

 2005-2010 Nintendo TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Nintendo Wi-Fi Connection
TWL DWC Programming Manual

Version 2.0.10

The content of this document is highly confidential
and should be handled accordingly.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 2  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
and/or its licensed developers and are protected by national and international copyright laws. They may
not be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior
written consent of Nintendo.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 3 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Table of Contents

1 Introduction ...8

2 User Management Under TWL DWC ...9

2.1 Managing Wi-Fi User Information ...9
2.1.1 User ID and Player ID ...9
2.1.2 Difference Between a User ID and Player ID ... 10
2.1.3 Player Information by Game: Login ID ... 10
2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games 11

2.2 Friend Management Overview ... 12
2.2.1 Building Friend Relationships ... 12
2.2.2 Building Friendships Using DS Wireless Communications .. 13
2.2.3 Building Friendships Using Friend Registration Keys .. 13
2.2.4 Friend Information Saved by Games ... 14

2.3 Exception Handling .. 14
2.3.1 Removing the Association Between a Nintendo DS System and a DS Card 14

3 TWL DWC Initialization .. 16

4 Creating User Data .. 18

5 Connection Process ... 20

5.1 Connecting to the Internet.. 20

5.2 Disconnecting from the Internet ... 21

5.3 Connecting to the Nintendo Wi-Fi Connection Server ... 21

6 Creating Friend Rosters and Information ... 24

6.1 Exchanging Friend Information via DS Wireless Communications ... 24

6.2 Exchanging Friend Registration Keys .. 25

6.3 Synchronizing Friend Rosters .. 26

6.4 Getting Friend Information Types... 29

6.5 Getting Friend Status ... 30

7 Matchmaking .. 32

7.1 Peer Matchmaking with Friend Unspecified .. 32

7.2 Peer Matchmaking with Friend Specified ... 34

7.3 Evaluating Candidate Players for Matchmaking .. 36

7.4 Server-Client Matchmaking.. 37

7.5 Reconnection Using the Group ID ... 39

7.6 Closing Participation .. 41

7.7 ConnectAttemptCallback ... 42
7.7.1 Differences Between DWCEvalPlayerCallback and DWCConnectAttemptCallback 44

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 4  2005-2010 Nintendo
Released: Review CONFIDENTIAL

7.8 Server Migration ... 45

7.9 Increasing Matchmaking Speed ... 46

7.10 Names That Cannot Be Used for Matchmaking Index Keys .. 47

8 Sending and Receiving Data .. 48

8.1 Peer-to-Peer Data Exchange ... 48

8.2 Connection Configurations ... 51

8.3 Closing Connections... 52

8.4 Estimated Buffer Sizes to Specify with DWC_InitFriendsMatch .. 52

8.5 Emulating Delays and Packet Loss .. 53

8.6 Amount of Data Sent and Received ... 54

9 Communication Errors .. 56

9.1 Error Handling .. 56

9.2 List of Error Codes.. 57

10 Network Storage Support ... 59

11 Differences Between Versions Before NITRO DWC 3.X .. 63

11.1 Matchmaking .. 63

Code
Code 3-1 DWC Initialization ... 16
Code 4-1 Creating User Data ... 18
Code 4-2 Saving User Data ... 19
Code 5-1 Connecting to the Internet .. 20
Code 5-2 Disconnecting from the Internet ... 21
Code 5-3 Connecting to the Nintendo Wi-Fi Connection Server ... 22
Code 6-1 Exchanging Friend Information Using DS Wireless Communications 24
Code 6-2 Exchanging Friend Registration Keys .. 25
Code 6-3 Friend Roster Synchronization Process ... 27
Code 6-4 Getting Friend Information Types ... 29
Code 6-5 Getting a Friend’s Status .. 30
Code 7-1 Peer Matchmaking with Friend Unspecified ... 33
Code 7-2 Peer Matchmaking with Friend Specified ... 35
Code 7-3 Evaluating Candidate Players for Matchmaking .. 36
Code 7-4 Server/Client Matchmaking .. 38
Code 7-5 Getting the Group ID .. 39
Code 7-6 Reconnecting from the Group ID .. 40
Code 7-7 Close-Participation Process ... 42
Code 7-8 ConnectAttemptCallback Example ... 43
Code 8-1 Setup for Data Exchange ... 48

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 5 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Code 8-2 Sending Data ... 50
Code 8-3 Emulating Delays and Packet Loss ... 53
Code 9-1 Error Handling Process .. 56
Code 10-1 Accessing the Storage Server .. 59

Tables
Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keys .. 47
Table 8-1 Estimated Buffer Sizes ... 53
Table 8-2 Communication Data Breakdown .. 54

Figures
Figure 2-1 Save State of the User ID on the Nintendo DS System and DS Card ..9
Figure 2-2 Using Multiple Nintendo DS Systems and DS Cards ..9
Figure 2-3 How Data Is Stored on the Internet .. 10
Figure 2-4 Configuration of a Login ID .. 11
Figure 2-5 Comprehensive Diagram of Terminology for Nintendo Wi-Fi Connection Authentication 12
Figure 2-6 Creating Friendships Using DS Wireless Communications ... 13
Figure 2-7 Creating Friendships Using Friend Registration Keys ... 14

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 6  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Revision History
Version Revision Date Description

2.0.10 2009/12/21 Revised sections 7.7 ConnectAttemptCallback and 7.8 Server Migration to state that
server migration occurs during server-client matchmaking.

2.0.9 2009/11/25
In Chapter 11 Differences Between Versions Before NITRO DWC 3.X, explained
automatic disconnection of a host in the absence of communications after a fixed
period of time.

2.0.8 2009/09/01

Revised Chapter 3 TWL DWC Initialization, Chapter 4 Creating User Data, and section
5.3 Connecting to the Nintendo Wi-Fi Connection Server. Explained splitting the
DWC_Init function into a development and production version, and the corresponding
changes to the arguments of the DWC_CreateUserData and
DWC_InitFriendsMatch functions.

Corrected mistakes in the handling of the s_userData variable in Code 6-1
Exchanging Friend Information Using DS Wireless Communications and Code 6-2
Exchanging Friend Registration Keys.

2.0.7 2009/06/30 Fixed a formula for calculating the estimated buffer size for reliable communications in
section 8.4 Estimated Buffer Sizes to Specify with DWC_InitFriendsMatch.

2.0.6 2009/05/25 Added a note to section 8.1 Peer-to-Peer Data Exchange, stating that debug output
may cause packets to appear to be delayed.

2.0.5 2009/04/08 Fixed cross-reference to section 5.1 Connection to the Internet (Japanese version
only).

2.0.4 2009/03/23 Changed the term, “profile ID” to “GS profile ID” for consistency.

2.0.3 2009/02/02

Added description to sections 7.7 ConnectAttemptCallback and 7.8 Server
Replacement that there is no server replacement in server-client matchmaking.
Corrected Code 7-8 ConnectAttemptCallback Example along with a change in the
DWC_GetAIDList function specification.

2.0.2 2008/12/18 Corrected a typo in the Japanese version of the manual.

2.0.1 2008/11/28 Deleted Chapter 9 HTTP Communication along with making the GHTTP library private.

2.0.0 2008/10/10
Transitioned from NITRO DWC to TWL DWC.
Made specifications changes specific to matchmaking with TWL DWC 5.0.

1.4.3 2007/07/21 Corrected an error in Code 7.3 Evaluating Candidate Players for Matchmaking:
Changed s_int_key to &s_int_key.

1.4.2a 2007/04/27 Corrected typos and changed dates to international format.

1.4.2 2007/02/15 Revised text in Code 6-1 Exchanging Friend Information Using DS Wireless
Communications: Changed s_friendData to ownFriendData.

1.4.1 2006/08/09 Revised text in section 8.4 Yardstick for Buffer Size Specified by
DWC_InitFriendsMatch and Table 8-2 Communication Data Breakdown.

1.4.0 2006/06/19 Changed the conditions for displaying error codes in section 9.1 Error Handling.

1.3.0 2006/06/06 Revised the section "Examples of When a Temporary login ID May be Duplicated" in
section 2.1.3 Player Information by Game: login ID.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 7 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Version Revision Date Description

Changed the memory size to 230 KB from 200 KB in Chapter 3 Initializing NITRO-
DWC.
Added section 7.10 Names That Cannot Be Used for Matchmaking Index Keys.
Miscellaneous changes (unified terminology, made corrections, and so on).

1.2.0 2006/03/10

Added Chapter 2 User Management Under NITRO-DWC.
Added section 7.9 Increasing Matchmaking Speed.
Added section 8.6 Amount of Data Sent/Received.
Miscellaneous changes (review of text, changes in terminology, and so on).

1.1.0 2006/01/30

Updated Code 6-3 Synchronizing Friend Rosters.
Corrected error in Code 6-4 Friend Information Types” (from “stablished” to
“established”).
Corrected error in Code 7-3 Evaluating Candidate Players for Matchmaking” (from
“anymatch” to “anymatch test”).
Changed data load function in Chapter 10 Accessing the Storage Server to a newly
added function.

1.0.0 2005/12/28 Initial version.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 8  2005-2010 Nintendo
Released: Review CONFIDENTIAL

1 Introduction
The TWL DWC library (DWC library) is designed with the goal of making Nintendo Wi-Fi Connection
easy to use and free of charge. Specific benefits include the following.

• Making it easy to connect by sheltering users from complicated and detailed Internet settings
• Making it easy to communicate with friends with whom friendships were established by using

wireless communications or by exchanging friend registration keys when not connected to the
Internet

• Making it easy to remain secure by ensuring that one user cannot easily access another user’s
Internet-related information when a Nintendo DS system changes hands

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 9 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

2 User Management Under TWL DWC

2.1 Managing Wi-Fi User Information
Information required for Nintendo Wi-Fi Connection authentication includes a user ID, player ID, and
password. This information is managed while treating the Nintendo DS system and DS Card as a pair
(see Figure 2-1).

Figure 2-1 Save State of the User ID on the Nintendo DS System and DS Card

【DS 本

体】

ユーザーID

【DS カー

ド】

ユーザーID

Nintendo DS System
User ID
Password

DS unit
User ID
Password

DS Card
User ID
Player ID

• The user ID and password used for Nintendo Wi-Fi Connection authentication are saved on the
Nintendo DS system

• The user ID and player ID used for Nintendo Wi-Fi Connection authentication are saved on the DS
Card

This information is used by Nintendo Wi-Fi Connection for authentication. If the user ID saved on the
DS Card differs from the user ID saved on the Nintendo DS system, data saved on Nintendo Wi-Fi
Connection cannot be accessed. This prevents the unauthorized access of data (see Figure 2-2).

Figure 2-2 Using Multiple Nintendo DS Systems and DS Cards

2.1.1 User ID and Player ID

The user ID is generated offline and is designed to be as unique as possible. After it is generated, it
becomes the user ID for connecting to the Internet, and authenticating and registering with the
system. If the ID is found to already be in use during authentication, a new, unique user ID is
assigned.

○

○

×

DS, Unit A
User ID: 00000001

DS, Unit A
User ID: 00000001

DS, Unit B
User ID: 00000002

DS, Unit A

DS, Unit B

DS, Unit A

Card storage region
User ID: 00000001

Card storage region
User ID: 00000001

Card storage region
User ID: 00000001

Connectable

Connectable

Unconnectable

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 10  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Note: To ensure that the user ID is unique, part of the Nintendo DS system’s MAC address is used.
Although this prevents the same user ID from being used on different Nintendo DS systems,
duplication might occur when a user ID is moved or regenerated.

The player ID is a random 32-bit ID. Because data on the Internet server is managed using the
combined user ID, player ID, and Game Code, a player ID only needs to be unique with respect to the
user ID and Game Code. If the player ID is duplicated, a unique player ID will be assigned during
authentication.

