TWL-SDK,,

Accessing Backup Devices in
AGB Game Paks for DS

Version 1.0.4

The content of this document is highly confidential
and should be handled accordingly.

0 2006-2008 Nintendo TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS TWL-SDK

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

TWL-06-0037-001-A 2 0 2006-2008 Nintendo
Review: December 19, 2008 CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

Table of Contents

A Vo o To [Fod 1T o PP U UPPPPPPRTP 5
2 HOW tO ACCESS thE DEBVICESeeeiiiiiiiiie ettt et s et e sttt e sttt e e sttt e e sttt e e e sttt e e e s bb e e e e nbbe e e e anbbeeeennbeeeeeannee 6
3 Warnings for AGB Backup ACCESS FUNCHIONSccuiiiiiiiiiiiiieae ettt e e e ettt e e e e e e s be et e e e e e e s annbeeeeaaaeeaanns 7
4 The AGB Backup ACCESS FUNCLIONSuuiiiieiiiiiiiiiiie s st e e s s s e e e e e e s s e e e e e s s sns e e e e e e e e s snnsrnneeeees 8
4.1 Functions Common to All AGB BaCKUP DEVICES.........uuuiiiiiaiiiiiiiiieia ettt 8
41.1 Function Reference (Common t0 All DEVICES)coouuiiiiiiiiaiiiiiiiiee et 8
4.2 256Kt SRAM ..ottt h bt e e R bt e e R bt e e R b e e e e e nbee e e e nbbe e e e nbre e e e aneee 9
421 Function Reference (FOr SRAM DEBVICES)ciuuuiiiiiiiiieiiieee e siiee et e ettt e ssbae e e s snbbe e e s snbaeeesanees 9
4.3 512KDit, IMBIt FIASH ..eeiiiiiiii ettt et e et e e rre e e e e 11
4.3.1 Function Reference (for FIash DEVICES)........uuuiiiieiiiiiiiiiiiie e e e s e e e e e e s snrran e e e e e e 14
5 Flowcharts Depicting ACCESS t0 EACH DEBVICEcoiuuiiiiiiiiie ettt e 19
5.1 FIOW COMMON 10 All DBVICESeeeeeiiie ettt ettt e e e e ettt e e e e e e e s bt e b e e e e e e e e e sannbeseaeaans 19
5.2 256KDIt SRAM ..t b e b e s b e e e b re e e e e 20
5.3 B12KDit, IMDBIt FLASH ...ttt s b e e et e b e b e e annee 21
Tables
TADIE 2-1 DEVICE ACCESSeteeeiieeee ittt e e ettt e e e e e oot bbbttt e e e e e e et beee et e e e e e s s abbbseeeaaesaesanbbbseeaaeeeaaannsbaseaaaans 6
Table 4-1 CTRDG _Identify AQDBACKUPcceiiiiiiiieiie e e e e e ettt e e e s s s st e e e e e e s s st aae e e e e e s e s snnnaeaeeeaeesaennnnsnnneeees 8
Table 4-2 CTRDG_SetTaskThreadP iOrtYuuieiiaieeiiiiiie ettt e e e e e e re e e e e e e e e sannreaeeaaens 9
Table 4-3 CTRDG_ReadAgbSram and CTRDG_ReadAgbSIamASYNCcccvvvieeieeeiiiiiirieereeessssnsvneeeeeens 9
Table 4-4 CTRDG_WriteAgbSram and CTRDG_Write AQDSIramASYNC.........ccuvviiiiiiiiiiiiieeeee e 10
Table 4-5 CTRDG_ VerifyAgbSram and CTRDG_ VerifyAghSramASYNCccccvvveeevivciiiieeee e 10
Table 4-6 CTRDG_WriteAndVerifyAgbSram and CTRDG_WriteAndVerifyAgbSramAsync............ccccc...... 11
Table 4-7 CTRDG_ReadAgbFlash and CTRDG_ReadAgbFIashASYNC..........cccccveeiiiccciiieeeee e, 14
Table 4-8 CTRDG_EraseAgbFlashChip and CTRDG_EraseAgbFIashChipASyNncCccccccveeiiiiiiiieeeeen. 14
Table 4-9 EraseAgbFlashSector and CTRDG_EraseAgbFIashSecCtorASYNCcceevvvvccvveeeeeeeseiiciiiieeeenn, 15
Table 4-10 CTRDG_WriteAgbFlashSector and CTRDG_WriteAgbFlashSectorAsynccccccovvvvveeeeen. 15
Table 4-11 CTRDG_ VerifyAgbFlash and CTRDG_ VerifyAgbFIashASYNCcccccvvveeiiiciiiieieee e, 16
Table 4-12 CTRDG_WriteAndVerifyAgbFlash and CTRDG_WriteAndVerifyAgbFlashAsync 17
Figures
1o [0 LI A 4 o G @ Lo [I T = 1 SR 18
FIQUIe 5-1 COMMON FIOW ..ottt ettt e e ettt e e e e e e e s ettt e e e e e e e s e nnbbeeeaaaeeeaannneees 19
Figure 5-2 256KDit SRAM PrOCESS........uiiiiiiieiiiiit ittt e e e e ettt e e e e e e e s s et eeeeaeaeesaassbeneeaaaeeeaananeees 20
Figure 5-3 512Kbit, IMDBit FLASH PrOCESS.......cciciiiiiiie e e ettt e et e e e e e s s s e e e e e e s e st e e e e e e e s e nnnnnees 21
0 2006-2008 Nintendo 3 TWL-06-0037-001-A

CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS

TWL-SDK

Revision History

Version Revision Date Description
1.04 2008/10/16 Updated for inclusion with the TWL SDK.
1.0.3 2006/09/26 Chapter 2: Updated descriptions.
1.0.2 2006/06/06 Chapter 1: Revised descriptions.
Chapter 4: Made corrections to the glossary notation.
1.01 2006/04/07 Changes made in NITRO-SDK.
1.0.0 2005/12/27 Initial version.
TWL-06-0037-001-A 4 0 2006-2008 Nintendo

Review: December 19, 2008

CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

1 Introduction

The TWL-SDK provides a set of APIs for accessing the backup device in the Game Boy Advance
(AGB) Game Paks. This document describes how to use these APIs to access the backup device.

Only access the backup memory in the AGB Game Paks using the Nintendo-provided TWL-SDK. DO
NOT use your own programs for direct reading and writing.

Currently, APIs are available for the following backup memory devices:

e 256Kbit SRAM
. 512Kbit Flash
. 1Mbit Flash

The 4Kbit and 64Kbit EEPROMSs cannot be accessed from DS applications.

0 2006-2008 Nintendo 5 TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS TWL-SDK

2 How to Access the Devices

The table shows how each kind of device is accessed. DO NOT use any method other than those
described below.

Table 2-1 Device Access

Minimum Minimum
Device Method for Reading Unit for Method for Writing Unit for
Reading Writing
CTRDG_ReadAgbSr am CTRDG Wit eAghSram
SRAM CTRDG_ReadAgbSramAsync 1 byte CTRDG Wit eAgbSramAsync 1 byte
CTRDG_ReadAgbFIl ash CTRDG Wit eAgbFl ashSect or
FLASH CTRDG_ReadAgbFl ashAsync 1 byte CTRDG Wit eAgbFl ashSect or Async 4 Kbytes

To access a backup device in an AGB Game Pak, you must first determine the type and the storage
capacity of that device. Until this is determined, do not use any of the backup memory-related
functions (including CTRDG | dent i f yAgbBackup).

To determine the type and the storage capacity of the backup memory device, first use the
CTRDG_Cet AgbMaker Code function to get the maker code. After determining which company made
the device, use the CTRDG_Get AgbGaneCode function to evaluate the game code to determine the
type and the storage capacity of the backup memory.

Note: IS-NITRO-DEBUGGER versions 1.66 and earlier cannot access the AGB backup device
properly.

TWL-06-0037-001-A 6 0 2006-2008 Nintendo
Review: December 19, 2008 CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

3 Warnings for AGB Backup Access Functions

In addition to the content of this manual, the TWL Programming Guidelines also contain important
information, precautions, and rules regarding AGB backup memory. Be sure to read that document
and follow its provisions when using the AGB backup access functions.

0 2006-2008 Nintendo 7 TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS TWL-SDK

4 The AGB Backup Access Functions

This chapter describes the functions used to access AGB backup devices.

