TWL-SDK
Using the Pattern Recognition Library

Version 1.0.5

The content of this document is highly confidential
and should be handled accordingly.

0 2004-2009 Nintendo TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

TWL-06-0039-001-B 2 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

Table of Contents

1 Overview Of PatterN RECOGNITIONciiiiiiiiiiiiiiiii ettt e e ettt e e e e e e s s bbb b e e e e e e e e s sannbbbeeaaaaeeaanns 6
1.1 Yoo 181 o o RSO UT PR PPRTTRN 6
1.2 [T o] 2= U Y2 0 o 1o T -1 1 2 6
1.3 What the Library Can and CannOt DO............coiiiiiiiiiiiiiiiia et e et e e e e e e sebeae e e e e e s s s anbraaeeeaans 7

131 EXamples Of POSSIDIE USES..... ..ottt e e et e e e e e e e anneees 7
1.3.2 Examples of Possible Uses that Currently Require Workarounds.............cccoveverienenneenneeennee e 7
1.3.3 Applications NOt CUrrently POSSIDIEuiiiiii e 8

A = - 15 (o33) 1 o = Y £ S PRRSRR 9

2.1 Dat@ STIUCTUIES ... e e e e e e e 9
211 o F T (ol B Lo = R Y 01T TP ERRT 9
2.1.2 01 (014 o T= 0 1) A 1Y/ o1 TSR 9
2.13 Prototype Database ENTrY TYPEe ittt e e e e ae e e e e e e e 10
2.1.4 101 (I - = U Y/ 1= SRR 12
2.15 Data Types Dependent On Recognition Algorithm.............oooiiieeee e, 13

2.2 EXamPIES Of LIDIAry USE ...ttt ettt e e e e e e e e e e e e e ennbeseeeaans 13

G TS =111 To LSRN TS 18

3.1 Parameters for RESAMIPIINGueiiiiiiii et e e e e e e e nnbereee e s 18
3.1.1 PRC_RESAMPLE_METHOD_NONE ...ttt e i 18
3.1.2 PRC_RESAMPLE_METHOD_DISTANCEcoiiiiiiiieiiee e 18
3.1.3 PRC_RESAMPLE_METHOD_ANGLEoiiiiiiiii ettt 18
3.14 PRC_RESAMPLE_METHOD_RECURSIVE ..ottt 19

3.2 ReCOgNItioN AlGOITNIMS ...ooi et e ettt e e e e e e s s bbb e e e e e e e e e sannbereeeaans 20
3.2.1 (T | o1 97AN [0 To] 111 11 0 DO PR RPT R RUOTPPPPRRPR 21
3.2.2 1S3 e= Lo F=T o 172X (o o 11 o o I PP SRRRRR 22
3.2.3 FINE AIGOTIENM .ottt e e e e e e bbb e e e e e e e e s bbbbeeeaaaeaeanns 23
3.2.4 YU o 1= o 11T A Fo o 1 o Ty o ISR 24

I T £5= g o R 4T R 25
4.1 e = L= (=T ST 1] 1o [T PUEUTT RO 25
4.2 PR PP RSP RSPR 25

Y o] 0= o [0t AN I =T o Vo 1 RS 27
Al CharaCterRECOGNITION-L ueiieiiiie ittt e e e e et e e et e e e e e sabbe b e e e e e e e s e annbbeeeeeaeeesaannnbeeeaaaeaaanns 27
A2 CharaCterRECOGNITION=-2 ittt e e e ettt e e e e e e e e s ab b et e e e e e e e e e aanbbeseeeaeeeaaannbbeeeaaaeaaanns 27

0 2004-2009 Nintendo 3 TWL-06-0039-001-B

CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

Code
(oo (SR 2 T T (ol Do = N Y 01T T TP UP TR 9
(@00 [cIr e = o) (014 o 1= 1S3 A 1Y/ o1 S 9
Code 2-3 Prototype Database ENtrY TP, ... ittt e e e e e et e e e e e e e e e snneeeeeas 10
(000 (RS 1 (0] (I D= L= N 5/ - SRR 12
Code 2-5 Library-Defined OPEIatiONScooi ittt e et e e e e e e s abbabe e e e e e e e e annbeeeeas 12
Code 2-6 EXamPIEs Of LIDFary USEeeiiiiiiiiiiiieiiie e s st ee e e e s sttt e e e e e s e sttaae e e e e e s s snnsnaeeeaee e e e snnneneees 14
Code 2-7 PRC_INIINPUEPAIEIN. ...ttt e e e ettt e e e e e e e s snbbeb e e e e e e e e e annreneeas 14
Code 2-8 Calculating Work Area Needed For ReCOgNition ProCESS.......cuvviiiiiiiiiiiiiiee e ssciiieee e e e e e e 15
Code 2-9 Adding Input from Touch Panel TO PRCSIIOKESccciiiiiiiiiiiiiaee e 15
Code 2-10 Setting Parameters For Converting Raw Stroke Data To PRClInputPattern data 16
Code 2-11 Processing Raw Input Points and Creating the PRCInputPattern Type Input Pattern Data 16
Code 2-12 Performing RECOGNITIONeiiiiiiiiiiiie ettt e e e e e e s bbb e e e e e e e e e annbeeeeas 17

Figures
Figure 1-1 Pattern Recognition LIDIAryeeeiiiiiiii e a e 6
Figure 2-1 Prototype LiSt Dat@ SIrUCTUIEuuiiiiieeiiiitiieeee ettt e e et e e e e e e e eanbaeeeaaaeeas 11
Figure 3-1 PRC_RESAMPLE_METHOD_RECURSIVEccoiiiiiieie e 19
FIgure 3-2 ANgIE DIffErENCE. ... et e e e e e et e e e e e e e e e nabbeeeaaaaeas 22
1o [0 T B I o = 1) 1o 1Y =] 1 T 23
Figure 3-4 Computing Angle Score Using a CoSine FUNCHON............ciiiiiiiiiiiiiiieee e 24
Figure A-1 characterReCcognitioN-2 DEIMOuuiiieeiiiiciiiieiee e e e s e s e e e e e s s s st e e e e e e s s st ereeaeesensnnrenreeeees 28

TWL-06-0039-001-B 4 0 2004-2009 Nintendo

Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library

TWL-SDK

Revision History

Version Revision Date Description
105 2009/02/27 Eﬁ;?;i?e?gigggﬁi ggﬁ_ricters from the prototype database in section A.1
1.0.4 2008/10/16 Changed wording for inclusion in TWL-SDK.
1.0.3 2007/10/05 Updated information to match current conditions.
1.0.2 2005/02/18 Initial version.

