Wireless Communication Tutorial
NITRO-SDK

Version 1.1.1

The contents in this document are highly

confidential and should be handled accordingly.

O 2008 Nintendo TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and are protected by national and international copyright laws. They may not be disclosed to third parties or

copied or duplicated in any form, in whole or in part, without the prior written consent of Nintendo.

TWL-06-0009-001-A 2 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

Contents
1 Overview Of the WIrEIESS IMANAGETouii ittt e e e e e e bbb e e e e e e e s anbbeeeeeaaeeaasannbeneeeaans 5
1.1 Role Of the WIreleSS IMANAGET ...ttt e e e e e e bbb e e e e e e e e e sanbbe e e e e e e e e e annreees 5
1.2 MP ComMmMUNICALION PrOTOCOIciiiiiiiiiiiiiiie ittt sttt s st e e e st ae e e e nnbee e e e aneee 5
R B B = = NS g - T o To [TP PPRTP 6
2 Operating the WireleSS MANAGETccviiiiiiiiciiieeeie e e e s ettt e e e e s s st e e e e e s s s astaaeeeaeesassnsrraeeeeaesaesnnsrrnereees 7
2.1 Organization of the Wir€leSS MaNAGETcccciiiiiiiiiiiee e e ciiiieer e e e e s s steer e e e e e s s s ereeeeessssarreereeeesannns 7
2.2 Transitioning Between INternal STAtESccooi i e e e e e e 8
3 Implementing the dataShare-MOUEIooei i e s e e e e e e e nnreees 9
R 0 I [0 11 7= 1117 T S 10
KT ©7o] [=Tox 1] oo F TP EPTTR ORI 12
G0 A O o aT=Tox 11 o T o I == =T | A 1Y o o = 13
G720 O] o aT=Tox 119 To T o I @4 o1 o 1817 o o - P 14
3.3 Processing SYNCAIONOUSIYueiiiiiiiiiiiiiiiii ettt e ettt e e e e e s e e saab e e e e e e e e e e e sanbbnneeaaeas 15
3.4 Disconnecting and Terminating ProCESSINGcccurriiiieeeiiiiiiieere e e e s s sirerre e e e e s s s snereee e e e e e s s s snrennreeeees 17
4 LVAT o I o] -V VPP RTT R PRPTPPPPRTTTN 18
4.1 Function Reference (Initialization, Termination, RESEL)ccuuuiiiiiiiiiiiii e 18
g S VA o I Vo Ty = 1 =38 U T) o PSR 18
o YV o I 10 F= 143N T Vo o o I 18
o R T V.V o I = =YY= L] o3 1T PSR 19
4.2 Function Reference (CONMNECLION)oiiuuiiiiiia ettt e ettt e e e e e e s be e e e e e e e e aasbb e e e e e e e e e anbbeeeeeaeas 19
4.2.1 WH_ParentConNECt FUNCHIONccciiiiiiiiiiie e et s e e s e e e s e st e e e e e e s s st ae e e e e e e e e nnnnnees 19
V0 VA o T @ o 1o (@0 Tq T T=Tox W] Tod 1 o] IS 20
4.3 Function Reference (MP COMMUNICALION).....cuiiiiiiiiiiiiieieeessstieireeeeesssssnrreereeeesssssneaneeeeesessnnssnneeeees 21
0 T R YV o ST =Tt YAV =Y g W] o 1o o 21
Z0C YV o IS 1=V o Vo | B = L= W U] o 1o o 1 21
4.4 Function Reference (Data Sharing)cccuuueeiieioiiiiiiee e e e e e e e e e s raeeeeee s 22
441 WH_SIEPDS FUNCHOMN .ciiiiiiitiieiet ettt ettt e e ettt e e e e e e e s sanb b et e e e e e e e s e annbbeeeeaeeeeaaannnnees 22
4.4.2 WH_GetSharedDataAdr FUNCHIONuuiiiiieee s e e e e e s s e e e e e s s s st e e e e e e s s s snnnrneeeeeeeesennnnnees 22
4.5 Function Reference: KeY SNariNg........ooi ittt e e e e e snbeaeeea s 22
451 WH_GEetKeYSEt FUNCLONuuiiiiiiiie ettt e e e e e e s s e e e e e e e s st e e e ae e e s s ssnnbeeeeeeeeeannnnnnees 22
4.6 FUNCON REErENCE: GO STALEeeiiiiiii ittt e e e e et e e e e e e e e annbareeeeeas 23
4.6.1 WH_GetAllowedChannel FUNCHON............uuiiiiiiiiiiieicce e e e e e e e e s s ee e e e e e e e nnnnnees 23
Vi STV o I ©T=1 (o] o Ta =Y 1\ [oTo (TN W T o i o) o [N 23
4.6.3 WH_GEetBItMap FUNCHON........uiiiiiiiie e ettt e e e e e e e s s e e e e e e e s snn e e e eeeesesnnnbnneeeeeeeanannnnees 23
4.6.4 WH_GetSystemState FUNCHON.oii it e e e e e e e nnnaees 23
4.6.5 WH_GEetLaStEITOr FUNCHONuuiiiiiiiiiiiiieiee e st e e e e s e e e e e s s e e e e e e e s s s e e e e e e e s e annnnees 24
5 Y 0] 1= o 1SR 25
5.1 WH_StateInXXXX and WH_State OutX XXX FUNCLONS........cccoiiiiiiiiiiiiieiiiiiee s 25
5.1.1 Parent/Child Shared Functions in WH and WM ... 25
5.1.2 Parent FUNCIONS iN WH @nd WMoooiiiiiiii et 26
5.1.3 Child FUNCtions iN WH @nd WM ...ttt e e e e e e eeaa s 27
00 2008 Nintendo 3 TWL-06-0009-001-A

CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

Revision History

Version Revision Date Description
111 2008/09/16 |Added information on TWL (hardware and SDK name changes).
1.1.0 2005/11/21 |3 Updated to reflect current dat aShar e- Model

4.1 Corrected text to reflect changes to WH specifications.

1.0.1 2005/04/18 |3 Corrected description (Added description of wh_conf i g. h and sample source code.)
3.1 Corrected description (Added section about setting wh_confi g. h
Deleted description about internal dynamic memory allocation)

1.0.0 2004/11/24 Initial version.

TWL-06-0009-001-A 4 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

1 Overview of the Wireless Manager

1.1 Role of the Wireless Manager

The wireless manager (WM) is situated between the NITRO-compatible wireless hardware and
applications. It receives information and shares that information directly with the hardware. The
wireless manager is a library providing relatively low-level parts.

The wireless manager library is mainly an implementation of a game-specific wireless communication
method. The wireless manager library provides a unique protocol called the MP communication
protocol. Frameworks are also included, such as a data sharing function that operates on that protocol.

This document explains the fundamentals needed to use the wireless manager. This document also
includes explanations, taking sample programs as examples and implementing them in real
applications.

1.2 MP Communication Protocol

As described in the programming manual, there are three separate ways to use the NITRO and TWL
wireless features depending on your purposes. The three modes are:

o Infrastructure
o DS Wireless Play
o Single-Card Play
This tutorial addresses only the DS Wireless Play mode.

In DS Wireless Play mode, communication occurs wirelessly while each connected device has a game
card inserted. In Single-Card Play mode, a game card is inserted in one machine, and the other
machines operate by downloading the program from that machine. In Infrastructure mode,
communication occurs using the Internet.

When communicating wirelessly after a program downloaded in Single-Card Play mode has started,
communication occurs in either the DS Wireless Play or Infrastructure mode.

The protocol normally used in DS Wireless Play mode is called the MP (Multi Poll) Communication
protocol. This protocol provides the functionality called sending and receiving data in real-time with
multiple machines, which is necessary in many communication game applications.

Using the MP communication protocol, communication occurs in the following steps as one cycle:
1. The parent delivers (broadcasts) data to all children.
2. All children return a response to the parent.

3. The parent natifies (broadcasts) that the communication cycle is finished.

O 2008 Nintendo 5 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

Note that each child communicates directly with only the parent and does not communicate directly
with other children. Also, the real-time aspect is a priority. As such, another feature is that instead of
being able to perform communication of one to several cycles in one picture frame (1/60th of a second),
the amount of sendable/receivable data in one cycle is comparatively small.

1.3 Data Sharing

Data sharing is a communication method for realizing on the MP communication protocol a technique
called sharing data in real-time with all communicating devices, used frequently by game applications.
This technique is realized in such a way that the parent collects data from each child, lumps it together,
and then delivers it to all children as shared data.

Pulling this together (as in the steps mentioned in section 1.2), the steps are:
1. The parent distributes shared data to all children.
2. Each child responds with its own specific information to the parent.
3. The parent collects returned information as shared data for the next send.

Note that the shared data received by each child is the data the parent collected from each child in the
previous cycle.

Key sharing treats each device’s key data as shared data.

Data sharing is one sample application of the MP communication protocol. Key sharing is one example
of how to use data sharing. These three terms should not be spoken of on the same level but,
depending on the circumstances, they may be described in parallel in the manual or sample programs.
Do not confuse these terms. This manual primarily covers data sharing.

TWL-06-0009-001-A 6 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

2 Operating the Wireless Manager

2.1 Organization of the Wireless Manager

In NITRO and TWL, the wireless communication unit is connected to the ARM7 bus (see the hardware
block diagram in the "NITRO Programming Manual"). In other words, the wireless communication unit
is under the control of the subprocessor (ARM7).

Therefore, to control the communication features from the main processor (ARM9) in a normal game, it
is necessary to go through the subprocessor (ARM7). Many WM-related APIs have been implemented
as asynchronous functions for streaming requests to the ARM7 in FIFO. Because the result of the
request is also sent via FIFO, it is received by the main processor, causing the callback stored by the
user to be invoked. This allows you to obtain the result.

In the sample programs covered in this tutorial, this issue request and receive results with callback
operation is treated as one set. Serial processing is basically realized as follows (A and A’, and B and
B’ are sets).

1. Call function Ato send a request to ARM7. (Make the callback set at this time A'.)

2. Send notification that A’ was called and processing is complete. A’ calls function B to send the
next request.

3. B'is called, which was set when calling B, and B’ calls C.

4. (The same pattern repeats.)