2.1.2 Difference Between a User ID and Player ID

Because a user ID is issued to each Nintendo DS system, a user that uses the same system must
use a single user ID for all games. Since player IDs are issued to DS Cards, you can use different
player IDs when using the same Nintendo DS system (user ID) and the same Game Code (see
Figure 2-3).

Figure 2-3 How Data Is Stored on the Internet

D
S カード

インターネットのサー
バ

Different systems
are identified by

user ID

Game types are
identified by their

Game Code

Players of the same
game are identified by

player ID

Data on the server
is created for
each player

Save data

Save data

Save data

Data on the server

Data on the server

Data on the server

DS System DS Card Internet Server

2.1.3 Player Information by Game: Login ID

The combined user ID + player ID + Game Code are called the “login ID” (see Figure 2-4). User
information saved on the Internet server is called a “profile,” and the ID used to manage profiles on
the server is called a “GS profile ID.”

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 11 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Figure 2-4 Configuration of a Login ID

Login ID

User ID: Created for each DS
Player ID: Created for each player
Game Code: Assigned to each game

Inside the DWC library, the login ID or GS profile ID is used to search for the profiles of other users on
the Internet server.

The login ID is generated when not connected to the Internet and becomes a temporary login ID.
Although a user is likely to use this login ID as is, it might not be available. In this case, a unique,
approved login ID (authenticated login ID) is generated. There is a one-to-one correspondence
between authenticated login IDs and assigned GS profile IDs.

A temporary login ID may be duplicated under the following circumstances.

• The login ID is created with a user ID that was not authenticated, the same user ID already is
registered in the Authentication server by another person, and the login ID was created with the
same player ID for the same game

• Multiple Nintendo DS systems created login IDs with the same player ID for the same game using
the same unauthenticated user ID

2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games

Games must save this information for Nintendo Wi-Fi Connection authentication as backup on the DS
Card.

The size of the information used for authentication is 64 bytes.

The Nintendo Wi-Fi Connection authentication information includes the temporary login ID, the
authenticated login ID, and the GS profile ID. Developers do not need to fully understand the details
of this because this information is created and updated by the DWC library.

Information for Nintendo Wi-Fi Connection authentication must also be saved for each player when
multiple players can use the same DS Card.

Figure 2-5 shows the Nintendo Wi-Fi Connection authentication terminology covered so far.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 12  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Figure 2-5 Comprehensive Diagram of Terminology for Nintendo Wi-Fi Connection
Authentication

プ
ロ

ファイル
I
D：認証時に決定

 仮ログイン
I
D：他のユーザーからの検索用に保存

 【 カード】
 プレイヤー

I
D

 ユーザー
I
D：本体確認用に使用

プロファイ

ル
I
D：認証後に取得

 イニシャルコード：
RO
M

内に含まれ
る

 【ＤＳ本体】
 ユーザー

I
D：Nintendo Wi- Fi

Connection 対応ソフト
で一度だけ作

成

Internet Server

Profile
GS Profile ID: Determined at time of authentication
Temporary login ID: Saved for searches by other users

DS Card
Player ID: Created when the player is created
User ID: Used for confirming the DS
GS Profile ID: Obtained after authentication

DS System
User ID: Created only once by Nintendo Wi-Fi

Connection-compatible software

2.2 Friend Management Overview

2.2.1 Building Friend Relationships

To be able to easily start communication with friends using DWC, friend relationships are built by an
Internet server. Friendships are built by exchanging user information. Established friendships are
saved in the profile of each user.

There are two ways to exchange the user information used to create a friendship.

• Using DS Wireless Communication

Using this method, the players exchange login or GS profile IDs. The login ID is used if the player
in question has never logged in before. Even though each of these was created locally, it is highly
likely that they are unique, but not guaranteed. However, because the probability of duplication is
less than 2-75, no special countermeasure against duplication is required. The GS profile ID is used
for players who have logged in at least once before. This creates friendships with certainty,
because a particular party can always be specifically identified.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 13 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

• Exchanging friend registration keys

Using this method, the players exchange friend registration keys, included in the GS profile ID, as
information used for error checking. A player must have connected to the Internet at least once to
use a GS profile ID. You must create an interface that allows input to be confirmed and re-entered
in case it is incorrectly input.

The information exchanged can be created using DWC. DWC includes functions for automatically
creating the most applicable information possible based on information used for Nintendo Wi-Fi
Connection authentication saved on the DS Card.

2.2.2 Building Friendships Using DS Wireless Communications

A mechanism is provided to allow friendships to be automatically established later on the Internet
when information is exchanged with another party during DS Wireless Communications. The
information exchanged is created from the login ID or GS profile ID included in user data.

Note: The exchange of this information through DS Wireless Communications is not supported by
DWC. Be sure that applications handle the exchange of created information.

Figure 2-6 Creating Friendships Using DS Wireless Communications

2.2.3 Building Friendships Using Friend Registration Keys

The term “friend registration key” refers to information that can be used to specifically identify another
user when establishing a friendship. A mechanism is provided that allows friendships to be created by
exchanging this friend registration key (see Figure 2-7). Because the friend registration key is
manually entered by users, it should not be unnecessarily long. It is created using the GS profile ID
obtained by connecting at least once to the Internet rather than using the login ID.

Friend
Information

Internet

By exchanging friend information
via DS Wireless Communications

 when connected to the Internet
 Friendships can be established

Friend
Information

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 14  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Figure 2-7 Creating Friendships Using Friend Registration Keys

The friend registration key is a 12-digit number.

Pay attention to the following points when developing games.

• You must create a user interface for issuing friend registration keys because a key cannot be issued
unless a player connects to the Internet at least once. A message to this effect must be displayed.

• You must create a user interface for entering the friend registration key. The user interface must
allow the user to correct an incorrectly input friend registration key. It should also allow users to
save and edit the entered data as many times as necessary.

2.2.4 Friend Information Saved by Games

Games must save exchanged friend information for the maximum number of players to be managed
as friends in a backup area. This is required so users can edit friendships when they are not
connected to the Internet. Friend-related information used by the actual game (such as nicknames
and win-loss record) must also be saved. DWC treats all of this as friend information without regard to
the type of data (login ID, GS profile ID, and friend registration key).

Twelve bytes per player are required to store friend information used by DWC.

2.3 Exception Handling

2.3.1 Removing the Association Between a Nintendo DS System and a DS Card

For security reasons, Nintendo Wi-Fi Connection treats the Nintendo DS system and DS Card as a
set. This can be inconvenient for a user if the Nintendo DS system is resold or broken, as the ability
to connect to Nintendo Wi-Fi Connection is lost.

To solve this problem, there is a DWC mechanism that allows the user to delete the data that
associates a DS Card with a given Nintendo DS system by destroying information stored in the profile.
Because this deletes all Internet friendships, you must create an interface to warn the user before
deleting the data.

Internet

By exchanging friend registration keys
and registering them with your DS

Friendships can be established
when connected to the Internet

Friend
registration key

Friend

registration key

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 15 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Even if Internet friendships are deleted, friend information for other parties remains on the DS Card of
the deleted user. This allows friendships to be restored by using this information and sending a new
friend registration key to the other party. Because it is necessary in these cases to prompt the user to
register the deleted user as a friend again, each application needs to include a message for notifying
the user of the required procedure.

With regard to specific processing, the currently saved association on the DS Card is deleted. If a
user wants to create a new association, it must be handled by creating new user data and destroying
the previous user data. Even if user data is updated, friendships on the friend roster saved on the DS
Card remain established. If a specification where the friend roster remains intact is used, be sure to
clear the friendship-established flag included in the friend information when letting the user know that
friendships remain established.

Note: See the flowchart in the Nintendo Wi-Fi Connection Programming Guidelines.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 16  2005-2010 Nintendo
Released: Review CONFIDENTIAL

3 TWL DWC Initialization
You must initialize the DWC library before calling any of its functions, except
DWC_Debug_DWCInitError or DWC_SetReportLevel.

The DWC_InitForDevelopment and DWC_InitForProduction functions initialize the DWC library as
follows.

• Configure either the development or production server to be used
• Set the memory allocation function used by the DWC library
• Generate information for user authentication stored in the Nintendo DS system
• Check if the connection target information stored in the Nintendo DS system’s backup memory is

valid

Code 3-1 DWC Initialization
void init_dwc(void)
{
 int ret;
 ret = DWC_InitForDevelopment(“dwctest”, ‘NTRJ’, AllocFunc, FreeFunc);
 //ret = DWC_InitForProduction(“dwctest”, ‘NTRJ’, AllocFunc, FreeFunc);

 // Initialize the DWC library
 if (ret == DWC_INIT_RESULT_DESTROY_OTHER_SETTING)
 disp_init_warning_msg(); // Display warning message
}

// Function for allocating memory
void* AllocFunc(DWCAllocType name, u32 size, int align)
{
 void * ptr;
 OSIntrMode old;
 (void)name;
 (void)align;

 old = OS_DisableInterrupts();

 ptr = OS_AllocFromMain(size);

 OS_RestoreInterrupts(old);

 return ptr;
}

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 17 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

// Function for freeing memory
void FreeFunc(DWCAllocType name, void* ptr, u32 size)
{
 OSIntrMode old;
 (void)name;
 (void)size;

 if (!ptr) return;

 old = OS_DisableInterrupts();

 OS_FreeToMain(ptr);
 OS_RestoreInterrupts(old);
}

Initialize the library with DWC_InitForDevelopment or DWC_InitForProduction to use the
development or production authentication server, respectively. The authentication server that you use
determines the server that is used by the download library and other functions. For more details, see
the Function Reference Manual for the DWC initialization functions.

If you implement a sequence to delete DS Card backup data, we recommend calling the initialization
function at the same time as that sequence.

The DWC library requires approximately 230 KB of memory for four-player matchmaking. The
required memory size decreases by approximately 20 KB each time the maximum matchmaking
count is reduced by one. This is a valid approximation as long as the sendBufSize and recvBufSize
arguments to the DWC_InitFriendsMatch function are each set to their default values of 8 KB.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 18  2005-2010 Nintendo
Released: Review CONFIDENTIAL

4 Creating User Data
The DWC library performs typical processes based on user data.

• Authenticating users
• Creating friend relationships

Even when the Nintendo DS system is not connected to the Internet, it requires user data to create
the friend information that is exchanged to create friend relationships via DS Wireless
Communications.

If user data is not yet created or the user data is damaged, create the user data with the
DWC_CreateUserData function and store the user data in the DS Card backup memory.

Be sure the application allocates memory for saving the DWCUserData structure. User data for several
people is required when a single DS Card supports multiple players.

If player data is already created, be sure to check its validity using the DWC_CheckUserData function
after loading it from backup into memory (see Code 4-1).

Code 4-1 Creating User Data
BOOL create_userdata(void)
{
 // If there is backup data and user data in that backup data, load all and
 // return TRUE.
 if (DTUDs_CheckBackup())
 {
 (void)DTUD_LoadBackup(0, &s_PlayerInfo, sizeof(DTUDPlayerInfo));

 OS_TPrintf("Load From Backup\n");

 if (DWC_CheckUserData(&s_PlayerInfo.userData))
 {
 DWC_ReportUserData(&s_PlayerInfo.userData);
 return TRUE;
 }
 }

 // If valid user data has not been saved
 OS_TPrintf("no Backup UserData\n");

 // Create user data
 DWC_CreateUserData(&s_PlayerInfo.userData);

 OS_TPrintf("Create UserData.\n");
 DWC_ReportUserData(&s_PlayerInfo.userData);

 return FALSE;
}

Use the DWC_CheckDirtyFlag function to check whether it is necessary to save user data to the DS
Card. Always use the DWC_ClearDirtyFlag function to clear the DirtyFlag before saving the user
data to backup memory as shown in Code 4-2.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 19 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Code 4-2 Saving User Data
void check_and_save_userdata(void)
{
 if (DWC_CheckDirtyFlag(&s_PlayerInfo.userData))
 {
 DWC_ClearDirtyFlag(&s_PlayerInfo.userData);
 DTUD_SaveBackup(0, &s_PlayerInfo.userData, sizeof(DWCUserData));
 }
}

Before connecting to the Internet, be sure to check user data according to the following procedure.

