
 2004-2009 Nintendo TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

TWL-SDK
Using the Pattern Recognition Library

Version 1.0.5

The content of this document is highly confidential

and should be handled accordingly.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 2  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

and/or its licensed developers and are protected by national and international copyright laws. They may not

be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 3 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

Table of Contents

1 Overview of Pattern Recognition ..6

1.1 Introduction ...6

1.2 Library Functionality..6

1.3 What the Library Can and Cannot Do...7

1.3.1 Examples of Possible Uses...7

1.3.2 Examples of Possible Uses that Currently Require Workarounds..7

1.3.3 Applications Not Currently Possible ..8

2 Basics of Library Use ..9

2.1 Data Structures ...9

2.1.1 Basic Data Types...9

2.1.2 Prototype List Type..9

2.1.3 Prototype Database Entry Type ..10

2.1.4 Stroke Data Type...12

2.1.5 Data Types Dependent On Recognition Algorithm..13

2.2 Examples Of Library Use ..13

3 Settings Entries...18

3.1 Parameters for Resampling ..18

3.1.1 PRC_RESAMPLE_METHOD_NONE ...18

3.1.2 PRC_RESAMPLE_METHOD_DISTANCE ...18

3.1.3 PRC_RESAMPLE_METHOD_ANGLE ...18

3.1.4 PRC_RESAMPLE_METHOD_RECURSIVE ..19

3.2 Recognition Algorithms ...20

3.2.1 Light Algorithm...21

3.2.2 Standard Algorithm ..22

3.2.3 Fine Algorithm ...23

3.2.4 Superfine Algorithm ...24

4 Tips and Tricks ..25

4.1 Parameter Settings ...25

4.2 FAQ...25

Appendix A Demos ...27

A.1 characterRecognition-1...27

A.2 characterRecognition-2...27

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 4  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Code

Code 2-1 Basic Data Types.. 9

Code 2-2 Prototype List Type... 9

Code 2-3 Prototype Database Entry Type.. 10

Code 2-4 Stroke Data Type .. 12

Code 2-5 Library-Defined Operations .. 12

Code 2-6 Examples of Library Use .. 14

Code 2-7 PRC_InitInputPattern.. 14

Code 2-8 Calculating Work Area Needed For Recognition Process.. 15

Code 2-9 Adding Input from Touch Panel To PRCStrokes ... 15

Code 2-10 Setting Parameters For Converting Raw Stroke Data To PRCInputPattern data 16

Code 2-11 Processing Raw Input Points and Creating the PRCInputPattern Type Input Pattern Data 16

Code 2-12 Performing Recognition .. 17

Figures

Figure 1-1 Pattern Recognition Library .. 6

Figure 2-1 Prototype List Data Structure.. 11

Figure 3-1 PRC_RESAMPLE_METHOD_RECURSIVE.. 19

Figure 3-2 Angle Difference.. 22

Figure 3-3 Elastic Matching.. 23

Figure 3-4 Computing Angle Score Using a Cosine Function.. 24

Figure A-1 characterRecognition-2 Demo.. 28

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 5 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

Revision History

Version Revision Date Description

1.0.5 2009/02/27 Deleted hiragana characters from the prototype database in section A.1
characterRecognition-1.

1.0.4 2008/10/16 Changed wording for inclusion in TWL-SDK.

1.0.3 2007/10/05 Updated information to match current conditions.

1.0.2 2005/02/18 Initial version.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 6  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

1 Overview of Pattern Recognition

1.1 Introduction

TWL-SDK includes a pattern recognition library (PRC*) that provides rudimentary pattern recognition

functionality. This document provides a basic explanation of how to use the pattern recognition library,

characteristics of various recognition algorithms, and guidelines for tuning your application.

The pattern recognition library was designed to facilitate the use of the touch panel as an input device.

If you only need handwritten character input functionality from the touch panel, consider using the

Decuma Handwritten Character Recognition library, which is provided separately. You can use it for

free if you agree to the terms in the End-User License Agreement.

1.2 Library Functionality

The functionality provided by the pattern recognition library is fairly elementary. You must first prepare

a list of pattern prototypes. Each entry in the prototype list contains a code number, stroke count, and

the coordinates of vertices in the segments that make up each stroke.

The application program first creates a prototype database from the prototype (or prototype pattern)

list. It then creates an array of input coordinates based on the touch panel input. When the application

program begins the recognition process, it passes the input stroke data and prototype database to the

library.

The library performs matching and returns the prototype database entry that has the closest match.

Finally, the application program reads the code number of the entry and uses it as the recognition

result.

Figure 1-1 Pattern Recognition Library

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 7 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

1.3 What the Library Can and Cannot Do

Examples of what the pattern recognition library can and cannot do are provided in the following

sections.

1.3.1 Examples of Possible Uses

• During a battle, the player writes a magic symbol on the touch panel screen, causing a spell

to take effect in the turn (that follows immediately) after the symbol is written.

This feature is fairly easy to implement, because it is limited to a single stroke and it is clear that

the recognition process should begin after the pen is lifted from the screen. The library returns both

the recognition result and the degree of similarity. The application can be configured to permit the

spell to take effect only if there is a close match.

• When the player writes a symbol on a map displayed on the touch panel, a building appears

in the location where the symbol was written.

If a bounding box is defined before the touch panel coordinate data is passed to the pattern

recognition library, the recognition results can be displayed in the input location. The symbol must

be devised in a shape that restricts the order in which it is written.

