
Profiler

 2008 Nintendo 1 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

Profiler
Version 0.3.0 2008/09/26

Table of Contents

1 Profiler Mechanism... 2
1.1 Profile Feature.. 3

1.2 Specifying During a Compile .. 5

1.3 Switching with pragma... 6
1.3.1 Where to Place Pragma .. 7

2 Nitro-SDK profiler ... 8
2.1 Function Call Trace .. 8

2.2 Function Cost Measurement .. 8

3 Function Call Trace .. 9
3.1 Mechanism of Trace Recording ... 9

3.2 Saved Information .. 10

3.3 Two Modes of Function Call Trace..11

3.4 Implementing in the Program ... 12

3.5 Display Example with Dump .. 15
3.5.1 In Stack Mode ... 15

3.5.2 In Log Mode .. 16

3.6 Specification When Linking .. 17

3.7 Operation on Thread .. 17

3.8 Cost .. 17

4 Function Cost Measurement .. 18
4.1 Cost Measurement Mechanism ... 18

4.2 Saved Information .. 19

4.3 Conversion to Statistics Buffer ... 20

4.4 Implementing in the Program ... 21

4.5 Display Example with Dump .. 24

4.6 Specification When Linking .. 24

4.7 Operation on Thread .. 24

4.8 Cost .. 24

5 Other Profilers (non-Nitro-SDK).. 25
5.1 Specification When Linking .. 25

Profiler

TWL-06-0016-001-A 2  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

and are protected by national and international copyright laws. They may not be disclosed to third parties or

copied or duplicated in any form, in whole or in part, without the prior written consent of Nintendo.

Profiler

 2008 Nintendo 3 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

1 Profiler Mechanism

1.1 Profile Feature

mwccarm.exe, the C compiler from Freescale Semiconductor, is set up to support the profile feature. This feature

automatically inserts the code for a specific function call in the entry and exit of the function. By taking records and

statistics about the call from within the function, you can acquire profile information; which is especially useful for things

like debugging. The profile feature can be enabled by adding the option –profile in mwccarm.exe and compiling.

The profiler typically created lines of code like the following example.

u32 test(u32 a)
{

return a + 3;
}

If this function is compiled, usually an object with the following code is output.

test:
add r0, r0, #3 // Add 3
bx lr

3 is simply added to the argument r0. (Return value is also stored in r0.)

Next, the case in which compiling with the profile feature ON is shown. __PROFILE_ENTRY and __PROFILE_EXIT are

called during entry and exit respectively. The following is an example of code created by this feature for a stack operation.

test:
stmfd sp!,{r0,lr}
ldr r0,[pc,#32] // Assign the pointer to the character string “test”

to r0
bl __PROFILE_ENTRY // __PROFILE_ENTRY Call
ldmfd sp!,{r0,lr}

add r0,r0,#3 // Add 3

sub sp,sp,#4
stmfd sp!,{lr}
bl __PROFILE_EXIT // __PROFILE_EXIT Call
ldmfd sp!,{lr}
add sp,sp,#4
bx lr

:
dcd xxxx // pointer to the character string “test”

:
xxxx: 74 65 73 74 00 // character string “test”

Profiler

TWL-06-0016-001-A 4  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

_PROFILE_ENTRY and _PROFILE_EXIT have only the code for calling functions, and the entity of the function must be

created in the application. For TWL-SDK, they are defined in os_callTrace.c and os_functionCost.c so that you

can link them into your code if necessary.

Functions that call __PROFILE_ENTRY and __PROFILE_EXIT and functions that do not call __PROFILE_ENTRY and

__PROFILE_EXIT can exist in the link object. Functions that don't make these calls will simply not be profiled. Since the

compiler enters profiling calls function by function, there are no function that calls only __PROFILE_ENTRY or

__PROFILE_EXIT unless such function is created deliberately.

test1()

__PROFILE_ENTRY()

__PROFILE_EXIT()

xxxx

xxxx

xxxx

main()

xxxx

xxxx

xxxx

test2()

xxxx

xxxx

xxxx

test3()

__PROFILE_ENTRY()

__PROFILE_EXIT()

xxxx

xxxx

xxxx

__PROFILE_ENTRY()

xxxx

xxxx

xxxx

__PROFILE_EXIT()

xxxx

xxxx

xxxx

The object that has the _PROFILE function and the object that do not have the _PROFILE function

can be mixed. (The _PROFILE function itself does not have the calls to the _PROFILE function.)

