

 2008-2009 Nintendo TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

TWL-SDK
DS Download Play User Guide

Version 1.0.8

The content of this document is highly confidential
and should be handled accordingly.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 2  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 3 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Table of Contents

1 Introduction ...7

1.1 Overview ...7

1.2 DS Download Play Startup Procedure ..7

1.3 Attaching Authentication Code ..8

1.4 Using the System Call Library and ROM Header ...8

1.5 Transferable Binary Code Size ...8

1.6 Accessing Backup Regions in Game Cards and Game Paks ..9

1.7 Supported ROM ..9

1.8 Support for Pseudo-Download Play Child Devices ..9

2 DS Download Play Operations .. 10

2.1 Process Flow on the Parent Side .. 10
2.1.1 Preparations By the Parent .. 10
2.1.2 Sending Data and Starting Children ... 13

2.2 Reconnecting with Parent .. 14

2.3 Other Precautions .. 15
2.3.1 Applications with Multiple Communication Modes ... 15
2.3.2 About IRQ Stack ... 16
2.3.3 About Overlay of the DS Download Play Child Device Program ... 16
2.3.4 About DS Download Play Bugs .. 16

3 Clone Boot Feature .. 19

3.1 About Clone Boot ... 19

3.2 Clone Boot Procedure .. 20
3.2.1 Placing Data in ROM .. 20
3.2.2 Authentication Code Attachment .. 20
3.2.3 Clone Boot Binary Registration .. 21

4 Sample Program (Multiboot-Model) ... 22

4.1 DS Download Play Parent ... 23
4.1.1 Preparing for the DS Download Play Feature .. 23
4.1.2 DS Download Play Feature .. 25
4.1.3 Starting the Parent Application ... 45
4.1.4 Parent States .. 47

4.2 DS Download Play Children... 48
4.2.1 DS Download Play Child Determination ... 48
4.2.2 Getting Connection Information During DS Download Play ... 48
4.2.3 Starting the Child Application.. 49

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 4  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

5 The cloneboot Sample Program... 51

5.1 Changes to Program Structure ... 52
5.1.1 Unification of the Program Source Directories ... 52
5.1.2 Changes to the ROM Specification File .. 53
5.1.3 Changes to Makefile ... 53
5.1.4 Changes to Program Source .. 55

6 Sample Program (fake_child) ... 59

6.1 MB Library Initialization .. 59

6.2 Listing Parent Devices .. 60

6.3 Connecting to a Parent Device ... 61

6.4 Waiting for Download to Complete ... 61

6.5 Preparations to Disconnect from or Reconnect to a Parent Device ... 62

Code
Code 3-1 Clone Boot Binary Registration Example ... 21
Code 4-1 Search for Communication Channel .. 23
Code 4-2 Initialize the Parent .. 25
Code 4-3 Set the Parent User Information and Initialize the MB Library ... 25
Code 4-4 Start Parent Operations ... 27
Code 4-5 Start DS Download Play Parent and Register File .. 27
Code 4-6 Load Program into Memory and Register Program Information .. 28
Code 4-7 How to Register File: Open the File ... 29
Code 4-8 How to Register File: Get Segment Size and Memory .. 30
Code 4-9 How to Register File: Read and Register Segment Information, Close File 31
Code 4-10 Parent Receives Child Notification: Update Connection Information 32
Code 4-11 Process Connection Request .. 33
Code 4-12 Accept or Kick Child Connection ... 34
Code 4-13 Determine Child State, Begin Program Download ... 35
Code 4-14 Begin Download Delivery or Cancel DS Download Play ... 36
Code 4-15 Disable Interrupts, Begin Download .. 37
Code 4-16 Verify Child States, Begin Download ... 38
Code 4-17 Notify When Download Begins and Ends .. 39
Code 4-18 Check That Children Are Bootable ... 40
Code 4-19 Reboot Children When Download Is Complete ... 40
Code 4-20 Change Parent State, Continue Booting Children ... 41
Code 4-21 Verify That Download Is Complete, Disconnect Children .. 42
Code 4-22 End DS Download Play, Change Parent State, Clear Buffer ... 43
Code 4-23 End Reboot, Reconnect Wireless Communications .. 44
Code 4-24 Initialize Data Sharing, WM Library, and Wireless Communications 45

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 5 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Code 4-25 Process Connection Requests .. 45
Code 4-26 Process Connection Request: Details ... 46
Code 4-27 Change State and Share Data .. 46
Code 4-28 Check Whether the Child Booted by DS Download Play .. 48
Code 4-29 Obtain Connection Information: Parent and Child Must Match ... 48
Code 4-30 Initialize Data Sharing, WM Library, and Wireless Communications 49
Code 4-31 Connect Child to Parent, Change State, and Share Data ... 49
Code 4-32 Child Connection Details ... 50
Code 5-1 Adding New Main .. 56
Code 5-2 Specifying for Placement in the Parent-Only Region .. 57
Code 5-3 Content That Should Not Be Specified for Parent-Only Region (Example 1) 57
Code 5-4 Content that Should Not Be Specified for Parent-Only Region (Example 2) 58
Code 5-5 Correcting the Binary Registration Process .. 58

Tables
Table 4-1 Parent States ... 47

Figures
Figure 1-1 DS Download Play Schematic ..7
Figure 2-1 Data Reception State Transitions and Parent Requests Used with DS Download Play
Children .. 13
Figure 3-1 Clone Boot ... 19
Figure 3-2 Clone Boot Binary Authentication Procedure .. 21
Figure 5-1 Unifying Source Directories ... 52
Figure 5-2 Correcting Directory and Source Specifications .. 53
Figure 5-3 Additions to the Build Procedure to Attach Authentication Code ... 54
Figure 5-4 Changing Main Entry Names ... 55

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 6  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

Revision History
Version Revision Date Description

1.0.8 2009/02/19 • Revised text in section 1.2 (text regarding mb_child for each debugger environment).
• Deleted text (mb_child_simple.srl).

1.0.7 2009/01/13 • Added section 1.8 Support for Pseudo-Download Play Child Devices.
• Added Chapter 6 Description of the fake_child Sample Program.

1.0.6 2008/09/16 • Changed descriptions for TWL-SDK.
• Added section 1.7 Supported ROM.

1.0.5 2007/09/27 • To section 2.1.1.4, added supplementary information on icon image creation.

1.0.4 2006/05/16 Revised descriptions of sample code in section 4.1.

1.0.3 2005/03/06 • Corrected text in section 2.3.3 by deleting parts about the NITRO_COMPRESS switch
specification.

• Added section 2.3.4: described symptoms and fixes for DS Download Play bugs.

1.0.2 2005/08/08 • In section 4.1.1, updated changes to numbering for code reference. Moved number 4 to
the following line and moved comment to the next line.

• No change needed in 2.1.1.1; terminology was already correct.

1.0.1 2005/03/11 • Unified format for describing NITRO-SDK install destination (1).
• Deleted text overlaps with following item (1.3).
• Changed item names (because of use with libsyscall.a) (1.4).

Corrected text (Supplement related to previous item).
• Corrected text (clearly indicated that startup is same as from Card) (1.5).
• Corrected terminology (AID) (2).
• Corrected MB_StartParentFromId and MB_EndToIdle function names (2.1).
• Corrected GGID and TGID terminology (2.1.1.2).
• Revised description of the maximum number of connected children (2.1.1.3).
• Corrected item format (2.1.1.4).

Revised text (Supplemented with part about relationship between maximum number of
connected children and number of players).

Corrected text relating to names for libraries and sample modules.

Deleted text (old restrictions relating to segment data).
• Added text (Supplemented with part about distinguishing multiple communication

modes) (2.3.1).
• Added text (Supplemented with part relating to build switches) (2.3.3).
• Corrected figure and supplemented text about parent-only region (3.1).
• Corrected text (Supplemented with reason for data placement) (3.2.1).
• Corrected text (Corrected mb_parent.h to be mbp) (4).

Corrected text (To reflect the latest selection of sample code).
• Added text (Supplemented with part about changes to procedure when using

MB_StartParentFromIdle function (4.1).

• Added the section for the cloneboot sample program (5).

1.0.0 2004/10/29 • Initial version.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 7 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

1 Introduction
The TWL-SDK includes a series of APIs for use with the DS Download Play feature. This document
describes how to use basic DS Download Play features. (In this document, $TwlSDK represents the
directory in which TWL-SDK has been installed.)

1.1 Overview
Nintendo DS (DS) has DS Download Play capability that allows binary code to be transferred from a
DS Download Play parent device to a DS Download Play child device and enables the child device to
boot up without a Game Card.

In developer documentation and SDK source code files, DS Download Play is also referred to as
"Wireless Multiboot." This feature can be used to download up to 2.5 MB of binary code from a parent
device to the main memory of a child device, so that the child device can be booted up.

Figure 1-1 DS Download Play Schematic

1.2 DS Download Play Startup Procedure
To start a game using the DS Download Play feature, players should do the following.

1. Start the DS Download Play parent device.

2. Select DS Download Play from the Start menu on the child device and select the parent program to
be downloaded.

To prevent the execution of illegal code by the IPL, binary code without an attached authentication
code will not execute. For a child device to start from DS Download Play, an authentication code must
be attached to the binary code being transmitted. For efficient development, the TWL-SDK includes
mb_child; this allows the binary code to be run without an authentication code. Use
mb_child_***.srl, included with the TWL-SDK, and follow the procedure below. Use mb_child in
the same way even when executing under a debugging environment.

1. The following is a list of three pre-built programs stored in the TWL-SDK. Write any one of these
programs into the NITRO Flash Card. (If using the debugger, load the binary code for
mb_child_***.srl according to the type of debugger.)
$TwlSDK/bin/ARM9-TS/Rom/mb_child_NITRO.srl
$TwlSDK/bin/ARM9-TS/Rom/mb_child_TWL.srl

For more information about mb_child_NITRO.srl and mb_child_TWL.srl, see the “Pre-Built
Programs" section in the TWL SDK Function Reference Manual.

Parent Device
(with Card) Child Device

The game program is
downloaded to the main memory

of the child device via the
wireless connection.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 8  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

2. Start the DS Download Play parent device.

3. Start one of mb_child as the DS Download Play child device and select the parent program to be
downloaded.

To start the game device, an authentication code must be attached to the binary sent to the child. For
more information, see section 1.3 Attaching Authentication Code.

1.3 Attaching Authentication Code
With the DS, to prevent the execution of invalid binary code transmitted wirelessly, an authentication
code must be attached to binary code that runs on the child.

Note: If an attempt is made to execute binary code that does not have an authentication code, the
game device will stop midway through booting (approximately when the Nintendo logo fades
from screen).

Use the following procedure to attach an authentication code to the binary code to be transmitted.

1. Create the binary code to be sent to the child.

2. Send this binary code to the Nintendo authentication server at Nintendo
at https://www.warioworld.com/nitro/digitalsignatures/ to obtain an authentication code, which is also
known as a digital signature.

3. Attach the authentication code to the original binary code using
$TwlSDK/tools/bin/attachsign.exe.

4. Use the DS Download Play parent device to link the binary code obtained in step 3 and transmit it to
the child device.

You can use this procedure to send code that runs on the parent game device to children. For more
information on obtaining an authentication code, please contact support@noa.com

1.4 Using the System Call Library and ROM Header

.

When creating the production version of ROM, use the System Call library (libsyscall.a) and the
ROM headers (rom_header_****.template.sbin) provided by Nintendo. However, the binary file for
child devices differs from that for parent devices; in this case, it is necessary to use the System Call
library and the ROM headers included in the TWL-SDK.

1.5 Transferable Binary Code Size
The same size restriction that applies to startup from a card applies to binary code for DS Download
Play. The maximum transferable size for resident code is 2.5 MB for the ARM9 and 256 KB for the
ARM7. As with startup from a card, if data has been compressed with the compstatic tool, the size
restriction applies to the compressed, not uncompressed, data.

https://www.warioworld.com/nitro/digitalsignatures/�

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 9 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

To send binary code that exceeds this size restriction, start the child in DS Download Play mode, then
download the necessary additional binary code from the parent. However, due to security
considerations related to transferring executable code, be sure to follow the guidelines.

