are left to the default procedure.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 30  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Reading of the file realizes asynchronous processes up to the time reception ends on a request via the

communications protocol. This example does not support file writing, but there are applications where

data might be written to a file.

The actual code for this implementation is presented in the SDK sample demo

/build/wireless_shared/wfs.

Figure 3-7 Archive Procedure via Wireless Communication

Read

Write

F A T

CloseFile

OpenFileDirect

Activate

Idle

Directory commands File commands

Notification of state

Access callbacks

Independently implemented command

F N T

OpenFileFast

WriteFile

ReadFile

Commands implemented by default

Commands that are not supported or necessary

Commands that depend on internal implementation

SeekDir

ReadDir

FindPath

GetPath

3.4.3.4 Other Archives

Aside from the sample demos, the TWL-SDK does not directly provide any way to implement archives.

You will need to prepare the program code yourself so your application can access archives in the

NitroROM format or in some other format created by a tool that packages data in archive form.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 31 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-System also has the Foundation library (FND), which has been released to be used for archives.

You can build archives in standard memory by using these archive functions in combination with the

included tool /TwlSystem/tools/bin/nnsarc.exe. To read more about this, see the TWL-System

manuals and sample demos.

3.5 Explanation of the API

The previous section looked at the overall Archive System and explained archive operations. This

section explains the procedures for using the File System Library's interface functions (the API) to

actually manipulate archives from the application.

3.5.1 Manipulating the State

To manipulate archives, the FSArchive structure object is used when calling functions. FSArchive

object holds various callbacks and parameters inside.

Here we explain how to change the archive's internal state. (See 3.3.1 Archive state transitions to read

about archive internal states.)

3.5.1.1 Initializing the FSArchive Object

The user does not need to directly manipulate the various internal members of the FSArchive object,

but the internal state of the object must be initialized using the FS_InitArchive function before the

object is used. An initialized archive enters the unregistered state.

Code 3-1 Initializing FSArchive Object

/* Must initialize FSArchive object before using first time */

FSArchive arc;

FS_InitArchive(&arc);

3.5.1.2 Registering and Releasing the Archive Name

The archive name must be registered before it can be loaded in the File System. The user of the archive is

free to use any name, but it must be a name that is unique inside the File System. Once the archive name

is registered, the archive becomes managed by the File System and moves into the registered state.

Code 3-2 Registering Archive Name

/* Register the archive with a specified name */

const char *name = "ac1";

const int name_len = strlen(name);

const BOOL ret = FS_RegisterArchiveName(

&arc, name, name_len);

/* Registration will fail for only one of three reasons: The archive is not in

the unregistered state, the name is too long, or the same name has already

been registered */

SDK_ASSERT(ret);

File System Library Manual TWL-SDK

TWL-06-0015-001-B 32  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Once the archive has been unloaded from the File System, the name can be unregistered if the archive

will not be used again. The FSArchive object is still being managed by the File System if it is in the

registered state, so the object must not be arbitrarily destroyed until the name has been released and

the object has moved to the unregistered state.

Code 3-3 Releasing Archive Name

/* Release the archive name */

FS_ReleaseArchiveName(&arc);

3.5.1.3 Loading and Unloading Archives

Once the FSArchive object has had its name registered it can be loaded to the File System. As

mentioned in 3.2.1 Unique address space and offsets, the archive must provide access callbacks and

FNT and FAT information for the File System. Specify them with the FS_LoadArchive function when

loading the object. If the call is successful, the archive moves to the loaded state.

Code 3-4 Loading Archive

/* Load archive */

const BOOL ret = FS_LoadArchive(

&arc, /* Archive object */

base_offset, /* Base offset (for user) */

fat_offset, fat_length, /* FAT information */

fnt_offset, fnt_length, /* FNT information */

ArcReadCallback, /* Read callback */

ArcWriteCallback /* Write callback */

);

/* Load will fail if archive is not in registered state */

SDK_ASSERT(ret);

A loaded archive can be unloaded from the File System at any time. If the archive is in the busy state

when the unload request is made, the request will be blocked until the command that is processing is

completed. When completed the archive will move to the registered state.

Code 3-5 Unloading Archive

/* Unload archive */

const BOOL ret = FS_UnloadArchive(&arc);

/* Unload will fail if archive is not in loaded state */

SDK_ASSERT(ret);

3.5.1.4 Suspending and Resuming Archives

Once the archive has been initialized, archive operations can be suspended and resumed at any time,

regardless of the state of the archive.

