TWL-SDK
File System Library Manual

Version 1.0.3

The content of this document is highly confidential

and should be handled accordingly.

0 2008-2009 Nintendo TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may
not be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior

written consent of Nintendo.

TWL-06-0015-001-B 2 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK

File System Library Manual

Table of Contents

1

2

3

4

INEFOAUCTHION .o
11 OVEIVIEW ...ttt ettt sttt nibeee e
1.2 How to Use the File System
1.3 NItrOROM FOrMaAL..........ooeiiiiiiiiiiiiiieieee e

The File/Directory Interface
2.1 Definitions of Terminology

211 BNty oo,

2.1.2 DIFECIOIY ...

2.1.3 FIlE

2.14 AFCNIVE. ...

2.1.5 Path ..o

2.1.6 FIlE ID vt
2.2 Explanation of the APl...........cooviiiiiiiiee e

2.2.1 Common Operationsccccveeevevcvveieeeeeeeeeneeees

222 Manipulating Directories..........cccceeeeeeeiiiiiiiieenenn.

2.2.3 Manipulating Filescccccco i,

ArChiVe SYSTEIMuviiiiiiiiiiii e
3.1 The Purpose of the Archive System
3.2 Archive Configuration..........cccccveeeviiiciieeeee e,

3.2.1 Unique Address Space and Offsets

3.2.2 Commands and User Procedures
3.3 Archive OpPerationsccccvvvveeeeiiiiciieeeee e ceeeeee

331 Archive State TransSitionS.........cccccevvvveeeviiieeeennne

3.3.2 Command Process Sequence
3.4 Archive DESIGNS ...ccvvvieeiiiiieiiee et

34.1 Standard Specifications........c.ccccovecvvieeeee e,

3.4.2 Default Procedurecccccooiiiiiiiiiiniiiiieeen.

3.4.3 Implementing Archivesccccvveeveee e,
35 Explanation of the API..........ccooiiiiees

3.5.1 Manipulating the State...........cccceeiiiiiiiiiiiiee.

3.5.2 User Procedurescccovvveeeeiiieee e

353 Asynchronous Processes

Overlay Interface........cccevvieeiiiiieeee e
4.1 Starting Segment and Overlay Segments
4.2 Characteristics of Overlays

42.1 Idiosyncratic Life Management

422

Competing for PoSitionccccccovvecviieeeee e e

[2008-2009 Nintendo
CONFIDENTIAL

TWL-06-0015-001-B
Released: August 7, 2009

File System Library Manual TWL-SDK
4.3 EXPIanation Of the APttt e e e e e st b b e e e e e e e e e snbbeeeeeaeeeaannes 38
43.1 SPEeCIfYING INTthe LSF FlE ... e e e e e e anes 38
4.3.2 Overlay ID Declaration and Definition............ueiiieeiiiiiiiiieee e e e e e srene e e e e e e e ennes 39
4.3.3 Loading and UnIOading OVerTaYS.coiiuuiiiiiiie ettt ettt e e e e e s eeeeeaa e e e e anes 39
4.3.4 (DA V7o [TgTe 1 g T3 W0 F= o B o Yo =PSRN 40
Code
Code 1-1 ROM Header INformation SLIUCTUIEuuiiiiiiiiiiiiiieee ettt e et e e e e e ennreeeeas 9
Code 2-1 FSFile Object INItIAliZAtIONeiiiie i e e e s s er e e e e e s s ennareer e e e e e e snnrnneees 14
Code 2-2 Initializing the FSFIle ODJECToii e 14
Code 2-3 Getting the Path from the FSFile ODJECTcoiiiiiiieieie e 15
Code 2-4 Changing the CUIMENt DIFECIOMYcciiiierieeiee e e e e ettt e e e e e s e s e e e e e s s st eeeeaeesssssrtereeeeeesannnrnneees 15
Code 2-5 Getting the DIFECIOIY LIStuiiiiiiiiiieie et e e e e e s s bbb e e e e e e e e snnreeeeas 16
(000 (T2l T I 1 g To T =1 =SSR 17
Code 2-7 Example of a ReCursive SEarch PrOCESSooi it 17
Code 2-8 Opening and ClOSING FIlESuiiiiiiiiiiiiie e e e e e e s s r e e e e e e annrnreees 19
Code 2-9 Getting the File's Size and SEek POSItIONccuuiiiiiiiii e 19
Code 2-10 File REAING/NVIIEING ©.vveeeiiiieiieiiee e e e ieite e e e e e e s st e e e e e s e st eaeeeaeesssssstaaereeeeesasssnteeeeeeeesannnrnneees 20
Code 2-11 Asynchronous Read Of Fle........ccoooiiiiiiiiiii e 20
Code 3-1 Initializing FSAIChIVE ODJECT.......ciiii et e e e e e s st r e e e e e e annrnreees 31
Code 3-2 Registering ArChive NAMEoiiii et e e e e e s s e e e e e e e e snnbeeeeas 31
Code 3-3 Releasing ArChivVe NAIMEuuiiiiiie e cr e e s e s r e e e e s s s s e e e e e e s asnssnteeeeeeeessnnnrnneees 32
1070 [SIC B W = To [T g o AN £ 11V TR PPPUPT ST 32
Code 3-5 UNIoadiNg AICRIVE.......coii ettt e e e e e e st e e e e e e e e nbbbe e e e e e e e e annbeneeas 32
Code 3-6 Suspending and ReSUMING AICHIVEueiiiiiiiiiiiie e rr e e e e e 33
Code 3-7 Configuring the USEr PrOCEAUIEc.uuieiiiie ettt e e e et e e e e e e e saeeeeeas 33
Code 3-8 Describing the USEr PrOCEAUIEcccuuiiiiiie et e st e e e e e s e e e e e e s s st e e e e e e e snnnnneees 34
Code 3-9 Desynchronizing ACCESS CallDACK............eeiiiiiiiiiiiiiii e 34
Code 3-10 Desynchronizing USEr PrOCEAUIE..........uuiiiiiei ittt e e e e e sttee e e e e e s s ee e e e e e s s et e e e e e e e snnreneees 35
Code 4-1 Specifying Overlay Segment With an LSF Filecoiiiiiiiiii e 38
Code 4-2 Overlay ID Declaration and DefiNItioNcoiiiiiiiiiiiee s e e 39
Code 4-3 LOAAING AN OVEITAY ...eeiiiieiiiiiiiiiiee ettt e e e e ettt e e e e e e s e aanbbeeeeaaeeeaasbbbeeeeaaeesaannbneees 39
Code 4-4 Unloading @n OVEIIAYcccuuiiiiieie e ieceis e srt et e e e e e s s e e e e e e s e st ee e e e e e e s s nssnbeneeeeeessnnrneeees 40
Code 4-5 Dividing UP the LOAA PrOCESS.....ciiiiiiiitiiiit ettt et e e e e e et e e e e e e e e enbeee e 40
Tables
Table 3-1 File SYSIEM SLALE SELeiiiiiiiiiiiiiiiie e e e e s s r e e e s s s s b e e e e e e s e ansntrneeeeeeesaansnes 22
Table 3-2 TransitioNs BEtWEEN SEALESuiiiiiiiiiiiiiii e e e e e e et e e e e e e s e s anbbeeeaeaeeeaannes 23
TWL-06-0015-001-B 4 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Figures
Figure 1-1 Schematic Overview Of File SYSIEMo 7
Figure 1-2 FNT and FAT in the Application ROMcoiiiiiiiiiiiic e e e e e s e s nnrnenea e 9
(o [I N Y o] (o= 1 = o TP PPPT 10
1o [LRy s Y o (o= | 1= Tox 1] Y2 SR 10
FIQUIre 2-3 A TYPICAI FlE... ... ettt e e e e e e e et e e e e e e e e e nab e e e e e e e e e e annneees 11
1o [0 LR e Y o] (o= | AN (o] 1Y USSR 11
Figure 2-5 Example of Correspondence Between File, File Path, and File IDccccccooiiiiininne, 13
Figure 3-1 Transitioning Through Archive StateS...........cooiiiiiiiiiiie e 23
Figure 3-2 Archive Operating-State TranSItiONScoiii i a e 24
Figure 3-3 Command ProCeSS FIOWuuuiiiiiiiiiiiiiiiiee ettt e e e e s e s e e e e e e s s et ane e e e e e e s e nnnnnees 25
1o [0 LT R A I T = U0 L o Yo =T [] - USSR 27
Figure 3-5 ROM ArChIVE PrOCEAUIE........ueiiiiiiiiii ittt e et e e e e e e e ab e e e e e e e e e e aneeees 28
Figure 3-6 Procedure for Archive in Your Own Format in MEMOIYuuvvveieeiiiiiiiieeee e e e e e 29
Figure 3-7 Archive Procedure via Wireless COMMUNICALIONcooiiiiiiiiiiiiaeiiiiieicee e 30
Figure 4-1 Segment COMPOSITIONuuiiiiiie e e e st ee e e e e s s st e e e e e e s s st e e e e e e s s s s st ereeeeessaasnsrnnreeeeessannnnnnns 36
Figure 4-2 Static Segment and OVerlay SEOgMENTS.c.coi it 36
Figure 4-3 Life of an OVerlay SEQMENT.........ccoi it e e s s e e e e e s s s e e e ee e s e e nnnneees 37
Figure 4-4 Competition Among OVerlay SEQMENTSccoiiiiiiiiiiiiia et e e e 38
0 2008-2009 Nintendo 5 TWL-06-0015-001-B