1.6 Accessing Backup Regions in Game Cards and Game Paks
Technically, the backup region of a Game Card or Game Pak plugged into the parent device can be
accessed from a child device started with DS Download Play. However, restrictions exist; follow the
Nintendo DS Programming Guidelines.

1.7 Supported ROM
Only NITRO ROM can start as a DS Download Play child. HYBRID ROM and LIMITED ROM cannot
boot. For a DS Download Play parent, all ROM and all start modes can be used.

1.8 Support for Pseudo-Download Play Child Devices
When using DS Download Play for wireless multiplayer matches, it is convenient if players who
started the game from a Card and players who started the game from DS Download Play can be
handled identically by the parent device. To offer this capability, the SDK supports pseudo-Download
Play child devices.

When a child device running from a Card uses this feature to connect to a parent device in
essentially the same manner as a normal wireless play child device, it is processed on the parent
side as if a DS Download Play child has entered. These characteristics of the feature make it easy to
manage a mixed session filled with both types of players.

A sample program for pseudo-download play child devices is included in Chapter 6 Description of the
fake_child Sample Program.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 10  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

2 DS Download Play Operations
This section describes the procedures and connection sequence for creating a DS Download Play
parent.

The DS Download Play processes can be implemented using the DS Download Play (MB) library
stored in the TWL-SDK. The MB library functions by using the Wireless Manager (WM) library
internally, but other WM features cannot be used at the same time under current conditions.

2.1 Process Flow on the Parent Side
This section describes the preparations made on the parent side before DS Download Play starts.
The parent prepares to send binary code according to the following procedure.

1. Select a communication channel.

2. Set the parent's parameters.

3. Start the parent device communication process.

4. Register the child binary information.

5. Receive a request from the child.

6. Send the binary and boot the child.

Once the child's binary information is registered in step 4, the parent begins disseminating information
automatically and enters a child-receptive state.

2.1.1 Preparations By the Parent

2.1.1.1 Selecting Wireless Communication Channel

The following method is recommended for choosing the type of wireless communications channel.

1. Use the WM_GetAllowedChannel function to get usable channels.

2. Use the WM_MeasureChannel function to check the signal traffic level on each channel.

3. Select the channel with the most available bandwidth.

At this time, however, you cannot use the WM_MeasureChannel function after starting the MB library.
When the MB library is used, the MB_StartParent function automatically moves the MB library
module from the READY state to PARENT state, but the WM_MeasureChannel function can only
execute when the WM library is in the IDLE state. Thus, before checking the signal traffic level of
channels, use the WM_Initialize function to put the WM library module into the IDLE state.

After the communication channel has been selected, there are two ways to start DS Download Play:

• Terminate the WM library with the WM_End function, then start DS Download Play.

• Enter the IDLE state using the MB_StartParentFromIdle function, then start DS Download Play.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 11 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

When the MB_StartParentFromIdle function is used, the work buffer size passed to the MB_Init
function may be set as small as WM_SYSTEM_BUF_SIZE bytes, as long as the WM_Initialize function
is called separately. Be sure to call the MB_StartParentFromIdle and MB_EndToIdle functions and
the MB_StartParent and MB_End functions in pairs.

2.1.1.2 Setting Parent's Parameters

When starting the DS Download Play parent device, the GGID and TGID must be set up just as with a
normal wireless communication. The following player information on the parent device, such as the
nickname to be displayed on IPL child screen during DS Download Play, must also be set.

• Player Nickname

Maximum of 10 characters of UTF16-LE. The same format is used as with nicknames obtained
with the OS_GetOwnerInfo function.

• Favorite Color

Color-set number representing the player's favorite colors. This makes use of the same color set
as favoriteColor obtained with the OS_GetOwnerInfo function. For more information, see the
OS_GetFavoriteColorTable function reference.

• Player Number

The player number for the parent is always 0.

2.1.1.3 Configuring Maximum Number of Children

The MB library drives wireless communications using the WM library; the assumption is that the
default maximum number of devices is 16 (1 parent and 15 children). As a result, if a distributed
program is configured for play by less than 16 devices, it may not be possible to achieve the transfer
efficiency usually available, and a situation may develop in which the number of connection requests
from children exceeds the maximum number of players.

If you already know the number of programs distributed from the parent and the maximum number of
players allowed by them, you can use the MB_SetParentCommParam function to set the number of
child devices that will be allowed to make connections. The maximum AID value for the children to be
connected is set using the maxChildren argument of this function. The sendSize argument can be
used in conjunction with the maxChildren argument for freely setting the send buffer size to be used
for wireless communication within a predetermined time. The size of this buffer ranges from
MB_COMM_PARENT_SEND_MIN to MB_COMM_PARENT_SEND_MAX.

2.1.1.4 Registering Child Binary Information

When registering the binary that will be sent to the child, set the following information:

• Pointer to the Distribution Binary Code Data

When a child starts, only the binary code allocated in the ROM specification file as an ARM9 or
ARM7 resident module is transferred. The code for starting the child can be extracted from the
binary code using the MB_ReadSegment function. For more information about configuring resident

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 12  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

modules (hereafter referred to as Static segments), see the separate reference document for
makerom.

All other binary data must be transferred from the parent to children after booting using wireless
communications. The WBT library is provided in the SDK as a data transfer protocol, and it can be
used as needed by applications. A sample program that uses the WBT library through wireless
communications to rebuild a child device’s own file system has been prepared as a module in the
$TwlSDK/build/demos/wireless_shared/wfs directory.

• Game Name

A maximum of 48 characters of UTF16-LE. During the IPL display, the string must fit on one
185-dot long line.

• Game Description

A maximum of 96 characters of UTF16-LE. During the IPL display, the string must fit on two
199-dot long lines.

• Palette and Image Data for Icons Used to Display Downloaded Games on the IPL.

This is 16-color palette data and 32 dot x 32 dot image data. The format is identical to that of
banner images in ordinary programs. You can use $TwlSDK/tools/bin/ntexconv.exe to create
data. For applications of the ntexconv.exe tool, refer to $TwlSDK/man/tools/ntexconv.html.

• GGID

The Game Group ID for notifying children after booting up. The GGID set here is reflected in the
ggid member of the structure that the child can obtain from the MB_GetMultiBootParentBssDesc
function after booting up. The GGID can be used for reconnecting after booting up.

• Maximum Number of Players

Specifies the maximum number of players (including the parent) displayed on the child's IPL
screen. The total number of players, including the parent, is not the same as the maximum number
of children, so be careful not to confuse this with the maxChildren argument of the
MB_SetParentCommParam function. (If both functions are called with the same setting for the
number of players, the maximum number of players is equal to maxChildren + 1.) Also note that
this value is only meant for display on the child's IPL screen. The actual number of children that
connect may be less than the value set in the maxChildren argument of the
MB_SetParentCommParam function.

With the MB library, it is necessary to register the child binary using the MB_RegisterFile function
after starting the parent process with the MB_StartParent function. Up to 16 different child binaries
can be registered by a single parent when the MB library is used. The DS Download Play menu
screen of the child shows various games being delivered.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 13 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

2.1.2 Sending Data and Starting Children

Once preparations for delivering binary code are complete, the parent waits for request from a child.
For each child, it performs processes in the order Entry → Download → Boot.

In addition to notification of the child device state through the callback function set with the
MB_CommSetParentStateCallback function, the child device state can also be obtained using the
MB_CommGetParentState (child AID) function.

Figure 2-1 Data Reception State Transitions and Parent Requests Used with DS Download
Play Children

Prepare to boot

User Program

Status Notification Callback

Message Notification Function

Scan

MB Child MB Parent

Connecting

MB_COMM_PSTATE_CONNECTED

Entry Request

Entry Completion

Wait for download

Download

Download completed

Wait for boot

MB_COMM_PSTATE_REQUESTED

MB_CommResponseRequest(MB_COMM_RESPONSE_REQUEST_ACCEPT)
or MB_CommResponseRequest(MB_COMM_RESPONSE_REQUEST_KICK)

 MB_COMM_PSTATE_ACCEPTED or MB_COMM_PSTATE_KICKED

MB_COMM_PSTATE_WAIT_TO_SEND

MB_CommStartSending()

MB_COMM_PSTATE_SEND_PROCEEDED

MB_COMM_PSTATE_SEND_COMPLETE

MB_CommBootRequest()

MB_COMM_PSTATE_BOOT_REQUEST

MB_COMM_PSTATE_BOOT_STARTABLE

MB_COMM_PSTATE_DISCONNECTED
Boot

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 14  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

Figure 2-1 depicts the child states and the flow of requests from the parent. A callback is generated
on the parent side every time the child changes states. Be sure to issue the appropriate command for
each state from the parent side based on the state change notification made by this callback or the
state obtained by the MB_CommGetParentState function.

The connection sequence flow between parent and child devices is shown below.

1. Connect

When the IPL DS Download Play child program connects to the parent, the state changes to
MB_COMM_PSTATE_CONNECTED. The child’s MAC address can be obtained with this callback.

2. Entry

When there is an entry request from a child to the parent device, notification of the
MB_COMM_PSTATE_REQUESTED state is sent. The child device then waits for either the
MB_COMM_RESPONSE_REQUEST_ACCEPT or MB_COMM_RESPONSE_REQUEST_KICK message to arrive
from the parent device. If MB_COMM_RESPONSE_REQUEST_ACCEPT is sent, entry processing is
performed and preparations for downloading data are made.

3. Download

When the child completes preparations for downloading data, the parent is notified that the state
has changed to MB_COMM_PSTATE_WAIT_TO_SEND. Once the child is in this state, the parent can
begin sending data for the first time. Be careful not to start transmitting data when the state is
MB_COMM_PSTATE_ACCEPTED. When data transmissions end, the child sends notification that the
state is MB_COMM_PSTATE_SEND_COMPLETE and waits in this state until there is a boot request.

4. Boot

If the child is in the MB_COMM_PSTATE_SEND_COMPLETE state, it enters the boot process when the
parent issues the MB_CommBootRequest command. Once the parent is notified that the state is
MB_BOOT_STARTABLE, the child-parent communications are completely severed.

2.2 Reconnecting with Parent
Because communications between the child and parent are severed once the child boots for DS
Download Play, the connection must be reestablished from the beginning.

Note the following when reestablishing a connection.

• The child’s boot timing

Because MB communication cannot occur at the same time as other WM communication under
the current MB library, the parent device must terminate communication using the MB_End function
after the child device boots up. (If the MB_StartParentFromIdle function was used for starting, the
MB_EndToIdle function is used to return to the IDLE state.) To reconnect and start communication
between the parent device and child devices after booting for DS Download Play, measures such
as adjusting the timing of boot requests sent from parent to child are necessary.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 15 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

• Connection process using parent information

The child can obtain parent information before booting by using the
ReadMultiBootParentBssDesc function. Direct connection to the parent is possible based on the
WMBssDesc obtained this way, but the connection cannot be made if the parent’s GGID and TGID
differ from the GGID and TGID expected by the child device. Furthermore, if the maximum size or
the KS and CS flags differ, communications may not be stable after the connection is established;
thus, be sure to prepare the application side ahead of time. You can prevent differences in
communication settings between the parent and child by specifying the MAC address (bssid)
found in WMBssDesc and rescanning for the parent.

• Handling TGIDs

When the parent’s wireless function is restarted, we recommend changing the parent device TGID
to prevent a child device from the following.

o Mistakenly attempting to re-connect to a parent device before that parent’s wireless function
has been restarted.

o Connecting from an unrelated IPL child device after the parent’s wireless function is
restarted.

However, the TGIDs between parent and child must be synchronized when connecting without
rescanning by the child. Thus, be sure to set the TGID for parent and child using a method such as
incrementing the shared TGID by a fixed value.