Profiler

 2008 Nintendo
CONFIDENTIAL

1.2 Compile-Time Specifications

With TWL-SDK, if you define either the TWL_PROFILE or NITRO_PROFILE build switches when you run make, the –

profile option will be added when the C source is compiled. For functions in source compiled with the –profile option,

the calls for __PROFILE_ENTRY and __PROFILE_EXIT are entered at the entry and exit points of functions in the object

code.

We used the phrase “TWL_PROFILE or NITRO_PROFILE” in the description above. Because only the NITRO_PROFILE

build switch is valid for NITRO-SDK, we have made provisions for the sake of compatibility so that either build switch can

be defined. When creating a NITRO ROM using TWL-SDK, it’s perfectly fine to define TWL_PROFILE. Likewise, when

creating a TWL LIMITED ROM, defining either NITRO_PROFILE or TWL_PROFILE will have the same effect.

If make TWL_PROFILE=TRUE or
make NITRO_PROFILE=TRUE is executed

m function()

If a simple make is executed

function()

xxxx

xxxx

xxxx

mwccarm … test.c
wccarm –profile … test.c
5 TWL-06-0016-001-A
Released: October 20, 2008

__PROFILE_ENTRY()

__PROFILE_EXIT()

xxxx

xxxx

xxxx

Profiler

TWL-06-0016-001-A 6  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

1.3 Switching with pragma

When temporarily switching the profile feature in the C source use #pragma.

#pragma profile on turns it ON.

#pragma profile off turns it OFF.

#pragma profile reset returns it to the original status before switching to ON or OFF.

(Example)

void test1(void)
{

：
}

void test2(void)
{

：
}

#pragma profile off
void test3(void)
{

：
}

#pragma profile reset

void test4(void)
{

：
}

If this source is compiled with –profile, the profile feature for test1(), test2(), and test4() are ON. (without -

profile, the profile feature will be OFF with all functions.)

It is okay to include this in the makefile.

：

TWL_PROFILE = TRUE

：

Makefile

 2008 Nintendo
CONFIDENTIAL

1.3.1 Where to Place Pra

If the profile pragma is turned on befo

profile pragma is turned off at the m

pragma should be set outside the func

(Example)

#pragma profile off
void test1(void)
{

xxxxx();
xxxxx();
xxxxx();

#pragma profile on
}

void test2(void)
{

xxxxx();
xxxxx();
xxxxx();

#pragma profile off
}

Profiler

gmas

re a given function ends, the profiler feature will be enabled for that function. If the

oment it ends, the profiler feature will be disabled for that function. Normally this

tion so that it is easier to follow.

profile off

Profiling is enabled for this function.

Profiling is disabled for this function
profile off
profile on
7 TWL-06-0016-001-A
Released: October 20, 2008

Profiler

TWL-06-0016-001-A 8  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

2 TWL-SDK profiler
By setting up PROFILE functions for objects with calls for __PROFILE_ENTRY() and __PROFILE_EXIT(), the following

mechanisms for debugging with TWL-SDK are available:

・ Function Call Trace (OS_CallTrace)

・ Function Cost Measurement (OS_FunctionCost)

These features are built separately from the OS library. More specifically, the OS library is libos.a (or

libos.thumb.a). The function call trace library is libos.CALLTRACE.a (or libos.CALLTRACE.thumb.a), and the

function cost measurement is libos.FUNCTIONCOST.a (or libos.FUNCTIONCOST.thumb.a).

2.1 Function Call Trace

There are two modes for the mechanism that records the results of a PROFILE function to a specified memory location.

One is a stack mode that records the call of the function with __PROFILE_ENTRY() and deletes the record with

__PROFILE_EXIT(). By checking the record at a certain point you can find out what function wrote to the record at that

point (what type of call was used).

The other is a log mode that records the call of the function with __PROFILE_ENTRY() and does nothing with

__PROFILE_EXIT(). The buffer for recording is used repeatedly so the most recent record is always maintained. This

allows display of the function that was called (was being called when the record was written).

To enable this profile feature, you must specify TWL_PROFILE_TYPE=CALLTRACE (or

NITRO_PROFILE_TYPE=CALLTRACE) as a make option. (It can be specified in the Makefile also.)