CONFIDENTIAL Released: August 7, 2009

File System Library Manual

TWL-SDK

Revision History

Version Revision Date Description

1.0.3 2009/04/13 Added a section (1.3 NitroRom Format)

1.0.2 2008/09/26 Changed references to NITRO-SDK, since this document is included
in TWL-SDK.

1.0.1 2005/08/19 2.2.1 Added a section (2.2.1.1 Initializing the FS Library).
2.2.3.2 Revised code (revised sample code in the list).

1.0.0 2005/01/11 Initial release.

TWL-06-0015-001-B 6 O 2008-2009 Nintendo

Released: August 7, 2009

CONFIDENTIAL

TWL-SDK File System Library Manual

1 Introduction

The TWL-SDK has a File System library to handle the files and overlays of applications created in the
Ni t r oROMformat and to make your own extensions to these files and overlays.

This document explains the basic organization of the File System library and how to use the library.

1.1 Overview

With the TWL-SDK, when the TW._ MAKEROMbuild switch is enabled for building, the maker omtool
generates the application in the Ni t r oROMformat. (This build switch is enabled by default, so
applications are normally created in this format.) The generated application stores one set of directories,
along with information on the files that are included in those directories and, if specified, overlay
information as well.

The "File System" is the name used for the mechanism for accessing and manipulating this data from
the application. In broad terms, this File System is composed of the module blocks listed below. The
following chapters provide explanations of these blocks.

« File/Directory Interface Mechanism for transparent access to files and directories

¢ Archive System A collection of data-access processes built into the File System in a

format compatible with the File/Directory Interface
« ROM Archive Interface A standard internal definitions archive for accessing TWL Cards
e Overlay Interface General operations for overlay

Figure 1-1 Schematic Overview of File System

File/Directory Interface

ROM Archive Interface

ad b

! Archive i{ Archive |
i (Expanded) i (Expanded) | Overlay Interface

Archive System

1.2 How to Use the File System

In order to use the File System from your application, you need to build the application with the settings
described below. (These specifications are simply ignored when the TWL-SDK library itself gets built.)

0 2008-2009 Nintendo 7 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

< To enable the File System in the application, enable the TW._ MAKEROMbuild switch. This specification
is necessary in order to execute the maker omtool as described in conmondef s from the make
command. (Since this build switch is enabled by default, the application is normally built this way.)

« If directories and files are to be used in the application, specify a . r sf file in the ROM_SPEC build
switch. The maker omtool will store the information on directories and files (as described in the . r sf
file). To read more about . r sf files, see the maker omitem of Tools in the TWL-SDK Function
Reference Manual.

« If the application uses overlays, specify . | sf files with the LCFI LE_SPEC build switch, and specify the
source file for the overlay in the SRC_OVERLAY build switch. These specifications get passed to the
makel cf tool as described in commondef s from the make command. To read about the notation rules
for . | sf files, see the makel cf item of Tools in the TWL-SDK Function Reference Manual.

« If the application makes use of overlays, in special situations, enable the TW._DI GEST build switch.
These are situations where the TWL Card storing the overlay information cannot be accessed
directly, so the information must be acquired indirectly via wireless communications or some other
means of communications. For overlay information obtained under such circumstances, it is
necessary to guarantee the correctness of execution code. This build switch must be specified so
the TWL-SDK can act internally to determine this correctness. (For details, see the DS Download
Play Manual.)

1.3 NitroROM Format

The TWL-SDK File System is designed based on the NitroROM format. As mentioned previously,
applications built using the naker omtool are built in this format. In the NitroROM format, management
information is contained in one FNT and one FAT, and these are referenced to track down the file name,
size and other information from the root directory. A broad sketch of the internal structure of ROM is
given in Table 1 below.

You can ascertain the addresses where FNT and FAT are stored by casting the starting region of the
ROM image (the ROM header information) to the CARDRonHeader structure. Developers normally do
not need to directly handle this information because the NitroROM format is analyzed automatically as
an internal process in the FS library. However, you may at some point want to use some ROM image by
directly mounting it to the File System, so the sample demo $Tw SDK/ bui | d/ denps/ fs/arc-1 has
been prepared for your reference purposes.

TWL-06-0015-001-B 8 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Figure 1-2 FNT and FAT in the Application ROM

Application ROM

ROM header

Various ROM information (Locations of FNT and FAT)

Address

FNT

_}
Directory hierarchy information

File ID
A

FAT

Table of file IDs and location of corresponding data

Address
v

/J /J PJ Files

Code 1-1 ROM Header Information Structure

/1 nitro/card/types. h:
t ypedef struct CARDRonHeader

{
/1 0x040-0x050 [Paraneters for file tables]
CARDRonRegi on fnt; /1 File name table
CARDRonRegi on fat; // File allocation table
}
CARDRonHeader ;
O 2008-2009 Nintendo 9 TWL-06-0015-001-B

CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

2 The File/Directory Interface

A series of basic capabilities has been built into the File System Library to specify and manipulate
directories and files. This chapter explains the interface to those capabilities.

2.1 Definitions of Terminology

Terms like "file" and "directory" that are adopted by the File System Library and appear in this document
are generally used in the same way they are used by the operating system on a standard PC.

This section presents the strict definitions of these terms as they pertain to the File System Library.

2.1.1 Entry

An entry is a hierarchical element. It holds information for identifying a single specific file or a single
specific directory. Each entry must have a name that does not duplicate the names of other entries at
the same hierarchical level. The name can be composed of up to 127 characters of ASCII code.

Uppercase and lowercase are not distinguished, and the following characters cannot be used: ¥ /
<> |

Figure 2-1 A Typical Entry

1
1
!
entry ——p or !
1
'
1

2.1.2 Directory

A directory expresses information for a single level in the hierarchy. It contains zero or more entries and
information that identifies each entry. It also has information that identifies the directory at the top of the
hierarchy (the parent directory).

Figure 2-2 A Typical Directory

A
i parent Eq—
! directory | entry >
. E
entry >
/
TWL-06-0015-001-B 10 0 2008-2009 Nintendo

Released: August 7, 2009 CONFIDENTIAL

TWL-SDK

File System Library Manual

2.1.3 File

Afile is the information for referencing a unique object possessing binary data. "Opening" the file
commences operation of the object, and "closing" the file ends operations. The file behaves like linear
memory when using the "read" and "write" operations.

Figure 2-3 A Typical File

file

2.1.4 Archive

An archive is an object that has information for files, directories, and entries, as well as the means to
control these files, directories, and entries.