1.3.2 Examples of Possible Uses that Currently Require Workarounds

• Recognizing patterns from multiple, continuous stroke input

Currently implemented recognition algorithms require the player to write each line in the correct

order. In other words, the library must recognize precisely the stroke that initiates recognition and

the stroke that completes it. If extraneous strokes are input at any point in the process, recognition

becomes impossible. If strokes at the beginning or end are omitted, the pattern recognition library

will return the entry that most closely matches the input. You can design your application to handle

this result accordingly. However, if you design an application to avoid preprocessing recalculation,

the restrictions will be applied to the recognition algorithm that can be used. (In particular, you must

either fix the input size or use the Light algorithm, which does not require size normalization.)

• Performing a calculation based on a formula written on the screen

If recognition of a series of drawn patterns is attempted simultaneously, the library may have

trouble determining where each pattern begins and ends. This is essentially the problem described

in the paragraph above. If you limit your application to formulas written horizontally, the library may

be able to discern individual symbols by determining where their bounding boxes overlap, but this

will require some creative coding.

In trying to recognize a horizontal string of hiragana characters, the library may have trouble

distinguishing “に” from “1 こ”. However, this type of application could be implemented by using a

combination of Dynamic Programming-based optimal splitting calculations and heuristics.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 8  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

• Reading commands from specific stroke input, similar to how mouse gestures can be used

for PC input

You can create an interface that interprets a leftward stroke as a request to return to the previous

screen and a rightward stroke as a request to advance to the next screen. A hook-shaped pattern

of pen movement (upward and to the left) might indicate that the screen should be closed. You can

use the pattern recognition library to implement this; however, if you need only recognition of

up/down and left/right strokes, it may be simpler to code this on your own or use only the

resampling functionality of the library to remove noise from pen strokes. (See

PRC_ResampleStrokes_*.) The choice will depend on the complexity of your application.

• Moving an army based on the rotation angle of a symbol written on a map

All currently implemented recognition algorithms are sensitive to pattern’s orientation. The

recognition algorithms will recognize a pattern written at a slight angle, but they cannot discern

patterns written sideways or upside-down. One way to permit the rotation of a pattern is to rotate it

in sixteen different directions and attempt a match for each pattern orientation. The rotated pattern

that best matches the pattern in the database is selected. Note that this process will increase the

recognition calculation time 16-fold; to explain, 16 match attempts are performed rather than a

single match attempt, as would be the case in a simple 1-to-1 pattern matching. This process is

best implemented on the application side. Conversely, you may also prepare 16 patterns by

rotating a sample pattern in advance.

1.3.3 Applications Not Currently Possible

• Asking the player to draw a character and recognizing which character it is

All currently implemented recognition algorithms use stroke information to find a match. (This

method is called “online character recognition.”) They can only recognize patterns written in the

correct stroke order. To improve recognition of normal characters, you can store characters written

with commonly made stroke order mistakes in the database of prototype patterns. However, the

library cannot match line drawings that have no constraints on stroke order.

It is possible to solve this problem by using a recognition algorithm based on bitmap images (this is

known as “offline character recognition”), but the degree of matching accuracy will suffer. This

algorithm is not included in the SDK.

• Recognition of cursive writing

Currently implemented recognition algorithms rely on clear breaks between strokes. The

recognition algorithms cannot recognize characters written without breaks or characters that have

non-solid strokes. If there are few entries in the prototype database, for cursive characters you can

store all possible character combinations as separate patterns in the prototype database; however,

this approach may cause the number of entries to become unmanageable. Thus, an algorithm-

based recognition approach is more practical.

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 9 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

2 Basics of Library Use

2.1 Data Structures

First, we will examine the data structures used with the pattern recognition library.

2.1.1 Basic Data Types

Code 2-1 Basic Data Types

#include <nitro/prc/types.h>

typedef struct PRCPoint

{

s16 x;

s16 y;

} PRCPoint;

typedef struct PRCBoundingBox

{

s16 x1, y1; // Upper-left coordinate of bounding box

s16 x2, y2; // Lower-right coordinate of bounding box

} PRCBoundingBox;

PRCPoint is a structure that expresses screen coordinates, and PRCBoundingBox is a structure that

defines the bounding box. Note that the origin (0,0) is at the upper left and that the y-axis runs

downward.

2.1.2 Prototype List Type

Code 2-2 Prototype List Type

typedef struct PRCPrototypeList

{

const PRCPrototypeEntry *entries;

int entrySize;

const PRCPoint *pointArray;

int pointArraySize;

int normalizeSize;

} PRCPrototypeList;

This data type is used for the list of prototype patterns.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 10  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Prototype list comprises an array of PRCPrototypeEntry (explained in section 2.1.3 Prototype

Database Entry Type) and its size, and an array of PRCPoint (used to store the vertex data in

PRCPrototypeEntry) and its size.

The normalizeSize member defines the acceptable range of vertex coordinates. In the prototype list,

all vertex coordinates must be within the bounding box defined by (0, 0) and (normalizeSize - 1,

normalizeSize - 1). Before being used for actual recognition, this data is converted into a form that

can be used by the prototype database.

2.1.3 Prototype Database Entry Type

Code 2-3 Prototype Database Entry Type

typedef struct PRCPrototypeEntry

{

BOOL enabled;

u32 kind;

u16 code;

fx16 correction;

void* data;

int pointIndex;

u16 pointCount;

u16 strokeCount;

} PRCPrototypeEntry;

This data type is used for entries in the prototype database. Of its members, code and data can be

freely used by the application as values that are linked to the entry. The code member is of type u16

and can have a value of up to 65,535.