• Use the DWC_CheckHasProfile function to check whether the user has already connected to the
Internet and obtained a profile in the user data. If there is no profile, the user data is updated and
the Nintendo DS system and DS card are treated as a set.

• Check whether the Nintendo DS system and DS Card are being used correctly using the
DWC_CheckValidConsole function. It is impossible to connect to the Internet if the Nintendo DS
system and DS Card are not correct because authentication will fail.

Note: Be sure to check the flowcharts included in Nintendo Wi-Fi Connection Programming
Guidelines.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 20  2005-2010 Nintendo
Released: Review CONFIDENTIAL

5 Connection Process
The DWC library performs a two-phase process when connecting to the Internet.

• Connects to the Internet (making a Nintendo Wi-Fi Connection to get an IP address)
• Connects to the Nintendo Wi-Fi Connection server (referred to as "server")

When a Nintendo DS system connects to the Internet for the first time, the Nintendo authentication
server issues a user ID for that system. This user ID is stored in the Nintendo DS system backup
memory.

After this initial connection is established, the DWC library stores this user ID and the player ID in the
previously created user data to generate a profile. The GS profile ID that corresponds to this
generated profile is stored in the user data.

5.1 Connecting to the Internet
When the Nintendo DS system first connects to the Internet to get the IP address, Nintendo's
authentication server issues a user ID to that system. Tests are also performed to confirm that the
Nintendo DS system can connect to the connection test server using TCP communication and that
the Internet connection is functioning normally.

All these processes are performed automatically by calling the DWC_*Inet functions, as shown in
Code 5-1.

Code 5-1 Connecting to the Internet
static DWCInetControl s_ConnCtrl; // Retain until the Internet connection is
disconnected
BOOL connect_to_inet(void)
{
 // Initialization process for Internet connection
 DWC_InitInet(&s_ConnCtrl);

 // Start establishing connection
 DWC_ConnectInetAsync();

 // The connection process
 while (!DWC_CheckInet())
 {
 DWC_ProcessInet();

 // V-Blank wait process
 // During the connection process you need to pass the
 // process time to threads that have lower priority than
 // the main thread. Use the OS_WaitIrq function for this.
 GameWaitVBlankIntr();
 }

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 21 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 // Confirm the connection result
 if (DWC_GetInetStatus() != DWC_CONNECTINET_STATE_CONNECTED)
 {
 handle_error();
 return FALSE;
 }
 // Connected
 :
}

5.2 Disconnecting from the Internet
Call the DWC_CleanupInet* functions as shown in Code 5-2 to disconnect the Nintendo DS system
from the Internet.

Even if a communication error occurs and the Nintendo DS system is disconnected automatically, you
must call this function because the library memory needs to be freed.

Code 5-2 Disconnecting from the Internet
void disconnect_func(void)
{
 while (!DWC_CleanupInetAsync())
 {
 GameWaitVBlankIntr();
 }
 :
}

5.3 Connecting to the Nintendo Wi-Fi Connection Server
To connect to the Nintendo Wi-Fi Connection server, use the DWC_InitFriendsMatch function shown
in Code 5-3 to initialize matchmaking and friend relationship features.

The following arguments are given to this function.

• Pointer to user data
• Product ID provided by GameSpy
• Secret key provided by GameSpy
• Send and receive buffer sizes used for communication between Nintendo DS systems
• Pointer to the friend roster
• Maximum number of friends in the friend roster

The specified control objects are used in the DWC library until the DWC_ShutdownFriendsMatch
function is called.

Chapter 8 Sending and Receiving Data describes the sizes of the Send and Receiver buffers in detail.
When 0 is specified, as is the case in the sample program below, the buffers use 8 KB by default.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 22  2005-2010 Nintendo
Released: Review CONFIDENTIAL

The friend roster is an array of friend information in the DWCFriendData structure. Chapter 6 Creating
Friend Rosters and Information discusses friend rosters and friend information in detail.

Next, call the DWC_LoginAsync function to make the connection to the server (see Code 5-3).

The first argument of this function is the player’s screen name. If players use names in your game
application, you must specify the screen name in this argument. The screen name used in the game
is sent to the authentication server to confirm and check for inappropriate names.

You can check the results of this function by calling the DWC_GetIngamesnCheckResult function (see
Code 5-3).

The second argument of the DWC_LoginAsync function is not currently used. Pass NULL for this
argument. The remaining arguments represent the callback to use after login completes and the
parameters of the callback.

After calling this function, call the DWC_ProcessFriendsMatch function repeatedly to advance the
login process, approximately once per game frame.

Next, the DWC_ProcessFriendsMatch function executes all matchmaking and friend-related
processing until the DWC_ShutdownFriendsMatch function is called. After login completes, be sure to
call DWC_ProcessFriendsMatch function to make sure that network processes (for example, updating
the friend roster) do not start while the Nintendo DS system is connected to another client.

Code 5-3 Connecting to the Nintendo Wi-Fi Connection Server
static BOOL s_logined = FALSE;

void connect_to_wifi_connection(void)
{
 DWC_InitFriendsMatch(DTUD_GetUserData(),
 GAME_PRODUCTID, GAME_SECRET_KEY,
 0, 0,
 DTUD_GetFriendList(), FRIEND_LIST_LEN);

 // Login using function for authentication
 s_logined = FALSE;
 if (!DWC_LoginAsync(L”name”, NULL, cb_login, NULL))
 {
 // Connection process fails to start.
 return;
 }

 // Polling to see if connected
 while (!s_logined)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error occurs
 handle_error();
 return;
 }

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 23 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 GameWaitVBlankIntr();
 }

 // Connection process completed
 if (DWC_GetIngamesnCheckResult() == DWC_INGAMESN_INVALID)
 {
 // Special process performed when inappropriate in-game screenname was detected
 disp_ingamesn_warning();
 }
 :
}

// Callback when logged in
void cb_login(void)
{
 if (error == DWC_ERROR_NONE)
 {
 check_and_save_userdata();

 s_logined = TRUE;
 }
}

The DWC_ShutdownFriendsMatch function ends the matchmaking and friend relationship features
and frees the memory reserved internally by the library.

When the Nintendo DS system connects to the server for the first time using the user data specified
by the DWC_InitFriendsMatch function, the Nintendo DS system and the DS Card are treated as a
pair. When they are treated as a pair, the DS Card that stores the specified user data cannot be used
with another Nintendo DS system.

The user data is always updated when the first connection is made. Once the login completes, the
application should call a login callback and the DWC_CheckDirtyFlag function to check the updated
user data. If necessary, save the updated data to the DS Card.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 24  2005-2010 Nintendo
Released: Review CONFIDENTIAL

6 Creating Friend Rosters and Information
The DWC library has two procedures for establishing friend relationships among players.

• Exchanging friend information using DS Wireless Communications
• Exchanging friend registration keys

6.1 Exchanging Friend Information via DS Wireless Communications
During DS Wireless Communications, the DWC_CreateExchangeToken function is used to create
friend information based on the local user data for exchange with other players (see Code 6-1).

Friend information that the Nintendo DS system receives should be saved in the friend roster using
the application.

Code 6-1 Exchanging Friend Information Using DS Wireless Communications
DWCUserData s_userData;
DWCFriendData s_friendList[FRIEND_LIST_LEN];

// Exchange friend information
void exchange_friend_data(void)
{
 int i, j;

 DWCFriendData ownFriendData;
 DWCFriendData recvFriendList[FRIEND_LIST_LEN];

 // Create friend information from local user data to send
 DWC_CreateExchangeToken(&s_userData, &ownFriendData);

 // Send and receive friend information via MP communication
 MP_start((u16 *)&ownFriendData, (u16 *)recvFriendList);
 :

 // Save the received friend information in an open slot in the friend roster.
 // Do not save if the same friend information already exists.
 for (i = 0; i < num_recv_data; ++i)
 {
 int index;
 for (j = 0, index = -1; j < FRIEND_LIST_LEN; ++j)
 {
 if (DWC_IsValidFriendData(&s_friendList[j]))
 {
 // If the friend roster has valid data, check if it is the same as
 // the received friend information and do not save if it is the same.
 if (DWC_IsEqualFriendData(&recvFriendList[i],
 &s_friendList[j]))
 break;
 }
 else
 {
 // Records an available friend roster index
 if (index == -1) index = j;
 }

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 25 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 }

 // Save valid friend information that does not overlap in friend roster
 if (j >= FRIEND_LIST_LEN && index >= 0)
 {
 s_friendList[index] = recvFriendList[i];
 }
 }
 :
}

6.2 Exchanging Friend Registration Keys
A player that has connected at least once to Nintendo Wi-Fi Connection is assigned a GS profile ID,
which is saved in the user data. Any player that has a GS profile ID can create a friend registration
key that adds special error-checking information to the GS profile ID. This friend registration key is a
12-digit decimal number that players can exchange. Once this friend registration key has been
entered, friend data can be exchanged.

After the friend registration key is entered, the DWC_CreateFriendKeyToken function is called to
convert the key into friend information and save the friend information to the friend roster (see Code
6-2).

Use the DWC_CheckFriendKey function to check if the entered friend registration key is valid as
shown in Code 6-2. Even if this function is called, the error does not correct itself, so prepare a user
interface so that the user can enter the key until the key information is correct.

Code 6-2 Exchanging Friend Registration Keys
DWCUserData s_userData;
DWCFriendData s_friendList[FRIEND_LIST_LEN];
// Display Friend Registration Key
void disp_friend_key(void)
{
 u64 friend_key;
// Create friend registration key from local user data
 if ((friend_key = DWC_CreateFriendKey(&s_userData)) != 0)
 {
 // Display friend registration key
 disp_message("FRIEND CODE : %lld", friend_key);
 }
 else
 {
 // Display message that there is no friend registration key
 disp_message("FRIEND CODE : not available");
 }
 :
}

/* Create friend information from friend registration key and register in friend roster */
BOOL register_friend_key(void)
{
 u64 friend_key;
 DWCFriendData friendData;

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 26  2005-2010 Nintendo
Released: Review CONFIDENTIAL

 while (1)
 {
 char friend_key_string[13];

 // Get user to manually enter friend registration key
 input_friend_key(friend_key_string);

 /* Convert entered friend registration key string into u64 numerical value */
 friend_key = charToU64(friend_key_string);

 // Check that friend registration key is correct and proceed if OK.
 // If there is a problem, display message and have it entered again
 if (DWC_CheckFriendKey(&s_userData, friend_key)) break;
 else disp_warning_message();
 }

 // Create Friend information from correct Friend Registration Key
 DWC_CreateFriendKeyToken(&friendData, friend_key);

 {
 int index;
 /* Using same method as MP communication, search for open slot and
 overlaps in friend roster and register friend information. */
 :
 s_friendList[index] = friendData;
 :
 }
}

6.3 Synchronizing Friend Rosters
For a friend roster stored in the application (local friend roster) to be valid on the Internet, you need to
call the DWC_UpdateServersAsync function and update the friend roster stored on the GameSpy
server (server friend roster) as shown in Code 6-3.

To synchronize the friend rosters, you must first complete the login process with the DWC_LoginAsync
function.

Specify the following function arguments: the player name (the old specification; specify NULL), the
callback and its parameters when the friend roster completes synchronization, the callback and its
parameters for a change notification in friend status (discussed later), and the callback and its
parameters when the friend roster is deleted.