2.2 Function Cost Measurement

This mechanism measures the time in the ENTRY and EXIT areas of the PROFILE function and checks the duration of

the function based on the difference between the two.

If you are using a thread system, the time while the thread is switched and another thread is running is subtracted from

the duration. This allows you to compare the cost of a particular function. In addition, the number of calls is recorded so it

is useful for measuring the frequency of calls.

To enable this profile feature, you must specify TWL_PROFILE_TYPE=FUNCTIONCOST (or

NITRO_PROFILE_TYPE=FUNCTIONCOST) in the make option. (It can be specified in the Makefile also.)

Profiler

 2008 Nintendo 9 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

3 Function Call Trace

3.1 Mechanism of Trace Recording

The function call trace works in the following way.

function()

__PROFILE_ENTRY()

__PROFILE_EXIT()

xxxx

xxxx

xxxx

Function Call Trace Buffer

Record for

function()

__PROFILE_ENTRY()

Records that “function was called” in the function call trace buffer. Specifically,

the pointer to the function name character string, return address from the

function, and argument (options) are recorded together.

__PROFILE_EXIT()

(Stack Mode) — Deletes the record that states the “function was called” most

recently written to the function call trace buffer.

(Log Mode) — Performs no processes.

__PROFILE_ENTRY

__PROFILE_EXIT

Profiler

TWL-06-0016-001-A 10  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

3.2 Saved Information

The following information is saved with the function call trace:

・ Pointer to the function name character string

・ Value of lr Register at the point from which the function was called

・ Value of r0 Register at the point from which the function was called (optional)

・ Value of r1 Register at the point from which the function was called (optional)

・ Value of r2 Register at the point from which the function was called (optional)

・ Value of r3 Register at the point from which the function was called (optional)

The memory address from which the function was called is stored in the lr register. In other words, if the value of the lr

register is known, you can use that value to determine the address from which the function was called.

The r0 – r3 registers are used for the passing of the values of argument for the function that has arguments. This allows

you to see what type of argument was specified when the function is called. However, the values of registers not used in

passing arguments do not have much meaning. Saving the values of r0 – r3 is optional. These require a dedicated 4-

byte area for each register. Keep these memory requirements in mind when allocating your buffer.

The buffer is used in the following manner.

0x02010040 0x02010080 0x00000040 0x00000060 0x00000703 0x80001FFF

0x0212C764 0x02120184 0x00000001 0x00000001 0x00000001 0x00000002

0x02035678 0x0201D174 0x00000003 0x00000003 0x00000023 0x00000023

0x020211F8 0x02009F10 0x00008000 0x00004000 0x00000018 0x0000090C

Function Call Trace Buffer

Control Area

Trace

Information

Pointer to lr r0 r1 r2 r3

Function Name

Information for one Call

Profiler

 2008 Nintendo 11
CONFIDENTIAL

In the preceding diagram, r0 – r3 are saved so a 24-byte information region is required for one call. If r0 – r3 do not

need to be saved, the buffer size required for one call is 8 bytes.

Information such as the area of the buffer currently in use and the location of the upper limit is stored in the Control Area.

3.3 Two Modes of Function Call Trace

There are two modes for the function call trace, stack mode and log mode. In stack mode, information is saved by

__PROFILE_ENTRY() and deleted by __PROFILE_EXIT(). In log mode, __PROFILE() does not delete the information.

Also, the same region is used for saving information and the old information is deleted.

The buffer stores the following information:

main()

function()

subroutine()

If you check the function call trace buffer, you can view the information about a

function call at a particular point. In the diagram above, you can see that

main() called function(), and function() called subroutine().

main()

function()

subroutine()

If you check the function call trace buffer, you can view

functions called up to that point. In the diagram above,

main(), function(), subroutine(), function()

were called.

function()

subroutine()

Stack Mode

Log Mode

Function Call Trace Buffer

Function Call Trace Buffer

main()

function()

subroutine()
main()

function()

subroutine()

function()

subroutine()
TWL-06-0016-001-A
Released: October 20, 2008

the information for

you can see that

, and subroutine()

Profiler

TWL-06-0016-001-A 12  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

3.4 Implementing in the Program

The call trace begins with the initialization of the call trace buffer at the beginning of the program. In stack mode, the

functions carrying out initialization must be at the highest level (not called from within other functions). This consideration

is not particularly necessary in log mode.