The enabled and kind members are referenced when the recognition function searches the

prototype database for matches. Entries that have enabled set to FALSE are not considered for

matching. The kind member uses a bit field to specify the type of pattern.

Example 1:

kind = 1 → Numeral

kind = 2 → Alphabetic character

kind = 4 → Half-size symbol

kind = 8 → Hiragana

Example 2:

kind = 1 → Level 1 spell

kind = 2 → Level 2 spell

kind = 4 → Level 3 spell

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 11
CONFIDENTIAL

For example, if kindMask is set to 3 when the recognition function is called, matching will be limited to

English letters and numerals, or Level 1 and 2 spells.

The correction value is used to calculate similarity between the input pattern and entry; it is of type

fx16, and the 4,096 value corresponds to 1.0. If set to 0, there is no correction. A negative value

results in a low-level of correction and a positive value in high-level correction. If the correction value

is set to 4,096, the post-correction similarity will always be 1.0 (the maximum). The following formula

is used (score is of type fx32).

score = FX32_Mul(originalScore, FX32_ONE - correction) + correction

After processing, a score below 0.0 becomes 0.0, and a score above 1.0 becomes 1.0. This number

is the final measure of similarity.

The pointIndex, pointCount, and strokeCount members specify the actual pattern defined by this

entry. The subscript pointIndex specifies the location of this pattern in the pattern list’s

PRCPrototypeList.pointArray.

An example of a prototype list data structure is shown in Figure 2-1, below.

Figure 2-1 Prototype List Data Structure

(12,12)
(52,12)
(28, 0)
(32,60)
(40,24)
(24,63)
(8,52)
(40,32)
(44,32)
(56,44)
(48,63)

(63,63)

(0,0)

(0,12)
(16,56)
(52,16)
(63,48)

PRCPrototypeList.
pointArray

PRCPrototypeList.
entries

In this example, PRCPrototypeList.normalize

and strokeCount members of PRCPrototypeEn

members in your prototype database to speed up

entries[0]
pointIndex 0
pointCount 14
strokeCount 3

entries[1]
pointIndex 14
pointCount 6
strokeCount 2
0(12,12)

1(52,12)

2(-1,-1)

3(28, 0)

4(32,60)

5(-1,-1)

6(40,24)

7(24,63)

8(8,52)

9(40,32)

10(44,32)

11(56,44)

12(48,63)

13(-1,-1)

14(0,12)

15(16,56)

16(-1,-1)

17(52,16)

18(63,48)

19(-1,-1)
TWL-06-0039-001-B
Released: August 7, 2009

Size is 64. Information contained in the pointCount

try is redundant, but you should include both

preprocessing.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 12  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

2.1.4 Stroke Data Type

Code 2-4 Stroke Data Type

typedef struct PRCStrokes

{

PRCPoint *points;

int size;

u32 capacity;

} PRCStrokes;

This structure is used mainly to manage the raw input coordinate data from the touch panel.

capacity is the maximum number of points that can be stored and size is the current number.

Operations defined in the library are shown in Code 2-5.

Code 2-5 Library-Defined Operations

PRCStrokes strokes;

PRCPoint points[1024];

// Initializes the strokes structure

PRC_InitStrokes(&strokes, points, 1024);

// Adds a set of input coordinates (x, y) from the touch panel

PRC_AppendPoint(&strokes, x, y);

// Records the fact that the pen has been lifted from the screen

PRC_AppendPenUpMarker(&strokes);

// Checks if the structure has reached its capacity

PRC_IsFull(&strokes);

// Clears the structure

PRC_Clear(&strokes);

// Checks if the structure is empty

PRC_IsEmpty(&strokes);

PRCStrokes anotherStrokes;

PRCPoint anotherPoints[2048];

PRC_InitStrokes(&anotherStrokes, anotherPoints, 2048);

// Makes a deep copy

PRC_CopyStrokes(&strokes, &anotherStrokes);

int i;

for (i=0; i<strokes.size; i++)

{

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 13 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

if (!PRC_IsPenUpMarker(&strokes.points[i]))

{

// Ordinary processing

}

else

{

// The pen was lifted at this point

}

}

2.1.5 Data Types Dependent On Recognition Algorithm

• PRCPrototypeDB

PRCPrototypeList stores only the bare minimum of prototype data. To speed up recognition, you

must preprocess the vertex data in the prototype list. Use PRC_InitPrototypeDB to preprocess

PRCPrototypeList (the prototype list) and produce PRCPrototypeDB, which is the actual

prototype database that holds the data passed to the recognition functions.

Its internal structure depends on the recognition algorithm being used, but all currently

implemented recognition algorithms use a common data structure. The following items are added

to the initial data.

� Indices to the starting point of each stroke

� Length of each line segment

� Length of each stroke

� Total length of the pattern

� Ratio of line segment to stroke length for each line segment

� Ratio of stroke to pattern length for each stroke

� Angle of each line segment

� Bounding box for each stroke

� Bounding box for the entire pattern

• PRCInputPattern

The input coordinate data from the touch panel stored in PRCStrokes must also be preprocessed

before it is passed to the recognition functions. Touch panel input is often sampled once per frame,

which results in too many points for the recognition algorithm to use. You must resample the input

pattern to extract the points that best define its features. To create the PRCInputPattern structure,

the PRC_InitInputPattern function resamples the raw input stroke data and performs additional

calculations similar to those done by PRC_InitPrototypeDB.