O 2008 Nintendo 7 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

2.2 Transitioning Between Internal States

The ARM?7 that controls wireless communication is a machine that goes back and forth between
several internal states. The following figure shows the main internal states.

Figure 2-1 Transitions Between Wireless Communication Internal States

PARENT SCAN

MP_PARENT MP_CHILD

Only the states needed for this explanation appear in this diagram. There is a more detailed figure
showing transitions between internal states in the "NITRO SDK Function Reference Manual."

Each of the transitions shown above with arrows has a corresponding function. You can advance the
processing by calling them in order. With few exceptions, you can transition from a state only to a

neighboring state connected by arrows. For example, you cannot transition in a single bound from
IDLE to MP_CHILD.

TWL-06-0009-001-A 8 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

3 Implementing the dataShare-Model

This completes the discussion of the fundamentals necessary for understanding the SDK sample
program (dat aShar e- Model). Additional considerations of the sample program follow.

The sample program implements data sharing using the WH library wrapper libraries, wh. h,

wh_confi g. h, and wh. ¢ (hereafter referred to as the WH library). The functions needed to implement
normal wireless communication programs are gathered in the WH library. (The sample source code for
the WH library is stored below the $Twl SDK/ bui | d/ denos/ wi r el ess_shar ed/ wh directory.)

This section explains how to use the WH library for sample program tasks, such as:
o Initializing
o Connecting
o Processing Synchronously

o Disconnecting and Terminating Processing

O 2008 Nintendo 9 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

3.1 Initializing

This section describes the procedure to implement data sharing using the WH library.

The various wireless settings listed in wh_confi g. h should be adjusted to match the specifications of
the application. Wireless communication establishes virtual communication channels called “ports,” and
if the application uses MP communication in addition to data sharing, the port numbers for each must
not conflict.

The maximum send/receive size for data sharing is limited by the number of children connected. To
use data sharing for large volumes of data, these values must be adjusted accordingly.

The DMA channels used by the WM library are also set here. Change the values so that there is no
conflict with the DMA channels used by the application for other processes, such as the FS library and
GX library.

/1 DVA nunber used by wirel ess
#def i ne WH_DMA_NO 2

/1 Max. number of children (Not including parents)
#defi ne WH CHI LD_MAX 15

/|l Max. size of shareable data
#def i ne WH_DS_DATA_SI ZE 12

/'l Max size of data that can be sent in one comunication

/1 1f using normal communication in addition to data sharing, increase

[/l this value as needed. Be sure to add the size of the additional

/'l headers/footers resulting fromsending nultiple packets.

/1 For details, see docs/ Techni cal Not es/ Wr el essManager . doc.

/1 QGUI DELI NE: Cuideline Standard Points (6.3.2)

/1l W recommend the keeping the time required for a single MP comunication
/1 as calculated by the reference’s wirel ess manager (W) —Tabl es/i nfor nati on—
/1l wireless comunication time cal cul ati on sheet

/] under 5,600 m croseconds.

#defi ne WH_PARENT_MAX S| ZE (WH DS DATA SIZE * (1 + WH CHI LD MAX) + 4)
#defi ne WH_CH LD_MAX_SI ZE (WH_DS_DATA _SI ZE)

/1 Port used for nornmal MP conmuni cation
#defi ne WH_DATA PORT 14

[l Priority used for normal MP conmunication
#defi ne WH_DATA PRI O WM_PRI ORI TY_NORVAL

/1 Port used for data sharing
#defi ne WH_DS_PORT 13

Next, define the type of data to share. When the maximum number of connected children is 15, a
maximum of 12 bytes can be shared using data sharing. (The sharable data size varies with the
maximum number of connected children.) The data size must not exceed 12 bytes.

TWL-06-0009-001-A 10 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

typedef struct ShareData_ {
u8 nmcadr[4]; // NMAC address

u32 count; /1 frame count

ulé |evel; /1 signal reception strength

s16 data; /1 graph display information
} Shar eDat a;

Next, confirm the shared data region for send/receive in the program. For the receive buffer, the region
(in bytes) must be at least (shared data size x (maximum number of connected children + 1)).

static u8 sSendBuf [256] ATTRI BUTE_ALI G\(32) ;
static u8 sRecvBuf[256] ATTRI BUTE_ALI G\(32) ;

Next, set the V-Blank interrupt. The V-Blank interrupt is needed in section "3.3 Processing
Synchronously."

/1 interrupt setting

OS_SetlrqgFunction(OS_IE_V_BLANK , VBlanklintr);
(voi d) CS_Enabl el rgMask(OS_ | E_V_BLANK);

(voi d) GX_VBl ankl ntr(TRUE);

(voi d)Cs_Enabl elrq();

(voi d) Cs_Enabl el nterrupts();

O 2008 Nintendo 11
CONFIDENTIAL

TWL-06-0009-001-A
Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

The necessary preparations in the program are completed, so use WH | ni ti al i ze to initialize
wireless communications.

The WH | ni ti al i ze function allocates the send/receive data buffer necessary for wireless
communication and performs all processing necessary to initialize the wireless hardware. We recommend
using the WH | ni ti al i ze function unless you want to perform detailed settings in the program.