• Parent multiboot flag

Multiboot flag information is included in the parent information passed as an argument of the
WM_SetParentParameter function. However, do not set this flag under normal circumstances; the
multiboot flag does not need to be set even when restarting the parent’s wireless function and
reconnecting after booting for DS Download Play.

2.3 Other Precautions

2.3.1 Applications with Multiple Communication Modes

If an application has multiple communication modes for both Multi-Card and DS Download Play (such
as battle mode for Multi-Card Play and DS Download Play mode for one card), problems may arise
because the parent can be viewed from different communication modes.

If a child detects multiple communication modes, include ID information in userGameInfo set by the
parent and have the child reference this ID during scanning. However, userGameInfo cannot be used
with the MB library; thus, to check if the MB library is being used, be sure to reference the
WM_ATTR_FLAG_MB flag of WMBssDesc.gameInfo.gameNameCount_attribute.

This can also be handled by obtaining multiple GGIDs and distinguishing different communication
modes based on the GGID.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 16  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

2.3.2 About IRQ Stack

All callback functions operate in IRQ mode during wireless communication. When the processing
internal to a callback consumes a large amount of stack, the safe thing to do is to set the IRQ stack to
a slightly larger size in the lcf file.

Used particularly during debugging, the OS_Printf function consumes a large amount of stack. Thus,
whenever possible, be sure to use the OS_TPrintf lite version of the function inside callbacks.

2.3.3 About Overlay of the DS Download Play Child Device Program

When a program running on a DS Download Play child device uses the overlay feature, the overlay
table and overlay segments to be included in the child's binary must be received separately from the
parent device. To ensure integrity of the received data, the following points must be observed at this
time.

• Specifying the NITRO_DIGEST build switch

The build switch NITRO_DIGEST must be specified in the build of the DS Download Play child
program. This is required so that the TWL-SDK can accurately confirm that the overlay table and
individual overlay segments correctly match those of the child. If the overlay feature is used without
specifying these build switches, the program will be forced to halt on execution.

Specifying this build switch is equivalent to calling the compstatic.exe tool with the -a option.
Note that this build switch is only necessary for applications and is ignored in SDK builds.

• Using the FS library functions

To guarantee that the TWL-SDK has correctly checked the integrity of data, in addition to the
above build switch specifications, you must also use the FS library functions given below for
overlay operations.

Function always used
o FS_AttachOverlayTable

Function used only for synchronous loading
o FS_LoadOverlay

Functions used only for asynchronous loading
o FS_LoadOverlayInfo

o FS_LoadOverlayImage or FS_LoadOverlayImageAsync
o FS_StartOverlay

2.3.4 About DS Download Play Bugs

There are a number of bugs with the DS Download Play features on the IPL. Below is a collection of
symptoms and, where possible, workarounds.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 17 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

2.3.4.1 DS Download Play Bug #1

Symptom
If DS Download Play child "B" begins downloading while DS Download Play child "A" is still booting
after completing its download, child "B" may freeze. (Frequency of occurrence: low.)

Workaround

You can reduce the frequency of this occurrence by performing the following process in the game
application. (This problem cannot be fixed completely.)

1. Install TWL-SDK2.0RC2 or a later version of the SDK.

2. When a child is kicked because it has sent a download request when download is not permitted, use
the MB_DisconnectChild function to cancel the connection from the child side.

This workaround is implemented in the demo program $TwlSDK/build/demos/mb/multiboot-Model.

2.3.4.2 DS Download Play Bug #2

Symptom
If the DS Download Play child has completed downloading, but its connection is cancelled while the
parent is sending the boot process, the child may freeze. (Frequency of occurrence: low.)

Workaround
There is no effective workaround to this problem for the game application.

2.3.4.3 DS Download Play Bug #3

Symptom
When the game banners for parents "A" and "B" are both displayed in the Download List of the DS
Download Play child, the game from the unselected parent gets downloaded when the series of
events shown below occurs. (Frequency of occurrence: every time.)

1. Child selects parent "A".

2. Child advances to the screen that prompts for confirmation to download the software.

3. Parent "A" gets turned off.

4. Download starts after more than a minute has passed.

5. Parent "B" game gets downloaded.

Workaround
There is no effective workaround to this problem for the game application.

Information on the child's screen is not updated once the state has advanced to the final confirmation
state, but the Parent List is updated internally, so the selected parent displayed on the screen and the
parent that has been actually selected are no longer the same. The parent information remains in the
list for about a minute even after the parent's power has been turned off; hence, this bug does not
occur if downloading commences during that time (of course, the download will fail because the
parent no longer exists).

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 18  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

2.3.4.4 DS Download Play Bug #4

Symptom
If, after the game banners for parents "A" and "B" are both displayed in the Download List of the DS
Download Play child, there is a timeout so that both banners are reset at the same time, the cursor
may no longer appear when the list is refreshed. If a banner is selected at such time, the icon for the
game title information will become garbled and the download will fail. (Frequency of occurrence: low.)

Workaround
There is no effective workaround to this problem for the game application.

2.3.4.5 DS Download Play Bug #5

Symptom
Between the time the final confirmation screen appears on the DS Download Play child to confirm
software download and the time of actual download, the display for the number of communications
members and their names is not updated. (Frequency of occurrence: every time.)

Workaround
There is no effective workaround to this problem for the game application. Consider the DS startup
menu specifications.

2.3.4.6 DS Download Play Bug #6

Symptom

If the parent performs the following series of steps while the DS Download Play child is selecting a
game, the unselected game will get downloaded. (Frequency of occurrence: every time.)

1. Child selects parent “A”.

2. Child advances to the screen that prompts to confirm software download.

3. Parent “A” quits DS Download Play and once again joins using the same GGID as before, but
delivering a different game.

4. The child commences downloading about 3-4 seconds later.

5. The child ends up downloading the new game that Parent “A” is delivering, and not the game that
had been selected.

Workaround

You can avoid this bug by setting a different GGID in the MBGameRegistry structure for each game that
is registered by the MB_RegisterFile function in the game application.

The cause of this bug is very similar to that of bug #3. The game information list is automatically
updated by an internal process up to the time the DS Download Play child has decided to download a
game. The process uses the GGID and MAC addresses to determine if the reception beacon has the
same game information as that on the list. If the game information is the same but the TGID has been
updated, the child will retrieve the information again. Unfortunately, the information in the list will be
changed if the identical parent is delivering a game with the same GGID.

This problem will not occur if the GGIDs are different, because each GGID will be treated as a separate
game and added to the list.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 19 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

3 Clone Boot Feature
SDK provides a clone boot feature for sending the Static segment of the parent device to the child
device without modification and then booting the child for DS Download Play. This section describes
the clone boot procedure.

3.1 About Clone Boot
When clone boot is used, the Static segments that are the same as the parent’s are distributed to
children. The parent and booted children use the MB_IsMultiBootChild function to determine if they
are a DS Download Play child device; after this, the process branches. Data that is not included in the
Static segment must be obtained by reconnecting to the parent after booting and then using the WBT
library.

As described in section 3.2 Clone Boot Procedure, part of the Static segment is for dedicated use of
the parent.

Figure 3-1 Clone Boot

Parent Static Segment

Parent Overlay Segment

Child Static Segment

Child Overlay Segment

Data File

Parent/Child Static Segment

Parent/Child Overlay
Segment

Data File

Parent Device (with Card)

Parent Device (with Card)

*Clone Boot

Child Static Segment

Child Overlay Segment

Data File

Parent/Child Static Segment

Parent/Child Overlay
Segment

Data File

Child Device

Child Device

Parent-exclusive Static Segment

The Child binary Static Segment is
distributed during DS Download Play

The necessary data is transferred as
required using the WBT library

The Parent/Child-shared Static
Segment is distributed during DS
Download Play

The necessary data is transferred as
required using the WBT library

Parent exclusive segment is not
transferred

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 20  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

3.2 Clone Boot Procedure
The procedure for clone boot is described in the following sections.

3.2.1 Placing Data in ROM

Programs that support the clone boot feature can boot a DS Download Play child in the same way it
is booted from a Game Card. The Multiboot library therefore provides security measures that are
meant to avoid the complete reproduction of a game from the delivered data.

Programs that support the clone boot feature treat the data placed in the card's secure region
(0x5000–0x6FFF) as data for the dedicated use of the parent and do not include it in the data
delivered for DS Download Play. As a security measure to prevent the reproduction and duplication of
commercial programs, please use this region to store data that will definitely be used by the parent
but not by any children. For more information on configuring this parent-only region and storing data
here, see the description of the cloneboot sample program in Chapter 5 The cloneboot Sample
Program.

For more information about the secure region found on cards, see Programming Manual.

3.2.2 Authentication Code Attachment

Normal DS Download Play operations on a DS require that the binary for the child device has an
authentication code attached. Clone boot also requires an attached authentication code.

To perform clone boot authentication, you must first obtain libsyscall.a used on the commercial
version of the parent device and then the binary file (called libsyscall_c.bin below) corresponding
to libsyscall for the clone child.

Execution of $TwlSDK/tools/bin/emuchild.exe on the srl file created in the build extracts only the
static segment necessary for DS Download Play, and adds libsyscall_c.bin for children to create
a binary file for signatures. (This binary file is henceforth referred to as srl.) Perform the same
signature procedure on this file as that used for normal DS Download Play authentication, and attach
the authentication code obtained to the original srl file.

If padding is performed using RomFootPadding during ROM creation, the signature is inserted in the
proper location with attachsign. Hence, the srl file size will not increase as long as there is enough
space to insert the signature.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 21 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Figure 3-2 Clone Boot Binary Authentication Procedure

Authentication
Server

emuchild

attachsign

libsyscall_c.bin
for cloned Child

srl file for cloned
Child

Authentication
Code

srl File

Final ROM
srl

libsyscall.a
for Parent

3.2.3 Clone Boot Binary Registration

Clone boot is activated by passing NULL as the child device binary file pointer when using the
MB_GetSegmentLength and MB_ReadSegment functions in the MB library. Other processing is exactly
the same as normal DS Download Play.

Code 3-1 Clone Boot Binary Registration Example
// Obtain clone boot data segment size
bufferSize = MB_GetSegmentLength(NULL);
if (bufferSize == 0)
{
 return FALSE;
}
// Secure Memory
sFilebuf = OS_Alloc(bufferSize);
if (sFilebuf == NULL)
{
 return FALSE;
}
// Extract segment information
if (! MB_ReadSegment(NULL, sFilebuf, bufferSize))
{
 OS_Free(sFilebuf);
 return FALSE;
}
// Register download program
if (! MB_RegisterFile(gameInfo, sFilebuf))
{
 OS_Free(sFilebuf);
 return FALSE;
}

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 22  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

4 Sample Program (Multiboot-Model)
The multiboot-Model is a sample program that uses the DS Download Play feature to distribute
programs from parent to child to share data between the parent and the child in the distributed
program.

This chapter describes the following topics related to the parent.

• Preparing for the DS Download Play Feature

• Initializing the Parent

• Starting Parent Operations

• Waiting for Connections from Children

• Sending the Program to Children

• Restarting Children

• Starting the Parent Application

• Parent States

This chapter describes the following topics related to the child:

• DS Download Play Child Determination

• Getting Connection Information During DS Download Play

• Starting the Child Application

In the sample program, the series of MB library-related processes necessary to the parent for DS
Download Play are collected together in module format under
$TwlSDK/build/demos/wireless_shared/mbp.

Use this module when you create programs that utilize the DS Download Play feature. Note that you
will also need to use wh.h (the Wireless Manager's wrapper module) with this module. For more
information about wh.h, see Wireless Communications Tutorial.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 23 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

4.1 DS Download Play Parent
This section uses a sample program to describe the procedure required of a DS Download Play
parent.

4.1.1 Preparing for the DS Download Play Feature

As noted in section 2.1.1.1, to use the DS Download Play feature, an open communication channel
must be found before the MB library is initialized.

Code 4-1 searches for a communication channel. (Comments in the sample program that are
unrelated to this description are omitted here.)