4.1 Functions Common to All AGB Backup Devices

Whether the AGB is equipped with SRAM or Flash as the backup device, the device is assigned to
the Game Pak RAM region (starting from 0xOA000000) in the memory map.

The AGB backup device access functions described in this manual have the following features:

e The wait cycle is adjusted internally by the functions; the developer does not need to worry about
this factor.

e Each function is available in synchronous and asynchronous (*Async) versions. The
asynchronous version is realized by executing the synchronous version in a thread created
internally by the CTRDG | ni t function.

Important: DO NOT use any of the AGB backup device access functions until the application has
determined that an appropriate device is mounted in the Game Pak. The
CTRDG | dent i f yAghBackup function is not an exception.

4.1.1 Function Reference (Common to All Devices)

ulé CTRDG | dentifyAgbBackup (CTRDGBackupType type)

Table 4-1 CTRDG_ldentifyAgbBackup
Arguments CTRDGBackupType Type Type of Backup Device Mounted in NITRO-CTRDG

Normal termination
Return e . Lo =0
ul6 result Identification error (when the appropriate device is not
value = Non-zero

in the library)

This function specifies the type of backup memory device that is mounted in NITRO-CTRDG.

If the backup device is a Flash device, the ID is read to determine which Flash device is mounted in
the Game Pak. After the capacity of the Flash and the sector size is obtained, the access speed is
configured and the appropriate functions for accessing the Flash are set. The obtained Flash data can
be referenced using the global variable f | ashType *f | ash. For more information about

fl ashType, please see the header file ct rdg_f 1l ash. h.

This function must be called once before any data can be written to or read from the backup device.

 If the backup memory device mounted in NITRO-CTRDG is a 256Kbit SRAM chip, set the argument
to CTRDG_BACKUP_TYPE_SRAM

 If the device is a 512Mbit SRAM, set the argument to CTRDG_BACKUP_TYPE_FLASH 512K.

TWL-06-0037-001-A 8 0 2006-2008 Nintendo
Review: December 19, 2008 CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

« If the device is a 1Mbit Flash, set the argument to CTRDG_BACKUP_TYPE_FLASH 1M

« If the device cannot be identified, the function will generate an error and the AGB backup access
functions will be unusable.

Note: Specifying CTRDG_BACKUP_TYPE_FLASH_512K or CTRDG_BACKUP_TYPE_FLASH_1Mfor
the argument initiates a process of writing to the device. If the argument does not match the
type of backup device actually mounted in NITRO-CTRDG, the backup data in that device
might be destroyed.

voi d CTRDG_Set TaskThreadPriority(u32 priority)

Table 4-2 CTRDG_SetTaskThreadPriority
Arguments u32 priority Priority of the Task Thread
Return value None

This function changes the priority of the task thread that executes asynchronous functions.

4.2 256Kbit SRAM

SRAM is assigned to the Game Pak RAM region (starting from 0xOA000000) in the memory map.
The functions described in this manual for accessing SRAM have the following special features:

e These functions are used for both reading and writing. The minimum unit of access for both
reading and writing is 1 byte.

e Even when the CTRDG W it eAghSr amfunction is used to write to the backup memory device,
there is no guarantee that the data was written correctly. To verify data was written correctly,
execute CTRDG Ver i f yAgbSr amafterwards.

Important: All SRAM access functions internally lock the Game Pak bus for a fixed period.

4.2.1 Function Reference (For SRAM Devices)

voi d CTRDG_ReadAgbSram (u32 src, void* dst, u32 size)
voi d CTRDG _ReadAgbSramAsync (u32 src, void* dst, u32 size, CTRDG TASK FUNC cal | back)

Table 4-3 CTRDG_ReadAgbSram and CTRDG_ReadAgbSramAsync

Arguments u32 *src Address (in Memory Map) of the Read Source in SRAM
. Address (in memory map) of the Work region storing the data that was

Void *dst read
u32 size Read size, in units of bytes
CTRDG_TASK_FUNC Callback function called at the end of the Read process
callback (Only for asynchronous function)

Return
None

value

O 2006-2008 Nintendo 9 TWL-06-0037-001-A

CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS

This function takes the length of data specified by the size argument starting at the specified source
SRAM address and reads it into the Work region, starting from the dst address.

voi d CTRDG WiteAgbSram (u32 dst, const void* src, u32 size)
voi d CTRDG Wit eAgbSramAsync (u32 dst, const void* src, u32 size, CITRDG TASK FUNC

cal | back)