Each archive has a single name that does not duplicate the name of any other archive inside the File
System. This name is composed of up to 3 alphanumeric characters. Names are not case-sensitive.

The archive encompasses a single hierarchical relationship, with an unnamed directory at the highest

level (the root directory).

Figure 2-4 A Typical Archiv

e

/— name

\\

T

/

root directory

—

\\

4 N W
entry entryJ » file
entry
\

file

[2008-2009 Nintendo
CONFIDENTIAL

11

TWL-06-0015-001-B
Released: August 7, 2009

File System Library Manual TWL-SDK

2.1.5 Path

An arbitrary number of archives can exist in parallel in the File System. Each entry can be uniquely
identified by using a combination of the archive name and the entry name for each hierarchical level
from the root directory. This combination of names is called the "path.” (It is also sometimes called the
path name or the path string.)

If the entry information indicates a directory, then the path is called a "directory path." Similarly, if the
entry information indicates a file, then the path is called a "file path."

2.1.5.1 Path Format

A path is expressed as a character string, entered in any of the following formats:

1) " [Archive name): /"

2) "|(Archive name) : / [Entry name|/ [Entry name]/ ... / [Entry name]/ "
3) "|(Archive name) : / Entry name|/ [Entry name]/ ... / Entry name] "

All entries that are not at the end of the path must be entries that indicate directories.
If there is a slash character ("/ ") at the end of the path, this means it is a directory path.

Paths 1) and 2) above are both examples of directory paths. The 1) format is the only format that can
express the root directory path of an archive. Path 3) can be either a directory path or a file path. If the
final entry in this path indicates a directory, then the path is equivalent to path 2). In other words, there is
no distinction between directory paths with and without a slash (*/ ") at the path end.

2.1.5.2 Relative File Format

The File System allows parts of the path to be omitted. When parts of the path are omitted, the File
System uses the directory path in memory as the base from which to supplement the omitted parts. This
path in memory is called the "current directory," and a path with omissions is called a "relative path." A
normal path with nothing omitted is called an "absolute path."

The relative path is supplemented from the current directory by following these rules:

1. If the entry starts with a slash ("/ "), then the path is supplemented with the root directory of the
archive to which the current directory belongs.

2. If not, then the path is supplemented by simply attaching it to the end of the current directory path.

Thus, if the current directory isrom / t ext / then the relative path / snd/ dat gets changed to the
absolute path rom / snd/ dat , whereas the relative path snd/ dat gets changed to the absolute path
rom/text/snd/ dat.

2.1.5.3 Notation of Special Paths
Two special entry names are reserved for use with both absolute paths and relative paths:

1. The entry name “. " indicates the directory in which this entry resides.

2. The entry name ". . " indicates the directory one level above the directory in which this entry resides.

TWL-06-0015-001-B 12 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

2.1.6 FileID

Each archive has unique index values that identify the files that belong to the archive. The entries in the
directory hierarchy specify files using these index values. From the set of information about the archive
and the index value, every file in the entire File System can be uniquely identified. This set of
information is called the “file ID.”

2.1.6.1 Correspondence Between File, File Path, and File ID

In the documentation relating to the File System, the term "file" may be used to refer to the file path, the
file ID or the file itself, depending on the context of the sentence. The relationship between these three
terms is as follows:

“File” indicates the file itself, and only one such file exists in a given archive.

* When some entry indicates a file (including the index value), the path for that entry is the “file path,”
but sometimes this will be simply referred to as the “file,” meaning "the File specified by the file
path.”

< The same goes for the term “file ID.” Sometimes this will be simply referred to as the “file,” meaning
"the File specified by the file ID."

« If there is a “file path” and a “file ID,” then a unique “File” exists. However, this does not mean that
the file path or file ID that identifies an arbitrary file always exists.

This means that the archive does not require an index value and an entry for each file. Thus, the archive
is permitted to contain files that cannot be pinpointed. (Such files are typically created for temporary
use.) The following figure shows the example of each file path and ID of the archive that has two files
with entries on the directory hierarchy, and three files for which index values have been provided, and
four files that actually exist.

Figure 2-5 Example of Correspondence Between File, File Path, and File ID

Archive name arc
Root Directory Directory dirl 1 . File path=arc:/dirl/filel
File . " "
/ \ ~ . File ID ={"arc", 1}
Ly
Directory |_{—"]| T_ File
dirl filel 2 Fil File path=arc:/file2
e File ID = {"arc", 2}
o 7
Fle | |——
file2 3 i File path = None
e File ID = {"arc", 3}
./ L
- . File path = None
File File ID = None
L7
0 2008-2009 Nintendo 13 TWL-06-0015-001-B

CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

2.2 Explanation of the API

The previous section discussed various definitions for the TWL-SDK File System. This section uses
those definitions to explain ways of using the File System Library's interface functions (API) to actually
manipulate files and directories from the application.

2.2.1 Common Operations

FSFi | e structure objects are used when calling functions in the File/Directory Interface. The FSFi | e
object saves information related to the file or directory, and the internal state of the FSFi | e object is
updated in accordance with the current process.

2.2.1.1 Initializing the FS Library

Before using any function in the FS library, you must initialize the FS library with the FS_I ni t function.
Calling this function once is sufficient.

During initialization the FS library performs card accesses internally, so a single DMA channel must be
allocated for this. Notice that this DMA channel will be used exclusively internally until the FS library is
released by the FS_End function. Also, because the 10 register is the card access transfer source, DMA
channel 0 cannot be used.

If you are not going to allocate a DMA channel to the FS library, you can explicitly specify
FS_DMA NOT_USE as a special value. In this case, the CPU will process card access.

Code 2-1 FSFile Object Initialization

/* Initialize before using FS library */

#define DVMA CHANNEL FOR FS 2 /* DVA to use with FS */
FS Init(DVA CHANNEL FOR FS);

2.2.1.2 Initializing the FSFile Object

The internal state of an FSFi | e object must be initialized with the FS_I ni t Fi | e function before the
object is used. The user does not need to directly operate on any of the various internal members of the
FSFi | e object.

Code 2-2 Initializing the FSFile Object

/* Must initialize FSFile object before using it first tine * /
FSFile file;

FS InitFile(&ile);

If the FSFi | e object stores file-related information, that object can also be called the “file handle.” If the
object stores directory-related information, that object can also be called the “directory list.” A single
FSFi | e object cannot store multiple sets of file or directory information.

2.2.1.3 Getting the Path

If the FSFi | e object stores file or directory information, you can use the FS_Get Pat hNane function to get
the file path or the directory path.

TWL-06-0015-001-B 14 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Code 2-3 Getting the Path from the FSFile Object

/* Get path length for content held by FSFile object */

const s32 len = FS_Get PathLength(&file);

/* If -1 is returned here, either the specified object is a file without an entry

(as described in 2.1.6.1 Correspondence between file, file path and file ID) or the

FSFil e object holds no information. */
if(len >=0)

{
/* Prepare enough nmenory to store path nane */
char *buf = (char*)0s Alloc(len);
if(buf)
{
/* Actually get the path nane */
BOOL ret = FS_GetPathName(&file, buf, len);
if(ret)
{
CS _Printf("path=%¥n", buf);
}
CS _Free(buf);
}
}

2.2.1.4 Manipulating the Current Directory

Almost all functions that obtain file or directory information for an FSFi | e object require a path. As
described in 2.1.5 Path, there are both absolute paths and relative paths, and the File System internally
manages a single "current directory" that gets used to supplement a relative path.

When the FS Library is initialized, the current directory gets set to the ROM Archive's root directory
"rom/" by default. Users can change the setting using the FS_ChangeDi r function.