Code 4-1 Search for Communication Channel
static void GetChannelMain(void)
{
 (void)WH_Initialize(); 1

 while (TRUE)
 {
 switch (WH_GetSystemState())
 {

 //---
 // Initialization complete
 case WH_SYSSTATE_IDLE: 2
 (void)WH_StartMeasureChannel();
 break;

 //---
 // Channel search complete
 case WH_SYSSTATE_MEASURECHANNEL: 3
 {
 sChannel = WH_GetMeasureChannel();
 (void)WH_End();
 }
 break;

 //---
 // End WM
 case WH_SYSSTATE_STOP: 4
 /* Go to Multiboot once WM_End is completed */
 return;
 //---
 // Busy
 case WH_SYSSTATE_BUSY:
 break;
 //---
 // Error generation
 case WH_SYSSTATE_ERROR:
 (void)WH_Reset();

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 24  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

 break;
 //---
 default:
 OS_Panic("Illegal State\n");
 }
 OS_WaitVBlankIntr(); // Wait for V-Blank interrupt
 }
}

The process begins at 1, using the WH_Initialize function to initialize the wireless communication
feature. When the send and receive buffers necessary for wireless communication are secured and
initialized and the wireless communications hardware is initialized, the WH_Initialize function
changes the WM library state to IDLE.

When the WM library state becomes IDLE (the state at 2), the WM_MeasureChannel function can be
used to check the signal traffic level on each channel. In the sample program, the
WH_StartMeasureChannel function is called to search for the channel with the lowest traffic level.

When the search for a channel ends (the state at 3), the search result is obtained using the
WH_GetMeasureChannel function. Because the search is complete and the communication channel is
secured, end-processing for the WM library is performed by calling the WH_End function. The WM
library must be terminated at this point because the MB and WM libraries cannot be used
simultaneously.

When the WM library is closed (the state at 4), the code stops searching for a communication channel
and moves on to DS Download Play processing.

For the rest of the procedure, you can simply move to the IDLE state if the MB_StartParentFromIdle
function is being used. The program code is changed as shown below, exiting the process at the state
at 3.
 //---
 // Channel search complete
 case WH_SYSSTATE_MEASURECHANNEL: 3
 /* Move to MultiBoot process while maintaining IDLE state */
 return;
 //---
 // Quit WM
 ...

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 25 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

4.1.2 DS Download Play Feature

Using the obtained wireless channel, the DS Download Play feature is initialized and other processes
are carried out to accept children, deliver the download, and restart the children.

4.1.2.1 Initializing the Parent

The information delivered in the download, icon information, DS Download Play game registration
information registered for the GGID, the communication channel obtained in the search process, and
the TGID are all used to initialize the parent.

To prevent connections from unexpected child devices, we recommend that a different TGID value be
assigned each time the parent device is started.

The following program fragment (Code 4-2) initializes the parent. (Comments in the sample program
unrelated to this description are omitted.)

Code 4-2 Initialize the Parent
static BOOL ConnectMain(u16 tgid)

{
 MBP_Init(mbGameList.ggid, tgid); 1

 while (TRUE)
 {
 --- Omitted ---
 }
}

In Code 4-3, the MBP_Init function initializes the parent and sets the necessary information (step 1 in
Code 4-2). The MBP_Init function sets the parent player information to be displayed on the screens
of children and initializes the MB library.

Code 4-3 Set the Parent User Information and Initialize the MB Library
void MBP_Init(u32 ggid, u16 tgid)
{
 /* Set the parent information to appear on screens of children */
 MBUserInfo myUser;

 OSOwnerInfo info;

 OS_GetOwnerInfo(&info); 2
 myUser.favoriteColor = info.favoriteColor;
 myUser.nameLength = (u8)info.nickNameLength;
 MI_CpuCopy8(&myUser.name, info.nickName, OS_OWNERINFO_NICKNAME_MAX * 2);

 myUser.playerNo = 0; // Parent is number 0 3

 // Initialize the status information
 mbpState = (const MBPState) { MBP_STATE_STOP, 0, 0, 0, 0, 0, 0 };

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 26  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

 /* Begin MB parent control. */
 // Secure MB work region.
 sCWork = OS_Alloc(MB_SYSTEM_BUF_SIZE); 4

 if (MB_Init(sCWork, &myUser, ggid, tgid, MBP_DMA_NO)
 != MB_SUCCESS)
 {
 OS_Panic("ERROR in MB_Init\n");
 }
 MB_CommSetParentStateCallback(ParentStateCallback); 5

 MBP_ChangeState(MBP_STATE_IDLE);
}

With the MBP_Init function, you can set the parent’s player information related to the player’s
nickname and favorite colors as obtained from the IPL owner information. For more information, see
section 2.1.1.2 Setting Parent's Parameters.

In step 4, a work region is allocated for use by the MB library and then the MB_Init function is used
to initialize the MB library.

In step 5, a callback function is set for changing the parent state as notified by the MB library.
Processing for the notified parent state is performed inside this callback function.

As for the rest of the procedure, because the IDLE state is maintained when using the
MB_StartParentFromIdle function as described above in section 4.1.2.1 Initializing the Parent, the
amount of allocated memory can be reduced by changing the previously described program as
shown below. (However, a buffer that is too big should not pose a problem.)
 // Secure MB work region.
 sCWork = OS_Alloc(MB_SYSTEM_BUF_SIZE - WM_SYSTEM_BUF_SIZE); 4
 ...

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 27 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

4.1.2.2 Starting Parent Operations

After the MB library is initialized by the MB_Init function, the next step is to start a DS device as the
DS Download Play parent and to register the file to use for wireless downloads.

Code 4-4 starts parent operations. (Comments in the sample program unrelated to this description
have been omitted.)

Code 4-4 Start Parent Operations
static BOOL ConnectMain(u16 tgid)
{
 --- Omitted ---

 while (TRUE)
 {
 switch (MBP_GetState())
 {
 //---
 // IDLE state
 case MBP_STATE_IDLE : 1
 {
 MBP_Start(&mbGameList, sChannel);
 }
 break;

 --- Omitted ---

 }
 }
}

After processing by the MBP_Init is complete (the state in step 1), the MBP_Start function starts the
DS Download Play feature and registers the information for the program that will be wirelessly
downloaded after the parent has accepted connections from children.

Code 4-5 Start DS Download Play Parent and Register File
void MBP_Start(const MBGameRegistry *gameInfo, u16 channel)
{
 SDK_ASSERT(MBP_GetState() == MBP_STATE_IDLE);

 MBP_ChangeState(MBP_STATE_ENTRY);
 if (MB_StartParent(channel) != MB_SUCCESS) 3
 {
 MBP_Printf("MB_StartParent fail\n");
 MBP_ChangeState(MBP_STATE_ERROR);
 return;
 }

 /* --- *
 * Initialized when MB_StartParent() is called.
 * You must register MB_RegisterFile() after MB_StartParent().
 * --- */

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 28  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

 /* Register download-program file information. */ 4
 if (! MBP_RegistFile(gameInfo))
 {
 OS_Panic("Illegal multiboot gameInfo\n");
 }
}

In step 3, the MB_StartParent function is called with the communication channel specified as an
argument to start operations as the DS Download Play parent.

Because the download program information is initialized when the MB_StartParent function is called,
you must call the MB_RegisterFile function to register the download program information after the
MB_StartParent function has been called.

In step 4 of the sample program, the MBP_RegistFile function is called to load the binary code to be
sent for DS Download Play into main memory and to register download program information. The
download program information used in the sample program is configured as shown in Code 4-6.

Code 4-6 Load Program into Memory and Register Program Information
/* This is the program information the demo downloads */
const MBGameRegistry mbGameList =
{
 "/child.srl", // Child binary code
 (u16*)L"DataShareDemo", // Game name
 (u16*)L"DataSharing demo", // Description of game contents
 "/data/icon.char", // Icon character data
 "/data/icon.plt", // Icon palette data
 WH_GGID, // GGID
 MBP_CHILD_MAX + 1, // Maximum number of players
};

If the MB_StartParentFromIdle function is being used, the code at step 3 is changed as shown
below to handle those changes described in sections 4.1.1 Preparing for the DS Download Play
Feature and 4.1.2 DS Download Play Feature.

 MBP_ChangeState(MBP_STATE_ENTRY);
 if (MB_StartParentFromIdle(channel) != MB_SUCCESS) 3
 {
 ...

Next, a description is given for registering download program information by tracing the process flow
in the MBP_RegistFile function.

In step 5, File System is used to open the download file to register it for loading.

The MBP_RegistFile function also supports the clone boot feature (described in Chapter 3 Clone
Boot Feature). If the received file path’s name is NULL, software will behave as if a clone boot has
been specified.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 29 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Code 4-7 How to Register File: Open the File
static BOOL MBP_RegistFile(const MBGameRegistry* gameInfo)
{
 FSFile file, *p_file;
 u32 bufferSize;
 BOOL ret = FALSE;

 /*
 * According to this function’s specification, if
 * romFilePathp is NULL, it operates as a clone boot. Otherwise,
 * the specified file is treated as the child program.
 */
 if (!gameInfo->romFilePathp)
 {
 p_file = NULL;
 }
 else
 {
 /*
 * The program file must be read by FS_ReadFile().Normally, the program
 * is saved as a file in CARD-ROM, so this is not a problem. However,
 * if you anticipate a special MultiBoot file system,
 * use FSArchive to construct an independent archive.
 */
 FS_InitFile(&file);
 if (! FS_OpenFile(&file, gameInfo->romFilePathp))
 {
 /* File cannot be opened */
 OS_Warning("Cannot Register file\n");
 return FALSE;
 }
 p_file = &file;
 }
 --- Omitted ---
}

Next, the MB_GetSegmentLength function obtains the size of segment information in step 6, then
memory is allocated for loading the segment information in step 7.

Because only one file is maintained for the segment information in the sample program, if you plan to
register multiple download files you must switch to processing that maintains multiple sets of segment
information.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 30  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

Code 4-8 How to Register File: Get Segment Size and Memory
static BOOL MBP_RegistFile(const MBGameRegistry* gameInfo)
{
 FSFile file, *p_file;
 u32 bufferSize;
 BOOL ret = FALSE;

 --- Omitted ---

 /*
 * Get the size of the segment information.
 * If download program is not legal, 0 is
 * returned for the size.
 */
 bufferSize = MB_GetSegmentLength(&file); 6
 if (bufferSize == 0)
 {
 OS_Warning("specified file may be invalid format.\"%s\"\n",
 gameInfo->romFilePathp);
 }
 else
 {
 /*
 * Secure memory for loading the download program's segment
 * information. If the file has been registered successfully,
 * this region will be used until MB_End() is called.
 * If the memory size is plenty large enough, it can be
 * prepared statically.
 */
 sFilebuf = (u8*)OS_Alloc(bufferSize); 7
 if (sFilebuf == NULL)
 {

 /* Failure to secure buffer for storing segment information */
 OS_Warning("can't allocate Segment buffer size.\n");
else }

 --- Omitted ---

}

Segment information is read from the file using the MB_ReadSegment function in step 8 and registered
using the MB_RegisterFile function in step 9. Once the download file is registered, the open
download file is closed in step 10 because it is no longer needed.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 31 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Code 4-9 How to Register File: Read and Register Segment Information, Close File
static BOOL MBP_RegistFile(const MBGameRegistry* gameInfo)
{

 --- Omitted ---

 /*
 * Extract segment information from file.
 * This extracted information must remain resident in
 * main memory while the download program is being delivered.
 */
 if (! MB_ReadSegment(p_file, sFilebuf, bufferSize)) 8
 {
 /*
 * Segment extraction from illegal file will fail.
 * If size is obtained successfully but the extraction
 * process fails anyway, perhaps some change has
 * been made to the file handle. (File closed,
 * location seek, and so on.)
 */
 OS_Warning(" Can't Read Segment\n");
 }
 else
 {
 /*
 * Register Download program with extracted segment
 * information and MBGameRegistry.
 */
 if (! MB_RegisterFile(gameInfo, sFilebuf)) 9
 {
 /* Registration fails due to illegal program information */
 OS_Warning(" Illegal program info\n");
 }
 else
 {
 /* Process has ended correctly */
 ret = TRUE;
 }
 }
 if (!ret)
 OS_Free(sFilebuf);
 }
 }
 /* Close file if not a clone boot */
 if (p_file == &file)
 {
 (void)FS_CloseFile(&file);
}
 return ret;
}

At this point, the game device begins operating as a DS Download Play parent and the registered
download file is distributed to children through download.