Table 4-4 CTRDG_WriteAgbSram and CTRDG_WriteAghSramAsync

TWL-SDK

Arguments | u32 *src Address of the Work Region for the Write Source
void *dst Address (in memory map) of the write destination in SRAM
u32 size Write size, in bytes
CTRDG_TASK_FUNC Callback function called at the end of the Write process
callback (Only for asynchronous function)

Return None

value

This function takes data from the Work region the length of the size argument and writes it to SRAM,
starting from the address in dst .

u32 CTRDG Veri fyAgbSram (u32 tgt, const void* src, u32 size)
voi d CTRDG Veri fyAghSramAsync (u32 tgt, const void* src, u32 size, CTRDG TASK FUNC

cal | back)

Table 4-5 CTRDG_VerifyAgbSram and CTRDG_VerifyAgbhSramAsync

*;
AU ez siagle Target (the Data of the Write Destination)

Pointer to the SRAM Address (in the Memory Map) of the Verify

H *
void *src original data)

Pointer to the address of the Work region for the verify source (the

u32 size Verify size, in bytes

CTRDG_TASK_FUNC Callback function called at the end of the Verify process
callback (Only for asynchronous function)

u32 errorAdr =0

Normal termination

Return value | (Only for synchronous e
f Verification error ;
function) side

This function verifies the data from the Work region sr ¢ address with the data at the SRAM t gt
address, for the number of bytes specified in the size argument.

TWL-06-0037-001-A 10 0 2006-2008 Nintendo
Review: December 19, 2008

= Error address on device

CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

In the synchronous version of the function, 0 is returned if the verification process ends normally. If
there is a verification error, the function returns the address where the error occurred.

In the asynchronous version of the function, you can determine whether the Verify process was
successful by referencing the r esul t member of the CTRDGTask| nf o structure, which is an
argument of the callback function that returns after this routine is called.

u32 CTRDG WiteAndVerifyAgbSram (u32 dst, const void* src, u32 size)
voi d CTRDG Wi teAndVerifyAgbSramsync (u32 dst, const void* src, u32 size,
CTRDG_TASK_FUNC cal | back)

Table 4-6 CTRDG_WriteAndVerifyAgbSram and CTRDG_WriteAndVerifyAgbSramAsync

Arguments | u32 *dst Pointer to the Write Destination SRAM Address (in Memory Map)
void *src Address of the write source Work region
u32 size Write size, in bytes
CTRDG_TASK_FUNC The callback function called at the end of the WriteAndVerify process
callback (Only for asynchronous function)

Return ?gﬁlerro;OArdr svnchronous Normal termination =0

value funci/ion) Y Verification error = Error address on device side

This function performs an internal verification process with CTRDG _Ver i f yAgbSr amafter writing the
data with CTRDG W i t eAgbSr am If there is an error, the function retries up to
CTRDG_AGB_SRAM RETRY_MAX times. The maximum number of retries is defined in ct r dg_sram h.

In the synchronous version of the function, 0 is returned if the verification process ends normally. If
there is a verify error, the function returns the address where the error occurred.

In the asynchronous version of the function, determine whether the Wi t eAndVeri f y process was
successful by referencing the r esul t member of the CTRDGTask| nf o structure, which is an
argument of the callback function that returns after this routine is called.

4.3 512Kbit, 1Mbit Flash

Flash is assigned to the Game Pak RAM region (0xOA000000 to OXAOOFFFF) in the memory map.
A 1-Mbit Flash comprises of two banks of 512 Kbhits.

To accommodate the varying types and specifications of Flash used in Game Paks, the 512 Kbits are
logically divided into 16 sectors of 32 Kbits (4 Kbytes) each and the Flash device is accessed in units
of these sectors.

0 2006-2008 Nintendo 11 TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS TWL-SDK

The functions for accessing Flash have the following special features:

e The access functions described in this manual are used for both reading and writing. The
minimum unit of access is 1 byte for reading and one sector (4 KB) for writing.

e If the device is a 1M Flash device, the functions handle bank switching internally; the developer
does not need to worry about this factor.

e Evenifthe CTRDG Wit eAgbFl ashSect or function ends normally, there is no guarantee that
the data was written correctly. To verify whether the data was written correctly, execute
CTRDG Veri f yAgbFl ash.