Code 2-4 Changing the Current Directory

/* The current directory is "rom/" */

BOOL ret;

/* If arelative path has been specified, it gets supplenented with the current
directory */

ret = FS ChangeDir("dir_1");

/* If a directory named "rom/dir_1/" exists, the current directory gets changed
and TRUE is returned to ret. */

/* 1f an absol ute path has been specified, the current directory is ignored */
ret = FS ChangeDir("arc:/");
/* 1f an archive naned "arc" exists, the current directory gets changed to be

that archive's root directory.*/

0 2008-2009 Nintendo 15 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

/* 1If the archive has been released fromthe File Systemor for any other reason
the target indicated by the current directory has becone invalid, then the
current directory automatically changes to rom/, which is always guarant eed
to exist. */

FS _Rel easeArchi veName(FS_Fi ndArchive("arc", 3));

2.2.2 Manipulating Directories

To search the directory structure from the application at the time of execution, use the FSFi | e object as
a directory list to enumerate entries to obtain the information. The directory list is stored inside the

FSFi | e object as the combined information that consists of directory and enumeration location. This
combination of information is expressed by the FSDi r Pos structure. It also goes by the name of
"directory position."

The directory list is normally manipulated by the procedures described below. Use these operations as
you deem best for your application.

2.2.2.1 Getting the Directory List

There are two ways to get the directory list into the FSFi | e object. The first way is to use FS_Fi ndDi r
function to specify a known path in the File System. When this function is used, the obtained directory
list is always initialized with the enumeration position pointing to the first entry in the list. The second
way is to use to FS_SeekDi r function to specify the directory position. When this function is used, the
obtained directory list is initialized with the specified directory-position information, which includes
information about its position in the list. You can use the FS_Tel | Di r function to get this directory
position from the already obtained directory list, or you can follow the procedure described below and
get it using the FS_ReadDi r function.

Code 2-5 Getting the Directory List

BOCOL ret;

FSFile dir;

FS InitFile(&dir);

[* Get directory list fromknown path */
if(FS FindDir(&ir, "rom/"))

{
/* Get and store directory |ocation using several prepared procedures */
FSDi r Pos pos;
ret = FS TellDir(&dir, &pos);
SDK_ASSERT(ret);
/* Get directory list froman directory |ocation already obtained */
ret = FS SeekDir(&dir, &pos);
SDK_ASSERT(ret);
TWL-06-0015-001-B 16 O 2008-2009 Nintendo

Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

2.2.2.2 Enumerating Entries from the Directory List

Entry information can be obtained one set at a time from the current list position by using the

FS _ReadDi r function. The entry information is obtained in the form of the FSDi r Entry structure, and
the list position then advances to point to the next entry. This process can be repeated until the end of
the list is reached.

Code 2-6 Listing Entries

FSDirEntry entry;

/* When end of list is reached, FS ReadDir() returns FALSE */
while(FS ReadDir(&dir, &entry))

{
/* The information in the obtained entry includes the entry nane and whet her
the entry is a file or a directory */
s Printf("<%>%¥n",
entry.is _directory ? 'F : 'D, entry.nane);
}

2.2.2.3 Searching in Lower-Level Directory Lists

There may be times when you want to include a directory's subdirectories in your target search. This is
generally done by using recursive functions on obtained entries that prove to hold directory information,
and you need to be careful about stack overflow, which is a problem that all sorts of recursive processes
have in common. Note that the FSDi r Ent r y object consumes a lot of stack memory because it includes
a buffer that is the size of the largest entry name, and that the FSFi | e object used for searching is also
relatively large. Because of this, it is best that you write you code so neither of these is maintained for
every level.

Following is an example of a recursive kind of search process that does not consume a lot of stack
memory.

Code 2-7 Example of a Recursive Search Process

/* Recursive function that dunps entries from specified directory positions.
Uses FSFile and FSDirEntry argunents */

voi d DunpDi rEntri esSub(int tab,
FSFile *p _dir, FSDirEntry *p_entry)

{
/* Qutput directory names */
OGS TPrintf("% s%/ ¥n", tab, "", p_entry->nane);
tab += 4;
/* Enunerate the entries in the directory */
if(FS_SeekDir(p_dir, & entry->dir_id))
{
while(FS_ ReadDir(p_dir, p_entry))
{
0 2008-2009 Nintendo 17 TWL-06-0015-001-B

CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

if((p_entry->is_directory == 1))

{
/* Recursion to | ower subdirectory, then return.
Uses FSFile and FSDirEntry entities*/
FSDi r Pos cur _pos;
if(FS TellDir(p_dir, &cur_pos))
{
DunpDirEntri esSub(tab, p_dir, p_entry);
(voi d)FS _SeekDir(p_dir, &cur_pos);
}
}
el se
{
[* Qutput file nanes */
CS TPrintf("% s%¥n", tab, "",
p_entry->nane);
}

[* This function is the starting point for recursive dunping */
voi d DunpEntri es(const char *dir _path)

{
/* Secure the only entity used inside recursive processes */
FSFile work_dir;
FSDirEntry work_entry;
FS InitFile(&wrk_dir);
if(FS FindDir(&wrk dir, dir_path) &&
FS TelIDir(&uwork_dir, &work entry.dir_id))
{
work_entry. nane[0] = ' ¥0';
DunpDirEntri esSub(0, &wrk dir, &wrk_entry);
}
}

2.2.3 Manipulating Files

To handle files within your application, use the FSFi | e object as a file handle and call functions to
access the file and its data. The file handle is kept as the combination of binary data information and the
seek position inside the FSFi | e object. (The binary data itself is stored not inside the FSFi | e object but
rather inside some archive.)

TWL-06-0015-001-B 18 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Operations done with the file handle are performed with the procedures broadly outlined below. Use
these operations as you deem best for your application.

2.2.3.1 Opening and Closing Files

You need either a file path or a file ID to specify a file from the application. (See 2.1.6.1 Correspondence
between file, file path and file I1D.)

Content of the FSFi | e object becomes a file handle when you specify a file path with the FS_CpenFi | e
function or a file ID with the FS_QpenFi | eFast function. In either case, the operation is tantamount to
opening the file. All manipulations on files are done using this file handle. After you are done with the file
handle, use the FS_Cl oseFi | e function to release it. This operation is tantamount to closing the file.

These operations are necessary for appropriate management of internal resources in archives, where
there are restrictions on the total number of files that can be open.

Code 2-8 Opening and Closing Files

FSFi | e file;

FSFilelD file_id;

FS InitFile(&ile);

/* Qpen/close file fromknown file path */

if(FS_ QpenFile(&ile, "rom/"))
(void)FS CoseFile(&ile);

/* Open/close file fromFile ID */

if(FS_ ConvertPathToFilelD(&ile_id, "rom/"))

{
if(FS_OpenFileFast(&ile, file_id)

(void)FS C oseFile(&file);
}
2.2.3.2 Getting File Size and Setting Seek Position

There are only two basic operations performed on files: reading and writing. For these operations you
always need the "seek position" and the "size." Use the FS_Get Lengt h function to get the overall size of
the file. Get the current seek position maintained by the file handle using the FS_Get Posi t i on function.
Move around using the FS_SeekFi | e function.

Code 2-9 Getting the File's Size and Seek Position

/* Conpute renmining bytes fromtotal size and current position */
const u32 pos = FS GetPosition(&ile);

const u32 len = FS GetlLength(&file);

const u32 rest = (u32)(len - pos);

void *enough_buf = OS Alloc(rest);

/* Move seek position to the start */

(void)FS _SeekFile(&file, 0, FS SEEK SET);

0 2008-2009 Nintendo 19 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

2.2.3.3 Reading and Writing Binary Data

Use the FS_ReadFi | e function to read binary data from the current seek position of the file. Use the
FS Wi t eFi | e function to write binary data from the current seek position of the file.

With either function, after the process ends the seek position moves by an amount equal to the size of
the data that was actually accessed.