4.1.2.3 Waiting for Connections from Children

Once the game device begins operating as a DS Download Play parent, it processes connection
requests from children.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 32  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

The callback function set with MB_CommSetParentStateCallback is notified of connection requests
from children as given in the code described in section 4.1.2.1 Initializing Parent. Because a variety of
notifications in addition to connection requests from children are posted to this callback function,
processing appropriate for each type of notification is required.

In the sample program, the state in which the parent waits for and accepts connection requests from
children is defined as “MBP_STATE_ENTRY (accepting connection requests).” Connection requests from
children are denied if the value returned by the MBP_GetState function (used to get the parent state)
is other than MBP_STATE_ENTRY.

There are two states in which children make connection requests.

• MB_COMM_PSTATE_CONNECTED: Indicates that the child is connected to the parent.

• MB_COMM_PSTATE_REQUESTED: Indicates an entry request as a DS Download Play child.

In the sample program, information for managing a child’s connection (mbpState.connectChildBmp) is
updated when the parent receives notification of MB_COMM_PSTATE_CONNECTED from the child in question.

Code 4-10 Parent Receives Child Notification: Update Connection Information
static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{
 switch (status)
 {
 //---
 // Instant notification of child connection
 case MB_COMM_PSTATE_CONNECTED:
 {
 // Parent does not accept connection except in entry reception state
 if (MBP_GetState() != MBP_STATE_ENTRY)
 {
 break;
 }

 MBP_AddBitmap(&mbpState.connectChildBmp, child_aid);
 // Store child's MacAddress
 WM_CopyBssid(((WMStartParentCallback*)arg)->macAddress,
 childInfo[child_aid - 1].macAddress);
 childInfo[child_aid - 1].playerNo = child_aid;
 }
 break;
 }
}

When notification of MB_COMM_PSTATE_REQUESTED is posted in a callback function, a decision is made
to either accept 2 or deny 1 the entry request.

Except when the entry request is denied due to the state of the parent, all entry requests in the
sample program are accepted using the MBP_AcceptChild function, and the information for
managing child entry requests is updated (mbpState.requestChildBm). The player information of
children is obtained using the MB_CommGetChildUser function.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 33 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Code 4-11 Process Connection Request
static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{
 switch (status)
 {
 //---
 // Instant notification of entry request from child
 case MB_COMM_PSTATE_REQUESTED:
 {
 const MBUserInfo* userInfo;

 // If the parent is not in the entry-accepting state, the child
 // requesting entry is kicked out without being checked.
 if (MBP_GetState() != MBP_STATE_ENTRY)
 {
 MBP_KickChild(child_aid); 1
 break;
 }

 // Accept child's entry
 mbpState.requestChildBmp |= 1 << child_aid;

 MBP_AcceptChild(child_aid); 2

 // The timing of MB_COMM_PSTATE_CONNECTED is such that UserInfo
 // is not set, so MB_CommGetChildUser has no meaning unless it
 // is called after the state is REQUESTED.
 userInfo = MB_CommGetChildUser(child_aid);
 if (userInfo != NULL)
 {
 MI_CpuCopy8(userInfo, &childInfo[child_aid - 1].user,
 sizeof(MBUserInfo));
 }
 MBP_Printf("playerNo = %d\n", userInfo->playerNo);
 }
 break;
 }
}

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 34  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

If the connection request from a child is accepted, the MB_CommResponseRequest function notifies the
child by posting MB_COMM_RESPONSE_REQUEST_ACCEPT. If the connection request is denied, the
function notifies the child by posting MB_COMM_RESPONSE_REQUEST_KICK.

In the sample program, the information for managing child connections is updated when the
notification is posted to the child.

Code 4-12 Accept or Kick Child Connection
void MBP_AcceptChild(u16 child_aid) 1
{
 if (! MB_CommResponseRequest(child_aid, MB_COMM_RESPONSE_REQUEST_ACCEPT))
 {
 // If a request fails, disconnect that child.
 MBP_DisconnectChild(child_aid);
 return;
 }

 MBP_Printf("accept child %d\n", child_aid);
}

void MBP_KickChild(u16 child_aid) 2
{
 if (! MB_CommResponseRequest(child_aid, MB_COMM_RESPONSE_REQUEST_KICK))
 {
 // If a request fails, disconnect that child.
 MBP_DisconnectChild(child_aid);
 return;
 }

 {
 OSIntrMode enabled = OS_DisableInterrupts();

 mbpState.requestChildBmp &= ~(1 << child_aid);
 mbpState.connectChildBmp &= ~(1 << child_aid);

 (void)OS_RestoreInterrupts(enabled);
 }
}

Children that receive MB_COMM_RESPONSE_REQUEST_KICK from a parent are disconnected from that
parent. A callback function posts MB_COMM_PSTATE_KICKED to notify the parent that the child received
a response that the connection was denied.

When the parent posts MB_COMM_RESPONSE_REQUEST_ACCEPT to a child, the latter transits to a state
where it can accept download delivery. First, a callback function posts
MB_COMM_PSTATE_REQ_ACCEPTED to notify the parent that the child received the connection-accepted
response. Then a callback function posts MB_COMM_PSTATE_WAIT_TO_SEND to notify the parent that
the child entered a state that accepts download delivery. Data transfer to the child will not execute
properly if it begins before the parent receives this notification.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 35 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Nothing happens in the sample program if MB_COMM_PSTATE_KICKED and MB_COMM_PSTATE_ACCEPTED
are posted, but when MB_COMM_PSTATE_WAIT_TO_SEND is posted, the information for managing child
connections is updated and depending on the state of the parent, download delivery to that child
begins. (For more information on the MBP_StartDownload function, see section 4.1.2.4 Sending the
Program to Children.)

Code 4-13 Determine Child State, Begin Program Download
static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{
 switch (status)
 {
 //---
 // Post ACK to child for ACCEPT
 case MB_COMM_PSTATE_REQ_ACCEPTED:
 // No special process at this point.
 break;
 //---
 // Notification to child when kicked.
 case MB_COMM_PSTATE_KICKED:
 // No particular process is required.
 break;
 //---
 // Notification when download request is received from child.
 case MB_COMM_PSTATE_WAIT_TO_SEND:
 {
 // Child's state changes from entry to download-wait.
 // An interrupted process, so changed without
 // prohibiting interrupts.
 mbpState.requestChildBmp &= ~(1 << child_aid);
 mbpState.entryChildBmp |= 1 << child_aid;

 // Calling MBP_StartDownload() from main routine starts data
 // transmission. If already in the data-transmission state,
 // data transfer also begins to that child.
 if (MBP_GetState() == MBP_STATE_DATASENDING)
 {
 MBP_StartDownload(child_aid);
 }
 }
 break;
 }
}

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 36  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

In the wait portion of the connection process (1), download delivery to a child can begin (4) if there is
a child in a state that can accept download delivery (3). Conversely, the DS Download Play feature
can be cancelled (2).

Code 4-14 Begin Download Delivery or Cancel DS Download Play
static BOOL ConnectMain(u16 tgid)
{
while (TRUE)
 {
 switch (MBP_GetState())
 {
 //---
 // Waiting for entry from child
 case MBP_STATE_ENTRY : 1
 {
 BgSetMessage(PLTT_WHITE, " Now Accepting ");

 if (IS_PAD_TRIGGER(PAD_BUTTON_B))
 {
 // B Button cancels DS Download Play
 MBP_Cancel(); 2
 break;
 }

 // Can start if there is at least one child in entry
 if (MBP_GetChildBmp(MBP_BMPTYPE_ENTRY)) ||
 MBP_GetChildBmp(MBP_BMPTYPE_DOWNLOADING) ||
 MBP_GetChildBmp(MBP_BMPTYPE_BOOTABLE)) 3
 {
 BgSetMessage(PLTT_WHITE, " Push START Button to start ");

 if (IS_PAD_TRIGGER(PAD_BUTTON_START))
 {
 // Start download
 MBP_StartDownloadAll(); 4
 }
 }
 }
 break;
 }
 }
}

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 37 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

4.1.2.4 Sending the Program to Children

Once MB_COMM_PSTATE_WAIT_TO_SEND is posted, the parent can begin download delivery to the child
that posted the notification. Download delivery is started using either the MB_CommStartSending or
MB_CommStartSendingAll function. To use the MB_CommStartSendingAll function, first check that
all connected children can accept download delivery. Calling the function once may not begin
download delivery to all children. Because download delivery cannot begin for children that are not in
the MB_COMM_PSTATE_WAIT_TO_SEND state, be sure to start download delivery separately for each
child if a MB_COMM_PSTATE_WAIT_TO_SEND notification is received after the MB_CommStartSendingAll
function has executed.

In the sample program, the MB_CommStartSending function is used inside the MBP_StartDownload
function and the connection state is updated for all children for which download delivery has started.

Code 4-15 Disable Interrupts, Begin Download
void MBP_StartDownload(u16 child_aid)
{
 if (! MB_CommStartSending(child_aid))
 {
 // If a request fails, disconnect that child.
 MBP_DisconnectChild(child_aid);
 return;
 }

 {
 OSIntrMode enabled = OS_DisableInterrupts();

 mbpState.entryChildBmp &= ~(1 << child_aid);
 mbpState.downloadChildBmp |= 1 << child_aid;

 (void)OS_RestoreInterrupts(enabled);
 }
}

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 38  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

When using the MBP_StartDownloadAll function, after the connection request is accepted and the
parent enters the download delivering state represented by MBP_STATE_DATASENDING (1), the connect
state of children is checked and the MBP_StartDownload function begins download delivery to those
children that can accept the download (4). If the parent accepts a connection request from a child, but
the child is not in a state to accept delivery, the download begins later, when the child enters the
receptive state (2). Children in other states are disconnected (3).

Code 4-16 Verify Child States, Begin Download
void MBP_StartDownloadAll(void)

{
 u16 i;

 // Entry acceptance completed
 MBP_ChangeState(MBP_STATE_DATASENDING); 1

 for (i = 1; i < 16; i++)
 {
 if (! (mbpState.connectChildBmp & (1 << i)))
 {
 continue;
 }

 if (mbpState.requestChildBmp & (1 << i)) 2
 {
 // Perform this process when currently entered children are ready
 // and the MB_COMM_PSTATE_WAIT_TO_SEND notification is received.
 continue;
 }

 // Disconnect children that are not entered
 if (! (mbpState.entryChildBmp & (1 << i))) 3
 {
 MBP_DisconnectChild(i);
 continue;
 }

 // Start download for entered children
 MBP_StartDownload(i); 4
 }
}

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 39 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

Inside the MB_CommStartSending function, MB_COMM_RESPONSE_REQUEST_DOWNLOAD (start
delivery response) is posted to children. The child receives this post and confirms that download
delivery has started by posting MB_COMM_PSTATE_SEND_PROCEED in a callback function. When
download delivery to the child is complete, MB_COMM_PSTATE_SEND_COMPLETE is posted in a callback
function.

In the sample program, nothing happens when MB_COMM_PSTATE_SEND_PROCEED is posted, but
information for managing child connections is updated when MB_COMM_PSTATE_SEND_COMPLETE is
posted.