// Function call trace initialization
void OS_InitCallTrace(void* buf, u32 size, OSCallTraceMode mode);

buf Function call trace buffer
size Buffer size
mode stack mode or log mode

As described previously, the function call trace buffer stores the information necessary for controlling the buffer and the

actual trace information. The mode is specified by OSCallTraceMode with a value of either OS_CALLTRACE_STACK

(stack mode) or OS_CALLTRACE_LOG (log mode).

If you know the size of a CallTrace buffer and want to know how many lines it can store, use the following function.

// Calculate the number of trace information sets based on the size of the buffer.

int OS_CalcCallTraceLines(u32 size)

size Buffer size
Return Value Number of lines that can be secured (number of trace information sets)

Use the following function to determine the minimum size required for your buffer based on the number of lines you want it

to contain.

// Calculate the buffer size based on the number of
// trace information sets that can be stored.
u32 OS_CalcCallTraceBufferSize(int lines);

lines Number lines in the buffer (number of trace information sets)
Return Value required size of your buffer

The following function is used for displaying the contents of a trace buffer. The displayed content is described later in this

document.

// Function call trace display
u32 OS_DumpCallTraceBufferSize(void);

Profiler

 2008 Nintendo 13 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

You can temporarily stop recording information or restore the setting by using the following functions. Recording of

information remains disabled even if __PROFILE_ENTRY() or __PROFILE_EXIT() are called. If you are using stack

mode, the information inside the buffer may be invalid or corrupt depending on when the __PROFILE function is stopped.

// Function call trace enable/disable/restore

BOOL OS_EnableCallTrace(void);

BOOL OS_DisableCallTrace(void);

BOOL OS_RestoreCallTrace(BOOL enable);

enable Enable (TRUE) or Disable (FALSE)
Return Value Status prior to this function call. Enable (TRUE)/ Disable (FALSE)

To clear the contents of the buffer in log mode, use the following function. (You can also use this function in stack mode.

However, it is strongly recommended that you develop a full understanding of the way in which this function operates

before using it in stack mode.)

// Function call trace buffer clear
void OS_ClearCallTraceBuffer (void);

The following are actual in-program examples.

In stack mode:

#define TRACEBUFSIZE 0x300
u32 traceBuffer[TRACEBUFSIZE / sizeof(u32)];

void NitroMain(void)
{
OS_Init();

//---- init callTrace (STACK mode)
OS_InitCallTrace(&traceBuffer, TRACEBUFSIZE, OS_CALLTRACE_STACK);

：
}

void function()
{
//---- display callTrace
OS_DumpCallTrace(); // Displays status of function call at this point

}

Profiler

TWL-06-0016-001-A 14  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

In log mode：

#define TRACEBUFSIZE 0x300
u32 traceBuffer[TRACEBUFSIZE / sizeof(u32)];

void NitroMain(void)
{
OS_Init();

//---- init callTrace (LOG mode)
OS_InitCallTrace(&traceBuffer, TRACEBUFSIZE, OS_CALLTRACE_LOG);

： // Location to be logged

//---- display callTrace
OS_DumpCallTrace();

}

Profiler

 2008 Nintendo 15 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

3.5 Display Example with OS_DumpCallTrace()

3.5.1 In Stack Mode

The following is an example of the output from a OS_DumpCallTrace() function call.

OS_DumpCallTrace: lr=0200434c
test3: lr=02004390, r0=00000103, r1=00000080, r2=00000080, r3=2000001f
test2: lr=020043c4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f
test1: lr=02004254, r0=00000100, r1=00000080, r2=00000080, r3=2000001f

In this example, the lr= value shows that OS_DumpCallTrace() was called immediately before 0x0200434c. You can

also see that test1() calls test2() and test2() calls test3(). The position returning from test3() is before

0x2004390.

The example also shows that when test3() is called, r0 is 0x103, r1 is 0x80, r2 is 0x80, and r3 is 0x2000001f.

Therefore, if test3() is a function that uses an argument, you can apply these values and figure out the arguments

when the functions are called. The same analysis is possible with other functions.