3.2 Connecting

In the sample program, the process enters the main loop after the WH_I ni ti al i ze function ends and
then branches by referencing the wireless communications state returned by the WH_Get Syst entst at e
function and the state variable sSysMbde, which is changed using a menu selection.

This is the relevant portion of the sample program:

switch (whstate)

{
case WH _SYSSTATE ERROR:

/!l WH state has priority when error occurs
changeSysMbde(SYSMODE_ERROR) ;
br eak;

case WH SYSSTATE_MEASURECHANNEL:

{
ulé channel = WH _Get Measur eChannel ();
sTgi d++;
(voi d) WH_Par ent Connect (WH_CONNECTMODE_DS PARENT, sTgi d, channel);
}
br eak;
defaul t:
br eak;

}

PR_Cl ear Scr een(&sl nf oScr een) ;

/1 Load test.
forceSpi nVait();

switch (sSysibde)

{

case SYSMODE SELECT ROLE:
/!l Role (Parent & Child) selection screen
ModeSel ect Rol e() ;
br eak;

case SYSMODE SELECT CHANNEL:
// Channel sel ection screen.
ModeSel ect Channel () ;
br eak;

case SYSMODE LCBBY:
/1 Lobby screen.
ModelLobby() ;
br eak;

TWL-06-0009-001-A 12 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

If initialization is successful, the state becomes WH_SYSSTATE | DLE (the idle state) immediately after
the WH_I ni ti al i ze function ends. The initial value of sSysMdde is SYSMODE_SELECT_ROLE.

The first routine to get called is ModeSel ect Rol e. If Start (Parent mode) has been selected in
ModeSel ect Rol e, the parent-mode connection process is performed. If Start (Child mode) has been
selected, the child-mode connection process is performed.

3.2.1 Connecting in Parent Mode

The parent must select a channel to use before communications can begin. In the sample program, the
channel is decided in one of two ways: manual selection and automatic selection.

Manual selection is performed by the MbdeSel ect Channel routine, which is called when Select
channel is chosen from the menu screen. The WH_Get Al | owedChannel function is used to get a list
of usable communications channels from which to the selection can be made.

For automatic selection, the WH_St ar t Measur eChannel function is first used to measure the radio-
wave usage condition, and after this is completed the WH_Get Measur eChannel function is called to
get the most open channel. You can determine whether the WH_St ar t Measur eChannel function has
completed measurement of radio wave usage by checking whether it has returned
WH_SYSSTATE_MEASURECHANNEL.

After that, to start connection of data sharing in parent mode, the WH_Par ent Connect function gets
called with the first argument set to WH_CONNECTMODE_DS PARENT and the third argument set to the
selected channel.

switch (sRol eMenuW ndow. sel ect ed)
{
case O:
if (sForcedChannel == 0)
{
/! Based on radio wave usage rate, get optinmal channel and connect.
(voi d) WH_St art Measur eChannel () ;
}
el se
{
sTgi d++;
/1 Update userGnelnfo in accept-entry state
updat eGanel nf o(TRUE) ;
/1 Del ete cached parent information
M _Cpud ear 8(sBssDesc, sizeof (sBssDesc));
[/l Start connection using nanulally sel ected channel .
(voi d) WH_Par ent Connect (WH_CONNECTMODE_DS PARENT, sTgi d, sForcedChannel);
}
changeSysMbde(SYSMODE_LOBBY) ;
br eak;
O 2008 Nintendo 13 TWL-06-0009-001-A

CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

3.2.2 Connecting in Child Mode

To begin a connection in the child mode of data sharing requires first scanning to find parents and then
deciding which parent to make a connection with.

In the sample program, the MbdeSel ect Rol e routine begins scanning for parents by calling the
WH_St ar t Scan function.

case 1:

{
/l Start searching for parents.
static const u8 ANY_PARENT[6] = { OxFF, OxFF, OxFF, OxFF, OxFF, OxFF };
enum
{ ALL_CHANNEL = 0 };

i ni t Wndow(& Sel ect Par ent W ndow)) ;
set upW ndow(&sSel ect Par ent W ndow, 16, 16, W N FLAG SELECTABLE, 8*2, 8, 16);
(voi d) WH_St art Scan(scanCal | back, ANY_PARENT, ALL_CHANNEL) ;
changeSysMbde(SYSMODE_SCAN_PARENT) ;
}

br eak;

The callback specified in the first argument of the WH_St ar t Scan function gets called each time a
parent is discovered during scanning. The scanCal | back routine actually specified for this argument
in the sample program performs a process that registers discovered parents in a list. A bitmap of valid
channels is specified for the third argument, but it is not necessary to check ahead of time whether the
specified channels are valid.

The MbdeSel ect Par ent routine, which is called during scanning, displays the parents found by
scanning, and waits for the user to select one.

To start the connection in the child mode of data sharing, first end the scan with the WH_EndScan
function and check that the WH_Get Syst enfst at e function returns WH_SYSSTATE | DLE, and set
VWH_CONNECTMODE_DS_CHI LD to the first argument and call the WH_Chi | dConnect function.