2.2 Examples Of Library Use

The following pseudocode excerpts are examples of library use.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 14  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Code 2-6 Examples of Library Use

#include <nitro/prc.h>

#define RAW_POINT_MAX 1024 // How many raw input points to save

#define POINT_MAX 40 // Maximum number of points to accept after resampling

#define STROKE_MAX 4 // Maximum number of input strokes to accept

You cannot call nitro.h from the PRC* header file. To use the pattern recognition library, you must

explicitly place nitro/prc.h in an include statement. Here, instead of placing nitro/prc.h in an

include statement, we can select the default pattern recognition algorithm by specifying

nitro/prc/algo_*.h. For more information, see section 3.2 Recognition Algorithms.

To use the pattern recognition library, a number of parameters must be defined as macro constants.

The value specified by RAW_POINT_MAX is the maximum number of input points that can be accepted

by the touch panel. Because the pattern recognition library processes the array of an entire series of

points as a single target, the application must be able to store all of the input points. If the touch panel

accepts 60 points every second and a single character requires at most 10 seconds to input, the

application will need to store an array of 600 points.

During preprocessing, the raw input data handed off by the application is stripped down to its

characteristic points. This is called resampling or characteristic point extraction. POINT_MAX and

STROKE_MAX define the maximum number of points and strokes permitted after preprocessing. If

POINT_MAX is set to a value that is too low, a long and complex set of input data for a single character

can be truncated in the middle. The proper setting for this constant will depend on the complexity of

the input pattern you require and on the number of points you want to preserve after preprocessing

(PRC_InitInputPattern*).

Code 2-7 PRC_InitInputPattern

extern PRCPrototypeList PrototypeList;

// Allocates a work region for extracting the prototype database

PRCPrototypeDB protoDB;

void* dictWork;

dictWork =

OS_Alloc(PRC_GetPrototypeDBBufferSize(&PrototypeList));

PRC_InitPrototypeDB(&protoDB, dictWork, &PrototypeList);

Think of PrototypeList as the prototype list data defined in a separate file.

Use PRC_InitPrototypeDB to create PRCPrototypeDB (the prototype database) from

PRCPrototypeList (the prototype list). You must allocate sufficient memory for PRCPrototypeDB

based on the size of the prototype database. Allocate a region of memory based on the size obtained

by PRC_GetPrototypeDBBufferSize and pass it during initialization.

PRC_InitPrototypeDB will count the total number of points and strokes in the prototype set, and then

perform calculations that will speed up recognition processing. These calculations include creation of

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 15 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

an index of all strokes; the index determines the length and angle of each segment and other data

required by the recognition algorithms, and the information is stored in PRCPrototypeDB.

PRC_InitPrototypeDB has a sibling function, PRC_InitPrototypeDBEx, that allows you to specify

the prototypes to be used based on a bit field. When using PRC_InitPrototypeDBEx, be sure to

calculate the work area size by providing PRC_GetPrototypeDBBufferSizeEx with the same

arguments as used in PRC_InitPrototypeDBEx.

Code 2-8 Calculating Work Area Needed For Recognition Process

// Allocate a work area for other processing

void* inputWork;

inputWork =

OS_Alloc(PRC_GetInputPatternBufferSize(POINT_MAX, STROKE_MAX));

void* recogWork;

recogWork = OS_Alloc(

PRC_GetRecognitionBufferSize(POINT_MAX, STROKE_MAX, &protoDB)

);

Code 2-8 allocates the work area needed for the recognition process. To pool multiple input patterns

in parallel, you need to allocate one work area for extracting input pattern and another for comparison

processing. If at the outset you specify the largest values that you will need, you will not have to

allocate new memory for each recognition process.
// Initialize the input stroke data

PRCPoint points[RAW_POINT_MAX];

PRCStrokes strokes;

PRC_InitStrokes(&strokes, points, RAW_POINT_MAX);

The code above initializes the structure that holds raw data input from the touch panel.
while (1)

{

This loop is entered each frame.

Code 2-9 Adding Input from Touch Panel To PRCStrokes

int x, y;

if (!PRC_IsFull(&strokes))

{

if (there is (x,y) input from the touch panel)

{

// Append point (x,y) to the stroke

PRC_AppendPoint(&strokes, x, y);

}

else if (there was input in the previous frame)

{

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 16  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

// Insert a “pen up” marker

PRC_AppendPenUpMarker(&strokes);

}

}

Code 2-9 adds input from the touch panel to PRCStrokes structure. If the pen is lifted from the touch

panel, you must call PRC_AppendPenUpMarker once (but no more than once) to append a “pen up”

marker.

Code 2-10 Setting Parameters For Converting Raw Stroke Data To PRCInputPattern data

if (there is a request for recognition)

{

// Start recognition using the current contents of strokes

// First, set the resampling process parameters

PRCInputPatternParam inputParam;

inputParam.normalizeSize = protoDB.normalizeSize;

inputParam.resampleMethod = PRC_RESAMPLE_METHOD_RECURSIVE;

inputParam.resampleThreshold = 3;

Here, we set the parameters required for the conversion of the raw stroke data to the

PRCInputPattern type data used for the recognition process. If normalizeSize is set to a non-zero

value, the bounding box of the input stroke will be normalized (expanded or contracted) to match the

specified size. All of the recognition algorithms except Light assume that the prototype database and

the input pattern are of the same size. For input size to match the prototype database size, be sure to

use normalization.

resampleMethod and resampleThreshold are used to set both the algorithm and parameters used to

extract the characteristic points from the raw input data. For more information about resampling

algorithms, see section 3.1 Parameters for Resampling.