0 2004-2009 Nintendo

CONFIDENTIAL

TWL-06-0039-001-B
Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

1 Overview of Pattern Recognition

1.1 Introduction

TWL-SDK includes a pattern recognition library (PRC*) that provides rudimentary pattern recognition
functionality. This document provides a basic explanation of how to use the pattern recognition library,
characteristics of various recognition algorithms, and guidelines for tuning your application.

The pattern recognition library was designed to facilitate the use of the touch panel as an input device.
If you only need handwritten character input functionality from the touch panel, consider using the
Decuma Handwritten Character Recognition library, which is provided separately. You can use it for
free if you agree to the terms in the End-User License Agreement.

1.2 Library Functionality

The functionality provided by the pattern recognition library is fairly elementary. You must first prepare
a list of pattern prototypes. Each entry in the prototype list contains a code number, stroke count, and
the coordinates of vertices in the segments that make up each stroke.

The application program first creates a prototype database from the prototype (or prototype pattern)
list. It then creates an array of input coordinates based on the touch panel input. When the application
program begins the recognition process, it passes the input stroke data and prototype database to the
library.

The library performs matching and returns the prototype database entry that has the closest match.
Finally, the application program reads the code number of the entry and uses it as the recognition
result.

Figure 1-1 Pattern Recognition Library

[/ Developer \ Application \ Pad User

Prototype Input stroke data <
! Touch pad input
pattern list Prototype
pattern
database
A A ﬂl

Recognition
result Input pattern

Pattern € Input pattern
recognition API initialization API

Prototype pattern
> database
initialization API

\ J \ NitroSDK

*
N

N

N

TWL-06-0039-001-B 6 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

1.3 What the Library Can and Cannot Do

Examples of what the pattern recognition library can and cannot do are provided in the following
sections.

1.3.1 Examples of Possible Uses

During a battle, the player writes a magic symbol on the touch panel screen, causing a spell
to take effect in the turn (that follows immediately) after the symbol is written.

This feature is fairly easy to implement, because it is limited to a single stroke and it is clear that
the recognition process should begin after the pen is lifted from the screen. The library returns both
the recognition result and the degree of similarity. The application can be configured to permit the
spell to take effect only if there is a close match.

When the player writes a symbol on a map displayed on the touch panel, a building appears
in the location where the symbol was written.

If a bounding box is defined before the touch panel coordinate data is passed to the pattern
recognition library, the recognition results can be displayed in the input location. The symbol must
be devised in a shape that restricts the order in which it is written.

1.3.2 Examples of Possible Uses that Currently Require Workarounds

Recognizing patterns from multiple, continuous stroke input

Currently implemented recognition algorithms require the player to write each line in the correct
order. In other words, the library must recognize precisely the stroke that initiates recognition and
the stroke that completes it. If extraneous strokes are input at any point in the process, recognition
becomes impossible. If strokes at the beginning or end are omitted, the pattern recognition library
will return the entry that most closely matches the input. You can design your application to handle
this result accordingly. However, if you design an application to avoid preprocessing recalculation,
the restrictions will be applied to the recognition algorithm that can be used. (In particular, you must
either fix the input size or use the Light algorithm, which does not require size normalization.)

Performing a calculation based on a formula written on the screen

If recognition of a series of drawn patterns is attempted simultaneously, the library may have
trouble determining where each pattern begins and ends. This is essentially the problem described
in the paragraph above. If you limit your application to formulas written horizontally, the library may
be able to discern individual symbols by determining where their bounding boxes overlap, but this
will require some creative coding.

In trying to recognize a horizontal string of hiragana characters, the library may have trouble

distinguishing “i2” from “1 Z”. However, this type of application could be implemented by using a
combination of Dynamic Programming-based optimal splitting calculations and heuristics.

0 2004-2009 Nintendo 7 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

» Reading commands from specific stroke input, similar to how mouse gestures can be used
for PC input

You can create an interface that interprets a leftward stroke as a request to return to the previous
screen and a rightward stroke as a request to advance to the next screen. A hook-shaped pattern
of pen movement (upward and to the left) might indicate that the screen should be closed. You can
use the pattern recognition library to implement this; however, if you need only recognition of
up/down and left/right strokes, it may be simpler to code this on your own or use only the
resampling functionality of the library to remove noise from pen strokes. (See

PRC_Resanpl eSt rokes_*.) The choice will depend on the complexity of your application.

» Moving an army based on the rotation angle of a symbol written on a map

All currently implemented recognition algorithms are sensitive to pattern’s orientation. The
recognition algorithms will recognize a pattern written at a slight angle, but they cannot discern
patterns written sideways or upside-down. One way to permit the rotation of a pattern is to rotate it
in sixteen different directions and attempt a match for each pattern orientation. The rotated pattern
that best matches the pattern in the database is selected. Note that this process will increase the
recognition calculation time 16-fold; to explain, 16 match attempts are performed rather than a
single match attempt, as would be the case in a simple 1-to-1 pattern matching. This process is
best implemented on the application side. Conversely, you may also prepare 16 patterns by
rotating a sample pattern in advance.

1.3.3 Applications Not Currently Possible

» Asking the player to draw a character and recognizing which character it is

All currently implemented recognition algorithms use stroke information to find a match. (This
method is called “online character recognition.”) They can only recognize patterns written in the
correct stroke order. To improve recognition of normal characters, you can store characters written
with commonly made stroke order mistakes in the database of prototype patterns. However, the
library cannot match line drawings that have no constraints on stroke order.

It is possible to solve this problem by using a recognition algorithm based on bitmap images (this is
known as “offline character recognition”), but the degree of matching accuracy will suffer. This
algorithm is not included in the SDK.

* Recognition of cursive writing

Currently implemented recognition algorithms rely on clear breaks between strokes. The
recognition algorithms cannot recognize characters written without breaks or characters that have
non-solid strokes. If there are few entries in the prototype database, for cursive characters you can
store all possible character combinations as separate patterns in the prototype database; however,
this approach may cause the number of entries to become unmanageable. Thus, an algorithm-
based recognition approach is more practical.

TWL-06-0039-001-B 8 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

2 Basics of Library Use

2.1 Data Structures

First, we will examine the data structures used with the pattern recognition library.

