
 2008 Nintendo TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

TWL-SDK
Sound Driver

Version 1.2.1

The content of this document is highly confidential

and should be handled accordingly.

Sound Driver TWL-SDK

TWL-06-0040-001-A 2  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

and/or its licenses developers and are protected by national and international copyright laws. They may not

be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

TWL-SDK Sound Driver

 2008 Nintendo 3 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

Table of Contents

1 Introduction ...6

1.1 Overview ...6

1.2 Use Heading 3 for Third Level Headings..6

1.3 NITRO-Composer ...6

2 The Sound Hardware..7

2.1 Overview of the Sound Circuitry ...7

2.2 Channels ...8

2.2.1 ADPCM/PCM ..8

2.2.2 PSG Rectangular Waves...8

2.2.3 Noise ...8

2.3 Sound Capture..8

3 The ARM7 Command Process ...9

3.1 The Command Process Flow..9

3.2 Sound Functions and Commands ..10

3.3 The Command Packets ..12

3.4 Flushing Command...13

3.5 Receiving Command Response ...13

3.6 Command Tags...14

3.7 When There Is a Shortage of Free Command Packets..14

3.8 Sound Frames ..15

4 Playing Sounds ...16

4.1 Playing Sequences and Controlling Channels..16

4.2 Controlling Channels...16

4.2.1 Locking Channels..16

4.2.2 Setting up Channels ..16

4.2.3 Starting and Stopping the Timer ..16

4.2.4 Channel Parameters ...17

5 Sound Capture..18

5.1 Overview of Sound Capture..18

5.2 How to Use Sound Capture ..18

5.3 Problems with Sound Capture ..18

6 Sound Alarms..19

6.1 Overview of Sound Alarms..19

Sound Driver TWL-SDK

TWL-06-0040-001-A 4  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

6.2 How to Use Sound Alarms ... 19

7 Getting Driver Information .. 20

7.1 Overview... 20

7.2 Getting the Information Structure ... 20

7.3 Getting Other Information... 21

8 Precautions When Using NITRO-Composer.. 22

8.1 Using Player ... 22

8.2 Using Channels .. 22

8.3 Using Sound Capture ... 22

8.4 Using Sound Alarms... 22

Code

Code 3-1 The Command Flush and Command Response Processes .. 14

Code 7-1 Getting the Driver Information Structure... 20

Tables

Table 2-1 The Channel Numbers and Their Features.. 8

Table 5-1 Capture Feature Components .. 18

Table 7-1 Other Functions .. 21

Figures

Figure 2-1 Schematic of the Sound Circuitry ... 7

Figure 3-1 The Command Process Flow.. 10

Figure 3-2 Command Packet ... 12

Figure 3-3 Command Packet State Transitions.. 13

TWL-SDK Sound Driver

 2008 Nintendo 5 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

Revision History

Version Revision Date Description

1.2.1 2008/10/16 Changed wording to use TWL SDK instead of NITRO SDK.

1.2.0 2005/07/04

Revised explanation of commands.

Added the term "command packet" and unified other terminology.

Added a section about the problem with Sound Capture.

Fixed errors in Code 7-1.

1.1.1 2005/05/10

Corrected the description of command states.

Corrected the explanation of command tags.

Fixed writing errors.

1.1.0 2005/04/26

Fixed Sound Capture writing errors.

Made revisions in line with addition to sound functions.

Corrected the explanation of commands.

1.0.0 2005/04/13 Initial version.

Sound Driver TWL-SDK

TWL-06-0040-001-A 6  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

1 Introduction

1.1 Overview

Sound Driver (SND) is a library that provides applications with some relatively low-level control over

the Nintendo DS sound hardware. The Nintendo DS sound features can be used with this library

implemented on the ARM7.

This document describes the mechanism of Sound Driver operation and explains its essential group

of functions. For detailed explanations about specific functions, see the Function Reference.

1.2 Use Heading 3 for Third Level Headings

The sound driver can be broadly divided into three library parts:

1. The ARM9 library that provides the library's interface.

2. The core part of the library on the ARM7.

3. The command library in charge of data exchanges between the ARM9 and the ARM7.

Sound Driver is used via the group of functions on the ARM9, but you should still understand the flow

of operations from the time the functions are called to the time the sounds are actually processed on

the ARM7. Of particular importance is an understanding of the exchange of commands between the

ARM9 and the ARM7. This is covered in detail in Chapter 3 The ARM7 Command Process.