TWL-06-0009-001-A 14 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

/1 Has user closed the parent-search screen?
i f ((sSel ectParent Wndow. state == WN_STATE_CLGCSED))
{
if (WH GetSystenState() == WH_SYSSTATE_SCANNI NG
{
/1 If scanning for parents, end the scan process
(voi d) WH_EndScan() ;
return;
}
if (WH GetSystentState() == WH _SYSSTATE_| DLE)
{
i f (sSel ectParent W ndow. sel ected < 0)
{
VWH Finali ze();
changeSysMbde(SYSMODE_SELECT_RCLE) ;
return;
}
/1 If not scanning and user has sel ected a parent, comence data sharing
(voi d) WH_Chi | dConnect (WH_CONNECTMODE_DS_CHI LD,
&(sBssDesc[sSel ect Par ent W ndow. sel ected]));
changeSysMbde(SYSMODE_LOBBYWAI T) ;
}
}

3.3 Processing Synchronously

When the connection completes normally in the parent or child mode of data sharing, the state
obtained with the WH_Get SysSt at e function transitions to WH_SYSSTATE_DATASHARI NG (data
sharing).

For stable wireless communication, you must call the synchronous processing function WH_St epDS
before starting the MP communication cycle of that frame. For the V-count where the WM library
prepares MP communication, the parent is 260 and the child is 240 by default. It is designed to be as
efficient as possible when called with the V-Blank interrupt (V-count is 192). With this in mind, the
sample program calls the WH_St epDS function inside the updat eShar eDat a routine immediately
after the start of the V-Blank interrupt (i.e., immediately after the OS_Wai t VBl ankl nt r function).

O 2008 Nintendo 15 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial
static voi d updat eShar eDat a(voi d)
{
if (WH GetSystentState() == WH_SYSSTATE_DATASHARI NG
{
if (WH_StepDS(sSendBuf))
{
ulé i;
for (i =0; i < VW NUMMX CH LD + 1; ++i)
{
u8 *adr;
Shar eDat a *sd;
adr = (u8 *)WH _Get Shar edDat aAdr (i) ;
sd = (ShareData *) & (sRecvBuf[i * sizeof(SharebData)]);
if (adr !'= NULL)
{
M _CpuCopy8(adr, sd, sizeof(ShareData));
sRecvFl ag[i] = TRUE;
}
el se
{
sd->| evel = 0;
sd->data = O;
sRecvFl ag[i] = FALSE;
}
}
sNeedWait = FALSE;
}
el se
{
ulé6 i;
for (i =0; i < VW NUMMMX CH LD + 1; ++i)
{
sRecvFl ag[i] = FALSE;
}
sNeedWai t = TRUE;
}
}
el se
{
ulé i;
for (i =0; i < W NUMMX CH LD + 1; ++i)
{
sRecvFl ag[i] = FALSE;
}
sNeedWait = FALSE;
}
}

TWL-06-0009-001-A

Released: October 20, 2008

16 0 2008 Nintendo
CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

For data shared by synchronous processing, obtain the top address using the
WH_Get Shar edDat aAdr function and copy it to the receive data region allocated in the program.

In the main loop, use the WH_Get Connect Mode function to determine the connection mode. If in the
parent mode, call the ModePar ent routine. If in the child mode, call the ModeChi | d routine. The
send/receive results are displayed in each routine.

The link strength icon is also displayed, which graphically shows the strength of the communication link
while sharing data.

3.4 Disconnecting and Terminating Processing

When you want to disconnect a specific child from its parent with a user operation, use the
WM _Di sconnect function. When you want to disconnect multiple or all children at once, use the
VWM Di sconnect Chi | dr en function.

Using the WH library, when you want to terminate wireless communication by calling the

VWH_Fi nal i ze function, you can perform the appropriate end processing by evaluating the connection
mode and the current WH library state. With the WH_Fi nal i ze function, wireless communication
transitions to the IDLE state. From there, by sequentially calling the WM _Power O f , WM Di sabl e, and
VWM _Fi ni sh functions (or the WM_End function to perform all three), you can completely finish,
including disconnecting the wireless communication hardware.

O 2008 Nintendo 17 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK

Wireless Communication Tutorial

4 WH Library

The WH library is a collection of functions needed to implement normal wireless communication
programs. This section explains the functions collected in the WH library (including functions not used

in the sample programs).

4.1 Function Reference (Initialization, Termination, Reset)

This section discusses the functions that initialize, terminate, and reset

4.1.1 WH_Initialize Function

C Specification:
Argunents:
Return Val ues:

int WH Initialize(void);

None
TRUE Success
FALSE Fail ure

Normally, WH_| ni ti al i ze automatically allocates the communication send/receive data buffer

necessary for wireless communication and initializes wireless communication hardware. The wireless
communication state transitions to IDLE. When TRUE is returned, the WM | ni t function succeeded,
and the WM _Enabl e function was called successfully. Initialization processing is complete when the
return value of the WH_Get Syst entst at e function becomes WH_SYSSTATE | DLE.

You must create a heap in the main memory for the internally-called OS_Al | oc function.