Important: Precautions regarding the use of the Flash access functions:
e Processes required prior to using access functions (common to 512K and 1M Flash)

DO NOT use any of the Flash functions until the application has determined that a Flash
device is mounted in the Game Pak and the capacity of that device (either 512 Kbits or 1 Mbit)
has been determined. This rule applies even to the CTRDG | dent i f yAgbBackup function.

e The operations of the access functions (common to 512K and 1M Flash)

Presently, different makes of Flash can be used with a given game title. For this reason, the
access functions are in a format that is common to all the makes of Flash. However, since
different devices have different specifications, the internal operations of a given access
function will differ depending on the make of Flash that exists in the Game Pak, and the
function’s execution times can differ substantially. Keep this in mind when developing your
program and make sure that it operates properly regardless of the Flash manufacturer.

e Reading after an erase operation was interrupted (common to 512K and 1M Flash)

For some makes of Flash, if the power is cut while data is being erased in a sector, the data in
that sector might change every time it is read in the future and subsequent reads will be
unstable. After the sector falls into this unstable read state, using Veri f yFl ash to verify the
data after executing ReadFl ash can generate an inequality error, with the data appearing
different even when read from the same address a second time.

Erasing the sector can restore it from this unstable read state. Execute a function that includes
a process to erase the unstable sector (e.g., CTRDG_Er aseAgbFl ash or
CTRDG W it eAgbFl ashSect or), then try initializing and restoring the data.

e Interrupts (common to 512K and 1M Flash)

Be aware that the Flash access functions (including the CTRDG | dent i f yAgbBackup
function) internally disable all interrupts and lock the Game Pak bus for a set amount of time.

TWL-06-0037-001-A 12 0 2006-2008 Nintendo
Review: December 19, 2008 CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

Because of this behavior, when calling a Flash access function, do not use DMAs which start
automatically for timing-specific operations like Direct Sound, V & H blank synchronization,
display synchronization, and Game Pak requests.

e Timeout process using ticks (common to 512K and 1M Flash)

The access functions listed below use tick counts for determining timeouts when accessing
Flash. Be sure to call the OS_1 ni t Ti ck function before calling any of them.

Pertinent functions:
CTRDG I dent i f yAgbBackup,

CTRDG_Er aseAgbFl ashChi p, CTRDG_Er aseAgbFl ashChi pAsync
CTRDG_Er aseAgbFl ashSect or, CTRDG_Er aseAgbFl ashSect or Async
CTRDG Wi t eAgbFl ashSect or, CTRDG Wit eAgbFl ashSect or Async

CTRDG Wi teAndVeri fyAgbFl ash, CTRDG Wi teAndVeri fyAgbFl ashAsync

e Memory Bank Verification Errors (1M Flash only)

1M Flash shares two 512Kbit banks in the Game Pak RAM region (0xOA000000 to
O0xAOOFFFF) in the memory map. Be aware that for the functions below, the returned address
when there is a verification error does not contain bank information.

The functions that return a verify-error address are:
CTRDG _Veri f yAgbFl ash
CTRDG Wit eAndVeri f yAgbFl ash
CTRDG Veri f yAgbFl ashAsync
CTRDG Wit eAndVeri f yAgbFl ashAsync

Important: There is generally a limit to the number of times that data can be overwritten on a Flash
device, so you need to be aware of the ways you save data. For example, do not incorporate routines
for frequent saving at places such as the screen where parameters are entered, and do not write
frequently to memory during communications. Also, of course, do not incorporate an auto-save
function in the game that constantly overwrites the game data. If you do not adhere to these rules, the
lifespan of the Flash device will be shortened considerably.

Tip: Stretch out the interval between data overwrites, and use a number of sectors rather than always
writing to the same sector. This will reduce the number of overwrites to any one sector.

Comment: Flash devices used with the AGB have warranties that guarantee a maximum of 10,000
cycles of erasing and overwriting. If data is saved to the Flash device at a rate of 30 times a day, that
translates to the short lifespan of around one year.