1.3 NITRO-Composer

The TWL-System package comes with a sound library called NITRO-Composer that can be used for

the playback of sequences and streaming, and for the management of sound data. NITRO-Composer

allows it to be used with Sound Driver's group of low-level functions, but certain precautions should

be considered. These precautions are explained in Chapter 8 Precautions When Using NITRO-

Composer. Since NITRO-Composer and Sound Driver share the same formats for sequence or bank

data, the documentation for NITRO-Composer should also be reviewed.

TWL-SDK Sound Driver

 2008 Nintendo 7 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

2 The Sound Hardware

2.1 Overview of the Sound Circuitry

The Nintendo DS sound hardware consists of 16 sets of sound circuitry that independently control 16

channels, a mixer to blend the sounds from the separate circuits, and a sound capture component

that writes the sound output to memory.

Figure 2-1 Schematic of the Sound Circuitry

Channel 0 (ADPCM/PCM)

Channel 1 (ADPCM/PCM)

Channel 2 (ADPCM/PCM)

Channel 3 (ADPCM/PCM)

Channel 4 (ADPCM/PCM)

Channel 5 (ADPCM/PCM)

Channel 6 (ADPCM/PCM)

Channel 7 (ADPCM/PCM)

Channel 8 (ADPCM/PCM/PSG rectangular wave)

Channel 9 (ADPCM/PCM/PSG rectangular wave)

Channel 10 (ADPCM/PCM/PSG rectangular wave)

Channel 11 (ADPCM/PCM/PSG rectangular wave)

Channel 12 (ADPCM/PCM/PSG rectangular wave)

Channel 13 (ADPCM/PCM/PSG rectangular wave)

Channel 14 (ADPCM/PCM/noise)

Channel 15 (ADPCM/PCM/noise)

M
ix

er
(L

-
R

)

Sound Capture

S
pe

ak
er

O
ut

pu
t

Sound Driver TWL-SDK

TWL-06-0040-001-A 8  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

2.2 Channels

Each sound circuit is called a channel. Each channel can generate one sound. Therefore, the 16

channels can play up to 16 sounds. The channels are numbered channel 0 to channel 15. As shown

in Table 2-1, each channel number has different capabilities.

Table 2-1 The Channel Numbers and Their Features

Channel Numbers Features

0, 2 These channels can play ADPCM/PCM. In addition, the output from these channels can
serve as the input for sound capture.

1, 3 These channels can play ADPCM/PCM. Sound Capture shares timers with these
channels, so when sound capture is being used these channels can only be used as the
output channels for sound capture.

4 to 7 These channels can play ADPCM/PCM.

8 to 13 These channels can play ADPCM/PCM as well as PSG rectangular waves.

14, 15 These channels can play ADPCM/PCM as well as white noise.

2.2.1 ADPCM/PCM

Channels that play ADPCM/PCM can play 16-bit PCM, 8-bit PCM, and IMA-ADPCM.

2.2.2 PSG Rectangular Waves

Channels that play PSG rectangular waves can play rectangular waves for which the duty ratio can

be set.

2.2.3 Noise

Channels that play noise can play white noise. There are no configuration settings for white noise.

2.3 Sound Capture

The Nintendo DS has two built-in sound capture components for writing output waveform data to

memory. Figure 2.1 depicts the capture of the left output and the right output from the mixer.

Channels 0 and 2 can also be used to capture sound.

Resolution of the captured waveform can be set to either 8-bit or 16-bit.

TWL-SDK Sound Driver

 2008 Nintendo 9 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

3 The ARM7 Command Process

3.1 The Command Process Flow

When SND functions are called, processes do not necessarily begin immediately. SND functions are

first added to the ARM9 reserved command list. After the SND_FlushCommand is called, ARM7

begins to process the commands in the ARM9 reserved command list.

Sound Driver TWL-SDK

TWL-06-0040-001-A 10  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

Figure 3-1 The Command Process Flow

3.2 Sound Functions and Commands

Most of the SND library functions are commands for performing processes on the ARM7. Commands

are stored in ARM9 and sent to ARM7 for process when SND_FlushCommand is explicitly executed.

Some of the functions that do not require processing on the ARM7 are executed when they are called.