2.1.1 Basic Data Types

Code 2-1 Basic Data Types

#i ncl ude <nitro/prc/types. h>

typedef struct PRCPoi nt

{
s16 X;
sl16 A
} PRCPoi nt ;

typedef struct PRCBoundi ngBox
{
s16 x1, yl1; // Upper-left coordinate of boundi ng box
s16 x2, y2; [/ Lower-right coordi nate of boundi ng box
} PRCBoundi ngBox;

PRCPoi nt is a structure that expresses screen coordinates, and PRCBoundi ngBox is a structure that
defines the bounding box. Note that the origin (0,0) is at the upper left and that the y-axis runs
downward.

2.1.2 Prototype List Type

Code 2-2 Prototype List Type
typedef struct PRCPrototypeli st

{
const PRCPrototypeEntry *entries;
i nt entrySi ze;
const PRCPoi nt *poi nt Arr ay;
i nt poi nt ArraySi ze;
i nt normal i zeSi ze;

} PRCPr ot ot ypelLi st ;

This data type is used for the list of prototype patterns.

0 2004-2009 Nintendo 9 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

Prototype list comprises an array of PRCPr ot ot ypeEnt ry (explained in section 2.1.3 Prototype
Database Entry Type) and its size, and an array of PRCPoi nt (used to store the vertex data in
PRCPr ot ot ypeEnt ry) and its size.

The nor mal i zeSi ze member defines the acceptable range of vertex coordinates. In the prototype list,
all vertex coordinates must be within the bounding box defined by (0, 0) and (nor mal i zeSi ze - 1,
normal i zeSi ze - 1). Before being used for actual recognition, this data is converted into a form that
can be used by the prototype database.

2.1.3 Prototype Database Entry Type

Code 2-3 Prototype Database Entry Type
typedef struct PRCPrototypeEntry

{
BOOL enabl ed;
u32 ki nd;
ulé code;
fx16 correction;
voi d* dat a;
i nt poi nt | ndex;
ulé poi nt Count ;
ulé st r okeCount ;

} PRCPr ot ot ypeEntry;

This data type is used for entries in the prototype database. Of its members, code and dat a can be
freely used by the application as values that are linked to the entry. The code member is of type u16
and can have a value of up to 65,535.

The enabl ed and ki nd members are referenced when the recognition function searches the
prototype database for matches. Entries that have enabl ed set to FALSE are not considered for
matching. The ki nd member uses a bit field to specify the type of pattern.

Example 1:
kind =1 - Numeral
kind =2 - Alphabetic character
kind = 4 - Half-size symbol
kind =8 - Hiragana

Example 2:
kind=1 - Level 1 spell
kind =2 - Level 2 spell

kind =4 - Level 3 spell

TWL-06-0039-001-B 10 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library

TWL-SDK

For example, if ki ndMvask is set to 3 when the recognition function is called, matching will be limited to

English letters and numerals, or Level 1 and 2 spells.

The correction value is used to calculate similarity between the input pattern and entry; it is of type
f x16, and the 4,096 value corresponds to 1.0. If set to 0, there is no correction. A negative value
results in a low-level of correction and a positive value in high-level correction. If the correction value

is set to 4,096, the post-correction similarity will always be 1.0 (the maximum). The following formula
is used (scor e is of type f x32).

score = FX32_Mul(originalScore, FX32_ONE - correction) + correction

After processing, a score below 0.0 becomes 0.0, and a score above 1.0 becomes 1.0. This number
is the final measure of similarity.

The poi nt | ndex, poi nt Count, and st r okeCount members specify the actual pattern defined by this

entry. The subscript poi nt | ndex specifies the location of this pattern in the pattern list's

PRCPr ot ot ypeLi st. poi nt Array.

An example of a prototype list data structure is shown in Figure 2-1, below.

Figure 2-1 Prototype List Data Structure

(0,Q)

PRCProt ot ypeLi st .

poi nt Arr ay

PRCProt ot ypeLi st .

entries

(12,

12)

(52,

12)

(-1,

-1)

(28,

0)

(32,

60)

(-1,

-1)

(40,

24)

(24,

63)

N[O |d|w [N|FP|O

(8,

52)

©

(40,

32)

[y
o

(44,

32)

-
[N

(56,

44)

12| 48,

63)

13|(- 1,

-1)

14 o,

12)

15| 16,

56)

16)(- 1,

-1)

AA(s2,

16)

1863,

48)

19)(- 1,

.1)

entries[0]

poi nt | ndex

0

™

poi nt Count

14

st r okeCount

3

entries[1

L poi nt | ndex

| poi nt Count

st r okeCount

In this example, PRCPr ot ot ypelLi st. normal i zeSi ze is 64. Information contained in the poi nt Count

and st r okeCount members of PRCPr ot ot ypeEnt ry is redundant, but you should include both

members in your prototype database to speed up preprocessing.

0 2004-2009 Nintendo
CONFIDENTIAL

11

TWL-06-0039-001-B
Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

2.1.4 Stroke Data Type

Code 2-4 Stroke Data Type
typedef struct PRCStrokes

{
PRCPoi nt *poi nt s;
i nt si ze;
u32 capacity;

} PRCStrokes;

This structure is used mainly to manage the raw input coordinate data from the touch panel.
capaci ty is the maximum number of points that can be stored and si ze is the current number.

Operations defined in the library are shown in Code 2-5.

Code 2-5 Library-Defined Operations

PRCSt r okes strokes;
PRCPoi nt poi nt s[1024] ;

[/ Initializes the strokes structure

PRC | nit Strokes(&strokes, points, 1024);

/1 Adds a set of input coordinates (x, y) fromthe touch panel
PRC_AppendPoi nt (&strokes, X, y);

/'l Records the fact that the pen has been lifted fromthe screen
PRC_AppendPenUpMar ker (&st r okes) ;

/1 Checks if the structure has reached its capacity

PRC | sFul | (&strokes);

/l Clears the structure

PRC _Cl ear (&strokes);

/1 Checks if the structure is enpty

PRC | sEnpt y(&st r okes) ;

PRCSt r okes anot her St r okes;
PRCPoi nt anot her Poi nt s[2048] ;
PRC | ni t St rokes(&anot her St r okes, anot her Poi nts, 2048);

/'l Makes a deep copy
PRC _CopySt rokes(&st rokes, &anot her Strokes);

int i;
for (1=0; i<strokes.size; i++)

{

TWL-06-0039-001-B 12 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

if (!PRC_IsPenUpMarker (&strokes.points[i]))

{
/1l Ordinary processing
}
el se
{
/1 The pen was lifted at this point
}

2.1.5 Data Types Dependent On Recognition Algorithm

* PRCPr ot ot ypeDB

PRCPr ot ot ypeLi st stores only the bare minimum of prototype data. To speed up recognition, you
must preprocess the vertex data in the prototype list. Use PRC | ni t Pr ot ot ypeDB to preprocess
PRCPr ot ot ypeLi st (the prototype list) and produce PRCPr ot ot ypeDB, which is the actual
prototype database that holds the data passed to the recognition functions.