4.1.2 WH_Finalize Function

C Specification:
Argunents:
Return Val ues:

int WH Finalize(void);

None
TRUE Success
FALSE Fail ure

VWH_Fi nal i ze calls the appropriate end process determined from the WH library state and the
connection mode. The wireless communication state transitions to IDLE after processing completes.
When TRUE is returned, the function call for end processing succeeded. The processing ends when
the return value of the WH_Get Syst entt at e function becomes WH_SYSSTATE | DLE.

To completely terminate wireless communication, you must call the WM _Power O f , WM Di sabl e, and
VWM _Fi ni sh functions, or just the WM _End function.

TWL-06-0009-001-A
Released: October 20, 2008

[0 2008 Nintendo
CONFIDENTIAL

18

Wireless Communication Tutorial NITRO-SDK

4.1.3 WH_Reset Function

C Specification: int WH Reset(void);
Argument s: None
Return Val ues: TRUE Success

FALSE Fail ure

WH Reset transitions the wireless communication state to IDLE regardless of the current state (such
as connection mode). When TRUE is returned, the WH_Reset call succeeded. The process completes
when the return value of WH_Get Syst entSt at e becomes WH_SYSSTATE | DLE.

4.2 Function Reference (Connection)

This section discusses the two connection functions, WH_For ceChannel and WH_Connect .

4.2.1 WH_ParentConnect Function

C Specification: BOOL WH_Par ent Connect (i nt nmode, ul6 tgid, ul6 channel);
Argunent s: node Connecti on node

tgid Parent communication tgid

channel Parent communi cati on channel
Return Val ues: TRUE Success

FALSE Failure

Connecti on node definitions:

enum {
WH_CONNECTMODE_MP_PARENT, // Parent MP connection node
VWH_CONNECTMODE_MP_CHI LD, /1 Child MP connection node
WH_CONNECTMODE_KS PARENT, // Parent key-sharing connection node
VWH_CONNECTMODE_KS_CHI LD, /1 Child key-sharing connection node
WH_CONNECTMODE_DS _PARENT, // Parent data-sharing connecti on node
VWH_CONNECTMODE_DS_CHI LD, /1 Child data-sharing connection node
VWH_CONNECTMCDE_NUM

b
This function starts the wireless communication connection in parent mode. It automatically transitions
to data sharing and key sharing. When TRUE is returned, the function call for connection processing
succeeded. Whether for a parent or child, the process completes when the WH_Get Syst entSt at e
function returns the following return values: MP connection is WH_SYSSTATE_CONNECTED, data
sharing is WH_SYSSTATE_DATASHARI NG, and key sharing is WH_SYSSTATE _KEYSHARI NG,

O 2008 Nintendo 19 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK

Wireless Communication Tutorial

4.2.2 WH_ChildConnect Function

C Specification: BOOL WH_Chi | dConnect (i nt nbde, WVBssDesc *bssDesc);
Ar gunent s: node Connecti on node

bssDesc bssDesc of parent connecting to
Return Val ues: TRUE Success

FALSE Fai l ure

Conneci ton node definitions:

enum {
VWH_CONNECTMODE_MP_PARENT, //
WH_CONNECTMODE_MP_CHI LD, /1
WH_CONNECTMODE_KS PARENT, //
WH_CONNECTMODE_KS _CHI LD, /1
VWH_CONNECTMODE_DS_PARENT, //
VWH_CONNECTMODE_DS_CHI LD, /1
V\H_CONNECTMODE_NUM

}s

Parent MP connection node

Child MP connecti on node

Parent key-sharing connection node
Chi |l d key-sharing connecti on node
Parent dat a-sharing connecti on node
Chi |l d dat a-sharing connecti on node

This function starts the wireless communication connection in child mode.

TWL-06-0009-001-A
Released: October 20, 2008

20

[0 2008 Nintendo
CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

4.3 Function Reference (MP Communication)

4.3.1 WH_SetReceiver Function

C Specification: voi d WH_Set Recei ver (WHRecei ver proc);
Argunent s: proc WHRecei ver type cal |l back function
Ret urn Val ues: None

WHRecei ver type definitions:
typedef void (*WHReceiver)(ul6 aid, ul6* data, ul6 size);

WH_Set Recei ver sets the MP communication data receive callback function. There is no need to set
this when data sharing or key sharing.

The send source ai d, received data, and receive data size are passed to the callback function.

4.3.2 WH_SendData Function

C Specification: int WH_SendDat a(
voi d *data, ul6 datasize, WHSendCal | backFunc call back);
Argunent s: dat a top address of send data
dat asi ze si ze of send data
cal | back WHSendCal | backFunc type cal |l back function
Ret urn Val ues: TRUE Success
FALSE Failure

WHSendCal | backFunc type definitions:
t ypedef void (*WHSendCal | backFunc) (BOOL result);

VWH_SendDat a starts an MP communication data send. You do not need to call this when data sharing
or key sharing. When TRUE is returned, the WM _Set MPDat aToPor t Ex function call succeeded. The
process completes when the callback function is called.

The send results are passed to the callback function. You must not change the contents of the send
data buffer until the callback function is called.