ARM9 ARM7

Call to sound

Call to

SND_FlushCommand

Sound frame

Previous frame's channel parameters

are reflected in register

Process commands in queue

Sequencer process

Update channel parameters

C
om

m
an

d
qu

eu
e

Sound frame

Previous frame's channel parameters

are reflected in register

Process commands in queue

Sequencer process

Update channel parameters

C
om

m
an

d
qu

eu
e

C
om

m
an

d
qu

eu
e

Call to sound

R
es

er
ve

d
C

om
m

an
d

lis
t

Call to sound

R
es

er
ve

d
C

om
m

an
d

lis
t

Call to sound

Call to sound

Process flow

Command flow

TWL-SDK Sound Driver

 2008 Nintendo 11 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

The following functions are processed on the ARM7:

• Sequence Commands
SND_StartSeq SND_PrepareSeq

SND_StartPreparedSeq SND_StopSeq

SND_PauseSeq SND_SetPlayerTempoRatio

SND_SetPlayerVolume SND_SetPlayerChannelPriority

SND_SetPlayerLocalVariable SND_SetPlayerGlobalVariable

SND_SetTrackMute SND_SetTrackVolume

SND_SetTrackPitch SND_SetTrackPan

SND_SetTrackModDepth SND_SetTrackModSpeed

SND_SetTrackAllocatableChannel

• Channel Commands
SND_LockChannel SND_UnlockChannel

SND_StopUnlockedChannel SND_SetupChannelPcm

SND_SetupChannelPsg SND_SetupChannelNoise

SND_SetChannelVolume SND_SetChannelTimer

SND_SetChannelPan

• Capture Commands
SND_SetupCapture

• Alarm Commands
SND_SetupAlarm

• Timer Commands
SND_StartTimer SND_StopTimer

• Global Settings Commands
SND_SetMasterVolume SND_SetMasterPan

SND_ResetMasterPan SND_SetOutputSelector

• Data Invalidation Commands
SND_InvalidateSeqData SND_InvalidateBankData

SND_InvalidateWaveData

Sound Driver TWL-SDK

TWL-06-0040-001-A 12  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

3.3 The Command Packets

Command packets have been prepared for the mechanism that sends commands to ARM7. Each

command packet contains a single command. These command packets are bundled into in a

command packet list that sends the commands to the ARM7.

Figure 3-2 Command Packet

Each command packet can be in any of the following states:

• The "free" state—the command can be newly registered.

• The "reserved" state—the command has been registered and is waiting to be flushed.

• The "wait" state—the command waits for the process to complete in the ARM7.

For a command in the reserved state to execute, the reserved command packet list must be flushed.

This operation is called a command flush. If a command packet is waiting for processes to end, the

command packet cannot return to the free state until a command response confirms that the process

has completed.

You are limited to a maximum of 256 command packets. Because of this limit on command packets,

you need to periodically flush commands, receive command responses, and secure free command

packets.

You can use the following functions that return the number of command packets in each of the three

states: SND_CountFreeCommand, SND_CountReservedCommand, and

SND_CountWaitingCommand.

Command

Packet List

Command

Packet

Command

Command

Packet

Command

Command

Packet

Command

Command

Packet

Command

TWL-SDK Sound Driver

 2008 Nintendo 13 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

Figure 3-3 Command Packet State Transitions

3.4 Flushing Command

SND_FlushCommand can be used when necessary. If the call needs to be synchronous with ARM7

processes, you can combine SND_FlushCommand with a command tag (see section 3.6).

Commands will not be processed if they are not flushed. If you do not periodically flush the reserved

command packet list, the list will grow and you will have a shortage of free command packets. Calling

SND_FlushCommand once every frame is recommended.

3.5 Receiving Command Response

A command packet that is waiting for processes to complete is not free until a response is received

that indicates the process of the flushed command has ended. By calling SND_RecvCommandReply,

you can take the oldest processed and completed command to the free packet list and make the

command packet list free and get that list.

As with receiving command response, if you do not periodically call SND_RecvCommandReply, you

will have a shortage of free command packets. To ensure enough free command packets, you should

periodically call SND_RecvCommandReply.

The following code shows a process where the sound function SoundMain is called in every frame.

The flushing command and receiving command response is called in every frame.