Code 4-17 Notify When Download Begins and Ends
static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{
 switch (status)
 {
 //---
 // Notify when binary transmission to child begins
 case MB_COMM_PSTATE_SEND_PROCEED:
 // None.
 break;
 //---
 // Notify when binary transmission to child ends
 case MB_COMM_PSTATE_SEND_COMPLETE:
 {
 // An interrupted process, so changed without
 // prohibiting interrupts.
 mbpState.downloadChildBmp &= ~(1 << child_aid);
 mbpState.bootableChildBmp |= 1 << child_aid;
 }
 break;
 }
}

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 40  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

4.1.2.5 Restarting Children

The child can be restarted once download delivery to the child is complete. The MB_CommIsBootable
function checks whether the child can be rebooted. In the sample program, the MBP_IsBootableAll
function checks whether all connected children are in a state that allows rebooting.

Code 4-18 Check That Children Are Bootable
BOOL MBP_IsBootableAll(void)
{
 u16 i;

 if (mbpState.connectChildBmp == 0)
 {
 return FALSE;
 }

 for (i = 1; i < 16; i++)
 {
 if (! (mbpState.connectChildBmp & (1 << i)))
 {
 continue;
 }

 if (! MB_CommIsBootable(i))
 {
 return FALSE;
 }
 }
 return TRUE;
}

If download delivery is complete for all children, a reboot request is sent to the children.

Code 4-19 Reboot Children When Download Is Complete
static BOOL ConnectMain(u16 tgid)
{
 --- Omitted ---

 while (TRUE)
 {
 //---
 // Process for sending program
 case MBP_STATE_DATASENDING :
 {

 // Can start if all parties have finished downloading.
 if (MBP_IsBootableAll())
 {
 // Start boot
 MBP_StartRebootAll();
 }
 }

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 41 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

 break;

 --- Omitted ---
 }
 }
}

The reboot request sent to children is made using either the MB_CommBootRequest or
MB_CommBootRequestAll function. If you use the MB_CommBootRequestAll function, first verify that
downloading to all connected children is complete. Calling the function once may not result in a
request for all children to reboot.

In the sample program, the child reboot request is made using the MBP_StartRebootAll function.
The connection state of all children is checked inside the MBP_StartRebootAll function, and the
reboot request is made using the MB_CommBootRequest function. The state of parent is then changed
to MBP_STATE_REBOOTING (wait for child reboot).

Code 4-20 Change Parent State, Continue Booting Children
void MBP_StartRebootAll(void)
{
 u16 i;
 u16 sentChild = 0;

 for (i = 1; i < 16; i++)
 {
 if (! (mbpState.bootableChildBmp & (1 << i)))
 {
 continue;
 }
 if (! MB_CommBootRequest(i))
 {
 // If a request fails, disconnect that child.
 MBP_DisconnectChild(i);
 continue;
 }
 sentChild |= (1 << i);
 }

 // Error: exit if connection child is 0
 if (sentChild == 0)
 {
 MBP_ChangeState(MBP_STATE_ERROR);
 return;
 }

 // Change state to child device restart wait state.
 MBP_ChangeState(MBP_STATE_REBOOTING);
}

The MB_COMM_RESPONSE_REQUEST_BOOT (reboot request) notification is sent to children from inside
the MB_CommBootRequest function. Each child receives the reboot request and posts
MB_COMM_PSTATE_BOOT_STARTABLE from inside a callback function when finished rebooting.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 42  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

Because wireless communications between the parent and child are disconnected when the child is
done rebooting, MB_COMM_PSTATE_DISCONNECTED is posted in a callback function.

In the sample program, if MB_COMM_PSTATE_BOOT_STARTABLE has been posted, the information for
managing the connections of children is updated and the DS Download Play feature is ended using
the MB_End function after all children are done rebooting.

Code 4-21 Verify That Download Is Complete, Disconnect Children
static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{
 switch (status)
 {
 //---
 // Notification that child boot ended correctly
 case MB_COMM_PSTATE_BOOT_STARTABLE:
 {
 // An interrupted process, so changed without
 // prohibiting interrupts.
 mbpState.bootableChildBmp &= ~(1 << child_aid);
 mbpState.rebootChildBmp |= 1 << child_aid;

 // If all children are done booting, the parent
 // also enters the reconnection process.
 if (mbpState.connectChildBmp == mbpState.rebootChildBmp)
 {
 MBP_Printf("call MB_End()\n");
 MB_End();
 }
 }
 break;
 //---
 // Notification when child is disconnected
 case MB_COMM_PSTATE_DISCONNECTED:
 {
 // Delete entry if child disconnects in situation
 // other than rebooting.
 if (MBP_GetChildState(child_aid) != MBP_CHILDSTATE_REBOOT)
 {
 MBP_DisconnectChildFromBmp(child_aid);
 }
 }
 break;
 }
}

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 43 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

If changes have been made to this code such that the MB_StartParentFromIdle function is used,
make the following changes to call the MB_EndToIdle function instead of the MB_End function at the
end.
 // If all children have finished booting, the
 // parent also enters the reconnection process.
 if (mbpState.connectChildBmp == mbpState.rebootChildBmp)
 {
 MBP_Printf("call MB_EndToIdle()\n");
 MB_EndToIdle();
 }
 ...

When the DS Download Play feature is ended by the MB_End function, the notification
MB_COMM_PSTATE_END is posted by a callback function. In the sample program, the parent is moved to
the process-end state (MBP_STATE_COMPLETE), and the work area in memory allocated for download
delivery is released.

Code 4-22 End DS Download Play, Change Parent State, Clear Buffer
static void ParentStateCallback(u16 child_aid, u32 status, void* arg)
{
 switch (status)
 {
 //---
 // Notification at end of DS Download Play
 case MB_COMM_PSTATE_END:
 {
 if (MBP_GetState() == MBP_STATE_REBOOTING)
 // Reboot process completed; end MB and
 // reconnect with the child.
 {
 MBP_ChangeState(MBP_STATE_COMPLETE);
 }
 else
 // Complete shutdown, return to STOP state
 {
 MBP_ChangeState(MBP_STATE_STOP);
 }
 // Release the buffer used for game delivery.
 // The work region is released when MB_COMM_PSTATE_END
 // comes in a callback, so OK to free.
 if (sFilebuf)
 {
 OS_Free(sFilebuf);
 sFilebuf = NULL;
 }
 if (sCWork)
 {
 OS_Free(sCWork);
 sCWork = NULL;
 }
 // The registration info is cleared at the same time MB_End is

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 44  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

 // called and work is freed, so MB_UnregisterFile can be omitted
 }
 break;
 }
}

In the final step, the code fragment for quitting the DS Download Play feature 2 is referenced from the
rebooting process 1.

Code 4-23 End Reboot, Reconnect Wireless Communications
static BOOL ConnectMain(u16 tgid)
{
 --- Omitted ---

 while (TRUE)
 {
 //---
 // Reboot process
 case MBP_STATE_REBOOTING: 1

 {
 BgSetMessage(PLTT_WHITE, " Rebooting now ");
 }
 break;

 //---
 // Reconnection process
 case MBP_STATE_COMPLETE: 2

 {
 // If all parties connect without trouble,
 // quit DS Download Play process and restart
 // wireless communications as a normal parent.
 BgSetMessage(PLTT_WHITE, " Reconnecting now ");

 OS_WaitVBlankIntr();
 return TRUE;
 }
 break;

 --- Omitted ---
 }
 }
}

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 45 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

4.1.3 Starting the Parent Application

In the multiboot-Model sample program, game software is downloaded to children using the DS
Download Play feature. After the child reboots, the wireless-communications parent shares data with
the program downloaded to the child. Because the wireless communication connection with the child
is cut when the DS Download Play feature ends, the wireless connection with the child must be
reestablished.

In the sample program, the connection information used by the DS Download Play feature is used for
data sharing. The first step is to perform the initialization processes required for data sharing. The
GInitDataShare function makes the initial settings for the buffer to be used for data-sharing
communications. The WH_Initialize function initializes the WM library and wireless communications.

If changes have been made in the code to use the MB_StartParentFromIdle function, it does not
need to be called at this point because the IDLE state is being maintained and the WH_Initialize
function has already been called.

Code 4-24 Initialize Data Sharing, WM Library, and Wireless Communications
 // Configure the buffer for data-sharing communications
 GInitDataShare();
 // If MB_StartParent & MB_End have been used, then initialize
 // wireless communications at this point
 (void)WH_Initialize();

Once wireless communications start, the parent may receive connection requests from devices other
than the children to which the program has been delivered using the DS Download Play feature. To
handle this possibility, the WH_SetJudgeAcceptFunc function sets the function to be used in deciding
whether or not to allow the connection.

Code 4-25 Process Connection Requests
 // Configure the function for deciding connection to children
 WH_SetJudgeAcceptFunc(JudgeConnectableChild);

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 46  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

The JudgeConnectableChild function is used to make this determination in Code 4-26. The
connection is permitted if the player number (aid) used during DS Download Play can be obtained
from the MAC address of the terminal connected in step 1.

Code 4-26 Process Connection Request: Details
static BOOL JudgeConnectableChild(WMStartParentCallback* cb)
{
 u16 playerNo;

 /* Search for cb->aid child's multiboot-time aid from MAC address */
 playerNo = MBP_GetPlayerNo(cb->macAddress); 1

 OS_TPrintf("MB child(%d) -> DS child(%d)\n", playerNo, cb->aid);

 if (playerNo == 0)
 {
 return FALSE;
 }
 sChildInfo[playerNo] = MBP_GetChildInfo(playerNo);
 return TRUE;
}

Finally, wireless communications with this unit as the parent are started and data sharing begins.

Because the state is WH_SYSSTATE_IDLE (1) when the WH_Initialize function ends, the
WH_ParentConnect function is used to start wireless communications. Arguments for the function
include WH_CONNECTMODE_DS_PARENT, used to indicate data-sharing, and TGID and communication
channel, used by the DS Download Play feature.

Once wireless communications begin, the state changes to WH_SYSSTATE_DATASHARING (2) and data
sharing begins.

Code 4-27 Change State and Share Data
 /* Main routine */
 for (gFrame = 0 ; TRUE ; gFrame++)
 {
 OS_WaitVBlankIntr();

 ReadKey();

 BgClear();

 switch (WH_GetSystemState())
 {
 case WH_SYSSTATE_IDLE : 1

 /* ----------------
 * If you want the child to reconnect to the same parent
 * without rescanning, tgid and channel must match.
 * In this demo, both the parent and the child use the same
 * channel as used at the time of multiboot, and tgid+1, which
 * is tgid at the time of multiboot. For this reason, the

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 47 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

 * child can reconnect without scanning.
 *
 * If you are going to specify a MAC address and rescan,
 * tgid and channel values do not need to be the same.
 * ---------------- */
 (void)WH_ParentConnect(WH_CONNECTMODE_DS_PARENT, (u16) (tgid + 1),
 sChannel);
 break;

 case WH_SYSSTATE_CONNECTED:
 case WH_SYSSTATE_KEYSHARING:
 case WH_SYSSTATE_DATASHARING: 2

 {
 BgPutString(8 , 1 , 0x2 , "Parent mode");
 GStepDataShare(gFrame);
 GMain();
 }
 break;
 }
 }

4.1.4 Parent States

The MBP_GetState function can obtain the parent states described in Table 4-1.

Table 4-1 Parent States

Values Returned by the
MBP_GetState Function State of the Parent

MBP_STATE_STOP
MB_End function was called from the MBP_Cancel function and the DS
Download Play feature was stopped.

MBP_STATE_IDLE
MBP_Init function finished, the MBP_Start function was called, and the
device can begin operating as the parent.

MBP_STATE_ENTRY
MBP_Start function finished and the parent is waiting for a connection from a
child. This is the only state in which the parent can accept a connection from a
child.

MBP_STATE_DATASENDING
MBP_StartDownloadAll function was called and download-delivery to the
connected children has begun.

MBP_STATE_REBOOTING
MBP_StartRebootAll function was called and connected children are
rebooting.

MBP_STATE_COMPLETE
All connected children received reboot requests and the DS Download Play
feature was ended by the MB_End function.