Code 2-10 File Reading/Writing

/* Read text file and output for debugging */

char string_buf[256 + 1];

string _buf[sizeof(string _buf) - 1] ="'¥0";

/* Read size becomes zero when end of file is reached */

whil e(FS ReadFile(& ile, string buf, sizeof(string buf) - 1) > 0)
OGS PutString(string_buf);

Depending on how the archive is implemented the read/write process may not end immediately and the
processor itself may conduct some other task during the reading/writing. Typically, the application side
uses threads to control this kind of asynchronous process. But asynchronous versions of the read and
write functions have been prepared to perform these operations with respect to the archive. If the
archive has been implemented to suit asynchronous processes, you can use the FS_ReadFi | eAsync
and FS_ Wit eFi | eAsync functions to return control immediately without waiting for the process to end.

To check whether the process has actually ended, use the FS_I sBusy function. To wait for the process
to end, use the FS_Wai t Async function.

If the archive does not perform asynchronous process, these asynchronous functions will operate the
same way as the synchronous functions. In cases like this, the FS_I sBusy function always returns
FALSE, and the FS_Wai t Async function returns control without doing anything, so this can be
considered the same as the case where the asynchronous process completed immediately.

Code 2-11 Asynchronous Read of File
/* Execute other processes at the sane tinme as the asynchronous read process. This
is more effective when it is a serial processes relating to the file data. */
whi | e(FS_ReadFi |l eAsync(&file, string_buf, sizeof(string buf) - 1) >0)
{
DrawScreen();
FS Wit Async(&file);
OGS PutString(string_buf);

TWL-06-0015-001-B 20 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

3 Archive System

Chapter 2 talked about the File/Directory Interface and how it is used. This chapter introduces the
Archive System, which is the framework for implementing internal operations by following the interface.
This chapter explains the configuration and operations of the Archive System, as well as the archive
interface.

3.1 The Purpose of the Archive System

As depicted by its position in the File System in 1.1 Overview, the Archive System only provides
functions for implementing archives. In using the File System library, the user application has no need
for the Archive System alone without the other module blocks.

The Archive System is primarily used by those who are implementing application middleware and
utilities.

The Archive System may prove useful in the following applications:

« For the sharing, extension, or reuse of program code between existing modules and newly
introduced modules

« To hide from users the internal implementation of a data-storage medium where complex controls
are required

3.2 Archive Configuration

An archive is defined as an object that holds information for a number of basic parameters and callback
functions. Explanations for some terms are presented below.

3.2.1 Unique Address Space and Offsets

The File System is designed with the expectation that the information stored in the archive has a linear
data structure conforming to the Ni t r oROMformat. For this reason, there must be a unique address
space that begins from 0 inside the archive, and there must be a means provided for accessing the data
images of the FNT, FAT, and each files in that space.

This means is provided through a pair of callback functions for reading and writing. For the remainder of
this document, these functions will be called the "read callback" and the "write callback." Together, the
pair will be called the "access callbacks.”

Addresses in the unique address space are called "offsets" in order to distinguish them from the address
map in the CPU.

0 2008-2009 Nintendo 21 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

3.2.2 Commands and User Procedures

By providing the access callbacks and FNT and FAT offsets in the correct manner, the archive can
transparently satisfy user requests even if the user does not have a firm handle on the actual processes
of the File System.

But a method has also been prepared that can resolve issues when a part or all of the unique address
space cannot be made to conform to the Ni t r oROMformat. There is a set of defined processes called
"commands" that can be used to access the archive from the File/Directory Interface. Each of these
commands can be set to query the archive before the access callback is executed. The archive can
process these query-making commands using callback functions called "user procedures” and directly
replace the commands with an independent implementation. In this way, even an archive that does not
strictly conform to the Ni t r oROMformat can be created that satisfies all requests from the File System.

There is also a set of standard processes called the "default procedure"” that is executed without the
replacement step of user procedures.

3.3 Archive Operations

Archive processes run automatically from the File System driven by callbacks. This section explains
how the archive operates inside the File System. The functions shown in the figures and tables are
explained in 3.5 The API.

3.3.1 Archive State Transitions

The archive's internal state has two components: its state set in the File System, and its own operating
state.

3.3.1.1 Transitioning Through Archive States

The archive can transition through three states in the File System, as shown in Table 3-1.

Table 3-1 File System State Set

State in File System Meaning

The archive does not have any association with the File System. The archive
Unregistered begins in this state immediately after initialization.

The archive has been registered with a unique name in the File System. In this
Registered state, the archive is included in the File System but it is not operating.

Access callback has been executed and archive is loaded to the File System. Only
Loaded in this state can commands be issued from the File/Directory Interface.

The transitions between these states are depicted in Figure 3-1.

TWL-06-0015-001-B 22 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Figure 3-1 Transitioning Through Archive States

FS InitArchive()

A 4

unregistered

O

FS_RegisterArchiveName () T FS_ReleaseArchiveName ()

A

\

FS_LoadArchive () FS_UnloadArchive ()

loaded

3.3.1.2 Transitioning Through Operating States

The archive itself transitions through three different operating states according to the operation of the
archive itself.

Table 3-2 Transitions Between States

Operating State Meaning
S ded Archive operations have been stopped. Commands from the File/Directory Interface
uspende are kept on hold until the archive begins operating again.
idl Archive is operating, but there are no unprocessed commands.
€ This is the timing when the first command is generated.
b Command is being processed. The archive moves to this state after the first
usy command is issued.

The transitions between these states are depicted in Figure 3-2.

0 2008-2009 Nintendo 23 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

Figure 3-2 Archive Operating-State Transitions

FS LoadArchive ()

< 4 4
|]
\ 4
— busy suspended idle
—‘ A A
Y Y
Requesting N Requesting N All commands N Command process
unload? suspend? completed? P
Y

A 4

3.3.2 Command Process Sequence

Command requests are sent in series from the File System to the archive, and if unprocessed
commands pile up, they get reserved in first-come order. The File System drives callbacks so that every
archive always processes commands one at a time, but it is nevertheless possible to operate multiple
archives in parallel in the File System without the archives interfering with each others' states.

When an archive is in the busy state, the processing of single commands is executed with either user
procedures or the default procedure, as described above in 3.2.2 Commands and user procedures.

With either procedure, after the process is executed one of the result values gets returned. Normally the
command ends at this point.

If the process in the archive is an asynchronous process (as mentioned in 2.2.3.3 Reading and writing

binary data), then the procedure returns "asynchronous processing" as a result value. If this is the case,
the archive itself will need to notify the File System of the result when the process has ended. Until the
File System receives this notification it will suspend busy-state processes. If the command that gets
suspended here is not a command that was issued from the call to an API for an asynchronous process
like file reading or writing, then the File System will block process-end notifications inside that call.

The command process flow for this is shown in Figure 3-3.

TWL-06-0015-001-B 24 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Figure 3-3 Command Process Flow

User procedure
specified?

Process

User Default
procedure procedure

Result va

Synchronous
command?

Asynchronous
process?

Prcccaa=d

1 1

Wait for end i Exit notification |
1

1 1

Exit

A

3.4 Archive Designs

This section covers the broad guidelines you should consider when implementing your own archives
and presents several implementation examples.

3.4.1 Standard Specifications

Basically speaking, implementing an archive involves just properly describing three callback functions
for the access callback and user procedures. The main task is to wrap the target-specific characteristics
in these callbacks so that they are created as close as possible to the standard specifications expected
by the File system.

The standard specifications that the File System expects of the target are shown below. The three sets
of conditions are presented in order of appropriateness; a target that meets the first set of conditions
has the easiest time being implemented as an archive.

« The internal data structure conforms entirely to the Ni t r oROMformat

In this case the implementation is easiest because all of the commands can be processed with the
default procedure by using only the access callback. As long as no special device will be handled
by the archive, there is no need for any user procedures.

0 2008-2009 Nintendo 25 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

If the format does not fully conform to the Ni t r oROMformat or is an entirely different format, you will
need to appropriately replace the FNT and FAT-related low-order commands and access callback.

» The directory structure and the file information are fixed

In this case, you can implement a standard archive that can be used without a problem at least on
the user side. However, the characteristics are such that the File/Directory Interface are not
suitable for incorporating an environment where directories are dynamically changed and the
information in files is freely altered. As a result, for targets like this there are a number of limitations
on commands and some commands may not even be supported.