Available Command Packet

Reserved

command

packet

Command

packet waiting

for processing

to complete

Flush the command

Receive command response Call the sound function

Sound Driver TWL-SDK

TWL-06-0040-001-A 14  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

Code 3-1 The Command Flush and Command Response Processes

void SoundMain(void)

{

// Receive ARM7 response

while (SND_RecvCommandReply(SND_COMMAND_NOBLOCK) != NULL) {}

// Issue command to ARM7

SND_FlushCommand(SND_COMMAND_NOBLOCK);

}

SND_FlushCommand and SND_RecvCommandReply each have a parameter that can be used to

specify whether to block inside the function until the process succeeds. In the example above, the

parameter for SND_RecvCommandReply is set to SND_COMMAND_NOBLOCK so that no block is

performed inside the function. You should specify SND_COMMAND_BLOCK in these functions if you

need to be certain that the flushing of commands and the reception of command responses have

completed successfully.

3.6 Command Tags

Command tags can be used to determine whether the processing of commands has finished and also

to synchronize the command processing in the ARM7 with the application in the ARM9.

Call the SND_GetCurrentCommandTag function to get a command tag and check whether the

commands prior to the acquisition of the tag have finished executing. Use

SND_IsFinishedCommandTag to check whether commands prior to the tag specified in the

argument have finished executing. If they have not, the function SND_WaitForCommandProc asks

the ARM7 to quickly execute any commands that have not finished executing; processing waits inside

this function until execution has been completed.

A flush command must be performed before processing is complete, so be careful when using

command tags to check if a process has finished.

3.7 When There Is a Shortage of Free Command Packets

When there is a shortage of free command packets, new commands cannot be added until the

situation is addressed. If a sound function is called as part of a new command process when there is

a shortage of free command packets, the following procedure is performed in order to secure enough

free command packets:

1. If a command is in the wait state, act to receive a command response.

2. If (1) does not solve the shortage, flush the command, request immediate execution by ARM7, and

wait until there is a command response.

TWL-SDK Sound Driver

 2008 Nintendo 15 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

Because this procedure includes both a command flush and a wait for a command response, in some

cases it may take some time before the sound function is called. Furthermore, if the flush is done

while they are executing, the command flush might separate processes that should be executing

simultaneously. To prevent processes from being separated, there is the

SND_WaitForFreeCommand function, which waits until a specified number of free commands have

been secured. To avoid the problem of insufficient free command packets, you should periodically

perform the processes to flush commands and receive command responses.

3.8 Sound Frames

The ARM7 sound frame interval is approximately 5.2 ms. Depending on the circumstances, it can

take as long as the sound-frame interval for the process to execute after the command has been

flushed. The exception is when the argument SND_COMMAND_IMMEDIATE is specified when the

command is flushed. When this exception occurs, the process can begin immediately in ARM7

without waiting for the next sound frame.

Sound Driver TWL-SDK

TWL-06-0040-001-A 16  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

4 Playing Sounds

4.1 Playing Sequences and Controlling Channels

Sound Driver uses two methods to generate sounds. One involves the playback of performance

sequences based on a special format of sequence data. The other involves the direct control of

channels to make sounds.

Since NITRO-Composer offers more advanced processes for the performance of sequence data,

here we will concentrate on an explanation of the direct control of channels to make sounds.

4.2 Controlling Channels

Generating sounds by directly controlling channels involves the following procedure:

1. Lock the channel

2. Set up the channel in accordance with the chosen playback method

3. Start the timer

4.2.1 Locking Channels

In order for the ARM7-implemented sequencer to automatically play sounds, channels are first

reserved and later released after the sounds have finished playing. For this reason, when the

programmer intends to directly control channels, the channels need to be locked by calling

SND_LockChannel so the actions do not collide with those of the sequencer. Operations that are

performed on channels are designed on the assumption that the channels have been locked.

A locked channel cannot be used by the sequencer, so when a locked channel is no longer needed,

be sure to call SND_UnlockChannel and unlock the channel so it becomes available to the

sequencer again.

4.2.2 Setting up Channels

Once channels have been locked, call the setup function that fits your purpose:

SND_SetupChannelPcm for PCM playback, SND_SetupChannelPsg for PGS rectangular wave

playback, and SND_SetupChannelNoise for white noise. In the case of PGS rectangular waves

and white noise, only those channel numbers that can play those types of data can be set up.

4.2.3 Starting and Stopping the Timer

A channel begins to play sounds once SND_StartTimer is called and the timer has been started.

Since one call to SND_StartTimer can start the time simultaneously for multiple channels, this is a

way to coordinate the playing of sounds in multiple channels. The same timer-start call can be used

to coordinate Sound Capture and Sound Alarm, both of which are described below.