Its internal structure depends on the recognition algorithm being used, but all currently
implemented recognition algorithms use a common data structure. The following items are added
to the initial data.

Indices to the starting point of each stroke

Length of each line segment

Length of each stroke

Total length of the pattern

Ratio of line segment to stroke length for each line segment

Ratio of stroke to pattern length for each stroke

Angle of each line segment

Bounding box for each stroke

Bounding box for the entire pattern

* PRCl nput Pattern

The input coordinate data from the touch panel stored in PRCSt r okes must also be preprocessed
before it is passed to the recognition functions. Touch panel input is often sampled once per frame,
which results in too many points for the recognition algorithm to use. You must resample the input
pattern to extract the points that best define its features. To create the PRCI nput Pat t er n structure,
the PRC I ni t I nput Pat t er n function resamples the raw input stroke data and performs additional
calculations similar to those done by PRC I ni t Pr ot ot ypeDB.

2.2 Examples Of Library Use

The following pseudocode excerpts are examples of library use.

0 2004-2009 Nintendo 13 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

Code 2-6 Examples of Library Use

#i ncl ude <nitro/prc. h>

#defi ne RAW PO NT_MAX 1024 // How nmany raw i nput points to save
#defi ne PO NT_MAX 40 // Maxi mum nunmber of points to accept after resanpling
#defi ne STROKE_MAX 4 // Maxi mum nunber of input strokes to accept

You cannot call ni tro. h from the PRC* header file. To use the pattern recognition library, you must
explicitly place ni tro/ prc. h in an include statement. Here, instead of placing nitro/ prc. hinan
include statement, we can select the default pattern recognition algorithm by specifying

ni tro/ prc/al go_*. h. For more information, see section 3.2 Recognition Algorithms.

To use the pattern recognition library, a number of parameters must be defined as macro constants.
The value specified by RAW PO NT_MAX is the maximum number of input points that can be accepted
by the touch panel. Because the pattern recognition library processes the array of an entire series of
points as a single target, the application must be able to store all of the input points. If the touch panel
accepts 60 points every second and a single character requires at most 10 seconds to input, the
application will need to store an array of 600 points.

During preprocessing, the raw input data handed off by the application is stripped down to its
characteristic points. This is called resampling or characteristic point extraction. PO NT_MAX and
STROKE_MAX define the maximum number of points and strokes permitted after preprocessing. If

PO NT_MAX is set to a value that is too low, a long and complex set of input data for a single character
can be truncated in the middle. The proper setting for this constant will depend on the complexity of
the input pattern you require and on the number of points you want to preserve after preprocessing
(PRC_I ni t I nput Pat t er n*).

Code 2-7 PRC_InitInputPattern
ext ern PRCPr ot ot ypelLi st Prototypeli st;

/Il Al'locates a work region for extracting the prototype database
PRCPr ot ot ypeDB pr ot oDB;
voi d* di ct Wr k;
dictWrk =
OS_Al | oc(PRC_Get Pr ot ot ypeDBBuf f er Si ze(&Pr ot ot ypeLi st));
PRC | ni t Pr ot ot ypeDB(&or ot oDB, di ct Work, &Prototypelist);

Think of Pr ot ot ypeLi st as the prototype list data defined in a separate file.

Use PRC_I ni t Pr ot ot ypeDB to create PRCPr ot ot ypeDB (the prototype database) from

PRCPr ot ot ypeLi st (the prototype list). You must allocate sufficient memory for PRCPr ot ot ypeDB
based on the size of the prototype database. Allocate a region of memory based on the size obtained
by PRC_Get Pr ot ot ypeDBBuf f er Si ze and pass it during initialization.

PRC_I ni t Pr ot ot ypeDB will count the total number of points and strokes in the prototype set, and then
perform calculations that will speed up recognition processing. These calculations include creation of

TWL-06-0039-001-B 14 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

an index of all strokes; the index determines the length and angle of each segment and other data
required by the recognition algorithms, and the information is stored in PRCPr ot ot ypeDB.

PRC_I ni t Pr ot ot ypeDB has a sibling function, PRC I ni t Pr ot ot ypeDBEX, that allows you to specify
the prototypes to be used based on a bit field. When using PRC | ni t Pr ot ot ypeDBEXx, be sure to
calculate the work area size by providing PRC_Get Pr ot ot ypeDBBuf f er Si zeEx with the same
arguments as used in PRC_I ni t Pr ot ot ypeDBEX.

Code 2-8 Calculating Work Area Needed For Recognition Process

/1l Al'locate a work area for other processing
voi d* i nput Wor k;
i nput Wrk =

OS_Al | oc(PRC_Get | nput Pat t er nBuf f er Si ze(PO NT_MAX, STROKE_MAX)) ;
voi d* recogWrk;
recogWrk = OS_All oc(

PRC _Get Recogni ti onBuf f er Si ze(PO NT_MAX, STROKE_MAX, &pr ot oDB)
i

Code 2-8 allocates the work area needed for the recognition process. To pool multiple input patterns
in parallel, you need to allocate one work area for extracting input pattern and another for comparison
processing. If at the outset you specify the largest values that you will need, you will not have to
allocate new memory for each recognition process.

/[l Initialize the input stroke data

PRCPoi nt poi nt s| RAW PO NT_MAX] ;

PRCSt r okes strokes;

PRC | nit Strokes(&strokes, points, RAW PO NT_MAX);

The code above initializes the structure that holds raw data input from the touch panel.
while (1)
{

This loop is entered each frame.