The friend roster synchronization process involves two main tasks: sending requests to establish
friend relationships for friends that are on the local but not the server friend roster, and deleting
friends that are on the server but not the local friend roster.

If a request to establish a friend relationship is sent while the other party is offline, call the
DWC_LoginAsync function to save the request on the server and immediately deliver the request the
next time the contacted partner logs in. The friend relationship is only established after the information
is saved in the local friend roster of the other party.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 27 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Note that this process only registers the other party as your friend. When the other party receives the
request to establish a friend relationship, the contacted partner follows the same process to register
the initiating partner as a friend.

After the friend roster synchronization process completes, the callback is called after the local and
server friend rosters are checked, needed requests to establish friend relationships are sent, and
unneeded friend information is deleted. Be aware that even if the callback has returned, this state
does not indicate that all friend relationships are established. If the isChanged argument of the
callback is set to TRUE, this indicates that the friend information in the local friend roster is updated
and needs to be saved. If a friend relationship is established at a time other than during the friend
roster synchronization process, the callback for an established friend relationship specified by the
DWC_SetBuddyFriendCallback function is called.

If multiple sets of friend information for the same friend are discovered during the friend roster
synchronization process, all but one set are automatically deleted. A callback is called for each
deleted set by comparing the friend roster index of the deleted friend information and the friend roster
index of the matching friend.

Code 6-3 Friend Roster Synchronization Process
BOOL s_update = FALSE;
BOOL s_updateFriendList= FALSE;

void sync_friend_list(void)
{
 // Set the callback for establishment of friend relationship
 DWC_SetBuddyFriendCallback(cb_buddyFriend, NULL);

 // Synchronize local friend roster and server friend roster
 if (!DWC_UpdateServersAsync(NULL,
 cb_updateServers, NULL,
 NULL, NULL,
 cb_deleteFriend, NULL))
 {
 // Synchronization process fails to start
 return;
 }

 while (!s_update)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation
 handle_error();
 return;
 }

 GameWaitVBlankIntr();
 }
 :

 while (1)

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 28  2005-2010 Nintendo
Released: Review CONFIDENTIAL

 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation
 handle_error();
 return;
 }

 // To update the friend roster asynchronously, perform the following
 // processing when appropriate and collect the updated local friend roster
 // and save
 if (s_updateFriendList)
 {
 // Save the friend roster if it has been updated
 s_updateFriendList = FALSE;
 save_friendList();
 }

 game_loop();

 GameWaitVBlankIntr();
 }
 :
}

// Callback for when friend roster synchronization has completed
void cb_updateServers(DWCError error, BOOL isChanged, void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 // Friend roster synchronization successful
 s_update = TRUE;

 // Must be saved if friend roster has been changed
 if (isChanged) s_updateFriendList = TRUE;
 }
}

// Callback for when there is a friend roster deletion
void cb_deleteFriend(int deletedIndex, int srcIndex, void* param)
{
 OS_TPrintf("friend[%d] was deleted (equal friend[%d]).\n",
 deletedIndex, srcIndex);
 s_updateFriendList = TRUE;
}

// Callback for when friend relationship has been established
void cb_buddyFriend(int index, void* param)
{
 OS_TPrintf("Got friendship with friend[%d].\n", index);
 s_updateFriendList= TRUE;
}

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 29 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

6.4 Getting Friend Information Types
Code 6-4 shows how you can get the data type set in the friend information using the
DWC_GetFriendDataType function.

The possible data types are listed below.

• DWC_FRIENDDATA_NODATA No stored friend information
• DWC_FRIENDDATA_LOGIN_ID ID for the state when a connection to Nintendo Wi-Fi

 Connection has never been made
• DWC_FRIENDDATA_FRIEND_KEY Friend registration key
• DWC_FRIENDDATA_GS_PROFILE_ID GS profile ID

When the contacted partner has not yet obtained a GS profile ID, the data type
DWC_FRIENDDATA_LOGIN_ID indicates that friend information was downloaded via DS Wireless
Communications.

Once the contacted partner has obtained a GS profile ID and initiating partner has completed the
friend roster synchronization process, the data type changes to DWC_FRIENDDATA_GS_PROFILE_ID.

The data type DWC_FRIENDDATA_FRIEND_KEY indicates that the friend relationship is not yet
established for the GS profile ID registered using the friend registration key. Once the friend
relationship is established, the data type changes to DWC_FRIENDDATA_GS_PROFILE_ID.

You can use the DWC_IsBuddyFriendData function to determine whether a friend relationship has
been established from the friend information.

Code 6-4 Getting Friend Information Types
void disp_friendList(void)
{
 int i;

 for (i = 0; i < FRIEND_LIST_LEN; ++i)
 {
 // Get the friend information type
 int type = DWC_GetFriendDataType(&s_friendList[i]);
 OS_TPrintf("friend[%d] type %d.\n", type);

 if (type == DWC_FRIENDDATA_GS_PROFILE_ID)
 {
 // Show friend relationship if GS profile ID
 if (DWC_IsBuddyFriendData(&s_friendList[i]))
 {
 OS_TPrintf("Friendship is established.\n");
 }
 else
 {
 OS_TPrintf("Friendship is not yet established.\n");
 }
 }
 }
 :
}

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 30  2005-2010 Nintendo
Released: Review CONFIDENTIAL

6.5 Getting Friend Status
All players maintain their own status when using Nintendo Wi-Fi Connection. Nintendo Wi-Fi
Connection is managed by a server operated by GameSpy.

There are two player states that the application can reference.

• The communication state
• A status string or binary data

The communication state is defined by the DWC_STATUS_* constants, which are set automatically by
the DWC library. The application sets the status string with the DWC_SetOwnStatusString function
and the binary data with the DWC_SetOwnStatusData function as shown in Code 6-5.

Status strings must be null-terminated and can be up to 256 text characters long, including the null
terminator. Binary data are converted inside the function into a string, and the approximate number of
text characters will be data size x 1.5. The string should not include '/' or '\\' because these text
characters are used by the library as identifiers.

The current status of a friend can be obtained if a friend relationship has been established. Specify a
friend status change callback as the argument in the DWC_UpdateServersAsync function to enable a
user to receive notices whenever friend status changes.

To get friend status, use the DWC_GetFriendStatus* function group. For this group of functions,
communication doesn’t occur while accessing the friend status list maintained by the DWC library.
However, processing these functions takes several hundred microseconds, so take care when calling
the functions frequently over a short period of time.

If there is a sudden loss of power during communication, the player's status will remain in the
previous state for a few minutes.

Code 6-5 Getting a Friend’s Status
void sync_friend_list(void)
{
 int i;

 // Synchronize local friend roster and server friend roster
 if (!DWC_UpdateServersAsync(NULL,
 cb_updateServers, NULL,
 cb_friendStatus, NULL,
 NULL, NULL))
 {
 // Synchronization process fails to start
 return;
 }
 :

 // Friend roster synchronization completed
 :

 // Set local status test string
 DWC_SetOwnStatusString("location=city,level=1");
 :

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 31 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 for (i = 0; i < FRIEND_LIST_LEN; ++i)
 {
 if (DWC_IsValidFriendData(&friendList[i])
 {
 u8 status;
 char* statusString;

 // If friend information is valid, get the status of that friend
 status = DWC_GetFriendStatus(&friendList[i], statusString);

 // Display the status of friend
 disp_friend_status(status, statusString);
 }
 }
 :
}

// Callback notifying change in friend's status
void cb_friendStatus(int index, u8 status, const char* statusString, void* param)
{
 OS_TPrintf("Friend[%d] status -> %d (statusString : %s).\n",
 index, status, statusString);
}

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 32  2005-2010 Nintendo
Released: Review CONFIDENTIAL

7 Matchmaking
The DWC library provides two matchmaking methods: peer matchmaking and server-client
matchmaking.

In peer matchmaking, the Nintendo DS systems are not distinguished as servers and clients. There
are two implementation methods.

• Friend unspecified
• Friend specified

7.1 Peer Matchmaking with Friend Unspecified
This method performs matchmaking for players in the general public.

Call the DWC_ConnectToAnybodyAsync function as shown in Code 7-1 to begin peer matchmaking
without specifying friends. The function is passed these arguments.

• The connection configuration (see section 8.2 Connection Configurations)
• The maximum desired number of connected players including the local player
• A filter string for matchmaking conditions
• A matchmaking completion callback and its parameters
• A newly connected client notification callback and its parameters
• A player evaluation callback and its parameters (described below)
• A matchmaking condition determination callback and its parameters
• The matchmaking condition values

The matchmaking completion callback is called when the local player successfully connects to the
server host. It is also called when a new client host is added to the group to which the local player
belongs. The newly connected client notification callback is called when a client host starts a new
connection to the group to which the local player belongs.

Use the filter string to narrow the search for matchmaking candidates. The matchmaking index keys
(in Code 7-1, the key names are str_key and int_key) need to be registered in advance using the
DWC_AddMatchKey* functions. The key names are saved inside the library, but only pointers to the key
values are stored in the library. Consequently, you should retain key values until matchmaking
completes.

Note: There are certain names that cannot be used as matchmaking index keys. For details, see
section 7.10 Names That Cannot Be Used for Matchmaking Index Keys.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 33 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Code 7-1 Peer Matchmaking with Friend Unspecified
static BOOL s_matched = FALSE;
static BOOL s_canceled = FALSE;
static const char* s_str_key = "anymatch_test";
static const int s_int_key = 10;

void do_anybody_match(void)
{
 // Set the matchmaking index keys
 DWC_AddMatchKeyString(0, "str_key", s_str_key);
 DWC_AddMatchKeyInt(0, "int_key", s_int_key);

 // Start matchmaking without specifying friends
 DWC_ConnectToAnybodyAsync(DWC_TOPOLOGY_TYPE_FULLMESH, 4,
 "str_key = 'anymatch_test' and int_key = 10",
 cb_sc_match, NULL,
 cb_sc_new, NULL,
 NULL, NULL
 NULL, NULL, NULL);

 // Poll to see if matchmaking has completed
 while (!s_matched)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation
 handle_error();
 return;
 }

 GameWaitVBlankIntr();
 }

 // Matchmaking has completed
 :
}

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 34  2005-2010 Nintendo
Released: Review CONFIDENTIAL

// Callback for when matchmaking has completed
void cb_sc_match(DWCError error,
 BOOL cancel, BOOL self, BOOL isServer,
 int index, void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 if (!cancel)
 {
 // Connection successful
 s_matched = TRUE;
 }
 else if (self || isServer)
 {
 // Either the local player has cancelled matchmaking, or the local
 // player is the client host and the server host cancelled matchmaking
 s_canceld = TRUE;
 }
 // Does nothing even if the newly connected client cancels matchmaking
 }
}
// Newly connected client notification callback
void cb_sc_new(int index, void* param)
{
 printf("Newcomer : friend[%d].\n", index);}

7.2 Peer Matchmaking with Friend Specified
This method performs matchmaking for friends registered in friend rosters.

Call the DWC_ConnectToFriendsAsync function as shown in Code 7-2 to begin peer matchmaking by
specifying friends. The function is passed these arguments.

• The connection configuration (see section 8.2 Connection Configurations)
• The friend roster index array (index list) of friends to perform matchmaking
• The number of elements in the index list
• The maximum desired number of connected players including the local player
• A matchmaking completion callback and its parameters
• A newly connected client notification callback and its parameters
• A player evaluation callback and its parameters (described below)
• A matchmaking condition determination callback and its parameters
• The matchmaking condition values

The matchmaking completion callback is called when the local player successfully connects to the
server host and is also called when a new client host is added to the group to which the local player
belongs. The newly connected client notification callback is called when a client host starts a new
connection to the group to which the local player belongs.