TWL-SDK Sound Driver

 2008 Nintendo 17 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

To stop sounds, call SND_StopTimer to stop the timer. This can be used to simultaneously control

multiple channels, just like the call to start the timer.

4.2.4 Channel Parameters

Volume, timer, and pan values can be set for each channel. The values can be set using the setup

functions, but they can also be set individually by calling the SND_SetChannelVolume,

SND_SetChannelTimer, and SND_SetChannelPan functions. This provides a way of changing the

values even after the timer has started.

Sound Driver TWL-SDK

TWL-06-0040-001-A 18  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

5 Sound Capture

5.1 Overview of Sound Capture

The Nintendo DS sound capture feature has two components.

Table 5-1 Capture Feature Components

Number Capture Target Timer

Capture 0 Captures the output from the mixer's
left channel or from channel 0.

Shares the channel 1 timer.

Capture 1 Captures the output from the mixer's
right channel or from channel 2.

Shares the channel 3 timer.

Because the channel 1 and channel 3 timers are shared with sound capture, you lose the ability to

freely set the timer values and generate sounds while using the capture feature. However, the

captured data can still be re-output and used for other purposes.

5.2 How to Use Sound Capture

The procedure for using sound capture is similar to the procedure for using channels:

1. Lock the channel that uses the timer being shared with the capture feature.

2. Call SND_SetupCapture to set up the capture parameters.

3. Call SND_SetChannelTimer to set the frequency of the shared timer,

or call SND_SetupChannelPcm to configure the settings to play the captured data.

4. Start the timer.

You can create sound effects by performing arithmetic processes on the captured data and then

outputting the data again. NITRO-Composer makes use of sound capture to implement reverb and

output effects.

5.3 Problems with Sound Capture

There is a problem with the Sound Capture hardware in NITRO compatibility mode that prevents the

output from channel 0s or 2s from being captured correctly.

For more information about this problem, see the TWL Programming Manual.

TWL-SDK Sound Driver

 2008 Nintendo 19 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

6 Sound Alarms

6.1 Overview of Sound Alarms

Sound Alarms is an alarm system that uses the ARM7 timer. You can use Sound Alarms to

synchronize such process as the capture of sound data and the generation of sounds in channels.

There are eight sound alarms, numbered 0 to 7, and all eight can be used at the same time.

6.2 How to Use Sound Alarms

The procedure for using Sound Alarms is shown below:

• Call SND_SetupAlarm to set up the sound alarms you plan to use.

• Call SND_StartTimer to start the configured sound alarm(s).

SND_StartTimer can start channels, sound capture, and sound alarms all at the same time. Start

the sound alarms together with the channels and the sound captures you want to synchronize.

Sound Driver TWL-SDK

TWL-06-0040-001-A 20  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

7 Getting Driver Information

7.1 Overview

To get information about the current driver state, you can use the group of functions that have been

prepared to get this information. You just need to be careful about synchronizing with ARM9 when you

act to get information that is being processed by ARM7.

7.2 Getting the Information Structure

You can get information about the current status of the channel, player, and track being processed by

the ARM7. To synchronize these actions, use the following procedure:

• Call SND_ReadDriverInfo and get the driver information. This function is a command scheduling

function, so in order to access the obtained information you must flush the command and wait for

the command to finish executing.

• Call the pertinent functions to get the channel, player, and track information (SND_ReadChannelInfo,

SND_ReadPlayerInfo, and SND_ReadTrackInfo).

The following example is code that gets the structure for the driver information, waits for the

command to complete, and then gets other information.

Code 7-1 Getting the Driver Information Structure

u32 tag;

SNDDriverInfo driverInfo;

SNDChannelInfo channelInfo;

SNDPlayerInfo playerInfo;

SNDTrackInfo trackInfo;

/* Wait for completed obtainment of driver information */

SND_ReadDriverInfo(&driverInfo);

tag = SND_GetCurrentCommandTag();

SND_FlushCommand(SND_COMMAND_BLOCK);

SND_WaitForCommandProc(tag);

/* Get information about channel 0 */

SND_ReadChannelInfo(&driverInfo, 0, &channelInfo);

/* Get information about player 1 */

SND_ReadPlayerInfo(&driverInfo, 1, &playerInfo);

/* Get information about track 3 of player 0 */

SND_ReadTrackInfo(&driverInfo, 0, 3, &trackInfo);

TWL-SDK Sound Driver

 2008 Nintendo 21 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

7.3 Getting Other Information

In addition to the functions that get structure information, there are other functions you can use to get

information without calling SND_ReadDriverInfo.