0 2006-2008 Nintendo 13 TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS

4.3.1

Function Reference (for Flash Devices)

voi d CTRDG _ReadAgbFl ash (ul6 sec_num u32 offset, u8* dst, u32 size)
voi d CTRDG_ReadAgbFl ashAsync (ul6 sec_num u32 offset, u8* dst, u32 size,
CTRDG_TASK_FUNC cal | back)

Table 4-7 CTRDG_ReadAgbFlash and CTRDG_ReadAgbFlashAsync

Arguments ulé sec_num Target Sector Number
u32 offset Offset in sector, in bytes
u8 *dst The address of the Work region storing the data that was read

(Address in memory map)

u32 size Read size, in bytes

CTRDG_TASK_FUNC | The callback function called at the end of the Read process
callback (Only for asynchronous function)

Return value None

Starting from the of f set address inside the target sector number, this function takes size bytes of
data from the Flash device and reads it into the Work region starting from the dst address.

This function will operate normally even if the specified read size straddles a sector boundary.

ulé CTRDG Er aseAgbFl ashChi p (void)
voi d CTRDG_Er aseAgbFl ashChi pAsync (CTRDG _TASK _FUNC cal | back)

Table 4-8 CTRDG_EraseAgbFlashChip and CTRDG_EraseAgbFlashChipAsync

Arguments CTRDG_TASK_FUNC Callback Function Called at the End of the EraseChip Process
9 Callback (Only for Asynchronous Function)
ul6 result (see note 1) Normal termination =0
Return value | (Only for synchronous Chip erase timeout error = 0xc003
function) Internal device error = 0xa003 (only for 1M Flash)

This function completely erases the entire Flash chip.

In the asynchronous version of the function, you can determine whether the Erase process was
successful by referencing the r esul t member of the CTRDGTask| nf o structure, which is an
argument of the callback function that returns after this routine is called.

TWL-06-0037-001-A 14 0 2006-2008 Nintendo
Review: December 19, 2008

TWL-SDK

CONFIDENTIAL

TWL-SDK

Accessing Backup Devices in AGB Game Paks for DS

ulé CTRDG Er aseAgbFl ashSector (ul6 sec_num
voi d CTRDG_Er aseAgbFl ashSect or Async (ul6é sec_num CTRDG TASK FUNC cal | back)

Table 4-9 EraseAgbFlashSector and CTRDG_EraseAgbFlashSectorAsync

Arguments

ulé sec_num

Target Sector Number

CTRDG_TASK_FUNC
callback

The callback function called at the end of the EraseSector process

(Only for asynchronous function)

Return value

ul6 result (see Note 1)
(Only for synchronous
function)

Normal termination
Parameter error (secNo>0x0f)
Sector erase timeout error
Internal device error

=0

= 0x80ff

= 0xc002

= 0xa002 (only for 1M Flash)

This function erases one sector's worth of the target sector number’s data.

Because this routine is called inside CTRDG_W i t eAgbFl ashSect or, it does not normally need to
be called before writing data.

In the synchronous version of the function, a parameter error is returned if the target sector number is

out of range.

In the asynchronous version of the function, you can determine whether the Erase process was
successful by referencing the r esul t member of the CTRDGTask| nf o structure, which is an
argument of the callback function that returns after this routine was called.

ulé CTRDG Wit eAgbFl ashSector (ul6 sec_num u8 *src)
voi d CTRDG Wit eAgbFl ashSect or Async (ul6 sec_num u8 *src,

CTRDG_TASK_FUNC cal | back)

Table 4-10 CTRDG_WriteAgbFlashSector and CTRDG_WriteAgbFlashSectorAsync

Arguments

ulé sec_num

Target Sector Number

u8 *src

Address of write source (Address in memory map)

CTRDG_TASK_FUNC
callback

The callback function called at the end of the Write process

(Only for asynchronous function)

Return value

ul6 result (see note 1)
(Only for synchronous
function)

Normal termination
Parameter error (secNo>0x0f)
Sector erase verification error
Sector erase timeout error
Internal device error when
erasing

Program timeout error
Internal device error during
program

=0

= 0x80ff

= 0x8004 (only for Sanyo's Flash)
= 0xc002

= 0xa002 (only for 1M Flash)

= 0xc001
= 0xa001 (only for 1M Flash)

This function takes one sector's worth of data (4KB) from the source address and writes it to the
target sector number.