» Generally speaking, the concept of the directories and files conform to that of the File System

If the target does not even meet this third set of conditions, there is very little merit to using the File
System except in the case of very special applications. One example would be for a network,
where the communications socket and URI path were generally in agreement with a number of
individual commands of the File/Directory Interface.

3.4.2 Default Procedure

The default procedure is a set of standard processes for each command available in the File System. Of
these commands, the low-level ones make use of access callbacks as well as FNT and FAT, or
implement processes that depend on nothing at all, and there are also some high-level commands that
make use internally of other low-level commands.

The figure below shows the dependency relationships of the various commands that make up the
default procedure for basic archive processing. The upper level of this dependency relationship should
be taken into consideration for the implementation of access callbacks and user procedures. Read the
function reference to learn about the strict specifications required of each command and how they are
actually supported in the SDK.

TWL-06-0015-001-B 26 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Figure 3-4 Default Procedure

Directory commands Access callbacks File commands
] 4 T\
—’[SeekDir OpenFileDirect |4
J . J
FNT
4 1\
] OpenFileFast
ReadDir J - -
[FAT <
~
[CloseFile
J
——[FindPath] Read <
4 1\
ReadFile
& J
Write <
—[GetPath] Ve ~N
WriteFile
& J
Notification of state
[Aivaie] ,__:___] Independently implemented command
L ! Commands implemented by default
(] Commands that are not supported or necessary
[Idle] > Commands that depend on internal implementation

3.4.3 Implementing Archives

This section explains the implementation of several types of archives by showing the difference from the
default procedure.

3.4.3.1 ROM Archive

After the File System is initialized, the standard practice is to load the rom archive, which is the system
definition archive. The rom archive is for accessing the file group stored in the ROM region that was
created in the TWL Card by the maker omtool, and also for processing some of the Overlay operations.

The figure shows in broad terms the processes that get replaced internally in the case of the rom archive.

0 2008-2009 Nintendo 27 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

Because the medium is ROM, the process of writing to files is made explicitly not to be supported. All
other processes are left to the defaults. State notifications are used to lock and unlock the CARD bus.

The actual code for this implementation is presented in the SDK sample demo / bui | d/ denos/ f s/ arc- 1.

Figure 3-5 ROM Archive Procedure

Directory commands Access callbacks File commands
- SeekDir OpenFileDirect <—
— FNT
OpenFileFast
i ReadDir
FAT <
CloseFile
FindPath Read <
ReadFile
Write
GetPath
[WriteFile]
Notification of state
[Activate] ,-.:___] Independently implemented command
o ! Commands implemented by default
(] Commands that are not supported or necessary
[Idle] —> Commands that depend on internal implementation

3.4.3.2 Archivein Your Own Format in Memory

The following figure is an example of an archive that has been implemented by defining a format of your
own that is different from the Ni t r oROM format and then placing a directory structure that conforms to
that format in memory.

Since the format differs from the Ni t r oROM format, neither FNT nor FAT is specified. Instead, user
procedures are used to replace these with four commands that are dependent on FNT and FAT.

TWL-06-0015-001-B 28 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK

File System Library Manual

Because the substituted commands operate according to the correct specifications, higher-order
commands can use the default procedure. Access callbacks are used only for file reading and writing.

The actual code for this implementation is presented in the SDK sample demo / bui | d/ denos/ fs/ arc- 2.

Figure 3-6 Procedure for Archive in Your Own Format in Memory

Directory commands

—{ SeekDir

J

——{ ReadDir

FindPath

GetPath

Notification of state

Access callbacks File commands
N
[OpenFileDirect |4
J
FNT
N
[OpenFileFast
J
FAT
CloseFile
Read <1
ReadFile
Write <4
WriteFile

[Activate

]

[Idle

]

Independently implemented command
Commands implemented by default
Commands that are not supported or necessary

Commands that depend on internal implementation

3.4.3.3 Archive via Wireless Communication

The figure below is an example of an archive that has been implemented so that a child program booted
from a wireless download can use wireless communications to reference the directory information in the
parent's TWL Card and obtain dynamic data.

All of FNT and FAT is received and stored in memory before getting data, and all commands other than

file access are left to the default procedure.

[2008-2009 Nintendo
CONFIDENTIAL

29 TWL-06-0015-001-B
Released: August 7, 2009

File System Library Manual

TWL-SDK

Reading of the file realizes asynchronous processes up to the time reception ends on a request via the
communications protocol. This example does not support file writing, but there are applications where

data might be written to a file.

The actual code for this implementation is presented in the SDK sample demo

[buil d/ wirel ess_shared/ wfs.

Figure 3-7 Archive Procedure via Wireless Communication

Directory commands

—> SeekDir
—> ReadDir
FindPath
GetPath

Notification of state

Access callbacks File commands
OpenFileDirect <—
FNT
OpenFileFast
FAT <—
CloseFile
A
Read
<
[ReadFile
J
Write
<
[WriteFile
J

[Activate

J

[Idle

]

Independently implemented command
Commands implemented by default
Commands that are not supported or necessary

Commands that depend on internal implementation

3.4.3.4 Other Archives

Aside from the sample demos, the TWL-SDK does not directly provide any way to implement archives.
You will need to prepare the program code yourself so your application can access archives in the

Ni t r oROMformat or in some other format created by a tool that packages data in archive form.

TWL-06-0015-001-B
Released: August 7, 2009

30 0 2008-2009 Nintendo

CONFIDENTIAL

TWL-SDK File System Library Manual

TWL-System also has the Foundation library (FND), which has been released to be used for archives.
You can build archives in standard memory by using these archive functions in combination with the
included tool / Twl Syst end t ool s/ bi n/ nnsar c. exe. To read more about this, see the TWL-System
manuals and sample demos.

3.5 Explanation of the API

The previous section looked at the overall Archive System and explained archive operations. This
section explains the procedures for using the File System Library's interface functions (the API) to
actually manipulate archives from the application.

3.5.1 Manipulating the State

To manipulate archives, the FSAr chi ve structure object is used when calling functions. FSAr chi ve
object holds various callbacks and parameters inside.

Here we explain how to change the archive's internal state. (See 3.3.1 Archive state transitions to read
about archive internal states.)

3.5.1.1 Initializing the FSArchive Object

The user does not need to directly manipulate the various internal members of the FSAr chi ve object,
but the internal state of the object must be initialized using the FS_I ni t Ar chi ve function before the
object is used. An initialized archive enters the unregistered state.

Code 3-1 Initializing FSArchive Object

/* Must initialize FSArchive object before using first time */
FSAr chive arc;

FS I nitArchive(&irc);

3.5.1.2 Registering and Releasing the Archive Name

The archive name must be registered before it can be loaded in the File System. The user of the archive is
free to use any name, but it must be a name that is unique inside the File System. Once the archive name
is registered, the archive becomes managed by the File System and moves into the registered state.

Code 3-2 Registering Archive Name

/* Register the archive with a specified nane */

const char *pame = "acl";

const int name_len = strlen(name);

const BOOL ret = FS_Regi st er Archi veNane(

&arc, nane, nane_len);

/* Registration will fail for only one of three reasons: The archive is not in
the unregistered state, the nane is too |ong, or the sane name has al ready
been regi stered */

SDK_ASSERT(ret);

0 2008-2009 Nintendo 31 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

Once the archive has been unloaded from the File System, the name can be unregistered if the archive
will not be used again. The FSAr chi ve object is still being managed by the File System if it is in the
registered state, so the object must not be arbitrarily destroyed until the name has been released and
the object has moved to the unregistered state.

Code 3-3 Releasing Archive Name

/* Rel ease the archive nanme */
FS _Rel easeArchi veName(&arc);

3.5.1.3 Loading and Unloading Archives

Once the FSAr chi ve object has had its name registered it can be loaded to the File System. As
mentioned in 3.2.1 Unigue address space and offsets, the archive must provide access callbacks and
FNT and FAT information for the File System. Specify them with the FS_LoadAr chi ve function when
loading the object. If the call is successful, the archive moves to the loaded state.