MBP_STATE_CANCEL MBP_Cancel function was just called.

MBP_STATE_ERROR Error has occurred.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 48  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

4.2 DS Download Play Children
The user program for a DS Download Play child starts after DS Download Play data is transferred
from the parent device and the child is rebooted. During reboot, connection with the parent device is
completely terminated.

In this section, the sample program multiboot-Model is used to describe how DS Download Play
children are determined and how to obtain connection information used during DS Download Play.

4.2.1 DS Download Play Child Determination

The child uses the MB_IsMultiBootChild function to determine whether it was started using the DS
Download Play feature.

Code 4-28 Check Whether the Child Booted by DS Download Play
 // Check to see if self is child that started from DS Download Play.
 if (! MB_IsMultiBootChild())
 {
 OS_Panic("not found Multiboot child flag!\n");
 }

4.2.2 Getting Connection Information During DS Download Play

The connection information used during DS Download Play can be obtained with the
MB_ReadMultiBootParentBssDesc function. If direct connection to the parent is to be made using the
obtained WMBssDesc, the key-sharing flag and other settings must be the same as those set for the
parent when the information was obtained.

Code 4-29 Obtain Connection Information: Parent and Child Must Match
MB_ReadMultiBootParentBssDesc(&gMBParentBssDesc,
 WH_PARENT_MAX_SIZE, // Parent max transfer size
 WH_CHILD_MAX_SIZE, // Child max transfer size
 0, // Key sharing
 0); // Continuous transfer mode flag

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 49 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

4.2.3 Starting the Child Application

Data is shared with the parent as a wireless-communication child.

First, perform the initialization processes required for data sharing; the same processes are carried
out for the parent. Use the GInitDataShare function to configure the initial settings of the buffer to be
used for data-sharing communications, and use the WH_Initialize function to initialize the WM
library and wireless communications.

Code 4-30 Initialize Data Sharing, WM Library, and Wireless Communications
 GInitDataShare();

 //********************************
 // Initialize wireless communications
 (void)WH_Initialize();
 //********************************

Next, try connecting to the parent with retries in the main loop (1). Once wireless communications
begin, the state moves to WH_SYSSTATE_DATASHARING (2) and data sharing begins.

Code 4-31 Connect Child to Parent, Change State, and Share Data
 // Main loop
 for (gFrame = 0 ; TRUE ; gFrame ++)
 {
 // Divide the process based on communication state
 switch(WH_GetSystemState())
 {
 case WH_SYSSTATE_CONNECT_FAIL:
 {
 // If WM_StartConnect() has failed, the WM internal
 // state is illegal, so you need to use M_Reset to reset WM to the
 // IDLE state.
 WH_Reset();
 }
 break;
 case WH_SYSSTATE_IDLE:
 {
 static retry = 0;
 enum {
 MAX_RETRY = 5
 };

 if (retry < MAX_RETRY)
 {
 ModeConnect(); 1

 retry++;
 break;
 }
 // Display ERROR if cannot connect to parent in MAX_RETRY
 }
 case WH_SYSSTATE_ERROR:

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 50  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

 ModeError();
 break;
 case WH_SYSSTATE_BUSY:
 case WH_SYSSTATE_SCANNING:
 ModeWorking();
 break;
 case WH_SYSSTATE_CONNECTED:
 case WH_SYSSTATE_KEYSHARING:
 case WH_SYSSTATE_DATASHARING: 2

 {
 BgPutString(8 , 1 , 0x2 , "Child mode");
 GStepDataShare(gFrame);
 GMain();
 }
 break;
 }
 }

Connection to the parent is made using the WH_ChildConnect function inside the ModeConnect
function. Arguments to this function include WH_CONNECTMODE_DS_CHILD, which is used to indicate
data sharing, and gMBParentBssDesc, information about the wireless communication connection that
is used by the DS Download Play feature.

When reconnecting after the download, if the application has some special information that needs to
be received from the parent, the latter will notify the child about this through its game information
beacon, and the child can rescan to get that information. If this is not necessary, you can perform the
reconnection by simply using gMBParentBssDesc. The ModeConnect function stores codes for both
parent and child, telling them apart by using the USE_DIRECT_CONNECT switch; thus, select the method
that best suits the application at hand. (The default method is a simple reconnection.)

Code 4-32 Child Connection Details
static void ModeConnect(void)
{
#define USE_DIRECT_CONNECT

 // If connecting to parent directly, without scanning again.
#ifdef USE_DIRECT_CONNECT

 //********************************
 (void)WH_ChildConnect(WH_CONNECTMODE_DS_CHILD, &gMBParentBssDesc, TRUE);
 // WH_ChildConnect(WH_CONNECTMODE_MP_CHILD, &gMBParentBssDesc, TRUE);
 // WH_ChildConnect(WH_CONNECTMODE_KS_CHILD, &gMBParentBssDesc, TRUE);
 //********************************
#else
 WH_SetGgid(gMBParentBssDesc.gameInfo.ggid);
 // If executing a rescan for the parent.
 //********************************
 (void)WH_ChildConnectAuto(WH_CONNECTMODE_DS_CHILD, gMBParentBssDesc.bssid,
 gMBParentBssDesc.channel);
 // WH_ChildConnect(WH_CONNECTMODE_MP_CHILD, &gMBParentBssDesc, TRUE);
 // WH_ChildConnect(WH_CONNECTMODE_KS_CHILD, &gMBParentBssDesc, TRUE);
 //********************************
#endif
}

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 51 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

5 The cloneboot Sample Program
To act as a DS Download Play parent, the cloneboot sample program uses the features described in
Chapter 3 Clone Boot Feature, delivering copies of its own programs to child devices and sharing
data with download children.

This cloneboot sample program shows the procedure for how to the unify the existing programs for
both the parent and child from the multiboot-Model sample program to create a program that supports
the clone boot feature. For more information on the multiboot-Model sample, see Chapter 4 Sample
Program (Multiboot-Model).

This chapter describes the following changes to the program structure.

• Unification of the program source directories

• Changes to the ROM specification file

• Changes to makefile

• Additions to the build procedure for attaching authentication codes

The chapter also describes the following changes made to the program source:

• Changes to main entry names

• Addition of new entries

• Specification of a parent-only region

• Revision of the binary registration process

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 52  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

5.1 Changes to Program Structure
The following sections describe the changes that must be made to a program if it is to support the
clone boot feature.

5.1.1 Unification of the Program Source Directories

In the multiboot-Model sample, the child program is first created and then the parent program is
created with that child program included as a separate file, so the overall structure is composed of
two separate build projects. Programs that support clone boot can be unified into a single project,
because the parent is determined at the time of execution.

Here, the src and include directories, and all contents of the parent, child, and common directories
are moved to the project's root directory. At this time, the main.c files that exist in both the parent and
child programs get renamed to parent.c and child.c. (A new main.c is created in a later
procedure.)

Figure 5-1 Unifying Source Directories

 /include/common.h

 disp.h

 font.h

 gmain.h

 /src/common.c

 disp.c

 font.c

 gmain.c

 child.c

 parent.c

/commom/include/common.h

 disp.h

 font.h

 gmain.h

 /commom/src/common.c

 disp.c

 font.c

 gmain.c

 /child/src/main.c

 /parent/src/main.c

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 53 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

5.1.2 Changes to the ROM Specification File

The child program included in the file system in the multiboot-Model sample is no longer present in
the program that supports clone boot, so delete the following lines from the main.rsf file.
Delete this specification
HostRoot $(MAKEROM_ROMROOT)
Root /
File $(MAKEROM_ROMFILES)

5.1.3 Changes to Makefile

To unify the parent and child programs and to change them into a program that supports the clone
boot feature, a number of changes and additions must be made to the parent program's makefile.
These are described in the sections below. The makefile used in the build for the child program is no
longer necessary.

5.1.3.1 Correcting Directory and Source Specifications

Steps are taken such that the changes to directory structure that were made in section 5.1.1
Unification of the Program Source Directories are correctly reflected in the makefile. Also, the main
source for both parent and child with changed filenames is added to the project.

Figure 5-2 Correcting Directory and Source Specifications
The child program's build is no longer necessary, so delete the sub-build
specifications.
SUBDIRS = child
...

Specify references to the new, unified directory.
SRCDIR = ./src
INCDIR = ./include
...

Add the two main.c files with changed filenames (parent.c and child.c) to the
build source.
SRCS = main.c \
 common.c \
 disp.c \
 font.c \
 gmain.c
SRCS += parent.c child.c

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 54  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

5.1.3.2 Specifying an LCF Template File for Clone Boot

To create a program that supports clone boot, you must secure a parent-only region as described in
section 3.2.1 Placing Data in ROM. There is an LCF template file that has ROM placement configured
for clone boot. You need to explicitly specify the following template.

$TwlSDK/include/nitro/specfiles/ARM9-TS-cloneboot-C.lcf.template

Specify the link configuration template for clone boot.
LCFILE_TEMPLATE = $(NITRO_SPECDIR)/ARM9-TS-cloneboot-C.lcf.template

5.1.3.3 Additions to the Build Procedure to Attach Authentication Code

For programs that support the clone boot feature, the procedure for getting authentication code is
different from the usual procedure for DS Download Play programs, described in section 3.2.2
Authentication Code Attachment. For programs that support the clone boot feature, use the emuchild
tool to create a binary for getting the signature code. The procedure for doing this is as follows:

Figure 5-3 Additions to the Build Procedure to Attach Authentication Code
For retail-version applications, specify the distributed libsyscal.a and the
corresponding libsyscall_child.bin
LIBSYSCALL = ./ etc / libsyscall.a
LIBSYSCALL_CHILD = ./ etc / libsyscall_child.bin

Since already built, this is the procedure for creating the transfer-use
binary with the emuchild tool.
The created bin / sign.srl gets sent to the server that creates the
authentication code.
presign:
 $(EMUCHILD) \
 bin / $(NITRO_BUILDTYPE) / $(TARGET_BIN) \
 $(LIBSYSCALL_CHILD) \
 bin / sign.srl

The procedure for including the obtained authentication code in the binary is
the same as normal for clone boot.
Here, the binary main_with_sign.srl is created with the authentication code as
bin / sign.sgn.
postsign:
 $(ATTACHSIGN) \
 bin / $(NITRO_BUILDTYPE) / $(TARGET_BIN) \
 bin / sign.sgn \
 main_with_sign.srl

This notation is added for convenience. If you enter the notation directly on the command line, you do
not need to add it to the makefile.

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 55 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

5.1.4 Changes to Program Source

A number of corrections must be made to the program source in line with the changes to the overall
program structure made in the last section.

5.1.4.1 Change Main Entry Names

Because the original pair of main.c files (parent.c and child.c) both include the NitroMain
function, which is a main entry, their names must be changed appropriately.

Figure 5-4 Changing Main Entry Names
child.c:

// Change name to be main entry for child.
// void NitroMain(void)
void ChildMain(void)
{
 ...

parent.c:

// Change name to be main entry for parent.
// void NitroMain(void)
void ParentMain(void)
{
 ...

Also, be sure to add the function prototype declarations to common.h using the changed names.
common.h

// Originally the parent's NitroMain function.
void ParentMain(void);

// Originally the child's NitroMain function.
void ChildMain(void);

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 56  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

5.1.4.2 Add New Main Entries

To call main entries for the parent and child whose names have been changed, add a new NitroMain
function. In programs that support the clone boot feature, the main.c file is created as outlined in
Code 5-1. This way, processes called for the parent can be separated from those called for the child,
based on the value returned by the MB_IsMultiBootChild function.

Code 5-1 Adding New Main
main.c

#include <nitro.h>
#include "common.h"

void NitroMain(void)
{
 if(! MB_IsMultiBootChild())
 {
 ParentMain();
 }
 else
 {
 ChildMain();
 }
 /* The process does not reach this point */
}

In the example used here, the goal is to move from the multiboot-Model as easily as possible.
Processes that are the same for parent and child can be shared. However, always make sure that a
card has not been plugged into the child device.