If you want to start the archive in the suspended state, you must suspend the archive before you load it.

TWL-SDK File System Library Manual

 2008-2009 Nintendo 33 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Resumption of processing from the suspended state is achieved immediately. However, if the archive is

operating, the process to suspend operations will be blocked until the processing of the current

command is completed.

Code 3-6 Suspending and Resuming Archive

/* Suspend archive */

const BOOL bak_mode = FS_SuspendArchive(&arc);

/* Execute processes that must run while archive is not suspended */

...

/* If necessary, return to the previous operating state */

if(bak_mode)

{

(void)FS_ResumeArchive(&arc);

}

3.5.2 User Procedures

If you cannot appropriately process all commands with just the access callbacks and the default

procedure, then you will need to set the archive in the registered state and call the FS_SetArchiveProc

function to configure a user procedure.

Code 3-7 Configuring the User Procedure

/* Configure the user procedure */

FS_SetArchiveProc(&arc, /* Archive object */

ArcProc, /* User procedure */

FS_ARCHIVE_PROC_WRITEFILE /* Query command */

);

The configured user procedure is called in a callback from the File System as needed. Here

independent processes are conducted and the appropriate values must be returned.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 34  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Code 3-8 Describing the User Procedure

/* Description of user procedure */

FSResult ArcProc(FSFile *p_file, FSCommandType cmd)

{

/* Only the commands requested at the time of configuration can be queried */

SDK_ASSERT(cmd == FS_COMMAND_WRITEFILE);

(void)p_file;

switch(cmd) {

/* Certain commands can be unsupported */

case FS_COMMAND_WRITEFILE:

return FS_RESULT_UNSUPPORTED;

/* Can enable all queries and evaluate inside the user procedure */

default:

return FS_RESULT_PROC_UNKNOWN;

}

3.5.3 Asynchronous Processes

In order for the archive to support asynchronous processes, the process must be implemented in

various callbacks. Specifically, at places where a result value is requested, the callback returns an

"asynchronous processing" and later sends notice after the pertinent process has ended.

Change the access callbacks if all types of access will always be done with asynchronous processes.

Code 3-9 Desynchronizing Access Callback

/* Read callback */

FSResult ArcReadCallback(

FSArchive *p_arc, void *dst, u32 src, u32 len)

{

/* Execute process that can be expected to be asynchronous */

CARD_ReadRomAsync(

dma_no, (const void*)src, dst, len,

OnCardReadDone, p_arc);

/* Return "asynchronous processing" as result. Even if completion notification is

generated sooner than this return, the system can guarantee correct processing */

return FS_RESULT_PROC_ASYNC;

}

/* Callback at completion of asynchronous process */

void OnCardReadDone(void *p_arc)

{

/* Notify archive of completion */

FS_NotifyArchiveAsyncEnd(

(FSArchive*)p_arc, FS_RESULT_SUCCESS);

}

TWL-SDK File System Library Manual

 2008-2009 Nintendo 35 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

Change the user procedure if only certain commands will be done with asynchronous processes.

Code 3-10 Desynchronizing User Procedure

/* Description of user procedure */

FSResult ArcProc(FSFile *p_file, FSCommandType cmd)

{

switch(cmd) {

case FS_COMMAND_READFILE:

/* Only certain commands return

"asynchronous processing" */

HostIO_Read(

FS_GetFileImageTop(p_file) +

FS_GetPosition(p_file),

p_file->arg.readfile.dst,

p_file->arg.readfile.len

);

return FS_RESULT_PROC_ASYNC;

default:

return FS_RESULT_PROC_UNKNOWN;

}

}

File System Library Manual TWL-SDK

TWL-06-0015-001-B 36  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

4 Overlay Interface
Overlay is a feature that helps NITRO and TWL applications improve efficiency by placing only

necessary execution code in the limited amount of main memory that is available. This chapter explains

the operating principles of the overlay feature and describes the Overlay Interface.

4.1 Starting Segment and Overlay Segments

All of the program code for a NITRO or TWL application is grouped in a unit called a "segment." The

segment consists of executable code, a variable region, a constant region, a destination address and a

routine for its own initialization.

Figure 4-1 Segment Composition

In a normal application, all of this code is loaded into main memory when the application has been started,

and after the initialization routine executes, control is passed to the main entry point (the NitroMain

function). While the program is executing, these regions are stored statically and are collectively called the

“static segment.” One copy of the static segment is prepared for the ARM9 and one for the ARM7.