If NULL is specified for the index list, all friends in a friend roster are treated as matchmaking
candidates. Peer matchmaking with friend specified uses the DWC_InitFriendsMatch function to
specify the friend roster.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 35 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Code 7-2 Peer Matchmaking with Friend Specified
static BOOL s_matched = FALSE;
static BOOL s_canceled = FALSE;

void do_friend_match(void)
{
 // Start matchmaking with specifying friends
 DWC_ConnectToFriendsAsync(DWC_TOPOLOGY_TYPE_FULLMESH, NULL, 0, 4,
 cb_sc_match, NULL,
 cb_sc_new, NULL,
 NULL, NULL, NULL);

 // Poll to see if matchmaking has completed
 while (!s_matched)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation
 handle_error();
 return;
 }

 GameWaitVBlankIntr();
 }

 // Matchmaking has completed
 :
}

// Callback for when matchmaking has completed
void cb_sc_match(DWCError error, BOOL cancel, BOOL self, BOOL isServer, int index,
void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 if (!cancel)
 {
 // Connection successful
 s_matched = TRUE;
 }
 else if (self || isServer)
 {
 // Either the local player has cancelled matchmaking, or the local
 // player is the client host and the server host cancelled matchmaking
 s_canceld = TRUE;
 }
 // Does nothing even if the newly connected client cancels matchmaking
 }
}

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 36  2005-2010 Nintendo
Released: Review CONFIDENTIAL

// Newly connected client notification callback
void cb_sc_new(int index, void* param)
{
 printf("Newcomer : friend[%d].\n", index);}

7.3 Evaluating Candidate Players for Matchmaking
During peer matchmaking, players who have been identified as matchmaking candidates can be
evaluated using game-specific criteria listed in order of preference. When an evaluation callback is
set as an argument of the function that starts peer matchmaking, that callback is called every time a
player is identified as a possible matchmaking candidate during matchmaking.

Use the DWC_GetMatch*Value functions inside this callback to reference the matchmaking index keys
that were registered by the DWC_AddMatchKey* functions as shown in Code 7-3. Evaluate each player
based on these values and use the evaluated value as the return value. Players whose evaluated
value is less than zero are removed as matchmaking candidates.

Note that this method is designed to make selecting players with the highest evaluated values easier,
but this method does not guarantee that players with the highest evaluated values will be selected for
matchmaking.

Code 7-3 Evaluating Candidate Players for Matchmaking
static const char* s_str_key = "anymatch_test";
static const int s_int_key = 10;

void do_anybody_match(void)
{
 // Set matchmaking index keys
 DWC_AddMatchKeyString(0, "str_key", s_str_key);
 DWC_AddMatchKeyInt(0, "int_key", &s_int_key);

 // Start matchmaking by specifying friends
 DWC_ConnectToAnybodyAsync(DWC_TOPOLOGY_TYPE_FULLMESH, 4,
 "str_key = 'anymatch_test'",
 cb_sc_match, NULL,
 cb_sc_new, NULL,
 cb_eval, NULL,
 NULL, NULL, NULL);
 :
}

// Player evaluation callback
int cb_eval(int index, void* param)
{
 int eval_int;

 // Get the value for the matchmaking index key int_key
 eval_int = DWC_GetMatchIntValue(index, "int_key", -1);

 if (eval_int >= 0)
 {
 // Sees which are close to local value and takes it as evaluated value
 return MATH_ABS(s_int_key - eval_int) + 1;
 }

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 37 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 else
 {
 // Does not match make players that do not have the int_key key
 return 0;
 }
}

Even though matchmaking is not established with players that have different connection
configurations (see section 8.2 Connection Configurations), the evaluation callback is called. If this
happens, the return values of the evaluation callback do not influence the matchmaking results.

7.4 Server-Client Matchmaking
In server-client matchmaking among friends, each host takes on a clearly defined role as a server or
client. The server specifies the following:

• The connection configuration (see section 8.2 Connection Configurations)
• The number of players desired for connection (this number includes the server host)
• A matchmaking completion callback and its parameters
• A newly connected client notification callback and its parameters
• A matchmaking condition determination callback (described later) and its parameters
• The matchmaking condition values

The server calls the DWC_SetupGameServer function and then waits for the client to connect. The
code for this process is shown in Code 7-4.

The clients specify the following:

• The connection configuration
• An index list of friends desiring connection
• A matchmaking completion callback and its parameters
• A newly connected client notification callback and its parameters
• A matchmaking condition determination callback (described later) and its parameters
• The matchmaking condition values

The client calls the DWC_ConnectToGameServerAsync function. With this function configuration, the
clients will try to connect if matchmaking has started with the friend established as the server host.

When server-client matchmaking completes, the server has a friend relationship with every connected
client. However, the clients may have friend relationships through their friends via their connection to
the server.

The matchmaking completion callback is called when the client successfully connects to the server,
and also when a new client is added to the group to which it belongs.

The newly connected client notification callback is called when a new client starts the connection to
the group to which it belongs.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 38  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Code 7-4 Server/Client Matchmaking
static BOOL s_matched = FALSE;

void do_server_match(void)
{
 // Start matchmaking as server host
 DWC_SetupGameServer(DWC_TOPOLOGY_TYPE_FULLMESH, 4,
 cb_sc_match, (void *)CB_CONNECT_SERVER,
 cb_sc_new, NULL,
 NULL, NULL, NULL);

 while (1)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation.
 handle_error();
 return;
 }

 if (s_matched)
 {
 // If connection has been made with new client
 init_new_connection();
 s_matched = FALSE;
 }

 GameWaitVBlankIntr();
 }
 :
}

void do_client_match(void)
{
 // Start matchmaking as client host
 DWC_ConnectToGameServerAsync(DWC_TOPOLOGY_TYPE_FULLMESH, 0,
 cb_sc_match, (void *)CB_CONNECT_CLIENT,
 cb_sc_new, NULL,
 NULL, NULL, NULL);

 // Poll to see if matchmaking completed
 while (!s_matched)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation.
 handle_error();
 return;
 }

 GameWaitVBlankIntr();
 }

 // Matchmaking completed

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 39 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 :
}

// Callback for when matchmaking completed
void cb_sc_match(DWCError error, BOOL cancel, BOOL self, BOOL isServer, int
index, void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 if (!cancel)
 {
 // Connection successful
 s_matched = TRUE;
 }
 else if (self || isServer)
 {
 // The local system cancelled matchmaking, or the local system is a
 // client host and the server host cancelled matchmaking
 s_canceld = TRUE;
 }
 /* Do nothing even if some other newly connecting client cancels matchmaking */
 }
}

// Callback to notify a newly connected client
void cb_sc_new(int index, void* param)
{
 printf("Newcomer : friend[%d].\n", index);
}

7.5 Reconnection Using the Group ID
Both peer matchmaking and server-client matchmaking use a feature that allows a local player to
rejoin a group. The player may have dropped out of the group because of a line disconnection, for
example.

After the matchmaking completion callback is called successfully, the group ID that identifies the
group in which the local player is participating can be acquired with the DWC_GetGroupID function as
shown in Code 7-5.

Code 7-5 Getting the Group ID
static u32 s_groupID = 0 // ID of the group last participated in

// Matchmaking completion callback
void cb_sc_match(DWCError error, BOOL cancel, BOOL self, BOOL isServer, int index,
void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 if (!cancel)
 {
 // Connection successful
 s_matched = TRUE;

 // Get the group ID at this time

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 40  2005-2010 Nintendo
Released: Review CONFIDENTIAL

 s_groupID = DWC_GetGroupID();
 }
 else if (self || isServer)
 {
 // Either the local player has cancelled matchmaking, or the local
 // player is the client host and the server host cancelled matchmaking
 s_canceld = TRUE;
 }
 // Does nothing even if the newly connected client cancels matchmaking
 }
}

The DWC_ConnectToGameServerByGroupID function is used for a local player to reconnect to a group
using the group ID retrieved with the DWC_GetGroupID function. The function
DWC_ConnectToGameServerByGroupID is called as shown in Code 7-6 with the following arguments.

• The connection configuration (see section 8.2 Connection Configurations)
• Group ID
• Matchmaking completion callback and its parameters
• Newly connected client notification callback and its parameters
• Matchmaking condition determination callback and its parameters (described below)
• The matchmaking condition values

The matchmaking completion callback is called when the local player successfully connects to the
server and is also called when a new client is added to the group to which the local player belongs.

The newly connected client notification callback is called when a client starts a new connection to the
group to which the local player belongs.

Code 7-6 Reconnecting from the Group ID
static u32 s_groupID = 0 // ID of the group last participated in
static BOOL s_matched = FALSE;

void do_groupID_match(void)
{
 // Start matchmaking by reconnecting from the Group ID
 DWC_ConnectToGameServerByGroupID(DWC_TOPOLOGY_TYPE_FULLMESH,
 s_groupID,
 cb_sc_match, NULL,
 cb_sc_new, NULL,
 NULL, NULL, NULL);

 // Matchmaking completion polling
 while (!s_matched)
 {
 DWC_ProcessFriendsMatch();
 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error occurred.
 handle_error();
 return;
 }
 GameWaitVBlankIntr();
 }

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 41 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 // Matchmaking completed
 :
}

// Matchmaking completion callback
void cb_sc_match(DWCError error, BOOL cancel, BOOL self, BOOL isServer, int index,
void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 if (!cancel)
 {
 // Connection successful
 s_matched = TRUE;
 }
 else if (self || isServer)
 {
 // Either the local player has cancelled matchmaking, or the local
 // player is the client host and the server host cancelled matchmaking
 s_canceld = TRUE;
 }
 // Does nothing even if the newly connected client cancels matchmaking
 }
}

// Newly connected client notification callback
void cb_sc_new(int index, void* param)
{
 printf("Newcomer : friend[%d].\n", index);
}

Reconnecting from the group ID fails when the specified group has no participants or when the
specified group is full.

7.6 Closing Participation
When the specified number for matchmaking is reached, no more new clients can participate.
However, participation can be closed to new clients even when the specified number is not reached.
Also, it is possible to return to accept-participation status from close-participation status.

To change the close-participation status, all participating hosts specify the close-participation status to
configure and the close-participation status-change callback and its parameters, and then call the
DWC_RequestSuspendMatchAsync function at the same time, as shown in Code 7-7.

Only when all participants set the same close-participation status and call the
DWC_RequestSuspendMatchAsync function at the same time will the close-participation process
complete.

For example, a flow must be established so that all participants call the
DWC_RequestSuspendMatchAsync function with the same close-participation status arguments to
guarantee close-participation processing when transitioning from the game setting screen to the
actual game screen.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 42  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Use the DWC_GetSuspendMatch function to get the existing close-participation status.

Code 7-7 Close-Participation Process
static BOOL s_suspendCompleted = FALSE;

void do_suspend(BOOL suspend)
{
 DWC_RequestSuspendMatchAsync(suspend, suspendCallback, NULL);

 // Close participation status change completion polling
 while (!s_suspendCompleted)
 {
 DWC_ProcessFriendsMatch();
 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error occurred.
 handle_error();
 return;
 }
 GameWaitVBlankIntr();
 }
 // Close participation status change completion
}

// Callback called when close participation completes
static void suspendCallback(DWCSuspendResult result, BOOL suspend,
 void* data)
{
 if(result == DWC_SUSPEND_SUCCESS)
 {
 DWCDemoPrintf("The Close Participation Status is changed to [%s].\n",
 suspend ? "TRUE" : "FALSE");
 }
 else
 {
 // Error
 }
 s_suspendCompleted = TRUE;
}

7.7 ConnectAttemptCallback
The application can set any value in the connectionUserData argument (the size is
DWC_CONNECTION_USERDATA_LEN) for the following functions that start matchmaking, as shown in
Code 7-8.