O 2008 Nintendo 21 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

4.4 Function Reference (Data Sharing)

4.4.1 WH_StepDS Function

C Specification: int WH_StepDS(void *data);
Argunent s: dat a top address of send data
Return Val ues: TRUE Success

FALSE Fail ure

WWH_St epDS proceeds to the next step in the synchronous processes for data sharing. When TRUE is
returned, the process is complete. To get shared data, use the WH_Get Shar edDat aAdr function.

For stable wireless communication, you must call this function before starting the MP communication
cycle of that frame. We recommend calling it immediately after starting the V-Blank interrupt.

4.4.2 WH_GetSharedDataAdr Function

C Specification: ulé *WH CGet Shar edDat aAdr (ul6 aid);

Argunents aid aid of child you want to get shared data for

Ret urn Val ues: top address of shared data of specified child
NULL is returned when it fails.

Call WH_Cet Shar edDat aAdr when you want to get data sharing shared data by specifying the child.

4.5 Function Reference: Key Sharing

45.1 WH_GetKeySet Function

C Specification: int WH Get KeySet (WWKeySet *keyset);
Argunent s: keyset pointer to buffer that stores shared key data
Ret urn Val ues: TRUE Success

FALSE Fail ure

WH_ Get KeySet stores key data shared with key sharing in the buffer. The process is complete when
TRUE is returned.

For stable wireless communication, the WH_Get KeySet function must be called before starting MP

communication cycle of that frame. We recommend calling immediately after starting the V-Blank
interrupt.

TWL-06-0009-001-A 22

[0 2008 Nintendo
Released: October 20, 2008

CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

4.6 Function Reference: Get State

4.6.1 WH_GetAllowedChannel Function

C Specification: ulé WH Get Al | onedChannel (voi d);
Ar gurent s: None
Ret urn Val ues: bit pattern of conmunication channels permitted for use

Internally, WH_Get Al | owedChannel calls the WM _Get Al | owedChannel function.

4.6.2 WH_GetConnectMode Function

C Specification: int WH_Get Connect Mbde(void);
Argument s: None
Ret urn Val ues: the set connection node

WH_Get Connect Mbde returns the connection mode set as an argument with the WH_Chi | dConnect
function. The return values are undetermined until WH_Chi | dConnect is called. Until the next time
VWH_Chi | dConnect is called, the previously-set connection mode is returned.

4.6.3 WH_GetBitmap Function

C Specification: ulé WH Get Bi t map(void);
Ar gurent s: None
Ret urn Val ues: bit pattern show ng connected termnal

The bit corresponding to the connected terminal is set to 1. The lowest bit corresponds to the parent
(ai d=0), and the highest bit corresponds to the 15th child (ai d=15).

4.6.4 WH_GetSystemState Function

C Specification: int WH Get Systenttate(void);
Ar gurent s: None
Ret urn Val ues: Internal state of WH library

Definitions of WH library internal states:

enum {

WH_SYSSTATE_STOR, /1 initial state

WH_SYSSTATE_| DLE, /1 standing by

WH_SYSSTATE_SCANNI NG, /'l scanning

WH_SYSSTATE_BUSY, /1 connecting

WH_SYSSTATE_CONNECTED, /1 connection conplete (conmunication is possible in
this state)

WH_SYSSTATE_DATASHARI NG, // connected wi th data-sharing enabl ed
WH_SYSSTATE_KEYSHARI NG // connected wi th key-sharing enabl ed
WH_SYSSTATE_ERROR, /1 error has occurred

WH_SYSSTATE_NUM

I

WH_Get Syst enfSt at e obtains the current internal state of the WH library.

O 2008 Nintendo 23 TWL-06-0009-001-A
CONFIDENTIAL Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

4.6.5 WH_GetLastError Function

C Specification: int WH GetLastError(void);
Argument s: None
Return Val ues: error code

Definitions of error codes:
enum {
/1 your own error codes
WH_ERRCODE_DI SCONNECTED = WM ERRCODE_MAX, // di sconnected from parent

WH_ERRCODE_PARENT_NOT_FOUND, /1 no parent
WH_ERRCODE_NO_RADI G, /1 wireless use not possible
WH_ERRCODE_LOST_PARENT, /1 parent not found

VWH_ERRCODE_MAX
I

WH_Get Last Er r or obtains the details of the error that just occurred.

TWL-06-0009-001-A 24 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Wireless Communication Tutorial

NITRO-SDK

5 Appendix

5.1 WH_StateInXXXX and WH_StateOutXXXX Functions

As stated in "2.1 Organization of the Wireless Manager," the Wireless Manager API performs wireless

communication with a combination of the request send function (call function) and the callback function

that receives notification.

For internal functions in the WH library, the request send function is WH_St at el nXXXX and the
callback function is WH_St at eQut XXXX.