These functions are executed asynchronously from ARM7 command functions. As a result, you

cannot be certain of the reason when one of the functions returns 0. For example, if after executing

SND_StartTimer you were to call SND_GetPlayerStatus and the function returned 0, you could not

determine whether the channel was not active because a command was not completed or because

playback had ended.

In order to gain synchronization for the acquisition of information, use a command tag and call

SND_WaitForCommandProc or devise some other means of checking to see whether the ARM7

command has completed processing.

Table 7-1 Other Functions

Function Description

SND_GetPlayerStatus Obtains the player status

SND_GetChannelStatus Obtains the channel status

SND_GetCaptureStatus Obtains the Sound Capture status

SND_GetPlayerLocalVariable Obtains the sequence local variable

SND_GetPlayerGlobalVariable Obtains the sequence global variable

SND_GetPlayerTickCounter Obtains the sequence tick counter

Sound Driver TWL-SDK

TWL-06-0040-001-A 22  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

8 Precautions When Using NITRO-Composer

8.1 Using Player

When you use NITRO-Composer to play sequence data, you cannot control the player from Sound

Driver. In other words, you cannot use NITRO-Composer sequence playback and Sound Driver

sequence playback at the same time.

8.2 Using Channels

The Sound Driver functions for locking and unlocking channels (SND_LockChannel and

SND_UnlockChannel) can only lock channels with regard to Sound Driver sequence playback. If

you want to lock channels when using NITRO-Composer, use the NITRO-Composer functions

NNS_SndLockChannel and NNS_SndUnlockChannel.

8.3 Using Sound Capture

If you want to use the Sound Driver's sound capture feature while using NITRO-Composer, call the

NITRO-Composer function NNS_SndLockCapture so NITRO-Composer will not use the capture

feature.

You will also need to call NNS_SndLockChannel at the same time to lock channel 1 and channel 3.

8.4 Using Sound Alarms

NITRO-Composer uses sound alarms internally, so if you are using NITRO-Composer and plan to

use sound alarms yourself, call the NITRO-Composer function NNS_SndAllocAlarm to determine

which alarm numbers are available. The numbers obtained by this function represent the alarms that

are not being used internally by NITRO-Composer.

When you are done using an alarm, remember to release it by calling NNS_SndFreeAlarm.

TWL-SDK Sound Driver

 2008 Nintendo 23 TWL-06-0040-001-A
CONFIDENTIAL Released: December 19, 2008

All company and product names in this document are the trademarks or registered trademarks of the respective companies.

Sound Driver TWL-SDK

TWL-06-0040-001-A 24  2008 Nintendo
Released: December 19, 2008 CONFIDENTIAL

© 2008 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed, or loaned in whole or in part without

the prior approval of Nintendo.

	1 Introduction
	1.1 Overview
	1.2 Use Heading 3 for Third Level Headings
	1.3 NITRO-Composer

	2 The Sound Hardware
	2.1 Overview of the Sound Circuitry
	2.2 Channels
	2.2.1 ADPCM/PCM
	2.2.2 PSG Rectangular Waves
	2.2.3 Noise

	2.3 Sound Capture

	3 The ARM7 Command Process
	3.1 The Command Process Flow
	3.2 Sound Functions and Commands
	3.3 The Command Packets
	3.4 Flushing Command
	3.5 Receiving Command Response
	3.6 Command Tags
	3.7 When There Is a Shortage of Free Command Packets
	3.8 Sound Frames

	4 Playing Sounds
	4.1 Playing Sequences and Controlling Channels
	4.2 Controlling Channels
	4.2.1 Locking Channels
	4.2.2 Setting up Channels
	4.2.3 Starting and Stopping the Timer
	4.2.4 Channel Parameters

	5 Sound Capture
	5.1 Overview of Sound Capture
	5.2 How to Use Sound Capture
	5.3 Problems with Sound Capture

	6 Sound Alarms
	6.1 Overview of Sound Alarms
	6.2 How to Use Sound Alarms

	7 Getting Driver Information
	7.1 Overview
	7.2 Getting the Information Structure
	7.3 Getting Other Information

	8 Precautions When Using NITRO-Composer
	8.1 Using Player
	8.2 Using Channels
	8.3 Using Sound Capture
	8.4 Using Sound Alarms