0 2006-2008 Nintendo

CONFIDENTIAL

15

TWL-06-0037-001-A
Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS TWL-SDK

This routine internally calls the CTRDG_Er aseAgbFl ashSect or function to erase the sector before
writing the data. A parameter error is returned if the target sector number is out of range.

You can determine the number of remaining bytes while this routine is executing by referencing the
global variable f | ash_r emai nder .

In the asynchronous version of the function, you can determine whether the Write process was
successful by referencing the r esul t member of the CTRDGTask| nf o structure, which is an
argument of the callback function that returns after this routine is called.

u32 CTRDG Veri fyAgbFl ash (ul6 sec_num u8 *src, u32 size)
voi d CTRDG Veri f yAgbFl ashAsync (ul6 sec_num u8 *src,u32 size, CIRDG TASK FUNC
cal | back)

Table 4-11 CTRDG_VerifyAgbFlash and CTRDG_VerifyAgbFlashAsync

Arguments ulé sec_num Target Sector Number
u8 *src Address (in memory map) of verify source
u32 size Verify size (bytes)

CTRDG_TASK_FUNC The callback function called at the end of the Verify process
callback (Only for asynchronous function)

ul6 errorAdr
Return value | (Only for synchronous
function)

Normal termination =0
Verification error = Error address on device side

This function verifies data of si ze bytes in length from the source address with data in the target
sector number.

The function will operate normally even if the specified verify size straddles a sector boundary.

In this function, 0 is returned if the verification process ends normally. If there is a verify error, the
function returns the address where the error occurred. Note that the routine does not include a
parameter check.

In the asynchronous version of the function, you can determine whether the Verify process was
successful by referencing the r esul t member of the CTRDGTask| nf o structure, which is an
argument of the callback function that returns after this routine is called.

TWL-06-0037-001-A 16 0 2006-2008 Nintendo
Review: December 19, 2008 CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

u32 CTRDG WiteAndVerifyAgbFl ash (ulé sec_num u8 *src, u32 verifysize)
voi d CTRDG Wit eAndVeri fyAgbFl ashAsync (ul6é sec_num u8 *src, u32 verifysize,
CTRDG_TASK_FUNC cal | back)

Table 4-12 CTRDG_WriteAndVerifyAgbFlash and CTRDG_WriteAndVerifyAgbFlashAsync

Arguments | ul6 sec_num Target sector No.
u8 *src Address (in memory map) of read source
u32 verifysize Verify size (bytes)

CTRDG_TASK_FUNC Callback function called at the end of the Wi t eAndVeri f y process
callback (Only for asynchronous function)

Normal termination -0
Parameter error _(§ecl_\lo>0x0f) — Ox80ff
Sector erase verification error
Sector erase timeout error
Internal device error when
erasing

Program timeout error

= 0x8004 (only for Sanyo's Flash)
= 0xc002
= 0xa002 (only for 1M Flash)

ul6 result (see note 1)
Return value | (Only for synchronous
function)

Internal device error during = 0xc001
program = 0xa001 (only for 1M Flash)
Verification error = Error address on device side

This function internally calls CTRDG Ver i f yAgbFl ash to verify veri f ysi ze bytes of data after
writing data with CTRDG W i t eAgbFl ashSect or . In other words, even though one sector's worth of
data is written, the specified verify size can be smaller than one sector and can straddle sectors.

If an error occurs, the function will retry up to CTRDG_AGB_FLASH RETRY_MAX times (the maximum
number of retries defined in ct rdg_f | ash. h).

If there is a write error, the 32-bit return value will include one of the above 16-bit error codes. If there
is a verify error, the 32-bit return value will be the address of the error in the device. Be aware of this
difference when checking error codes.

In the asynchronous version of the function, you can determine whether the Wi t eAndVeri fy
process was successful by referencing the r esul t member of the CTRDGTask| nf o structure, which
is an argument of the callback function that returns after this routine is called.

Note: When an error occurs, error codes are returned according to the structure shown in Figure 4-1.

0 2006-2008 Nintendo 17 TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS

TWL-SDK

Figure 4-1 Error Code Details

ul6 result

I_ Internal device error flag
(Only for 1M FLASH)

0 : No internal device error
1 : Internal device error

L Timeout flag
0: No timeout

1: Timeout occurred

— Error flag

0 : Normal termination
1 : An error occurred

I_ Phase code

0x01 : program

0x02 : sector erase
0x03 : chip erase
0x04 : erase verify
OXff : parameter check

TWL-06-0037-001-A
Review: December 19, 2008

18

0 2006-2008 Nintendo

CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

5 Flowcharts Depicting Access to Each Device

This chapter presents flowcharts that show the processes involved for accessing each backup
memory device.