Code 3-4 Loading Archive

/* Load archive */

const BOCOL ret = FS_LoadAr chi ve(
&ar c, /* Archive object */
base_of fset, /* Base offset (for user) */
fat_offset, fat_length, /* FAT information */
fnt_offset, fnt_length, /* FNT information */

Ar cReadCal | back, /* Read cal | back */
ArcWi t eCal | back /* Wite call back */
IE
/* Load will fail if archive is not in registered state */

SDK_ASSERT(ret);

A loaded archive can be unloaded from the File System at any time. If the archive is in the busy state
when the unload request is made, the request will be blocked until the command that is processing is
completed. When completed the archive will move to the registered state.

Code 3-5 Unloading Archive

/* Unl oad archive */

const BOCOL ret = FS_Unl oadArchi ve(&arc);

/* Unload will fail if archive is not in |oaded state */
SDK_ASSERT(ret);

3.5.1.4 Suspending and Resuming Archives

Once the archive has been initialized, archive operations can be suspended and resumed at any time,
regardless of the state of the archive.

If you want to start the archive in the suspended state, you must suspend the archive before you load it.

TWL-06-0015-001-B 32 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Resumption of processing from the suspended state is achieved immediately. However, if the archive is
operating, the process to suspend operations will be blocked until the processing of the current
command is completed.

Code 3-6 Suspending and Resuming Archive

/* Suspend archive */

const BOOL bak_node = FS SuspendArchi ve(&arc);

/* Execute processes that nust run while archive is not suspended */

/* |f necessary, return to the previ ous operating state */
i f(bak_node)
{

(voi d) FS_ResumeAr chive(&arc);

3.5.2 User Procedures

If you cannot appropriately process all commands with just the access callbacks and the default
procedure, then you will need to set the archive in the registered state and call the FS_Set Ar chi vePr oc
function to configure a user procedure.

Code 3-7 Configuring the User Procedure

/* Configure the user procedure */

FS_Set Archi veProc(&arc, /* Archive object */
Ar cProc, /* User procedure */
FS _ARCH VE PROC WRI TEFI LE /* Query command */

)

The configured user procedure is called in a callback from the File System as needed. Here
independent processes are conducted and the appropriate values must be returned.

0 2008-2009 Nintendo 33 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

Code 3-8 Describing the User Procedure

/* Description of user procedure */
FSResult ArcProc(FSFile *p_file, FSComrandType cnd)
{
/* Only the commands requested at the time of configuration can be queried */
SDK_ASSERT(cnd == FS_COWAND WRI TEFI LE);
(void)p_file;
switch(cmd) {
/* Certain commands can be unsupported */
case FS_COWAND WRI TEFI LE:
return FS_RESULT_UNSUPPORTED,
/* Can enabl e all queries and eval uate inside the user procedure */
defaul t:
return FS_RESULT_PROC_UNKNOW;

}

3.5.3 Asynchronous Processes

In order for the archive to support asynchronous processes, the process must be implemented in
various callbacks. Specifically, at places where a result value is requested, the callback returns an
"asynchronous processing" and later sends notice after the pertinent process has ended.

Change the access callbacks if all types of access will always be done with asynchronous processes.

Code 3-9 Desynchronizing Access Callback

/* Read cal |l back */
FSResult ArcReadCal | back(
FSArchive *p_arc, void *dst, u32 src, u32 len)

{
/* Execute process that can be expected to be asynchronous */
CARD_ReadRomAsync(
dma_no, (const void*)src, dst, len,
OnCar dReadDone, p_arc);
/* Return "asynchronous processing” as result. Even if conpletion notification is
gener at ed sooner than this return, the systemcan guarantee correct processing */
return FS_RESULT_PROC_ASYNC,
}

/* Call back at conpl etion of asynchronous process */
voi d OnCar dReadDone(void *p_arc)

{
/* Notify archive of conpletion */
FS Not i f yAr chi veAsyncEnd(
(FSArchive*)p_arc, FS RESULT SUCCESS);
}
TWL-06-0015-001-B 34 O 2008-2009 Nintendo

Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

Change the user procedure if only certain commands will be done with asynchronous processes.

Code 3-10 Desynchronizing User Procedure

/* Description of user procedure */
FSResult ArcProc(FSFile *p _file, FSCommandType cnd)

{
switch(cnd) {
case FS_COMVAND READFI LE:
/* Only certain comrands return
"asynchronous processing" */
Host | O_Read(
FS GetFil el mageTop(p_file) +
FS GetPosition(p_file),
p_file->arg.readfile.dst,
p_file->arg.readfile.len
Ik
return FS_RESULT_PROC ASYNC,
def aul t:
return FS_RESULT_PROC_UNKNOW,
}
}
O 2008-2009 Nintendo 35 TWL-06-0015-001-B

CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

4 Overlay Interface

Overlay is a feature that helps NITRO and TWL applications improve efficiency by placing only
necessary execution code in the limited amount of main memory that is available. This chapter explains
the operating principles of the overlay feature and describes the Overlay Interface.

4.1 Starting Segment and Overlay Segments

All of the program code for a NITRO or TWL application is grouped in a unit called a "segment.”" The
segment consists of executable code, a variable region, a constant region, a destination address and a
routine for its own initialization.

Figure 4-1 Segment Compaosition

Destination address

[Execution code] [Constants region] [Variables region]

In a normal application, all of this code is loaded into main memory when the application has been started,
and after the initialization routine executes, control is passed to the main entry point (the Ni t r oMai n
function). While the program is executing, these regions are stored statically and are collectively called the
“static segment.” One copy of the static segment is prepared for the ARM9 and one for the ARM7.

For a large application, the static segment may take up a large region of main memory, and in the worst-
case scenario it may be larger than the size of main memory. One good way to avoid this kind of
problem is to not make the entire program resident, but instead to load modules that are only used for
specific scenes or combination as needed into main memory. The “overlay” feature is what is used to
perform this process, and the divided up modules are called “overlay segments.”

Figure 4-2 Static Segment and Overlay Segments

02000000 f=====—=-—m e m e -
ARM?9 static segment (Resident; most of the application)
ARM?7 static segment (Resident; usually all fixed)
ARM9 Overlay segment ARM9 Overlay segment
(Special code for stage 1) (Special code for stage 2)
TWL-06-0015-001-B 36 0 2008-2009 Nintendo

Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

4.2 Characteristics of Overlays

It is important to consider the many characteristics that differ when overlays are used. The following
sections look at several representative differences.

4.2.1 lIdiosyncratic Life Management

Overlays can be loaded dynamically with arbitrary execution timing and released with arbitrary
execution timing. This timing controls the life of objects with static storage periods inside overlay
segments. Specifically, global objects exist from the time an overlay segment is loaded and the
initialization routine is executed, and they are disassembled when the overlay segment is released. In
the C++ language, this is where the destructor is executed.

For a given overlay, this action occurs every time the process of loading and deleting the overlay is
repeated. The internal state of the overlay segment is independent inside each lifetime, and the lifetime
is not extended nor deferred.

This action is not unique to overlays; it is a behavior common to segments. However, overlays differ in
that they primarily get deleted when the Ni t r oMai n function ends, which for static segments is normally
impossible.

Figure 4-3 Life of an Overlay Segment

_start (from the system’s IPL Program)

. NitroMain

A

Overlay segment

Initialize Disassemble Initialize Disassemble
]]] [}
]]] [}
<—>| Lifel [¢—» ««—p Life2 |[¢—»
i P '
Initialize
D> Static segment

¢-=-=-=-
¢---

v

4.2.2 Competing for Position

The overlay feature is only for dynamic loading of segments and not for dynamic linking. The address
where the overlay segment will be placed and the symbol references among other segments are all
resolved statically.

If numerous overlay segments compete for regions for placing them in limited memory space, those
overlay segments cannot be used at once. In that case you will need to examine it in your application.