5.1.4.3 Specify a Parent-Only Region

Part of the clone boot program code must be included in the parent-only ROM region, described in
section 3.2.1 Placing Data in ROM.

Because the parent-only part of the card is a secure region, such as a ROM header, it cannot be read
again from the parent after booting. For this reason, when performing a software reset using the
OS_ResetSystem function, be careful not to reinitialize changeable (such as .bss and .daya section)
data that has been placed in this region.

When using the OS_ResetSystem function, only the following C-language items can be used as data
in the parent-only region.

• Constants

• Functions that do not have any internal static variables

• Global variables accompanied by an explicit dynamic initialization process. (In C++, an object
accompanied by a constructor.)

In addition, content to be included in the parent-only region should not only be "essential to the
parent," but must also "not be used at all by the child."

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 57 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

At this time, no simple standard can be applied; the ability to judge these two criteria depends on the
overall design of the application related to identifying the main version of the software as opposed to
the versions distributed for DS Download Play. As a general rule, however, it is both easy and
effective to include state transitions to the states where only the main part of the program can be
played in this parent-only region.

In the cloneboot sample, all functions that are included in parent.c are specified for placement in
the parent-only region. This region is specified as described in Code 5-2, using the TWL-SDK include
files parent_begin.h and parent_end.h.

Code 5-2 Specifying for Placement in the Parent-Only Region
parent.c

...

//==
// Function definitions
//==

// The parent-only region .parent section definitions start from here.
// Only functions that do not include static variables exist below this point.
#include <nitro/parent_begin.h>
void ParentMain(void)
{
...

}
// The parent-only region .parent section definitions end here.
#include <nitro/parent_end.h>
// End of file.

Here, parent.c includes all DS Download Play parent processes. The conditions for placement in the
parent-only region are satisfied: the content is essential to the parent and is never used by the child.

Two representative examples of the many types of content that should not be specified for the parent-
only region are given below for your reference.

Changing code so that these functions are not called invalidates them; thus, from a security
standpoint, there is no reason to place functions that do not need to be called in the parent-only
region.

Code 5-3 Content That Should Not Be Specified for Parent-Only Region (Example 1)
/* Function gets placed in the parent-only region (for debug output only) */
void no_use(void)
{
 OS_Printf("called!\n");
}
...
void NitroMain(void)
{
 ...

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 58  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

 /* If parent, this gets called. (No trouble if it is not called) */
 if(!MB_IsMultiBootChild()) no_use();
}

Next, you must completely avoid unintentionally placing a function used by both parent and child in
the parent-only region. Here, the distinction between "main part of the program" and "delivered
program" affects game quality.

Code 5-4 Content that Should Not Be Specified for Parent-Only Region (Example 2)
/* Function gets placed in the parent-only region. (A screen presentation process
that the child is not expected to use) */
void draw_special_effect_1000(void)
{
 ... /* Screen presentation process */
}

/* Game process shared by parent and child */
void UpdateGameFrame(void)
{
 /* Unexpectedly, function gets called by both parent and child under certain
conditions */
 if(score >= 1000) draw_special_effect_1000();
}

5.1.4.4 Correct the Binary Registration Process

The process that registers binaries for the Multiboot library also needs to be changed to allow
cloneboot. This procedure is described in section 3.2.3 Clone Boot Binary Registration.

Code 5-5 Correcting the Binary Registration Process
parent.c
...
const MBGameRegistry mbGameList =
{
 // If the MBP_Start function gives NULL for the path name, the process is
 // treated as a clone boot.
 // To read details about the function's internal processes, see
 // $TwlSDK/build/demos/wireless_shared/mbp/mbp.c.
 NULL,
 (u16*)L"DataShareDemo", // Game name
 (u16*)L"DataSharing demo(cloneboot)", // Description of game content
...
 }

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 59 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

6 Sample Program (fake_child)
The fake_child sample demonstrates the procedure to create a program that uses the pseudo-
Download Play child device feature (described in section 1.8 Support for Pseudo-Download Play
Child Devices) to connect to the parent device from the multiboot-Model sample and add entries to
the session.

This chapter describes the communications sequence used in the fake_child sample. See Chapter
4 Sample Program (Multiboot-Model) for details on the multiboot-Model sample, which is the
program running on the parent device targeted by this sample.

6.1 MB Library Initialization

To operate the MB library as a pseudo-Download Play child device, you must first prepare a work
buffer, and then initialize the library by calling the MB_FakeInit function. Then, after any necessary
event callbacks have been set, call the MB_FakeStartScanParent function to have the MB library
automatically transition the wireless feature to the SCAN state and start searching for the parent device
beacon.

main.c

static void ModeStartScan(void)
{
 ...
 mbfBuf = (u8 *)OS_Alloc(MB_FakeGetWorkSize());
 MB_FakeInit(mbfBuf, &userInfo);
 // Set the State Transition Notification Callback function
 MB_FakeSetCStateCallback(MBStateCallback);
 // Clear the parent device list
 MI_CpuClear8(parentInfo, sizeof(parentInfo));
 // Change the wireless state to scanning
 ChangeWirelessState(WSTATE_FAKE_SCAN);
 // Set the notification callback and the GGID of the parent device to scan for,
 // and start scanning
 MB_FakeStartScanParent(NotifyScanParent, WH_GGID);

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 60  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

6.2 Listing Parent Devices

Every time it discovers a beacon being broadcast by a DS Download Play parent device with one of
the specified GGIDs, the MB library generates an event callback and notifies the program. The MB
library manages a list of up to 16 beacons’ worth of broadcast information at the same time, and the
most recent information can always be referenced with the MB_FakeGetParentGameInfo function.

Because there may be multiple parent devices hosting the same game at the same time, the program
must list player names or other information associated with each parent device on the screen so the
user can intentionally select which parent to connect to.

main.c

static void NotifyScanParent(u16 type, void *arg)
{

 case MB_FAKESCAN_PARENT_BEACON:
 {
 // Notification sent each time the beacon of a known parent device is received
 MBFakeScanCallback *cb = (MBFakeScanCallback *)arg;
 WMBssDesc *bssdesc = cb->bssDesc;

 }
 break;
 case MB_FAKESCAN_PARENT_FOUND:
 {
 // Notification sent each time a new parent device is discovered
 MBFakeScanCallback *cb = (MBFakeScanCallback *)arg;
 WMBssDesc *bssdesc = cb->bssDesc;
 MBGameInfo *gameInfo = cb->gameInfo;

 }
 break;
 case MB_FAKESCAN_PARENT_LOST:
 {
 // Notification sent when a known parent device is lost for an extended time
 MBFakeScanCallback *cb = (MBFakeScanCallback *)arg;

 }
 break;

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 61 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

6.3 Connecting to a Parent Device

When the parent device to which to connect has been selected, call the MB_FakeEndScan function to
terminate the search for beacons and wait for the process to complete. When the MB_FakeEndScan
function has finished, call the MB_FakeEntryToParent function to connect to the parent device. The
MB library automatically transitions the wireless feature to the MP_CHILD state and starts wireless MP
communications with the parent device.

main.c

static void ModeEntry(void)
{
 ...
 switch (sWirelessState)
 {
 case WSTATE_FAKE_SCAN:
 // Terminate scanning
 MB_FakeEndScan();
 ChangeWirelessState(WSTATE_FAKE_END_SCAN);
 break;
 case WSTATE_IDLE:
 // Begin connection to the parent device selected by the user
 if (!MB_FakeEntryToParent(sConnectIndex))
 {
 // Error if the specified Index is not valid
 OS_TPrintf("ERR: Illegal Parent index\n");
 ChangeWirelessState(WSTATE_FAKE_ERROR);
 sMode = MODE_ERROR;
 return;
 }
 ChangeWirelessState(WSTATE_FAKE_ENTRY);
 break;

6.4 Waiting for Download to Complete

Because there is actually no communication processing required of pseudo-Download Play child
devices, they simply maintain MP communications while waiting for a pseudo-“download complete”
callback notification from the parent device.

main.c

static void MBStateCallback(u32 status, void *arg)
{
 ...
 case MB_COMM_CSTATE_BOOT_READY:
 // Notifies that both disconnection from the parent device and MB processing
 // has completed
 ChangeWirelessState(WSTATE_FAKE_BOOT_READY);
 break;

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 62  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

6.5 Preparations to Disconnect from or Reconnect to a Parent Device

Once the parent device issues the download complete notification, psuedo-Download Play children
can terminate MP communications and disconnect from the parent. Once you have called the
MB_FakeEnd function and the wireless disconnection process has completed, all MB library
processing for the pseudo-Download Play child feature is ended. The work buffer allocated in the
MB_FakeInit function can be released at this time.

After this, children can reconnect to the parent device as needed and perform DS wireless play. In
this sample, data sharing communications start after scanning for parent devices and performing the
reconnection sequence, the same as in multiboot-Model.

main.c

static void ModeEntry(void)
{
 ...
 switch (status)
 {
 case WSTATE_FAKE_BOOT_READY:
 // Terminate entry processing
 ChangeWirelessState(WSTATE_FAKE_BOOT_END_BUSY);
 MB_FakeEnd();
 break;

 case WSTATE_FAKE_BOOT_END:
 // Increment tgid to match the parent device
 sParentBssDesc.gameInfo.tgid++;
 // Start the reconnection process
 ChangeWirelessState(WSTATE_IDLE);
 sMode = MODE_RECONNECT;
 break;

TWL-SDK DS Download Play User Guide

DS Download Play User Guide

 2008-2009 Nintendo 63 TWL-06-0004-001-C
CONFIDENTIAL Released: September 9, 2009

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

DS Download Play User Guide TWL-SDK

TWL-06-0004-001-C 64  2008-2009 Nintendo
Released: September 9, 2009 CONFIDENTIAL

© 2008-2009 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	Introduction
	Overview
	DS Download Play Startup Procedure
	Attaching Authentication Code
	Using the System Call Library and ROM Header
	Transferable Binary Code Size
	Accessing Backup Regions in Game Cards and Game Paks
	Supported ROM
	Support for Pseudo-Download Play Child Devices

	DS Download Play Operations
	Process Flow on the Parent Side
	Preparations By the Parent
	Selecting Wireless Communication Channel
	Setting Parent's Parameters
	Configuring Maximum Number of Children
	Registering Child Binary Information

	Sending Data and Starting Children

	Reconnecting with Parent
	Other Precautions
	Applications with Multiple Communication Modes
	About IRQ Stack
	About Overlay of the DS Download Play Child Device Program
	About DS Download Play Bugs
	DS Download Play Bug #1
	DS Download Play Bug #2
	DS Download Play Bug #3
	DS Download Play Bug #4
	DS Download Play Bug #5
	DS Download Play Bug #6

	Clone Boot Feature
	About Clone Boot
	Clone Boot Procedure
	Placing Data in ROM
	Authentication Code Attachment
	Clone Boot Binary Registration

	Sample Program (Multiboot-Model)
	DS Download Play Parent
	Preparing for the DS Download Play Feature
	DS Download Play Feature
	Initializing the Parent
	Starting Parent Operations
	Waiting for Connections from Children
	Sending the Program to Children
	Restarting Children

	Starting the Parent Application
	Parent States

	DS Download Play Children
	DS Download Play Child Determination
	Getting Connection Information During DS Download Play
	Starting the Child Application

	The cloneboot Sample Program
	Changes to Program Structure
	Unification of the Program Source Directories
	Changes to the ROM Specification File
	Changes to Makefile
	Correcting Directory and Source Specifications
	Specifying an LCF Template File for Clone Boot
	Additions to the Build Procedure to Attach Authentication Code

	Changes to Program Source
	Change Main Entry Names
	Add New Main Entries
	Specify a Parent-Only Region
	Correct the Binary Registration Process

	Sample Program (fake_child)
	MB Library Initialization
	Listing Parent Devices
	Connecting to a Parent Device
	Waiting for Download to Complete
	Preparations to Disconnect from or Reconnect to a Parent Device