For a large application, the static segment may take up a large region of main memory, and in the worst-

case scenario it may be larger than the size of main memory. One good way to avoid this kind of

problem is to not make the entire program resident, but instead to load modules that are only used for

specific scenes or combination as needed into main memory. The “overlay” feature is what is used to

perform this process, and the divided up modules are called “overlay segments.”

Figure 4-2 Static Segment and Overlay Segments

TWL-SDK File System Library Manual

 2008-2009 Nintendo 37 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

4.2 Characteristics of Overlays

It is important to consider the many characteristics that differ when overlays are used. The following

sections look at several representative differences.

4.2.1 Idiosyncratic Life Management

Overlays can be loaded dynamically with arbitrary execution timing and released with arbitrary

execution timing. This timing controls the life of objects with static storage periods inside overlay

segments. Specifically, global objects exist from the time an overlay segment is loaded and the

initialization routine is executed, and they are disassembled when the overlay segment is released. In

the C++ language, this is where the destructor is executed.

For a given overlay, this action occurs every time the process of loading and deleting the overlay is

repeated. The internal state of the overlay segment is independent inside each lifetime, and the lifetime

is not extended nor deferred.

This action is not unique to overlays; it is a behavior common to segments. However, overlays differ in

that they primarily get deleted when the NitroMain function ends, which for static segments is normally

impossible.

Figure 4-3 Life of an Overlay Segment

4.2.2 Competing for Position

The overlay feature is only for dynamic loading of segments and not for dynamic linking. The address

where the overlay segment will be placed and the symbol references among other segments are all

resolved statically.

If numerous overlay segments compete for regions for placing them in limited memory space, those

overlay segments cannot be used at once. In that case you will need to examine it in your application.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 38  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Figure 4-4 shows an example of competition among overlay segments

Figure 4-4 Competition Among Overlay Segments

4.3 Explanation of the API

The previous section explained the actions of overlay segments. This section explains how the

application actually manipulates overlays using the API functions.

4.3.1 Specifying in the LSF File

Overlay segments are identified from the program code by their names.

Overlay names, support for inclusion modules and specification of position placements are all described

via an LSF file. For information on the notation of LSF files, see the reference for the makelcf tool.

Code 4-1 Specifying Overlay Segment with an LSF File

Overlay main_overlay_1

{

After main

Object $(OBJDIR)/func_1.o

}

Overlay main_overlay_2

{

After main

Object $(OBJDIR)/func_2.o

}

...

TWL-SDK File System Library Manual

 2008-2009 Nintendo 39 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

4.3.2 Overlay ID Declaration and Definition

The overlay segment is specified and manipulated from the program in the form of an “overlay ID.”

This overlay ID entity is resolved when the program is linked. To use this overlay ID from the program

code requires its explicit declaration using the FS_EXTERN_OVERLAY macro.

The FS_OVERLAY_ID macro is then used to reference this declared overlay ID.

Code 4-2 Overlay ID Declaration and Definition

/* Declare the overlay ID to be used */

FS_EXTERN_OVERLAY(main_overlay_1);

/* A reference to the declared overlay ID can be defined */

FSOverlayID ovl_id = FS_OVERLAY_ID(main_overlay_1);

4.3.3 Loading and Unloading Overlays

An overlay can be read (loaded) at any time while the program is executing. However, as mentioned in

4.2.2 Competing for position, if other overlay segments exist that are competing for the same region, the

overlay cannot be loaded if one of these others is being read.

Further, an overlay that has already been loaded cannot be reloaded without first being released. The

library cannot internally determine the correctness, so the application needs to guarantee the situation.

The following is the simplest procedure for loading an overlay:

Code 4-3 Loading an Overlay

/* Load overlay segment.

Overlay can be used once control returns from function */

BOOL ret = FS_LoadOverlay(

MI_PROCESSOR_ARM9, FS_OVERLAY_ID(main_overlay_1) };

/* Fail if for some reason the specified overlay does

not exist. This will not arise on a normal program

generated with makerom. */

SDK_ASSERT(ret);

The procedure for releasing (unloading) a loaded overlay is show below. An overlay that is not loaded

cannot be unloaded, so the application needs to guarantee that the situation is correct, as mentioned

above for loading.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 40  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Code 4-4 Unloading an Overlay

/* Unload overlay segment.