Code 2-11 Processing Raw Input Points and Creating the PRCInputPattern Type Input Pattern

Data

// Use resampling on the raw input points to reduce the number of datapoints.

// Perform preprocessing to determine additional information, such as length,

and create inputPattern

PRCInputPattern inputPattern;

PRC_InitInputPatternEx(&inputPattern, inputWork, &strokes,

POINT_MAX, STROKE_MAX, &inputParam);

Using the previously allocated work area, process the raw input points and create a

PRCInputPattern type input pattern data.

Based on the parameters from PRCInputPatternParam, PRC_InitInputPattern performs

normalization and resampling to extract the characteristic points. It then calculates segment lengths

and angles from these points and stores this information in the PRCInputPattern structure.

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 17 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

Code 2-12 Performing Recognition

// Perform recognition by comparing inputPattern with entries in protoDB

PRCPrototypeEntry* result;

fx32 score;

score = PRC_GetRecognizedEntry(&result, recogWork,

&inputPattern, &protoDB);

This method completes preparation for the recognition process. Next, we need to compare the input

pattern data (PRCInputPattern) with the prototype database (PRCPrototypeDB) and find the

database entry that most closely matches the input pattern data. The level of similarity is a type fx32

that ranges from 0 to 1. (If converted to an int, it would range from 0 to 4,096.)

Depending on the selected algorithm and the size of prototype database, the processing could take

more than several tens of milliseconds. We thus recommend using a separate thread for this

processing. For an implementation example, see the prc/characterRecognition-1 demo.

The sibling function PRC_GetRecognizedEntryEx allows you to use a bit field to specify the types of

patterns for recognition. PRC_GetRecognizedEntries returns the N entries that are best matches.

For details, see the reference manual.
// Output the result

OS_Printf("code: %d\n", PRC_GetEntryCode(result));

As a recognition result, the function returns a pointer to PRCPrototypeEntry in PRCPrototypeList.

You can use PRC_GetEntryCode and PRC_GetEntryData to obtain the code and user data of the

entry.
}

Processes that wait for V-Sync

}

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 18  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

3 Settings Entries

3.1 Parameters for Resampling

You can choose the algorithms to use for the resampling process conducted by

PRC_InitInputPattern.

3.1.1 PRC_RESAMPLE_METHOD_NONE

No resampling is performed. This method removes only the points that duplicate the immediately

preceding coordinates; it can be used when it is necessary to reprocess stroke data that has already

been resampled.

3.1.2 PRC_RESAMPLE_METHOD_DISTANCE

This method resamples based on the traveled distance. It captures the starting and ending points of

each stroke and captures a point each time a stroke travels more than a predefined cumulative

distance from the starting point. Measured distance is not Euclidean; it is the change in the x position

plus the change in the y position, or the “city block” or “Manhattan” distance. This calculation of

distance is less precise than that of Euclidean distance, but it is faster to process.

The resampleThreshold specifies the cumulative distance that the stroke has to travel before

capturing the next point. This is the fastest method to process, but strokes drawn slowly with a shaky

pen may cause the threshold to be reached quickly, resulting in too many points being captured. Also,

this method tends not to capture the best characteristic points.

3.1.3 PRC_RESAMPLE_METHOD_ANGLE

This method performs sampling based on the curvature of each stroke.

First, the starting and ending points of each stroke are captured. Next, the angle of the segment

connected to the starting point is stored. The connecting segments are followed in succession until

the angle difference reaches the threshold angle. The point immediately before the point where

threshold is exceeded is captured as the second point in the series. The angle of the segment that

connects the two immediately preceding points is compared to the angle of the segment that

connects the preceding point with current point. If the difference is greater than the threshold angle,

the current point is captured. This process is repeated.

FX_Atan2Idx, which uses an internal table lookup, speeds up the process by calculating the angle.

FX_Atan2Idx is not highly accurate, but it is sufficient for this purpose.

The resampleThreshold specifies the threshold angle. The values range from 0 to 65,535, with 1.0

representing 1/65,535th of a full circle.

Because valid angles cannot be measured at very short distances, every captured point must have a

city-block distance from the previous point, and the distance must be greater than that specified by

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 19
CONFIDENTIAL

PRC_RESAMPLE_ANGLE_LENGTH_THRESHOLD. Currently, PRC_RESAMPLE_ANGLE_LENGTH_THRESHOLD is

fixed at 6. The distance calculations use the raw, non–normalized coordinates.

Even if you set the threshold high to reduce the number of resampled points, this method can still

accurately capture points in small loops and extract good characteristic points. Conversely, if the

threshold is set too low, slight stroke bends will be picked up. The calculation time is linear to the

number of input points.

3.1.4 PRC_RESAMPLE_METHOD_RECURSIVE

This method processes input recursively and captures the most characteristic points.

First, the starting and ending points are captured and defined as points A and B. All points between A

and B are tested, and the point farthest on a straight line drawn between A and B is defined as point

C. If the distance is greater than resampleThreshold, C is captured. Otherwise, the line from A to B

is retained. If C is captured, the process is reiterated for A and C and C and B.

Ultimately, this process will completely capture all the original raw input stroke data in the region

bounded by the resampleThreshold distance on both sides of the resulting line segments. However,

if the number of resampling points reaches the upper limit during the process, this method will not

capture all points.