Code 2-9 Adding Input from Touch Panel To PRCStrokes

int x, y;
if (!PRC_IsFull (&strokes))
{
if (there is (x,y) input fromthe touch panel)
{
/1 Append point (x,y) to the stroke
PRC _AppendPoi nt (&st rokes, X, y);
}
else if (there was input in the previous frane)
{
0 2004-2009 Nintendo 15 TWL-06-0039-001-B

CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

/! Insert a “pen up” nmarker
PRC_AppendPenUpMar ker (&st r okes) ;

}

Code 2-9 adds input from the touch panel to PRCSt r okes structure. If the pen is lifted from the touch
panel, you must call PRC_AppendPenUpMar ker once (but no more than once) to append a “pen up”
marker.

Code 2-10 Setting Parameters For Converting Raw Stroke Data To PRCInputPattern data

if (there is a request for recognition)

{
/1 Start recognition using the current contents of strokes
/1 First, set the resanpling process paraneters
PRCI nput Pat t er nPar am i nput Par am
i nput Par am nor mal i zeSi ze = prot oDB. normal i zeSi ze;
i nput Par am r esanpl eMet hod = PRC_RESAVPLE_METHOD RECURSI VE;
i nput Par am r esanpl eThreshol d = 3;

Here, we set the parameters required for the conversion of the raw stroke data to the

PRCI nput Pat t er n type data used for the recognition process. If nor mal i zeSi ze is set to a non-zero
value, the bounding box of the input stroke will be normalized (expanded or contracted) to match the
specified size. All of the recognition algorithms except Light assume that the prototype database and
the input pattern are of the same size. For input size to match the prototype database size, be sure to
use normalization.

resanpl eMet hod and r esanpl eThr eshol d are used to set both the algorithm and parameters used to
extract the characteristic points from the raw input data. For more information about resampling
algorithms, see section 3.1 Parameters for Resampling.

Code 2-11 Processing Raw Input Points and Creating the PRCInputPattern Type Input Pattern
Data

/1 Use resanpling on the raw i nput points to reduce the nunber of datapoints.
/1 Perform preprocessing to determ ne additional information, such as |ength,
and create inputPattern
PRCI nput Pattern input Pattern;
PRC I ni t | nput PatternEx(& nput Pattern, inputWrk, &strokes,
PO NT_MAX, STROKE MAX, & nput Paran;

Using the previously allocated work area, process the raw input points and create a
PRCI nput Pat t er n type input pattern data.

Based on the parameters from PRCI nput Pat t er nPar am PRC_| ni t | nput Pat t er n performs
normalization and resampling to extract the characteristic points. It then calculates segment lengths
and angles from these points and stores this information in the PRCI nput Pat t er n structure.

TWL-06-0039-001-B 16 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

Code 2-12 Performing Recognition

/1 Performrecognition by conparing inputPattern with entries in protoDB
PRCPr ot ot ypeEntry* result;
fx32 score;
score = PRC _Get Recogni zedEntry(& esult, recogWrk,
& nput Pattern, &protoDB);

This method completes preparation for the recognition process. Next, we need to compare the input
pattern data (PRCI nput Pat t er n) with the prototype database (PRCPr ot ot ypeDB) and find the
database entry that most closely matches the input pattern data. The level of similarity is a type f x32
that ranges from 0 to 1. (If converted to an i nt, it would range from 0 to 4,096.)

Depending on the selected algorithm and the size of prototype database, the processing could take
more than several tens of milliseconds. We thus recommend using a separate thread for this
processing. For an implementation example, see the pr ¢/ char act er Recogni ti on- 1 demo.

The sibling function PRC_Get Recogni zedEnt r yEx allows you to use a bit field to specify the types of
patterns for recognition. PRC_Get Recogni zedEnt ri es returns the N entries that are best matches.

For details, see the reference manual.
[/l Qutput the result
OS Printf("code: %\n", PRC GetEntryCode(result));

As a recognition result, the function returns a pointer to PRCPr ot ot ypeEnt ry in PRCPr ot ot ypeLi st .
You can use PRC_Get Ent r yCode and PRC_GCet Ent r yDat a to obtain the code and user data of the
entry.

}

Processes that wait for V-Sync

0 2004-2009 Nintendo 17 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

3 Settings Entries

3.1 Parameters for Resampling

You can choose the algorithms to use for the resampling process conducted by
PRC | nitl nput Pattern.

3.1.1 PRC_RESAMPLE_METHOD_NONE

No resampling is performed. This method removes only the points that duplicate the immediately
preceding coordinates; it can be used when it is necessary to reprocess stroke data that has already
been resampled.

3.1.2 PRC_RESAMPLE_METHOD_DISTANCE

This method resamples based on the traveled distance. It captures the starting and ending points of
each stroke and captures a point each time a stroke travels more than a predefined cumulative
distance from the starting point. Measured distance is not Euclidean; it is the change in the x position
plus the change in the y position, or the “city block” or “Manhattan” distance. This calculation of
distance is less precise than that of Euclidean distance, but it is faster to process.

The resanpl eThr eshol d specifies the cumulative distance that the stroke has to travel before
capturing the next point. This is the fastest method to process, but strokes drawn slowly with a shaky
pen may cause the threshold to be reached quickly, resulting in too many points being captured. Also,
this method tends not to capture the best characteristic points.

3.1.3 PRC_RESAMPLE_METHOD_ANGLE

This method performs sampling based on the curvature of each stroke.

First, the starting and ending points of each stroke are captured. Next, the angle of the segment
connected to the starting point is stored. The connecting segments are followed in succession until
the angle difference reaches the threshold angle. The point immediately before the point where
threshold is exceeded is captured as the second point in the series. The angle of the segment that
connects the two immediately preceding points is compared to the angle of the segment that
connects the preceding point with current point. If the difference is greater than the threshold angle,
the current point is captured. This process is repeated.

FX_At an2l dx, which uses an internal table lookup, speeds up the process by calculating the angle.
FX_At an2l dx is not highly accurate, but it is sufficient for this purpose.

The resanpl eThr eshol d specifies the threshold angle. The values range from 0 to 65,535, with 1.0
representing 1/65,535th of a full circle.

Because valid angles cannot be measured at very short distances, every captured point must have a
city-block distance from the previous point, and the distance must be greater than that specified by

TWL-06-0039-001-B 18 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

PRC_RESAMPLE_ANGLE_LENGTH_THRESHOLD. Currently, PRC_RESAMPLE_ANGLE_LENGTH THRESHOLD is
fixed at 6. The distance calculations use the raw, non—normalized coordinates.