(Note) In the example above, descriptions like “test1() called test2()” are based on the premise that this executable

file has the profile feature enabled for all the objects and is compiled. So, if test1() calls test4() when test4() does

not have an enabled profile feature. Then, test4() calls test2() which does have an enabled profile feature. The

result will be what you see in the example—test2() above test1() with no test4() displayed at all.

The display above was output from the program below.

int test1(int a){ return test2(a + 1); }
int test2(int a){ return test3(a + 2); }
int test3(int a){ OS_DumpCallTrace(); return a + 4; }

void NitroMain(void)
{
OS_Init();

:
OS_InitCallTrace(&buffer, BUFFERSIZE, OS_CALLTRACE_STACK);
(void) test1(0x100);

:
}

Profiler

TWL-06-0016-001-A 16  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

3.5.2 In Log Mode

The following is an example of the output from a OS_DumpCallTrace() function call.

test3: lr=020043a0, r0=00000103, r1=00000080, r2=00000080, r3=2000001f
test2: lr=020043d4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f

test1: lr=0200423c, r0=00000100, r1=00000080, r2=00000080, r3=2000001f
test3: lr=020043a0, r0=00000203, r1=00000080, r2=00000080, r3=2000001f

test2: lr=020043d4, r0=00000201, r1=00000080, r2=00000080, r3=2000001f
test1: lr=02004244, r0=00000200, r1=00000080, r2=00000080, r3=2000001f

Since the newest information is displayed first, you can see that for the functions that have an active profile feature, the

calling order is test1, test2, test3, test1, test2, and test3. Return address, argument and other information can

be determined from the lr register or r0 – r3 registers at that point.

Looking at the display of test1, test2, and test3 you can see that test2 and test3 are indented. This happens

because test2 was called before the __PROFILE_EXIT() of test1, and test3 was called before the

__PROFILE_EXIT() of test2.

The display above was output from the program below.

int test1(int a){ return test2(a + 1); }
int test2(int a){ return test3(a + 2); }
int test3(int a){ return a + 4; }

void NitroMain(void)
{
OS_Init();

:
OS_InitCallTrace(&buffer, BUFFERSIZE, OS_CALLTRACE_LOG);
(void) test1(100);
(void) test1(100);
OS_DumpCallTrace();

}

Profiler

 2008 Nintendo 17 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

3.6 Specification When Linking

To enable the function call trace feature, TWL_PROFILE_TYPE=CALLTRACE (or NITRO_PROFILE_TYPE=CALLTRACE)

must be specified for the make option. Due to this requirement, libos.CALLTRACE.a (or

libos.CALLTRACE.thumb.a) is included when linking. This can also be described in the Makefile.

3.7 Operation on Thread

If a thread system is being used, the function call trace information runs independently for each thread. Therefore,

initialization of a particular buffer declared with OS_InitCallTrace() only records information from the thread in which it was

generated. Status settings for functions like OS_EnableCallTrace() are also independent for each thread.

Avoid declaring the same buffer with a different thread using OS_InitCallTrace().

3.8 Cost

Because the function calls are saved in the buffer, function calls cost more than the normal operation. Since every

function must include the __PROFILE_ENTRY/EXIT calls, the optimization during compile is not as much as expected,

compared to a situation where there is no restrictions. Further, to save the pointer to the function name in the buffer, the

function name string is placed on the memory, which causes additional memory usage.

The operational cost varies based on factors such as: whether there is a thread or not, the information saved, and the

mode. With __PROFILE_ENTRY() extra 60 – 70 instructions are passed, and with __PROFILE_EXIT() an extra 20 – 40

instructions.

Profiler

TWL-06-0016-001-A 18
Released: October 20, 2008

4 Function Cost Measurement

4.1 Cost Measurement Mechanism

Two buffers are used with function cost measurement. As shown below, they are the “Function Cost Measurement

Buffer” and “Function Cost Statistics Buffer”.

function()

__PROFILE_ENTRY()

__PROFILE_EXIT()

xxxx

xxxx

xxxx

Fun

Bu

fun

__PROFILE_ENTRY()

This records the pointer to the function name character string and the current

time to the cost measurement buffer the user specified.

__PROFILE_EXIT()

This records the tag written by __PROFILE_EXIT()and the current time.