Figure 3-1 PRC_RESAMPLE_METHOD_RECURSIVE

1

2

3

4

56

7

If you set resampleThreshold to a value smaller than the smallest

pattern, you should be able to generate a relatively compact set of r

any loops. If your resampling results are compact, the recognition p

The calculation time for the resampling process itself is, in the wors

multiplication between [the number of input points] and [the number

With typical input data, such as hiragana characters, this method w

PRC_RESAMPLE_METHOD_ANGLE. This is based on the assumption tha

to have both methods generate the same number of resampled poin

The original data is contained in the
region bounded by the

resamplingThreshold on both
loop you expect in the input

sides of the resulting line segments.
TWL-06-0039-001-B
Released: August 7, 2009

esampling data without missing

rocess will be faster.

t case, proportional to the result of

of resulting resampling points].

ill take slightly longer than

t the parameters have been set

ts.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 20  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

3.2 Recognition Algorithms

At this time, four pattern recognition algorithms have been implemented. The first header file placed

in an include statement is selected for the recognition algorithm.

#include <nitro/prc/algo_light.h> → Light recognition algorithm

#include <nitro/prc/algo_standard.h> → Standard recognition algorithm

#include <nitro/prc/algo_fine.h> → Fine recognition algorithm

#include <nitro/prc/algo_superfine.h> → Superfine recognition algorithm

If you describe #include <nitro/prc.h>, all four of the above header files will be loaded. Because

algo_standard.h is loaded first, Standard is the default recognition algorithm.

The following library functions and types vary depending on the recognition algorithm.

PRCPrototypeDB

PRCInputPattern

PRCPrototypeDBParam

PRCInputPatternParam

PRCRecognizeParam

PRC_Init

PRC_GetPrototypeDBBufferSize*

PRC_InitPrototypeDB*

PRC_GetInputPatternBufferSize

PRC_InitInputPattern*

PRC_GetInputPatternStrokes

PRC_GetRecognitionBufferSize*

PRC_GetRecognizedEntry*

Each recognition algorithm uses an identifier shown above, with the algorithm’s name appended to it

as a suffix. The above identifiers will be treated as aliases of those in the first loaded header file. To

use the recognition algorithms placed in an include statement after the first header, you must explicitly

use types and function names with the suffix _<algorithm name>: for example,

PRCRecognizeParam_Light or PRC_InitPrototypeDBEx_Fine.

However, of the types and functions in the current implementation, the following library functions are

common to all recognition algorithms.

PRCPrototypeDB

PRCInputPattern

PRCPrototypeDBParam

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 21 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

PRCInputPatternParam

PRC_Init

PRC_GetPrototypeDBBufferSize*

PRC_InitPrototypeDB*

PRC_GetInputPatternBufferSize

PRC_InitInputPattern*

PRC_GetInputPatternStrokes

These functions and types use the _Common suffix, which is referenced by all algorithms: for example,

PRCPrototypeDB_Common.

Apart from the algorithms related to PRC_GetRecognizedEntry* (which performs actual recognition),

all other algorithms currently use the same libraries. The prc/characterRecognition-2 demo exploits

this feature to access a shared prototype database and shared input pattern data by using all

recognition algorithms simultaneously. For an example of using multiple recognition algorithms

simultaneously, refer to the demo.

An overview of each algorithm is presented in the following sections. In this discussion, we often use

vague terms because the accuracy and calculation time for each algorithm depend considerably on a

number of factors. Statements about processing speed are for reference purposes only. Select your

recognition algorithm and set your parameters only after thorough testing with the data used in your

application.

3.2.1 Light Algorithm

The Light algorithm is the most lightweight recognition algorithm. It is ideal for situations where

patterns in the prototype database are distinct (making recognition errors unlikely) or when you want

to recognize patterns that consist of only a single stroke.

This algorithm compares only angles. Strokes of the input pattern and prototype are expanded or

contracted, so that the total length of each is 1. The integral of the difference in angles is then taken,

and the degree of similarity is computed and returned. The values are adjusted such that a similarity

of 0.0 is returned if all angles differ by 180°, and a similarity of 1.0 is returned if all angles match

perfectly.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 22  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Figure 3-2 Angle Difference

The angle difference is
adjusted so that it has an
absolute value of less than pi.

- π
0

π

The input pattern is shown on the upper left and the
sample pattern is shown on the lower left. The graph above
shows the segments of both patterns straightened out and
set to a length of 1. The angles for each segment are
plotted in the vertical axis.

The total area of the
grey region is the

difference between
the two patterns

Because the Y axis faces
down, the angle is calculated
from the positive side of the X
axis in a clockwise direction

Figure 3-2 shows the angle difference in a graphic form.

When comparing patterns with multiple strokes, the Light algorithm performs the same calculations

on each stroke and then computes the weighted average of all similarity scores, weighting each

stroke in the prototype based on its length relative to the entire pattern. However, this algorithm does

not examine the relative positions of each stroke; it thus has the inherent drawback of not being able

to distinguish "T" from "+". This algorithm was designed mainly to recognize single-stroke patterns at

the fastest speed possible.

The calculation time will be proportional to the result of multiplication between [the number of points in

the input pattern] and [the number of entries in the prototype database].

3.2.2 Standard Algorithm

This algorithm was designed as a standard recognition algorithm. It is ideal for situations that require

the player to correctly enter patterns like magic symbol.

This algorithm compares both angles and positions. Like the Light algorithm, it adjusts the length of

the input pattern and the prototype so that they are both 1, and takes the integral value of the angle

differences multiplied by the position differences. Instead of taking the difference between exact

points, distances are measured with the “city block” method and approximated to the closest

sampling point coordinates. Like the Light algorithm, the Standard algorithm adjusts the similarity

values such that 0.0 indicates lack of similarity and 1.0 indicates perfect match, and returns the result

as a score.