Even if you set the threshold high to reduce the number of resampled points, this method can still
accurately capture points in small loops and extract good characteristic points. Conversely, if the

threshold is set too low, slight stroke bends will be picked up. The calculation time is linear to the

number of input points.

3.1.4 PRC_RESAMPLE_METHOD_RECURSIVE

This method processes input recursively and captures the most characteristic points.

First, the starting and ending points are captured and defined as points A and B. All points between A
and B are tested, and the point farthest on a straight line drawn between A and B is defined as point
C. If the distance is greater than r esanpl eThr eshol d, C is captured. Otherwise, the line from Ato B
is retained. If C is captured, the process is reiterated for A and C and C and B.

Ultimately, this process will completely capture all the original raw input stroke data in the region
bounded by the r esanpl eThr eshol d distance on both sides of the resulting line segments. However,
if the number of resampling points reaches the upper limit during the process, this method will not
capture all points.

Figure 3-1 PRC_RESAMPLE_METHOD_RECURSIVE

I T T
v T 1T a7 e
y N ST N 7
i],= y
AY 6 54 |
11 _— | _—
ssEpaha =
2o k
- 4 PP »H
T 1] '__
~ \ 7 a1 JANR
Y H4 [1
7_\:\ N | i
S hizon »_pmi &lh

The original data is contained in the
region bounded by the
resanpl i ngThr eshol d on both
sides of the resulting line segments.

If you set r esanpl eThr eshol d to a value smaller than the smallest loop you expect in the input
pattern, you should be able to generate a relatively compact set of resampling data without missing
any loops. If your resampling results are compact, the recognition process will be faster.

The calculation time for the resampling process itself is, in the worst case, proportional to the result of
multiplication between [the number of input points] and [the number of resulting resampling points].
With typical input data, such as hiragana characters, this method will take slightly longer than
PRC_RESAMPLE_METHOD ANGLE. This is based on the assumption that the parameters have been set
to have both methods generate the same number of resampled points.

0 2004-2009 Nintendo 19 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

3.2 Recognition Algorithms

At this time, four pattern recognition algorithms have been implemented. The first header file placed
in an include statement is selected for the recognition algorithm.

#i ncl ude <nitro/prc/algo_light.h> = Li ght recognition al gorithm

#i ncl ude <nitro/prc/al go_standard. h> - St andard recognition al gorithm
#i ncl ude <nitro/prc/algo_fine.h> = Fi ne recognition algorithm

#i ncl ude <nitro/prc/al go_superfine. h> - Superfine recognition algorithm

If you describe #i ncl ude <ni tro/ prc. h>, all four of the above header files will be loaded. Because
al go_st andar d. h is loaded first, Standard is the default recognition algorithm.

The following library functions and types vary depending on the recognition algorithm.
PRCPr ot ot ypeDB

PRCl nput Pattern

PRCPr ot ot ypeDBPar am

PRCl nput Pat t er nPar am
PRCRecogni zePar am

PRC | ni t

PRC_Get Pr ot ot ypeDBBuf f er Si ze*
PRC_I ni t Pr ot ot ypeDB*

PRC _Get | nput Patt er nBuf f er Si ze
PRC | nitl nput Pattern*

PRC _Get | nput Patt er nSt r okes
PRC_Get Recogni ti onBuf f er Si ze*

PRC_Get Recogni zedEnt r y*

Each recognition algorithm uses an identifier shown above, with the algorithm’s name appended to it
as a suffix. The above identifiers will be treated as aliases of those in the first loaded header file. To
use the recognition algorithms placed in an include statement after the first header, you must explicitly
use types and function names with the suffix _<al gori t hm name>: for example,

PRCRecogni zePar am Li ght or PRC_| ni t Pr ot ot ypeDBEXx_Fi ne.

However, of the types and functions in the current implementation, the following library functions are
common to all recognition algorithms.

PRCPr ot ot ypeDB
PRCl nput Pattern

PRCPr ot ot ypeDBPar am

TWL-06-0039-001-B 20 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

PRCI nput Pat t er nPar am

PRC | nit

PRC_Get Pr ot ot ypeDBBuf f er Si ze*
PRC_I ni t Pr ot ot ypeDB*

PRC _Get | nput Patt ernBuf f er Si ze
PRC | nitl nput Pattern*

PRC_Get | nput Pat t er nSt r okes

These functions and types use the _Common suffix, which is referenced by all algorithms: for example,
PRCPr ot ot ypeDB_Cormon.

Apart from the algorithms related to PRC_Get Recogni zedEnt r y* (which performs actual recognition),
all other algorithms currently use the same libraries. The prc/characterRecognition-2 demo exploits
this feature to access a shared prototype database and shared input pattern data by using all
recognition algorithms simultaneously. For an example of using multiple recognition algorithms
simultaneously, refer to the demo.

An overview of each algorithm is presented in the following sections. In this discussion, we often use
vague terms because the accuracy and calculation time for each algorithm depend considerably on a
number of factors. Statements about processing speed are for reference purposes only. Select your
recognition algorithm and set your parameters only after thorough testing with the data used in your
application.

3.2.1 Light Algorithm

The Light algorithm is the most lightweight recognition algorithm. It is ideal for situations where
patterns in the prototype database are distinct (making recognition errors unlikely) or when you want
to recognize patterns that consist of only a single stroke.

This algorithm compares only angles. Strokes of the input pattern and prototype are expanded or
contracted, so that the total length of each is 1. The integral of the difference in angles is then taken,
and the degree of similarity is computed and returned. The values are adjusted such that a similarity
of 0.0 is returned if all angles differ by 180°, and a similarity of 1.0 is returned if all angles match
perfectly.

0 2004-2009 Nintendo 21 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK

Using the Pattern Recognition Library

Figure 3-2 Angle Difference

T The total area of the
= ~ grey region is the
difference between J
> \ the two patterns —
\ § The angle difference is
) \ T adjusted so that it has an
/ \ absolute value of less than pi.
‘\ / “| ™
N o | N /'
g ® ° o *—o ° —o '

Because the Y axis faces
down, the angle is calculated
from the positive side of the X
axis in a clockwise direction
The input pattern is shown on the upper left and the
sample pattern is shown on the lower left. The graph above
shows the segments of both patterns straightened out and
set to a length of 1. The angles for each segment are

3\,/
plotted in the vertical axis.

Figure 3-2 shows the angle difference in a graphic form.