5.1.1 Parent/Child Shared Functions in WH and WM

Table 5-1 Corresponding WM Functions (Parent/Child Shared Functions)

WH Library Function Names

Corresponding Wireless Manager Function

WH_St at eQut Reset

WH Statelnlnitialize WM I ni t
WH_St at el nEnabl e WMV _Enabl e
WH_St at eQut Enabl e

WH_St at el nPower On VWM _Power On
WH_St at eQut Power On

VWH_St at el nReset VWM _Reset

VWH_St at el nSet MPDat a
WH_St at eQut Set MPDat a

VWM_Set MPDat aToPor t Ex

WH_St at el nPower O f WM_Power O f
WH_St at eQut Power OF f
WH_St at el nDi sabl e WM Di sabl e
WH_St at eCQut Di sabl e
O 2008 Nintendo 25 TWL-06-0009-001-A

CONFIDENTIAL

Released: October 20, 2008

NITRO-SDK

Wireless Communication Tutorial

5.1.2 Parent Functions in WH and WM

Table 5-2 Corresponding WM Functions (Parent Functions)

WH Library Function Names

Corresponding Wireless Manager Function

WH_St at el nMeasur eChannel
WH_Next Measur eChannel
WH_St at eQut Measur eChannel

WM_Cet Al | owedChannel
WM_Measur eChannel

WH_St at el nSet Par ent Par am
WH_St at eQut Set Par ent Par am

VWM_Set Par ent Par anet er

WH_St at el nSt ar t Par ent
WH_St at eQut St art Par ent

VWM_St ar t Par ent

VWH_ St at el nSt ar t Par ent VP
VWH_St at eQut St art Par ent MP

WM St art MP

WM _St ar t Dat aShar i ng is also called when in data sharing mode.

WH_St at el nSt ar t Par ent KeyShar e
WH_St at eQut St art Par ent KeyShar e

WM _St art KeyShari ng

\WH_St at el nEndPar ent KeyShar e
WH_St at eQut EndPar ent Key Shar e

WM_EndKey Shar i ng

WH_St at el nEndPar ent MP
WH_St at eQut EndPar ent MP

W EndMP

WH_St at el nEndPar ent
WH_St at eQut EndPar ent

\WM_EndPar ent

WH_St at el nDi sconnect Chil dren
WH_St at eQut Di sconnect Chi | dren

WM _Di sconnect Chi | dren

TWL-06-0009-001-A
Released: October 20, 2008

26 0 2008 Nintendo
CONFIDENTIAL

Wireless Communication Tutorial

NITRO-SDK

5.1.3 Child Functions in WH and WM

Table 5-3 Corresponding WM Functions (Child Functions)

WH Library Function Names

Corresponding Wireless Manager Function

WH_St at el nSt ar t Scan
WH_Next Scan
WH_St at eQut St art Scan

WM_CGet Al | owedChannel
WM_St ar t Scan

WH_St at el nEndScan
WH_St at eQut EndScan

WM _EndScan

WH StatelnStartChild
WH StateQutStart Child

VWM_St ar t Connect

WH_StatelnStart Chil dMP
WH_St at eQut St art Chi | dMP

VWM St art MP

WM _St ar t Dat aShar i ng is also called when in data sharing mode.

WH_St at el nSt art Chi | dKeyShar e
WH_St at eQut St art Chi | dKeyShar e

WM _St ar t KeyShari ng

WH_St at el nEndChi | dKeyShar e
WH_St at eQut EndChi | dKeyShar e

WM _EndKeyShar i ng

WH_St at el nEndChi | dMP
WH_St at eQut EndChi | dMP

W/ _EndMP

WH_St at el nEndChi | d
WH_St at eQut EndChi | d

WM _Di sconnect

0 2008 Nintendo
CONFIDENTIAL

27 TWL-06-0009-001-A
Released: October 20, 2008

NITRO-SDK Wireless Communication Tutorial

© 2004-2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

TWL-06-0009-001-A 28 0 2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

	1 Overview of the Wireless Manager
	1.1 Role of the Wireless Manager
	1.2 MP Communication Protocol
	1.3 Data Sharing

	2 Operating the Wireless Manager
	2.1 Organization of the Wireless Manager
	2.2 Transitioning Between Internal States

	3 Implementing the dataShare-Model
	3.1 Initializing
	3.2 Connecting
	3.2.1 Connecting in Parent Mode
	3.2.2 Connecting in Child Mode

	3.3 Processing Synchronously
	3.4 Disconnecting and Terminating Processing

	4 WH Library
	4.1 Function Reference (Initialization, Termination, Reset)
	4.1.1 WH_Initialize Function
	4.1.2 WH_Finalize Function
	4.1.3 WH_Reset Function

	4.2 Function Reference (Connection)
	4.2.1 WH_ParentConnect Function
	4.2.2 WH_ChildConnect Function

	4.3 Function Reference (MP Communication)
	4.3.1 WH_SetReceiver Function
	4.3.2 WH_SendData Function

	4.4 Function Reference (Data Sharing)
	4.4.1 WH_StepDS Function
	4.4.2 WH_GetSharedDataAdr Function

	4.5 Function Reference: Key Sharing
	4.5.1 WH_GetKeySet Function

	4.6 Function Reference: Get State
	4.6.1 WH_GetAllowedChannel Function
	4.6.2 WH_GetConnectMode Function
	4.6.3 WH_GetBitmap Function
	4.6.4 WH_GetSystemState Function
	4.6.5 WH_GetLastError Function

	5 Appendix
	5.1 WH_StateInXXXX and WH_StateOutXXXX Functions
	5.1.1 Parent/Child Shared Functions in WH and WM
	5.1.2 Parent Functions in WH and WM
	5.1.3 Child Functions in WH and WM