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 23 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

Because the Standard algorithm considers positioning, it can easily recognize patterns with multiple

strokes. When determining the similarity score, after performing the above calculations on each

stroke this algorithm computes the weighted average of similarity scores, giving each stroke in both

the database entry and input pattern a weight proportional to its length relative to the entire pattern.

The calculation time for the Standard algorithm is two or three times longer than that required for the

Light algorithm. However, even if you set up a recognition thread that runs when the main thread is

idle, the result should come back in an acceptable period of time.

3.2.3 Fine Algorithm

This algorithm was designed to handle even distorted characters. It is useful when the application

needs to salvage such character input data as the distorted input from a user. In addition to

comparing both angles and positions, this algorithm performs elastic matching. Rather than matching

input and prototypes by changing their size, it expands and contracts individual strokes, and looks for

the matches that result in a high evaluation score.

Figure 3-3 Elastic Matching

An example of elastic matching is shown in Figure 3-3. Vertices in the input pattern (left side) are

compared with those in the prototype database entry (right side). You can see that sometimes the

vertices are mapped to a single vertex more than once. The Fine algorithm searches for combinations

that produce the highest score, while permitting more than one point to be mapped to a single point.

This allows the algorithm to easily handle distortions like those shown in the figure and to generate a

high score for a “3” drawn such that the upper and lower sections are not of the same size as the

prototype. Elastic matching is good at correctly interpreting distorted input.

To compute the score, the following formula is used on each matching vertex.

(normalizedsize×2–cityblockdistance)×(π–differencebetweenanglesof thesegmentsentering thevertex)

The average of the vertices is then taken, and the result is distributed over the range of 0.0 to 1.0.

The vertices are matched to find the vertex that generates the highest score.

Elastic matching is performed using an algorithm based on Dynamic Programming (DP) matching. It

does not implement a beam search. Accordingly, the calculation time is proportional to the result of

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 24  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

multiplication between [the number of points in the input pattern] and [the number of points in the

prototype]. In a typical application, the Fine algorithm usually takes several times longer than the

Standard algorithm.

3.2.4 Superfine Algorithm

The Superfine algorithm is the recognition algorithm that requires the longest processing time among

the currently implemented algorithms. However, it is not always more accurate than the Fine

algorithm. Use the Superfine algorithm when you find that the Fine algorithm is not accurate enough.

Like the Fine algorithm, Superfine algorithm uses elastic matching. The Fine algorithm takes the

evaluation values used by elastic matching and returns the values as the score; Superfine algorithm

uses elastic matching to obtain information about the points that should map. Elastic matching

determines the most likely vertex matches; vertices without a certain match are matched with

hypothetical points on the other pattern based on lengths of the segments before and after the vertex

in question. The Superfine algorithm then computes a final score in the same manner as the Fine

algorithm.

Unlike the Fine algorithm, Superfine uses the following formula for each point to compute the final

score.

(normalizedsize×2–cityblockdistance)×(cosof thedifferencebetweentheanglesofsegmentsentering thevertex)

The Superfine algorithm then computes a weighted average of all the points based on the lengths of

segments connected to each point relative to the entire pattern.

When finding vertex pairs using DP matching, the Superfine algorithm does not treat segment lengths

the same way as the Fine algorithm. The angle score is computed using a cosine function.

Figure 3-4 Computing Angle Score Using a Cosine Function

In the graph above, the hypothetical points that result from interpolation are in red. In addition to

performing the operations used by the Fine algorithm, the Superfine algorithm must perform frequent

division to generate the interpolated points. The calculation time required by the Superfine algorithm

to generate the interpolated points is often several times longer than that required by the Fine

algorithm.

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 25 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

4 Tips and Tricks

4.1 Parameter Settings

The easiest way to learn about parameter adjustments is to change parameters in the

prc/characterRecognition-2 demo and watch the effect on memory use, calculation time, and

accuracy. Because performance will depend considerably on the nature of the prototype database,

you need to make your parameter adjustments using the data that is as close as possible to the

prototype database that you will use in actual application. For instructions on using the

characterRecognition-2 demo, see section A.2 characterRecognition-2.

If certain patterns are recognized too frequently, you can prevent this by adjusting their correction

values in the database. However, you can easily end up making a large number of unnecessary

minor adjustments. You can use the same code value for several database entries. If you have

patterns that are not being recognized, it might be easier to add new prototypes to the database until

you start getting matches for those patterns.

4.2 FAQ

Q. kindMask can be specified with both PRC_InitPrototypeDB* and PRC_GetRecognizedEntry*.

Which should be used to select a certain type of pattern?

A. This depends on how often you want to change your selection criteria. Specifying with

PRC_InitPrototypeDB will reduce the memory required for extracting the prototype database, but

you will not be able to easily change the set of patterns you want to target.

Q. I want a lightweight algorithm that will recognize patterns with multiple strokes. Can the Light

algorithm be used for this purpose? I don’t need a high level of recognition accuracy, but the inability to

distinguish "p" from "b" is going to be a problem.

A. Light algorithm can be used to recognize patterns that have multiple strokes. This is

accomplished by not using PenUpMarker. Normally, when the pen is lifted, a

PRC_AppendPenUpMarker is used to show that the stroke was completed, but if you omit this

operation, the pattern recognition library will treat a series of strokes as a single connected stroke.

By populating your prototype database with patterns that have a single unbroken stroke, the Light

algorithm will be able to perform recognition that reflects the positional relationships of multiple

strokes.