__PROFILE_ENTRY

__PROFILE_EXIT

Function Cost Measurement Buffer

function() Current Time 0030

------------ Current Time 0045

function() Current Time 0070

test() Current Time 0080

------------ Current Time 0090

------------ Current Time 0120

：

Function C

function() 2 tim

test() 1 time

:
Summarize
ction Cost Measurement

ffer
 2008 Nintendo
CONFIDENTIAL

ction() Current Time 0030

-------- Current Time 0045

ost Statistics Buffer

es Time Duration 55

Time Duration 10

Profiler

 2008 Nintendo
CONFIDENTIAL

4.2 Saved Information

The following information is recorded with the function cost measurement.

With __PROFILE_ENTRY:

・ Pointer to function name character string

・ Current time, value of OS_GetTickLo()

With __PROFILE_EXIT:

・ Special value for area where pointer was saved with __PROFILE_ENTRY (called the EXIT tag value.).

・ Current time, value of OS_GetTickLo()

・ Interval due to thread switch if required (optional)

The current time is a value that can be obtained with OS_GetTickLo(). The Tick feature of the OS has a 64-bit value,
but it is sufficient to only check the lower half when calling a function so it is managed as a 32-bit value.

The special value (called the EXIT tag) for distinguishing the pointer to the character string of __PROFILE_ENTRY with

__PROFILE_EXIT is secured in the pointer to the function name character string.

The amount of time it takes to change threads (including the time spent in any other thread) is deducted from the total
time elapsed from __PROFILE_ENTRY to __PROFILE_EXIT.

0x02010040 0x00008000 0

0xＦＦＦＦＦＦＦＦ 0x02120184 300

0x02035678 0x0201D174 0

0xＦＦＦＦＦＦＦＦ 0x02009FC0 0

Function Cost Measurement Buffer

Control Area

Measurement

Information
Pointer to function Time Interval due to thread switch
name
Information for one set of __PROFILE_ENTRY and __PROFILE_EXIT

EXIT Tag
19 TWL-06-0016-001-A
Released: October 20, 2008

Profiler

TWL-06-0016-001-A 20
Released: October 20, 2008

Types of information stored in the “Control Area” include: the part of the buffer currently being used, location of the upper

limit of the buffer, the counter value for the duration of a thread switch, etc.

4.3 Conversion to Statistics Buffer

It is difficult to obtain cost information only with the function cost measurement data since the measurement data needs to

be summarized as statistics buffer data.

The summary relates the call information of the function and the EXIT tag, then totals the number of calls and the time

spent in the function. When the control is transferred to a separate thread due to a switch in threads, the amount of time

until it returns to the original thread is recorded as an interval line of the EXIT tag. Calculations are carried out to take this

into consideration.

Summarizations must be carried out explicitly. When summarized, the contents of the function cost measurement buffer

are cleared. Repeatedly storing these results in the summarization buffer (before the function cost measurement buffer

overflows) helps to ensure accurate measurement for long processes. Since the same summarization buffer can be

shared with multiple threads, avoid summarizing a separate thread while summarizing on another thread.

Thread 3 Function Cost

Measurement Buffer

function() Current Time 0083

------------ Current Time 0088

function() Current Time 0135

------------ Current Time 0145

：

Summarize

Thread 1 Function Cost

Measurement Buffer

function() Current Time 0030

------------ Current Time 0045 interval 7

function() Current Time 0070

test() Current Time 0080

------------ Current Time 0090 interval 5

------------ Current Time 0120

：

Thr

Me

xxxx

func

：

Th

sta
ead 2 Function Cost

asurement Buffer
Function Cost Statistics Buffer

function() 5 times Time Duration 70

test() 1 time Time Duration 5

xxxx() 1 time Time Duration 7

：

() Current Time 0035

------ Current Time 0042

tion() Current Time 0130

------ Current Time 0150 interval 10
e results of multiple measurements can be written to the

tistics buffer
 2008 Nintendo
CONFIDENTIAL

Profiler

 2008 Nintendo 21 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

4.4 Implementing in the Program

Cost measurement begins recording to the buffer as soon as a function is initialized. The Tick system of the OS is used for

cost measurement so you must call OS_InitTick() before initializing any cost measurement buffers.

// Function cost measurement initialization
void OS_InitFunctionCost(void* buf, u32 size);

buf Function cost measurement buffer
size Buffer size (byte)

As described previously, the information for controlling the buffer and the actual time information are stored. If you know

the size of a buffer and want to know how many lines it can store, use the following function.