• DWC_ConnectToAnybodyAsync
• DWC_ConnectToFriendsAsync
• DWC_SetupGameServer
• DWC_ConnectToGameServerAsync
• DWC_ConnectToGameServerByGroupID

This value is sent to the server host that performs the role of accepting new client hosts to determine
whether the local player can participate in matchmaking.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 43 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

For matchmaking that specifies friends or does not specify friends, the application does not need to
be aware of who becomes the server host. It is fine to think that all participants may be server hosts.
The host that calls the DWC_SetupGameServer function during server-client matchmaking becomes
the first server host; if it disconnects later, server migration occurs.

The server host receives a DWCConnectAttemptCallback call in conjunction with the new client
host’s connectionUserData.

Whether to accept the new client is not determined at this time. The host that receives
DWCConnectAttemptCallback performs the determination based on the connectionUserData of the
new client host passed in the callback argument. When accepted, TRUE is returned.

When the callback terminates with TRUE, the newly connected client host is accepted, and the
process to connect to the other connected client hosts is started. When the connection process
occurs, notification of the connectionUserData of the newly connected client host is sent to and
shared with all client hosts.

The connectionUserData of already connected client hosts (hosts with a determined AID, including
the local host) can be retrieved with the DWC_GetConnectionUserData function. It is assumed that
this function will be used as material for determination received inside DWCConnectAttemptCallback.

Code 7-8 ConnectAttemptCallback Example
#define MALE 0
#define FEMALE 1
#define MAX_MALE_COUNT 2
#define MAX_FEMALE_COUNT 2

:
{
 u8 userData[DWC_CONNECTION_USERDATA_LEN];
 :

 // Start matchmaking without specifying friends
 userData[0] = MALE;
 DWC_ConnectToAnybodyAsync(DWC_TOPOLOGY_TYPE_FULLMESH, 4,
 NULL,
 cb_sc_match, NULL,
 cb_sc_new, NULL,
 NULL, NULL,
 ConnectAttemptCallback, NULL, userData);
 :
}

/* When a value is set to indicate male or female in the [0] of connectionUserData
 * of DWC_ConnectToXXX and the maximum number for both males and females is
limited.
 */
static BOOL ConnectAttemptCallback(u8* newClientUserData, void* param)
{
 int numAid;
 u8* aidList;
 u8* userData;[DWC_CONNECTION_USERDATA_LEN]
 int i;

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 44  2005-2010 Nintendo
Released: Review CONFIDENTIAL

 int maleCount = 0; // Number of males
 int femaleCount = 0; // Number of females

 (void) param;

 numAid = DWC_GetAIDList(&aidList);

 // If numAid was obtained, you are also in the list, so
 // process in the loop.
 // If numAid was not obtained, get your own data separately.
 if(numAid == 0)
 {
 if(male == USER_TYPE_MALE) ++maleCount;
 else ++femaleCount;
 }
 else
 {
 for (i = 0; i < numAid; i++)
 {
 DWC_GetConnectionUserData(aidList[i], userData);
 if (userData[0] == USER_TYPE_MALE)
 maleCount++;
 else if (userData[0] == USER_TYPE_FEMALE)
 femaleCount++;
 }
 }

 DWCDemoPrintf("male:%d female:%d\n", maleCount, femaleCount);

 if (data[0] == USER_TYPE_MALE && maleCount < USER_MAX_MALE)
 return TRUE;
 else if (data[0] == USER_TYPE_FEMALE && femaleCount < USER_MAX_FEMALE)
 return TRUE;
 else
 return FALSE;
}

7.7.1 Differences Between DWCEvalPlayerCallback and
DWCConnectAttemptCallback

Both DWCEvalPlayerCallback and DWCConnectAttemptCallback can be used to narrow the
matchmaking targets. Note the following differences between the two callbacks.

• DWCEvalPlayerCallback cannot be used for server-client matchmaking. Conversely,
DWCConnectAttemptCallback can be used for all matchmaking.

• Servers and clients narrow targets differently.
o DWCEvalPlayerCallback

Called by the newly participating client host and then performs determination.
o DWCConnectAttemptCallback

Called by the server host accepting the newly participating client host, then performs
determination.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 45 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

• Available information may determine the narrowing method.
o DWCEvalPlayerCallback

Called by the new client host to retrieve information about the server host to which a
connection is being made. The DWC_GetMatchIntValue and DWC_GetMatchStringValue
functions are called using the arguments passed by the callback. Information for other hosts
already connected to the server to which connection is being made cannot be retrieved.

o DWCConnectAttemptCallback

Called by the server host that accepts the newly participating client host. At this time, the
newly participating client host and all hosts that are already participating are passed to the
DWC_SetupGameServer function and the DWC_ConnectToXxx function, respectively.
connectionUserData can be retrieved. (Uses the DWC_GetConnectionUserData and
DWCConnectAttemptCallback arguments.)

• Narrowing targets occurs at different times.
o DWCEvalPlayerCallback

Called when a new client host is about to select an available server host. Connection to
partners who are excluded by the narrowing conditions is not performed.

o DWCConnectAttemptCallback

Called when the new client host tries to connect to the server host. Client hosts that are
excluded by the narrowing conditions do not participate in the matchmaking of the server
hosts that performed the narrowing.

The following is a simplified summary.

• DWCEvalPlayerCallback
o Determine whether to allow participation using only the information of the server host to

which to connect
o Can be used only for matchmaking that is not server-client matchmaking

• DWCConnectAttemptCallback
o Determine dynamically whether to allow participation according to information of all

participating hosts
o Can be used for all matchmaking types

7.8 Server Migration
When the server host disconnects from a connection group, one of the remaining hosts continues in
the server host role. By doing this, even if the person who first filled the role of server host drops out,
new hosts can still participate in that group.

Server migration occurs only when the connection configuration (see section 8.2 Connection
Configurations) uses either hybrid or full-mesh models. When a star model server host disconnects,
all other client hosts terminate in an error.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 46  2005-2010 Nintendo
Released: Review CONFIDENTIAL

In addition, when a server migration is generated, only the hosts that are already directly connected
to the new server host continue. All other hosts are disconnected, even for the hybrid or full-mesh
models.

Server migration occurs during all types of matchmaking.

Due to this server migration feature, there is a possibility that when matchmaking by specifying
friends, the friend relationship between the server host after migration and the other client hosts may
become more than “friend of a friend of a friend.”

For matchmaking by specifying friends, the following process is performed to ensure that all
participants fit within the “friend of a friend” range.

1. For the first server host, new client hosts can participate if they are friends with the server host.
2. After server migration is performed one or more times, new client hosts cannot participate in that

group. However, if the group includes only you, new client hosts can participate.

Server hosts that are in the second state have return value of DWC_STATUS_PLAYING, obtained with a
DWC_GetFriendStatus function.

New client hosts are unable to connect after a server migration occurs during server-client
matchmaking.

7.9 Increasing Matchmaking Speed
During peer matchmaking without specifying friends, you can increase the speed of matchmaking
using filters when getting a list of matchmaking candidates from the matchmaking server (see Code
7-1). The matchmaking candidate list stored on the matching server has various conditions attached.

Matchmaking is more likely to fail when this list is obtained unconditionally and matchmaking
candidates are filtered inside the evaluation callback. This also takes more time by repeatedly getting
the list and performing matchmaking. You can reduce matchmaking failures and increase
matchmaking speed using a filter function to form the obtained matchmaking candidate list into a list
of acceptable matchmaking candidates.

Conversely, matchmaking efficiency can drop and time may be lost if excessive filtering is performed
inside the evaluation callback in situations where the number of candidates is likely to be low (such as
when seeking players of the same skill level or in the same geographical region).

Consider the following when seeking to increase the matchmaking speed.

• Use a filter function to form a list of available candidates from the obtained matchmaking candidate
list

• Adopt a specification where matches are made aggressively without too much filtering inside the
evaluation callback

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 47 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

7.10 Names That Cannot Be Used for Matchmaking Index Keys
There are certain key names that cannot be registered as matchmaking index keys by the
DWC_AddMatchKey* function because the key names are used by the library and the server. Do not
use any of the names listed in Table 7-1.

Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keys

country region hostname gamename gamever hostport
mapname gametype gamevariant numplayers numteams maxplayers
gamemode teamplay fraglimit teamfraglimit timeelapsed timelimit
roundtime roundelapsed password groupid player_ score_
skill_ ping_ team_ deaths_ pid_ team_t
score_t dwc_pid dwc_mtype dwc_mresv dwc_mver dwc_eval

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 48  2005-2010 Nintendo
Released: Review CONFIDENTIAL

8 Sending and Receiving Data

8.1 Peer-to-Peer Data Exchange
Once matchmaking completes, the connections between participating hosts are established.
Depending on the connection configuration settings that are set when matchmaking begins, the direct
connections between hosts differ.

There are three formats: a format where an interconnection exists among all hosts if one host
completes participation with matchmaking; a format where interconnections exist only between the
server and each client; and an intermediate format (at first only server-client, then in the background
becoming a complete interconnection).

There are several preparations that are required for direct communication with each host in this group
created through matchmaking.

First, set up a receive buffer so each host can receive data. Call the DWC_SetRecvBuffer function.
For the aid argument, specify the AID that serves as the ID number of each host.

The AID accepts values between 0 and N, where N is one less than the number of devices on the
network. Therefore, if matchmaking for four players completes, the four are assigned AID numbers 0,
1, 2, and 3. If the device assigned AID = 1 leaves the network, the remaining devices maintain the
assigned AID numbers 0, 2, and 3. Any data that arrives before setting up the receive buffer is
deleted.

Next, configure the send and receive callbacks using the DWC_SetUserSendCallback and
DWC_SetUserRecvCallback functions. Call the receive callback when a host receives data from
another host. Call the send callback immediately after transmission of specified data completes.

In this context, note that transmission completes means that the data has been passed to the lower
layer transmission function. It does not indicate that the partner device has received the data.

To configure the connection close callback, call the DWC_SetConnectionClosedCallback function
when the local or partner host leaves the network by the procedure to officially disconnect (see Code
8-1).

Code 8-1 Setup for Data Exchange
static u8 s_RecvBuffer[3][SIZE_RECV_BUFFER];

void prepare_communication(void)
{
 u8* pAidList;
 int num = DWC_GetAIDList(&pAidList);
 int i, j;

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 49 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 for (i = 0, j = 0; i < num; ++i)
 {
 if (pAidList[i] == DWC_GetMyAID())
 {
 j++;
 continue;
 }

 // Set the receive buffer for AIDs other than local AID
 DWC_SetRecvBuffer(pAidList[i], &s_RecvBuffer[i-j],
 SIZE_RECV_BUFFER);
 }

 // Set the send callback
 DWC_SetUserSendCallback(cb_send, NULL);

 // Set the receive callback
 DWC_SetUserRecvCallback(cb_recv, NULL);

 // Set the connection close callback
 DWC_SetConnectionClosedCallback(cb_closed, NULL);
}

// Callback for sent data
void cb_send(int size, u8 aid, void* param)
{
 printf("to aid = %d size = %d\n", aid, size);
}

// Callback for received data
void cb_recv(u8 aid, u8* buffer, int size, void* param)
{
 printf("from aid = %d size = %d buffer[0] = %X\n",
 aid, size, buffer[0]);
}

// Connection close callback
void cb_closed(DWCError error, BOOL isLocal, BOOL isServer, u8 aid, int
index, void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 if (isLocal)
 {
 printf("Closed connection to aid %d (friendListIndex = %d).\n",
 aid, index);
 }
 else
 {
 printf("Connection to aid %d (friendListIndex = %d)
 //was closed.\n", aid, index);
 }
 }
}

There are two kinds of data transmission: reliable transfer and unreliable transfer. Both use UDP
communication, but as with TCP communication, reliable transfer does not experience packet loss

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 50  2005-2010 Nintendo
Released: Review CONFIDENTIAL

and maintains packet order. However, the tradeoff is that reliable transfer takes longer to complete
because every sent packet is checked upon receipt.