When comparing patterns with multiple strokes, the Light algorithm performs the same calculations
on each stroke and then computes the weighted average of all similarity scores, weighting each
stroke in the prototype based on its length relative to the entire pattern. However, this algorithm does
not examine the relative positions of each stroke; it thus has the inherent drawback of not being able

to distinguish "T" from "+". This algorithm was designed mainly to recognize single-stroke patterns at
the fastest speed possible.

The calculation time will be proportional to the result of multiplication between [the number of points in
the input pattern] and [the number of entries in the prototype database].

3.2.2 Standard Algorithm

This algorithm was designed as a standard recognition algorithm. It is ideal for situations that require
the player to correctly enter patterns like magic symbol.

This algorithm compares both angles and positions. Like the Light algorithm, it adjusts the length of
the input pattern and the prototype so that they are both 1, and takes the integral value of the angle
differences multiplied by the position differences. Instead of taking the difference between exact
points, distances are measured with the “city block” method and approximated to the closest
sampling point coordinates. Like the Light algorithm, the Standard algorithm adjusts the similarity

values such that 0.0 indicates lack of similarity and 1.0 indicates perfect match, and returns the result
as a score.

TWL-06-0039-001-B

22
Released: August 7, 2009

[0 2004-2009 Nintendo
CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

Because the Standard algorithm considers positioning, it can easily recognize patterns with multiple
strokes. When determining the similarity score, after performing the above calculations on each

stroke this algorithm computes the weighted average of similarity scores, giving each stroke in both
the database entry and input pattern a weight proportional to its length relative to the entire pattern.

The calculation time for the Standard algorithm is two or three times longer than that required for the
Light algorithm. However, even if you set up a recognition thread that runs when the main thread is
idle, the result should come back in an acceptable period of time.

3.2.3 Fine Algorithm

This algorithm was designed to handle even distorted characters. It is useful when the application
needs to salvage such character input data as the distorted input from a user. In addition to
comparing both angles and positions, this algorithm performs elastic matching. Rather than matching
input and prototypes by changing their size, it expands and contracts individual strokes, and looks for
the matches that result in a high evaluation score.

Figure 3-3 Elastic Matching

/ly
/I
I
[
\
\
\
f \
LA
Il ‘{ \“‘ _d

{
|\
\T
/

An example of elastic matching is shown in Figure 3-3. Vertices in the input pattern (left side) are
compared with those in the prototype database entry (right side). You can see that sometimes the
vertices are mapped to a single vertex more than once. The Fine algorithm searches for combinations
that produce the highest score, while permitting more than one point to be mapped to a single point.
This allows the algorithm to easily handle distortions like those shown in the figure and to generate a
high score for a “3” drawn such that the upper and lower sections are not of the same size as the
prototype. Elastic matching is good at correctly interpreting distorted input.

To compute the score, the following formula is used on each matching vertex.
(normalized size x 2 — city block distance) x (T — difference between angles of the segments entering the vertex)

The average of the vertices is then taken, and the result is distributed over the range of 0.0 to 1.0.
The vertices are matched to find the vertex that generates the highest score.

Elastic matching is performed using an algorithm based on Dynamic Programming (DP) matching. It
does not implement a beam search. Accordingly, the calculation time is proportional to the result of

0 2004-2009 Nintendo 23 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

multiplication between [the number of points in the input pattern] and [the number of points in the
prototype]. In a typical application, the Fine algorithm usually takes several times longer than the
Standard algorithm.

3.2.4 Superfine Algorithm

The Superfine algorithm is the recognition algorithm that requires the longest processing time among
the currently implemented algorithms. However, it is not always more accurate than the Fine
algorithm. Use the Superfine algorithm when you find that the Fine algorithm is not accurate enough.

Like the Fine algorithm, Superfine algorithm uses elastic matching. The Fine algorithm takes the
evaluation values used by elastic matching and returns the values as the score; Superfine algorithm
uses elastic matching to obtain information about the points that should map. Elastic matching
determines the most likely vertex matches; vertices without a certain match are matched with
hypothetical points on the other pattern based on lengths of the segments before and after the vertex
in question. The Superfine algorithm then computes a final score in the same manner as the Fine
algorithm.

Unlike the Fine algorithm, Superfine uses the following formula for each point to compute the final
score.

(normalized size x 2 — city block distance) x (cos of the difference between the angles of segments entering the vertex)

The Superfine algorithm then computes a weighted average of all the points based on the lengths of
segments connected to each point relative to the entire pattern.

When finding vertex pairs using DP matching, the Superfine algorithm does not treat segment lengths
the same way as the Fine algorithm. The angle score is computed using a cosine function.

Figure 3-4 Computing Angle Score Using a Cosine Function

= \\\L/ \5‘

¥ /_F§ C

/
/(
I
| W
|
|
\
\
\
|)
\

In the graph above, the hypothetical points that result from interpolation are in red. In addition to
performing the operations used by the Fine algorithm, the Superfine algorithm must perform frequent
division to generate the interpolated points. The calculation time required by the Superfine algorithm
to generate the interpolated points is often several times longer than that required by the Fine
algorithm.

TWL-06-0039-001-B 24 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

4 Tips and Tricks

4.1 Parameter Settings

The easiest way to learn about parameter adjustments is to change parameters in the
prc/characterRecognition-2 demo and watch the effect on memory use, calculation time, and
accuracy. Because performance will depend considerably on the nature of the prototype database,
you need to make your parameter adjustments using the data that is as close as possible to the
prototype database that you will use in actual application. For instructions on using the
characterRecognition-2 demo, see section A.2 characterRecognition-2.

If certain patterns are recognized too frequently, you can prevent this by adjusting their correction
values in the database. However, you can easily end up making a large number of unnecessary
minor adjustments. You can use the same code value for several database entries. If you have
patterns that are not being recognized, it might be easier to add new prototypes to the database until
you start getting matches for those patterns.

4.2 FAQ

Q. ki ndMask can be specified with both PRC | ni t Pr ot ot ypeDB* and PRC_Get Recogni zedEnt ry*.
Which should be used to select a certain type of pattern?

A. This depends on how often you want to change your selection criteria. Specifying with
PRC_I ni t Pr ot ot ypeDB will reduce the memory required for extracting the prototype database, but
you will not be able to easily change the set of patterns you want to target.

Q. I want a lightweight algorithm that will recognize patterns with multiple strokes. Can the Light
algorithm be used for this purpose? | don't need a high level of recognition accuracy, but the inability to
distinguish "p" from "b" is going to be a problem.