// Calculate the number of information sets based on the size of the buffer.
int OS_CalcFunctionCostLines(u32 size)

size Buffer size (bytes)
Return Value Number of lines that can be secured (number of information sets for cost measurement)

Use the following function to determine the minimum size required for your buffer based on the number of lines you want it

to contain.

// Calculate the buffer size based on the number of
// measurement information that can be stored.

u32 OS_CalcFunctionCostBufferSize(int lines);

lines Number of lines in the buffer
Return Value required size of you buffer (in bytes)

Initialize the cost statistics buffer with the following function.

// Function cost statistics buffer initialization
void OS_InitStatistics(void* statBuf, u32 size);

statBuf Buffer
size Buffer size (bytes)

The following function stores the value of the cost statistics buffer.

// Summarize function cost
OS_CalcStatistics(void* statBuf);

statBuf Statistics buffer

The current contents of the function cost measurement buffer are cleared when OS_CalcStatistics() is called.

Profiler

TWL-06-0016-001-A 22  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

The following function displays the summarization results. The output of this function is described later in this document.

// Function cost summarization display
OS_DispStatistics(void* statBuf);

statBuf Statistics buffer

You can temporarily stop recording profiling data or restore the setting by using the following functions. Recording of

information remains disabled even if __PROFILE_ENTRY() or __PROFILE_EXIT() are called. If a thread switch takes

place so that only the information recorded with __PROFILE_ENTRY() or the information recorded with

__PROFILE_EXIT() is written to the buffer, the cost measurement data may be invalid. It is strongly suggested that you

pay particular attention when using these functions.

// Function cost measurement enable/disable/restore
BOOL OS_EnableFunctionCost(void);
BOOL OS_DisableFunctionCost(void);
BOOL OS_RestoreFunctionCost(BOOL enable);

enable Enable (TRUE), Disable (FALSE)
Return Value Status prior to function call. Enable (TRUE)/disable (FALSE)

If you want to explicitly clear the contents of the function cost measurement buffer, call the following function.

// Function cost measurement buffer clear
void OS_ClearFunctionCostBuffer (void);

Profiler

 2008 Nintendo
CONFIDENTIAL

The following is an in-program example.

#define COSTSIZE 0x3000
#define STATSIZE 0x300

u32 CostBuffer[COSTSIZE / sizeof(u32)]
u32 StatBuffer[STATSIZE / sizeof(u32)];

void NitroMain(void)
{
OS_Init();
OS_InitTick();

//---- init functionCost
OS_InitFunctionCost(&CostBuffer, COSTSIZE);
OS_InitStatistics(&StatBuffer, STATSIZE); // This initialization can be

done after measurement

： // This is the location to be measured

//---- calculate cost
OS_CalcStatistics(&StatBuffer);

//---- display functionCost
OS_DumpStatistics(&StatBuffer);

：
}

OS_InitFunctionCost()

Measurement Buffer Initialization
23

OS_CalcStatisti

Summarize the con

measurement buffer to st
OS_InitStatistics()

Statistics Buffer Initialization
cs()

tents of

atistics buffer
OS_DumpStatistics()

Statistics Buffer Display
TWL-06-0016-001-A
Released: October 20, 2008

Profiler

TWL-06-0016-001-A 24  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

4.5 Display Example with OS_DumpStatistics()

A following is an example of the output of an OS_DumpStatistics() function call.

test1: count 1, cost 25
test2: count 3, cost 185
test3: count 4, cost 130

In the example, there was one call for test1() with an elapsed time (duration) of 25. (The units of this value are the

same as those used in the Tick system of the OS.)

There were three calls for test2() with a total duration of 185. For test3(), there were four calls with a total duration

130.

4.6 Specification When Linking

To enable the function cost measurement feature, TWL_PROFILE_TYPE=FUNCTIONCOST (or

NITRO_PROFILE_TYPE=FUNCTIONCOST) must be specified for the make option. Due to this setting,

libos.FUNCTIONCOST.a (or libos.FUNCTIONCOST.thumb.a) is included when linking. This can also be described in

the makefile.

4.7 Operation on Thread

If a thread system is being used, the function cost measurement information runs independently for each thread.