Because unreliable transfer uses UDP communication, problems with packet loss and packet order
can occur. However, transmission is very fast because no packets are checked or resent.

If data transmission occurs at a layer lower than the DWC library, the data accumulates in the send
buffer that has a size specified by the DWC_InitFriendsMatch function. If the send buffer does not
have enough free space when reliable transfers are attempted, any unsent data are retained as is.
They are sent from inside the DWC_ProcessFriendsMatch function as soon as space is freed in the
send buffer.

Note that the default maximum amount of data that can be sent at once is 1465 bytes. If you try to
send more than this maximum amount of data, the data is divided up and the send is suspended. You
can change the maximum size of the send buffer using the DWC_SetSendSplitMax function. However,
because communication devices with various settings need to be accommodated, do not set a
maximum size larger than the default maximum.

Do not delete the send buffer if data for transmission is retained and suspended in this way. Also be
aware that the next data set cannot be sent while data is retained and suspended.

Use the DWC_IsSendableReliable function to check if space is available in the send buffer, the send
target AID is valid, and reliable transfer is possible (see Code 8-2).

If you attempt to send more than the maximum amount of data using unreliable transfer, the
transmission will fail, and FALSE will be returned.

Code 8-2 Sending Data
static u8 s_SendBuffer[SIZE_SEND_BUFFER];

void send_data(void)
{

 // Send data using unreliable transfer to all connected hosts.
 // Ignore local AID if passed.
 DWC_SendUnreliableBitmap(DWC_GetAIDBitmap(),
 s_SendBuffer, SIZE_SEND_BUFFER);
 :

 // Check whether reliable transfer is possible for host with AID=0
 if (!DWC_IsSendableReliable(0)) return;

 // Send data using reliable transfer to a specific host
 DWC_SendReliableBitmap(0, s_SendBuffer, SIZE_SEND_BUFFER);
 :
}

The DWC library sends debug output to the debugger on demand. Debug output sometimes takes a
long time, so if it occurs at the same time that packets are sent or received, the transmission will
appear to be delayed. To avoid this, use the DWC_SetReportLevel function to suppress debug output.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 51 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Alternatively, you can reduce the cost of processing log output by defining an independent
OS_TVPrintf function, which is compiled as a weak symbol and called from debug print statements.

8.2 Connection Configurations
There are three connection configurations for the ways in which reliable and unreliable
communication can occur after new participant matchmaking completes: a hybrid configuration, a star
configuration, and a full-mesh configuration.

Unreliable communication can occur among all hosts. Reliable communication limits the hosts to
which data can be sent based on the connection configuration.

The connection configuration can be set with an argument in a function that starts matchmaking:
DWC_ConnectToAnybodysync, DWC_ConnectToFriendsAsync, DWC_SetupGameServer,
DWC_ConnectToGameServerAsync, and DWC_ConnectToGameServerByGroupID.

When starting matchmaking with these functions, set the desired connection configuration.

• Full-mesh configuration (DWC_TOPOLOGY_TYPE_FULLMESH)

At the time the matchmaking of the new participant host completes, an interconnection between all
hosts exists, and reliable and unreliable communication can occur among all hosts.

• Star configuration (DWC_TOPOLOGY_TYPE_STAR)

An interconnection exists only between the server host and client host. Reliable communication
can occur between the server host and client host, but reliable communication cannot occur
between two client hosts.

Unreliable communication can occur among all hosts.

Unreliable communication between client hosts is automatically relayed by the server host.

• Hybrid configuration (DWC_TOPOLOGY_TYPE_HYBRID)

At the time the matchmaking of the new participant host completes, an interconnection exists only
between the server host and newly connected client host. After matchmaking completes, an
interconnection between client hosts is established in the background.

Reliable communication can occur with hosts for which there is a direct interconnection.

The library does not directly notify whether a connection between client hosts has been
established.

It is necessary to check whether reliable communication is possible with another host using the
method described below.

(Reliable communication can occur between server hosts and client hosts because they always
have an interconnection.)

Unreliable communication can occur among hosts.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 52  2005-2010 Nintendo
Released: Review CONFIDENTIAL

Unreliable communication among client hosts is automatically relayed by the server host when
there is no direct connection.

A list of the AIDs of the hosts that can perform reliable communication can be retrieved with the
DWC_GetDirectConnectedAIDBitmap function. DWC_IsSendableReliable returns FALSE for partner
hosts for which there is no direct interconnection.

The full-mesh configuration takes the most time for matchmaking because it is necessary to establish
interconnections between all the hosts when matchmaking completes. In addition, if there are more
participants, the time until matchmaking completes also increases.

The star and hybrid configurations complete matchmaking more quickly than the full-mesh model
because matchmaking completes when the connection between the new client host and server host
is established.

8.3 Closing Connections
Call the DWC_CloseAllConnectionsHard function to close the connection with all hosts in the group.
When the close process is executed, the connection-close callback set by the
DWC_SetConnectionClosedCallback function is called before exiting this function.

The close notification also notifies other hosts that were connected and calls the connection-close
callback.

This DWC_CloseAllConnectionsHard function is called even if there are no other connected hosts at
the time. This function call deallocates any remaining regions of memory that were used for
matchmaking and restores the communication state to the online state. Calling this function does not
close the connection with the Nintendo Wi-Fi Connection server.

8.4 Estimated Buffer Sizes to Specify with DWC_InitFriendsMatch
The DWC library uses the buffer sizes specified by the DWC_InitFriendsMatch function. When data
is sent using reliable communication, the Send buffer stores data for which ACK is not returned. The
Receive buffer stores data that did not reach the Receive buffer in the correct order.

With reliable communication, you need as much capacity as possible to deal with instantaneous
network interruptions. The Send and Receive buffers both need to be large enough to handle as
much interruption time as the game's specifications permit.

Although the Send and Receive buffers are generally not used with unreliable communication, you
still need a Send buffer of at least 1 KB and a Receive buffer of at least 128 bytes because DWC
uses reliable communication internally when connecting peer-to-peer.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 53 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Table 8-1 Estimated Buffer Sizes

Kind of Communication Estimated Buffer Sizes Comments

Reliable
Communication

Send buffer
size

Compute buffer size as (allowable duration in seconds of
instantaneous interruption as per the game specs) x
(amount of reliable data per second) x (total size of reliable
data).
Total size of reliable data = 7 x (number of divisions in the
data being sent) + (size of data being sent) + 15

Minimum of
1 KB

Receive
buffer size

Minimum of
128 bytes

Unreliable
Communication

Send buffer
size (Max. data size for unreliable communication)＋ 2 bytes Minimum of

1 KB

Receive
buffer size Minimum of 128 bytes

Note: The number of divisions in the data sent indicates the number into which the data is divided
when the total data size exceeds the maximum amount of data that can be sent at any one
time. This is specified by the DWC_SetSendSplitMax function (default size: 1465 bytes).

The following example shows how to calculate the required size of the Send and Receive buffers.
Assume that:

• The game spec allows an instantaneous interruption to last for as long as 1 second
• Communication is performed once every 3 frames
• The maximum amount of data that can be sent at one time is 64 bytes
• The game is sending 100 bytes of data using reliable communication

In this case, the required size of the Send and Receive buffers is:

1 (second) x (60 (frames) ÷ 3) x (7 x 2 (divisions) + 100 (bytes) + 15) = 2580 (bytes)

8.5 Emulating Delays and Packet Loss
The DWC library can emulate delays and packet loss for sending and receiving data. For send delays,
the send data is copied to another buffer and kept for a specified amount of time. This data will not be
sent to the partner because the data is deleted when the connection is closed. For this reason, using
only the receive delay is recommended.

The packet loss rate (in units of percent), the delay time (in units of milliseconds), and the AID of the
receiving Nintendo DS system are specified in Code 8-3.

Code 8-3 Emulating Delays and Packet Loss
void set_trans_emulation(void)
{
 DWC_SetSendDrop(30, 0);
 DWC_SetRecvDrop(30, 0);

 DWC_SetSendDelay(300, 0);
 DWC_SetRecvDelay(300, 0);
 :
}

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 54  2005-2010 Nintendo
Released: Review CONFIDENTIAL

8.6 Amount of Data Sent and Received
Table 8-2 shows the amount of data transmitted during reliable and unreliable communication.

Table 8-2 Communication Data Breakdown

Send Data Items Send Data Size

Preamble 192 bits (24 bytes)

MAC 24 bytes

LLC 8 bytes

IP 20 bytes

UDP 8 bytes

DATA

Reliable Communications Unreliable
Communications

Header send Data send Receive
check Data send

15 bytes 7 + XXX bytes 5 bytes XXX bytes

FCS 4 bytes

B (random time for avoiding packet
collision) MAX 600 µs (microseconds)

Note: The header send and receive check are sent before and after the “data send” event during
reliable communication.

Although you can find the data send time for each transmission based on the formula Preamble +
(MAC + LLC + IP + UDP + DATA + FCS) x 4 + B [µs], it is difficult to accurately calculate the amount
of data sent and received. This is due to the fact that the transmission time varies depending on
factors such as the number of retries required due to bandwidth conditions, the number of sent
packets, and the amount of transmission standby to avoid packet collisions.

This section provides figures obtained in experiments for the amount of data sent/received.

Experiments were conducted by measuring throughput, CPU load, and the packet loss ratio while
varying conditions such as the use of reliable or unreliable communication, the AP model and
manufacturer, the amount of radio usage, the send size, and the send frequency. As a result, the
following became clear.

• Send frequency (the number of packets issued) is greatly affected by the presence of back-off time
(including empty intervals between communication and random time for avoiding packet collisions)
of the header part and wireless communication

• In a four-unit mesh network where data is sent at a rate of once every three frames and the radio
noise is under 10%, the upper limit of send size is in the range of 120-150 bytes

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 55 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

• In a four-unit mesh network where data is sent at a rate of once every three frames and the radio
noise is around 50%, the upper limit of send size is in the range of 100-120 bytes

• When using reliable communication, traffic congestion occurs easily because congestion is
exacerbated by the need to repeatedly resend data when the network is busy. Once this occurs,
recovery time is extended.

Note: Radio noise is generated by using WMTestTool from another Nintendo DS system.

Based on the experimental results above, Nintendo titles communicate as listed below.

• Four-unit mesh network, unreliable communication

Nth frame: Send to Party 1

(N＋1)th frame: Do not send

(N＋2)th frame: Send to Party 2

(N＋3)th frame: Do not send

(N＋4)th frame: Send to Party 3

(N＋5)th frame: Do not send

(Repeats from this point on)

Communication every 60 to 104 bytes

• Four-unit server-client type connection, reliable communication

Send frequency is three frames with a usual send size of 1 to 40 bytes (up to 256 bytes).

When you are developing a game, be sure to consider the following design considerations.

• Network Environment

Expect Internet-based transmission delays and packet losses. Transmission delays are generally
constant for domestic connections, but tend to vary widely for international communications.

• Wireless Environment Congestion

Compared to wired environments, a large number of packets often cause congestion.

When you are fine-tuning a communication environment, adjust both the size and number of packets
to send or receive at a particular time. To guarantee game content when restricting communication
partners is unavoidable due to line quality, see the Nintendo Wi-Fi Connection Programming
Guidelines.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 56  2005-2010 Nintendo
Released: Review CONFIDENTIAL

9 Communication Errors
The DWC library provides an error handling system for all DWC modules. In this system, DWC errors
are treated like application errors.

9.1 Error Handling
You can get the error status in the DWC library using DWC_GetLastErrorEx function, as shown in
Code 9-1. The error classification is the return value. The arguments are the error code and the
pointer to the storage location for the error handling type.