A. Light algorithm can be used to recognize patterns that have multiple strokes. This is
accomplished by not using PenUpMar ker . Normally, when the pen is lifted, a
PRC_AppendPenUpMar ker is used to show that the stroke was completed, but if you omit this
operation, the pattern recognition library will treat a series of strokes as a single connected stroke.
By populating your prototype database with patterns that have a single unbroken stroke, the Light
algorithm will be able to perform recognition that reflects the positional relationships of multiple
strokes.

This technique is also useful for handling joined characters and lines that fade out partway.
Nonetheless, the possibility of unintentional matches will naturally increase. To avoid this, select
your patterns accordingly.

Q. Is it possible to use the resampling results for processing outside of the game?

A. For PRCI nput Pat t er n, use PRC_Get | nput Pat t er nSt r okes. This creates a pointer that points
directly to the data contained in PRCI nput Pat t er n, so there is no need to initialize the first

0 2004-2009 Nintendo 25 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

parameter with PRC | ni t St r okes. If you want to change the contents, you can copy the structure
with PRC_Copy St r okes before using the contents.

If you only want to perform resampling, you can use PRC_Resanpl eSt r okes*. The results of this
function will be returned as an index array. Use the application to convert the results to the
PRCSt r okes type.

TWL-06-0039-001-B 26 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

Appendix A Demos

The pattern recognition library demos are stored in the $TW.SDK_ROOT/ bui | d/ denos/ pr ¢ directory of
the TWL SDK.

A.l characterRecognition-1

Several problems can occur when the pattern recognition library is used. Calculation time can
sometimes exceed a single frame and can depend considerably on the complexity of the input pattern.
Therefore, set up a pattern recognition thread that is separate from the main thread. Ideally, the
application should perform pattern recognition during the idle period after main thread processing is
finished and before the V-Blank interrupt is generated. The char act er Recogni ti on-1 demo is an
example of an application that uses a separate thread.

Perform recognition with the A Button and clear the screen with the B Button.

In the demo, the prototype database has 97 entries that can be used for testing. This prototype
database contains Arabic numerals, lowercase alphabets, and some symbols. Because there are
multiple patterns for each numeral, the total number of characters that can be recognized is 50. This
prototype database is used only for demonstration purposes. For your application, you should build a
new prototype database using sampling points and standard patterns that meet your requirements for
speed and accuracy.

A.2 characterRecognition-2

This demo application is designed to compare various pattern recognition algorithms. It allows you to
use a prototype database on the production unit to see the effect of changing naxPoi nt Count (the
largest number of sampling points accepted) on the size of work area; it also helps you understand
how the adjustment of resampling parameters can affect recognition time and results.

There are eight threshold combinations (from low to high) that have been tuned to generate a similar
number of sampling points using the three sampling algorithms. These settings can be changed
during runtime.

This demo employs the prototype database used in the char act er Recogni ti on- 1 demo. By
repopulating the database with actual application data, you can use this demo application to help
determine optimal parameter settings.

Start the application and draw a pattern on the touch panel. When you press the A Button, four
patterns will appear on the screen. The three patterns on the left, PRC_RESAMPLE METHOD_DI STANCE,
ANGLE, and RECURSI VE, are the sampling results. The rightmost pattern is the recognition result
prototype data. The Debug Output window displays detailed recognition results for each algorithm.

0 2004-2009 Nintendo 27 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

Figure A-1 characterRecognition-2 Demo

Display previous entry in the current Display next entry in the current
prototype database in the upper right prototype database in the upper right

Change maximum @ Perform recognition
number of resampled points without clearing screen
Select one of eight resampling
settings (low-high)

characterRecognition-2 allows
you to see the recognition results
of four recognition algorithms
in the Debug Output window

Show current input and resampled
data in Debug Output

v Perform recognition and
clear input
< Clear screen and input data

This demo can also be used as a basic pattern creation tool.

> ||

<o

Set the sampling parameters using the +Control Pad (Left/Right) and draw a pattern with the pen.
Press the Y Button; the resampling result pattern data for each of the three resampling algorithms will
appear as text in the Debug Output window. One line at a time, you can cut and paste the text data
for various patterns into a text file; to obtain a C source code listing for the prototype list that can be

read by the pattern recognition library, run the following demo sample:
$ perl $TW.SDK ROOT/ t ool s/ bi n/ pdi c2c. pl <nornalized size for output>

<prot ot ype database text data>

To check operation of the pattern recognition library, use the source code. For more information on
the input format used by pdi c2c. pl , see the reference manual.

TWL-06-0039-001-B 28 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Using the Pattern Recognition Library TWL-SDK

Windows is a registered trademark or trademark of Microsoft Corporation (USA) in the U.S. and other countries.
Maya is a registered trademark or trademark of Alias Systems Corp.
Photoshop and Adobe are registered trademarks or trademarks of Adobe Systems Incorporated.

All other company names and product names are the trademark or registered trademark of their respective companies.

0 2004-2009 Nintendo 29 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK Using the Pattern Recognition Library

© 2004-2009 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

TWL-06-0039-001-B 30 0 2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

	1 Overview of Pattern Recognition
	1.1 Introduction
	1.2 Library Functionality
	1.3 What the Library Can and Cannot Do
	1.3.1 Examples of Possible Uses
	1.3.2 Examples of Possible Uses that Currently Require Workarounds
	1.3.3 Applications Not Currently Possible

	2 Basics of Library Use
	2.1 Data Structures
	2.1.1 Basic Data Types
	2.1.2 Prototype List Type
	2.1.3 Prototype Database Entry Type
	2.1.4 Stroke Data Type
	2.1.5 Data Types Dependent On Recognition Algorithm

	2.2 Examples Of Library Use

	3 Settings Entries
	3.1 Parameters for Resampling
	3.1.1 PRC_RESAMPLE_METHOD_NONE
	3.1.2 PRC_RESAMPLE_METHOD_DISTANCE
	3.1.3 PRC_RESAMPLE_METHOD_ANGLE
	3.1.4 PRC_RESAMPLE_METHOD_RECURSIVE

	3.2 Recognition Algorithms
	3.2.1 Light Algorithm
	3.2.2 Standard Algorithm
	3.2.3 Fine Algorithm
	3.2.4 Superfine Algorithm

	4 Tips and Tricks
	4.1 Parameter Settings
	4.2 FAQ
	Appendix A Demos
	A.1 characterRecognition-1
	A.2 characterRecognition-2