Therefore, initialization of a particular buffer declared with OS_InitFunctionCost() only records information from the

thread in which it was generated. Status settings for functions like OS_EnableFunctionCost() are also independent

for each thread.

Avoid declaring the same measurement buffer with a different thread using OS_InitFunctionCost().

4.8 Cost

Because time information is saved in the buffer every time the function is called, function calls cost more than the normal

operation. Since every function must include the __PROFILE_ENTRY/EXIT calls, the optimization during compile is not as

much as expected, compared to a situation where there is no restrictions. Further, to save the pointer to the function name

in the buffer, the function name string is placed on the memory, which causes additional memory usage.

The operational cost changes based on factors such as if there is a thread or not. With __PROFILE_ENTRY() an extra 25

– 35 instructions, and with __PROFILE_EXIT() an extra 20 – 30 instructions are passed. Also, interval calculation is

done when the thread is switched so an extra 30 – 40 instructions are required. The time is obtained by reading the 32-bit

timer value from the IO register so the cost of obtaining the time is not significant.

Profiler

 200
CONF

5 Other Profilers (other than TWL-SDK)
Preparing __PROFILE_ENTRY() and __PROFILE_EXIT() allows you to use a profiler other than the one provided in the

Nitro-SDK OS.

For example, if you use the profiler offered as the CodeWarrior Example, __PROFILE_ENTRY() and

__PROFILE_EXIT() are defined within it so the ones provided in the OS should not be defined..

5.1 Specification When Linking

TWL_PROFILE_TYPE (or NITRO_PROFILE_TYPE) must be specified for elements other than CALLTRACE or

FUNCTIONCOST during an OS compile (In other words, nothing needs to be specified). Due to this, profile libraries such

as libos.CALLTRACE.a or libos.FUNCTIONCOST.a) will not be linked.

Note that TWL_PROFILE=TRUE or NITRO_PROFILE=TRUE must be specified in order to insert the __PROFILE functions

at the entry and exit points of each function.

__PROFILE_ENTRY()

CodeW

(In Pro

Link

User Program

Executable File

test()

xxxx

xxxx

__PROFILE_ENTRY()

__PROFILE_EXIT()
Use the TWL_PROFILE_TRUE (or NITRO_PROFILE=TRUE)

build switches where necessary since we want to insert the

__PROFILE functions in each function
8 Nintendo 25 TWL-06-0016-001-A
IDENTIAL Released: October 20, 2008

__PROFILE_ENTRY()

__PROFILE_EXIT()

Use PROFILE functions that are not in the

SDK. Therefore, TWL_PROFILE_TYPE or

NITRO_PROFILE_TYPE is not specified.

__PROFILE_EXIT()

OS __PROFILE Functionarrior’s _PROFILE functions

fileLibrary_ARM_LE.a)

Profiler

TWL-06-0016-001-A 26  2008 Nintendo
Released: October 20, 2008 CONFIDENTIAL

Profiler

 2008 Nintendo 27 TWL-06-0016-001-A
CONFIDENTIAL Released: October 20, 2008

Revision History

2008/09/26, 0.3.0, Revised document to reflect TWL.

2004/08/11, 0.2.0, Revised the error in 3.4 where “stack mode” was “trace mode”

2004/, 0.1.0, Initial version.

	1 Profiler Mechanism
	1.1 Profile Feature
	1.2 Compile-Time Specifications
	1.3 Switching with pragma
	1.3.1 Where to Place Pragmas

	2 TWL-SDK profiler
	2.1 Function Call Trace
	2.2 Function Cost Measurement

	3 Function Call Trace
	3.1 Mechanism of Trace Recording
	3.2 Saved Information
	3.3 Two Modes of Function Call Trace
	3.4 Implementing in the Program
	3.5 Display Example with OS_DumpCallTrace()
	3.5.1 In Stack Mode
	3.5.2 In Log Mode

	3.6 Specification When Linking
	3.7 Operation on Thread
	3.8 Cost

	4 Function Cost Measurement
	4.1 Cost Measurement Mechanism
	4.2 Saved Information
	4.3 Conversion to Statistics Buffer
	4.4 Implementing in the Program
	4.5 Display Example with OS_DumpStatistics()
	4.6 Specification When Linking
	4.7 Operation on Thread
	4.8 Cost

	5 Other Profilers (other than TWL-SDK)
	5.1 Specification When Linking