This technique is also useful for handling joined characters and lines that fade out partway.

Nonetheless, the possibility of unintentional matches will naturally increase. To avoid this, select

your patterns accordingly.

Q. Is it possible to use the resampling results for processing outside of the game?

A. For PRCInputPattern, use PRC_GetInputPatternStrokes. This creates a pointer that points

directly to the data contained in PRCInputPattern, so there is no need to initialize the first

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 26  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

parameter with PRC_InitStrokes. If you want to change the contents, you can copy the structure

with PRC_CopyStrokes before using the contents.

If you only want to perform resampling, you can use PRC_ResampleStrokes*. The results of this

function will be returned as an index array. Use the application to convert the results to the

PRCStrokes type.

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 27 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

Appendix A Demos
The pattern recognition library demos are stored in the $TWLSDK_ROOT/build/demos/prc directory of

the TWL SDK.

A.1 characterRecognition-1

Several problems can occur when the pattern recognition library is used. Calculation time can

sometimes exceed a single frame and can depend considerably on the complexity of the input pattern.

Therefore, set up a pattern recognition thread that is separate from the main thread. Ideally, the

application should perform pattern recognition during the idle period after main thread processing is

finished and before the V-Blank interrupt is generated. The characterRecognition-1 demo is an

example of an application that uses a separate thread.

Perform recognition with the A Button and clear the screen with the B Button.

In the demo, the prototype database has 97 entries that can be used for testing. This prototype

database contains Arabic numerals, lowercase alphabets, and some symbols. Because there are

multiple patterns for each numeral, the total number of characters that can be recognized is 50. This

prototype database is used only for demonstration purposes. For your application, you should build a

new prototype database using sampling points and standard patterns that meet your requirements for

speed and accuracy.

A.2 characterRecognition-2

This demo application is designed to compare various pattern recognition algorithms. It allows you to

use a prototype database on the production unit to see the effect of changing maxPointCount (the

largest number of sampling points accepted) on the size of work area; it also helps you understand

how the adjustment of resampling parameters can affect recognition time and results.

There are eight threshold combinations (from low to high) that have been tuned to generate a similar

number of sampling points using the three sampling algorithms. These settings can be changed

during runtime.

This demo employs the prototype database used in the characterRecognition-1 demo. By

repopulating the database with actual application data, you can use this demo application to help

determine optimal parameter settings.

Start the application and draw a pattern on the touch panel. When you press the A Button, four

patterns will appear on the screen. The three patterns on the left, PRC_RESAMPLE_METHOD_DISTANCE,

ANGLE, and RECURSIVE, are the sampling results. The rightmost pattern is the recognition result

prototype data. The Debug Output window displays detailed recognition results for each algorithm.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 28  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

Figure A-1 characterRecognition-2 Demo

This demo can also be used as a basic pattern creation tool.

Set the sampling parameters using the +Control Pad (Left/Right) and draw a pattern with the pen.

Press the Y Button; the resampling result pattern data for each of the three resampling algorithms will

appear as text in the Debug Output window. One line at a time, you can cut and paste the text data

for various patterns into a text file; to obtain a C source code listing for the prototype list that can be

read by the pattern recognition library, run the following demo sample:
$ perl $TWLSDK_ROOT/tools/bin/pdic2c.pl <normalized size for output>

<prototype database text data>

To check operation of the pattern recognition library, use the source code. For more information on

the input format used by pdic2c.pl, see the reference manual.

Using the Pattern Recognition Library TWL-SDK

 2004-2009 Nintendo 29 TWL-06-0039-001-B
CONFIDENTIAL Released: August 7, 2009

Windows is a registered trademark or trademark of Microsoft Corporation (USA) in the U.S. and other countries.

Maya is a registered trademark or trademark of Alias Systems Corp.

Photoshop and Adobe are registered trademarks or trademarks of Adobe Systems Incorporated.

All other company names and product names are the trademark or registered trademark of their respective companies.

TWL-SDK Using the Pattern Recognition Library

TWL-06-0039-001-B 30  2004-2009 Nintendo
Released: August 7, 2009 CONFIDENTIAL

© 2004-2009 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed, or loaned in whole or in part without

the prior approval of Nintendo.

	1 Overview of Pattern Recognition
	1.1 Introduction
	1.2 Library Functionality
	1.3 What the Library Can and Cannot Do
	1.3.1 Examples of Possible Uses
	1.3.2 Examples of Possible Uses that Currently Require Workarounds
	1.3.3 Applications Not Currently Possible

	2 Basics of Library Use
	2.1 Data Structures
	2.1.1 Basic Data Types
	2.1.2 Prototype List Type
	2.1.3 Prototype Database Entry Type
	2.1.4 Stroke Data Type
	2.1.5 Data Types Dependent On Recognition Algorithm

	2.2 Examples Of Library Use

	3 Settings Entries
	3.1 Parameters for Resampling
	3.1.1 PRC_RESAMPLE_METHOD_NONE
	3.1.2 PRC_RESAMPLE_METHOD_DISTANCE
	3.1.3 PRC_RESAMPLE_METHOD_ANGLE
	3.1.4 PRC_RESAMPLE_METHOD_RECURSIVE

	3.2 Recognition Algorithms
	3.2.1 Light Algorithm
	3.2.2 Standard Algorithm
	3.2.3 Fine Algorithm
	3.2.4 Superfine Algorithm

	4 Tips and Tricks
	4.1 Parameter Settings
	4.2 FAQ
	Appendix A Demos
	A.1 characterRecognition-1
	A.2 characterRecognition-2