0 2008-2009 Nintendo 37
CONFIDENTIAL

TWL-06-0015-001-B
Released: August 7, 2009

File System Library Manual TWL-SDK

Figure 4-4 shows an example of competition among overlay segments

Figure 4-4 Competition Among Overlay Segments

Overlay segment 1 Overlay segment 3

e

Overlay segment 2

e

Overlay segment 4

T

Overlay segment 5

4.3 Explanation of the API

The previous section explained the actions of overlay segments. This section explains how the
application actually manipulates overlays using the API functions.

4.3.1 Specifying in the LSF File

Overlay segments are identified from the program code by their names.
Overlay names, support for inclusion modules and specification of position placements are all described

via an LSF file. For information on the notation of LSF files, see the reference for the makel cf tool.

Code 4-1 Specifying Overlay Segment with an LSF File

Overlay nain_overlay_1

{
After mai n
(bj ect $(OBIDIR)/func_1.0
}
Overl ay namin_overlay_2
{
After mai n
(bj ect $(OBIDIR)/func_2.0
}
TWL-06-0015-001-B 38 O 2008-2009 Nintendo

Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

4.3.2 Overlay ID Declaration and Definition

The overlay segment is specified and manipulated from the program in the form of an “overlay ID.”

This overlay ID entity is resolved when the program is linked. To use this overlay ID from the program
code requires its explicit declaration using the FS_EXTERN_OVERLAY macro.

The FS_OVERLAY_| D macro is then used to reference this declared overlay ID.

Code 4-2 Overlay ID Declaration and Definition

/* Declare the overlay ID to be used */

FS_EXTERN _OVERLAY(nmi n_overl ay_1);

/* Areference to the declared overlay ID can be defined */
FSOver | ayl D ovl _id = FS_OVERLAY_I D(mai n_overlay_1);

4.3.3 Loading and Unloading Overlays

An overlay can be read (loaded) at any time while the program is executing. However, as mentioned in
4.2.2 Competing for position, if other overlay segments exist that are competing for the same region, the
overlay cannot be loaded if one of these others is being read.

Further, an overlay that has already been loaded cannot be reloaded without first being released. The
library cannot internally determine the correctness, so the application needs to guarantee the situation.

The following is the simplest procedure for loading an overlay:

Code 4-3 Loading an Overlay
/* Load overlay segnent.
Overlay can be used once control returns fromfunction */
BOOL ret = FS_LoadOverl ay(
M _PROCESSOR_ARMB, FS OVERLAY_I D(mai n_overlay_1) };
/* Fail if for sonme reason the specified overlay does
not exist. This will not arise on a normal program
generated with nakerom */
SDK_ASSERT(ret);

The procedure for releasing (unloading) a loaded overlay is show below. An overlay that is not loaded
cannot be unloaded, so the application needs to guarantee that the situation is correct, as mentioned
above for loading.

0 2008-2009 Nintendo 39 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

Code 4-4 Unloading an Overlay
/* Unl oad overl ay segnent.
When function called, overlay cannot be used. */
BOOL ret = FS_Unl oadOver | ay(
M _PROCESSOR_ARMB, FS OVERLAY_|I D(nmai n_overlay_1) };
/* Fail if for sonme reason the specified overlay does
not exist. This will not arise on a normal program
generated with nakerom */
SDK_ASSERT(ret);

4.3.4 Dividing the Load Process

The FS_LoadOver | ay function executes the following set of processes internally in a batch:

1. Gets detailed information about the overlay segment from the overlay ID.
2. Loads the segment data into the placement position, based on the overlay segment's detailed information.

3. Executes the overlay segment's initialization routine and enables the overlay.

If these tasks need to be divided out and executed in a stepwise fashion, the single-feature functions
that perform each task can be assembled together and called in sequence. This may prove necessary
in order to avoid problems related to the processing time involved in the data-reading task of step 2.

There are several situations in which dividing the process is beneficial. One is when advancing the
game while dealing with a huge overlay that requires more time than one picture frame. Another is when
getting segment data based on a configuration like that in 3.4.3.3 Archive for wireless access. A third is
the future implementation of applications that use a low-speed CARD-ROM device.

The procedure for a divided-up load process looks like this:

Code 4-5 Dividing up the Load Process

[* (1) Get overlay information fromoverlay ID */
FSOverl ayl nfo info;
i f (FS_LoadOverl ayl nf o(& nf o,
M _PROCESSCR _ARMB, FS OVERLAY_I D(mai n_overlay_1)))

{
/* (2) Load data based on overlay infornation */
FSFile file;
FS InitFile(&ile);
(voi d) FS_LoadOver| ayl mageAsync(& nfo, &file);
(voi d) FS_ Wi t Async(&file);
(voi d)FS C oseFile(&file);
/* (3) Execute the initialization routine */
FS Start Overl ay(& nfo);

}

TWL-06-0015-001-B 40 O 2008-2009 Nintendo

Released: August 7, 2009 CONFIDENTIAL

TWL-SDK File System Library Manual

All company and product names in this document are the trademarks or registered trademarks of their respective companies.

0 2008-2009 Nintendo 41 TWL-06-0015-001-B
CONFIDENTIAL Released: August 7, 2009

File System Library Manual TWL-SDK

© 2008-2009 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

TWL-06-0015-001-B 42 0 2008-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

	1 Introduction
	1.1 Overview
	1.2 How to Use the File System
	1.3 NitroROM Format

	2 The File/Directory Interface
	2.1 Definitions of Terminology
	2.1.1 Entry
	2.1.2 Directory
	2.1.3 File
	2.1.4 Archive
	2.1.5 Path
	2.1.5.1 Path Format
	2.1.5.2 Relative File Format
	2.1.5.3 Notation of Special Paths

	2.1.6 File ID
	2.1.6.1 Correspondence Between File, File Path, and File ID

	2.2 Explanation of the API
	2.2.1 Common Operations
	2.2.1.1 Initializing the FS Library
	2.2.1.2 Initializing the FSFile Object
	2.2.1.3 Getting the Path
	2.2.1.4 Manipulating the Current Directory

	2.2.2 Manipulating Directories
	2.2.2.1 Getting the Directory List
	2.2.2.2 Enumerating Entries from the Directory List
	2.2.2.3 Searching in Lower-Level Directory Lists

	2.2.3 Manipulating Files
	2.2.3.1 Opening and Closing Files
	2.2.3.2 Getting File Size and Setting Seek Position
	2.2.3.3 Reading and Writing Binary Data

	3 Archive System
	3.1 The Purpose of the Archive System
	3.2 Archive Configuration
	3.2.1 Unique Address Space and Offsets
	3.2.2 Commands and User Procedures

	3.3 Archive Operations
	3.3.1 Archive State Transitions
	3.3.1.1 Transitioning Through Archive States
	3.3.1.2 Transitioning Through Operating States

	3.3.2 Command Process Sequence

	3.4 Archive Designs
	3.4.1 Standard Specifications
	3.4.2 Default Procedure
	3.4.3 Implementing Archives
	3.4.3.1 ROM Archive
	3.4.3.2 Archive in Your Own Format in Memory
	3.4.3.3 Archive via Wireless Communication
	3.4.3.4 Other Archives

	3.5 Explanation of the API
	3.5.1 Manipulating the State
	3.5.1.1 Initializing the FSArchive Object
	3.5.1.2 Registering and Releasing the Archive Name
	3.5.1.3 Loading and Unloading Archives
	3.5.1.4 Suspending and Resuming Archives

	3.5.2 User Procedures
	3.5.3 Asynchronous Processes

	4 Overlay Interface
	4.1 Starting Segment and Overlay Segments
	4.2 Characteristics of Overlays
	4.2.1 Idiosyncratic Life Management
	4.2.2 Competing for Position

	4.3 Explanation of the API
	4.3.1 Specifying in the LSF File
	4.3.2 Overlay ID Declaration and Definition
	4.3.3 Loading and Unloading Overlays
	4.3.4 Dividing the Load Process