When function called, overlay cannot be used. */

BOOL ret = FS_UnloadOverlay(

MI_PROCESSOR_ARM9, FS_OVERLAY_ID(main_overlay_1) };

/* Fail if for some reason the specified overlay does

not exist. This will not arise on a normal program

generated with makerom. */

SDK_ASSERT(ret);

4.3.4 Dividing the Load Process

The FS_LoadOverlay function executes the following set of processes internally in a batch:

1. Gets detailed information about the overlay segment from the overlay ID.

2. Loads the segment data into the placement position, based on the overlay segment's detailed information.

3. Executes the overlay segment's initialization routine and enables the overlay.

If these tasks need to be divided out and executed in a stepwise fashion, the single-feature functions

that perform each task can be assembled together and called in sequence. This may prove necessary

in order to avoid problems related to the processing time involved in the data-reading task of step 2.

There are several situations in which dividing the process is beneficial. One is when advancing the

game while dealing with a huge overlay that requires more time than one picture frame. Another is when

getting segment data based on a configuration like that in 3.4.3.3 Archive for wireless access. A third is

the future implementation of applications that use a low-speed CARD-ROM device.

The procedure for a divided-up load process looks like this:

Code 4-5 Dividing up the Load Process

/* (1) Get overlay information from overlay ID */

FSOverlayInfo info;

if(FS_LoadOverlayInfo(&info,

MI_PROCESSOR_ARM9, FS_OVERLAY_ID(main_overlay_1)))

{

/* (2) Load data based on overlay information */

FSFile file;

FS_InitFile(&file);

(void)FS_LoadOverlayImageAsync(&info, &file);

(void)FS_WaitAsync(&file);

(void)FS_CloseFile(&file);

/* (3) Execute the initialization routine */

FS_StartOverlay(&info);

}

TWL-SDK File System Library Manual

 2008-2009 Nintendo 41 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

File System Library Manual TWL-SDK

TWL-06-0015-001-B 42  2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

© 2008-2009 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed, or loaned in whole or in part without

the prior approval of Nintendo.

	1 Introduction
	1.1 Overview
	1.2 How to Use the File System
	1.3 NitroROM Format

	2 The File/Directory Interface
	2.1 Definitions of Terminology
	2.1.1 Entry
	2.1.2 Directory
	2.1.3 File
	2.1.4 Archive
	2.1.5 Path
	2.1.5.1 Path Format
	2.1.5.2 Relative File Format
	2.1.5.3 Notation of Special Paths

	2.1.6 File ID
	2.1.6.1 Correspondence Between File, File Path, and File ID

	2.2 Explanation of the API
	2.2.1 Common Operations
	2.2.1.1 Initializing the FS Library
	2.2.1.2 Initializing the FSFile Object
	2.2.1.3 Getting the Path
	2.2.1.4 Manipulating the Current Directory

	2.2.2 Manipulating Directories
	2.2.2.1 Getting the Directory List
	2.2.2.2 Enumerating Entries from the Directory List
	2.2.2.3 Searching in Lower-Level Directory Lists

	2.2.3 Manipulating Files
	2.2.3.1 Opening and Closing Files
	2.2.3.2 Getting File Size and Setting Seek Position
	2.2.3.3 Reading and Writing Binary Data

	3 Archive System
	3.1 The Purpose of the Archive System
	3.2 Archive Configuration
	3.2.1 Unique Address Space and Offsets
	3.2.2 Commands and User Procedures

	3.3 Archive Operations
	3.3.1 Archive State Transitions
	3.3.1.1 Transitioning Through Archive States
	3.3.1.2 Transitioning Through Operating States

	3.3.2 Command Process Sequence

	3.4 Archive Designs
	3.4.1 Standard Specifications
	3.4.2 Default Procedure
	3.4.3 Implementing Archives
	3.4.3.1 ROM Archive
	3.4.3.2 Archive in Your Own Format in Memory
	3.4.3.3 Archive via Wireless Communication
	3.4.3.4 Other Archives

	3.5 Explanation of the API
	3.5.1 Manipulating the State
	3.5.1.1 Initializing the FSArchive Object
	3.5.1.2 Registering and Releasing the Archive Name
	3.5.1.3 Loading and Unloading Archives
	3.5.1.4 Suspending and Resuming Archives

	3.5.2 User Procedures
	3.5.3 Asynchronous Processes

	4 Overlay Interface
	4.1 Starting Segment and Overlay Segments
	4.2 Characteristics of Overlays
	4.2.1 Idiosyncratic Life Management
	4.2.2 Competing for Position

	4.3 Explanation of the API
	4.3.1 Specifying in the LSF File
	4.3.2 Overlay ID Declaration and Definition
	4.3.3 Loading and Unloading Overlays
	4.3.4 Dividing the Load Process