51 Flow Common to All Devices

The access functions are divided into groups based on the type of backup device. Acommon source
of bugs is using functions inappropriate for certain types of backup memory such as trying to use a
Flash function to access SRAM. This is why none of the access functions (including

CTRDG | dent i f yAgbhBackup) should be used until after the type of backup memory device and its
storage capacity are determined.

To determine the type of backup memory device and its capacity, see Figure 5-1.

Figure 5-1 Common Flow

Get the maker code using

CTRDG_GetAgbMakerCode(

Own company’s product?

Yes No

v

Get initial code using
CTRDG_GetAghGameCode()

Is this desired Game Pak?

Yes

v

Determination of backup Do not use functions
device type is complete relating to backup device

0 2006-2008 Nintendo 19 TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS

TWL-SDK

5.2 256Kbit SRAM

Before using SRAM access functions, first determine that the backup memory in the AGB Game Pak
is an SRAM device. The process determining this is shown in the first flowchart.

After determining that the device type is SRAM, call the CTRDG | dent i f yAgbBackup function as
shown Figure 5-2. After these processes are complete, the system is configured for proper reading

and writing.
Figure 5-2 256Kbit SRAM Process

Preliminary processing

Determine that the backup device
in the AGB Game Pak is a
256Kbit SRAM device

\ 4
Specify CTRDG_BACKUP_TYPE_SRAM

for the argument of

CTRDG_IdentifyAgbBackup()

Read

CTRDG_ReadAgbSram()

Write

CTRDG_WriteAgbSram()

CTRDG_VerifyAgbSram()

TWL-06-0037-001-A 20
Review: December 19, 2008

0 2006-2008 Nintendo
CONFIDENTIAL

TWL-SDK Accessing Backup Devices in AGB Game Paks for DS

5.3 512Kbit, 1Mbit FLASH

Before using any of these Flash access functions, first determine whether the backup memory in the
AGB Game Pak is a Flash device and note its storage capacity (this is similar to the process shown in
the first flowchart).

After determining it is a Flash device, call the CTRDG | dent i f yAgbBackup function as shown in
Figure 5-3. Once complete, the system is configured for proper reading and writing.

Figure 5-3 512Kbit, 1Mbit FLASH Process

Preliminary process Preliminary process
for 512K Flash for 1M Flash
Determine that the backup device Determine that the backup device
in the AGB Game Pak is a in the AGB Game Pak is a
512Kbit Flash device 1M Flash
A 4
Specify Specify
CTRDG_BACKUP_TYPE_FLASH_512K CTRDG_BACKUP_TYPE_FLASH_1M
as an argument of as an argument of
CTRDG_Ident|fyAgbBackup() CTRDG_IdentifyAgbBackup()
Read Write
CTRDG_ReadAgbFlash() CTRDG_EraseAgbFlashSector()

A 4

CTRDG_WriteAgbFlashSector()

A 4

CTRDG_ VerifyAgbFlash()

0 2006-2008 Nintendo 21 TWL-06-0037-001-A
CONFIDENTIAL Review: December 19, 2008

Accessing Backup Devices in AGB Game Paks for DS TWL-SDK

All company and product names in this document are the trademarks or registered trademarks of the respective companies.

© 2006-2008 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

TWL-06-0037-001-A 22 0 2006-2008 Nintendo
Review: December 19, 2008 CONFIDENTIAL

	1 Introduction
	2 How to Access the Devices
	3 Warnings for AGB Backup Access Functions
	4 The AGB Backup Access Functions
	4.1 Functions Common to All AGB Backup Devices
	4.1.1 Function Reference (Common to All Devices)

	4.2 256Kbit SRAM
	4.2.1 Function Reference (For SRAM Devices)

	4.3 512Kbit, 1Mbit Flash
	4.3.1 Function Reference (for Flash Devices)

	5 Flowcharts Depicting Access to Each Device
	5.1 Flow Common to All Devices
	5.2 256Kbit SRAM
	5.3 512Kbit, 1Mbit FLASH