The error code is 0 or a negative number. If you are going to show the error code, be sure to invert
the sign so that the value is shown as a positive number. However, if it is a recoverable error and the
Nintendo DS system was not disconnected from Nintendo Wi-Fi Connection, you do not need to
display the error code.

The error process type indicates the recovery process required after the error occurs, and a routine
error process can be created for each value.

Once the error state has been entered, the DWC library rejects most functions. To return from the
error state, call the DWC_ClearError function.

Code 9-1 Error Handling Process
void main_loop(void)
{
 while (1)
 {
 DWC_ProcessFriendsMatch();

 handle_error(); // Error-handling process

 GameWaitVBlankIntr();
 }
 :
}

// Error-handling process
void handle_error(void)
{
 int dwcError, gameError;

 dwcError = handle_dwc_error();
 gameError = handle_game_error();
 :
}

int handle_dwc_error(void)
{
 int errcode;
 DWCError err;
 DWCErrorType errtype;

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 57 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 // Get the error
 err = DWC_GetLastErrorEx(&errcode, &errtype);

 // If there is no error, return without doing anything
 if (err == DWC_ERROR_NONE) return 0;

 // Clear the error
 DWC_ClearError();

 // Display an error message
 disp_error_message(err);
 // If error code is -10000 or lower, display the code as a positive number
 if (errcode <= -10000) disp_message("%d", -1*errcode);

 if (errtype == DWC_ETYPE_SHUTDOWN_FM)
 {
 // End the FriendsMatch process
 DWC_ShutdownFriendsMatch();
 }
 else if (errtype == DWC_ETYPE_DISCONNECT)
 {
 /* End the FriendsMatch process and perform cleanup on Internet connection */
 DWC_ShutdownFriendsMatch();
 disconnect_func();
 }
 else if (errtype == DWC_ETYPE_FATAL)
 {
 // Fatal Error, so nothing can be done after prompting to turn power off
 while (1) ;
 }
 /* If only a minor error, you can just clear the error and resume the FriendsMatch process */

 return err;
}

9.2 List of Error Codes
This list provides the main error codes that occur during the matchmaking and friend relationship
process.

If the last three digits of an error code are 010 or 020, these errors are likely to occur if the GameSpy
server is in an unstable state (for example, during maintenance).

• 61010 A communication error occurred with the GameSpy GP server during GP server login.
• 61020 A communication error occurred with the GameSpy GP server during GP server login.
• 61070 A login timeout error occurred during GP server login.
• 71010 A communication error occurred with the GameSpy GP server while synchronizing friend

rosters.
• 80430 Connection to the client DS failed for server-client matchmaking because the server DS

that the client DS was attempting to connect with or the client DS connected to the server DS was
powered off.

• 81010 A communication error occurred with the GameSpy GP server during matchmaking.
• 81020 A communication error occurred with the GameSpy master server during matchmaking.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 58  2005-2010 Nintendo
Released: Review CONFIDENTIAL

• 84020 Communication from the GameSpy master server was interrupted during matchmaking.
Either the master server is down or the firewall is blocking UDP.

• 85020 A communication error occurred with the GameSpy master server during matchmaking.
• 85030 The GameSpy master server DNS failed during matchmaking. All error codes with 030 as

the last three digits indicate DNS errors.
• 86420 NAT negotiations failed the set number of times during one matchmaking session. There

may be a problem with the router. In server-client matchmaking, this error only occurs when the
client DS that has started connecting and NAT negotiation has failed one time.

• 97003 A socket error has occurred in a lower layer than the DWC library after matchmaking
completes.

Error codes with 1010 or 1020 as the last four digits and error code 85020 are known to occur
frequently in the NITRO Wi-Fi library for NitroWiFi, version 1.0 RC2 and earlier, when TCP transfers
with the GameSpy server are delayed.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 59 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

10 Network Storage Support
The DWC library can store data onto the network storage server provided by GameSpy. Code 10-1
shows you how to use this feature.

To access this storage server, complete the process up to the login using the DWC_LoginAsync
function. Next, log in to the storage server using the DWC_LoginToStorageServerAsync function.

The data to save on the storage server can have public or private attributes. If the data is saved using
the DWC_SavePublicDataAsync function, the data attributes are public and other players can
reference the data.

If the data is saved using the DWC_SavePrivateDataAsync function, the data attributes are private
and other players cannot reference the data.

To load data from the storage server, call the DWC_LoadOwnPublicDataAsync function to load your
own public data, DWC_LoadOwnPrivateDataAsync function to load your own private data, and the
DWC_LoadOthersDataAsync function to load the friend data saved in your friend roster. Friends are
specified by the friend roster index.

When saving or loading data completes, the appropriate callback set by the
DWC_SetStorageServerCallback function is called. These callbacks are always called in the order
that the save and load functions were called.

A string that combines key and value can be specified as saved data. The key/value combinations are
repeated by delimiting with \\, as in \\name\\mario\\stage\\3. If this example data is specified,
mario is registered in the key value name, and 3 is registered in the key value stage as a string.

To load data saved on the storage server, specify the keys that you want to retrieve as
\\name\\stage, separating the name and stage with \\.

In this case, the string that you can get with a load callback would be in the format of
\\name\\mario\\stage\\3.

If you attempt to load a key that does not exist on the storage server or a key that was saved by a
friend who used the private attribute, the success argument of the callback function will be FALSE. If
you specify multiple keys to load and only some of the keys fall into these two categories, the
success argument will be TRUE, but these keys will not be included with the loaded data.

After storage server processing completes, call the DWC_LogoutFromStorageServer function to log
out from the storage server (as in Code 10-1).

Code 10-1 Accessing the Storage Server
static int s_cb_level = 0;
static BOOL s_storage_logined = FALSE;

void access_net_storage(void)
{
 // Login to the storage server
 if (!DWC_LoginToStorageServerAsync(cb_storage_login, NULL))

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 60  2005-2010 Nintendo
Released: Review CONFIDENTIAL

 {
 OS_TPrintf("DWC_LoginToStorageServerAsync() failed.\n");
 return;
 }

 // Wait for login to storage server to complete
 while (!s_storage_logined)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation
 handle_error();
 return;
 }

 GameWaitVBlankIntr();
 }

 // Set callbacks for the time when saving and loading complete
 DWC_SetStorageServerCallback(cb_save_storage, cb_load_storage);

 // Save public data
 s_cb_level++;
 if (!DWC_SavePublicDataAsync("\\name\\mario\\stage\\3", NULL))
 {
 OS_TPrintf("DWC_SavePublicDataAsync() failed.\n");
 return;
 }

 // Save private data
 s_cb_level++;
 if (!DWC_SavePrivateDataAsync("\\id\\100", NULL))
 {
 OS_TPrintf("DWC_SavePrivateDataAsync() failed.\n");
 return;
 }

 // Wait for saving to complete
 while (s_cb_level > 0)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation
 handle_error();
 return;
 }

 GameWaitVBlankIntr();
 }

 // Load local saved data
 s_cb_level++;
 if (!DWC_LoadOwnDataAsync("\\id\\stage", NULL))
 {

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 61 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

 OS_TPrintf("DWC_LoadOwnDataAsync() failed.\n");
 return;
 }
 // Load one’s own private save data
 s_cb_level++;
 if (!DWC_LoadOwnPrivateDataAsync(“\\id”, NULL))
 {
 OS_TPrintf(“DWC_LoadOwnPrivateDataAsync() failed.\n”);
 return;
 }
 // Load another player's saved data
 s_cb_level++;
 if (!DWC_LoadOthersDataAsync("\\name", 0, NULL))
 {
 OS_TPrintf("DWC_LoadOthersDataAsync() failed.\n");
 return;
 }

 // Wait for loading to complete
 while (s_cb_level > 0)
 {
 DWC_ProcessFriendsMatch();

 if (DWC_GetLastErrorEx(NULL, NULL))
 {
 // Error generation
 handle_error();
 return;
 }

 GameWaitVBlankIntr();
 }

 // Log out from storage server
 DWC_LogoutFromStorageServer();
 :
}

// Callback for the tune when logged in to storage server
void cb_storage_login(DWCError error, void* param)
{
 if (error == DWC_ERROR_NONE)
 {
 s_storage_logined = TRUE;
 s_cb_level = 0;
 }
}

// Callback for when data is saved to storage server
void cb_save_storage(BOOL success, BOOL isPublic, void* param)
{
 OS_TPrintf("result %d, isPublic %d.\n", success, isPublic);
 s_cb_level--;
}

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 62  2005-2010 Nintendo
Released: Review CONFIDENTIAL

// Callback for the time when data loaded from storage server
void cb_load_storage(BOOL success, int index, char* data, int len, void* param)
{
 OS_TPrintf("result %d, index %d, data '%s', len %d\n",
 success, index, data, len);
 s_cb_level--;
}

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 63 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

11 Differences Between Versions Before NITRO
DWC 3.X
This chapter describes and notes the differences between TWL DWC 5.0 and later, and NITRO DWC
3.X and earlier.

11.1 Matchmaking
• Changed the callback for matchmaking by specifying friends and without specifying friends to

DWCMatchedSCCallback and DWCNewClientCallback, the same as for server-client matchmaking.

Matchmaking by specifying friends and without specifying friends did not call the matchmaking
completion callback until the specified number had gathered for DWC 3.X and earlier. However,
this version of the DWC calls the matchmaking completion callback each time a person
participates, the same as with server-client matchmaking.

• By using the reconnection feature that uses the group ID, you can participate in the same group
after dropping out.

• The distantFriend argument for matchmaking by specifying friends was deleted. The behavior is
the same as in DWC 3.X for distantFriend=TRUE while accepting participants.

• Added the connection configuration setting argument to the matchmaking start functions.
o DWC_ConnectToAnybodyAsync
o DWC_ConnectToFriendsAsync
o DWC_SetupGameServer
o DWC_ConnectToGameServerAsync
o DWC_ConnectToGameServerByGroupID

When setting to either the star or hybrid configuration, matchmaking can complete more quickly
than DWC 3.X or earlier when there are a large number of people.

There are cases when mutual reliable communication does not exist, depending on the connection
configuration settings.

• Added DWCConnectAttemptCallback to all matchmaking types to determine accepting
matchmaking.

• Deleted functions related to matchmaking options.
o DWC_SetMatchOption
o DWC_GetMatchOption
o DWC_GetMOMinCompState
o DWC_GetMOSCConnectBlockState
o DWC_ClearMOSCConnectBlock

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 64  2005-2010 Nintendo
Released: Review CONFIDENTIAL

o DWC_StopSCMatchAsync

For the previous function, consider substitute specifications for the application with the
RequestSuspendMatchAsync function to close participation. The following is an example of a
method to substitute with the RequestSuspendMatchAsync function to close participation.

o DWC_MATCH_OPTION_MIN_COMPLETE

Matchmaking completion notification is made with a callback every time a person connects.
When a specified time has passed without reaching the maximum number of participants,
participation is closed with the RequestSuspendMatchAsync function, and matchmaking can
be completed with less than the maximum number of participants.

o DWC_MATCH_OPTION_SC_CONNECT_BLOCK

The feature to close participation with the RequestSuspendMatchAsync function does not
perform the exact same operation as DWC_MATCH_OPTION_SC_CONNECT_BLOCK.

o DWC_StopSCMatchAsync

This can be replaced with the feature to close participation with the
DWC_RequestSuspendMatchAsync function.

• Added (void* param) to DWCUserSendCallback, DWCUserRecvCallback,
DWCUserRecvTimeoutCallback, and DWCUserPingCallback so that parameters can be passed
from the application.

• Hosts are now automatically disconnected if communication is absent for a fixed period of time. This
is 20 seconds by default but can be set by the DWC_SetConnectionKeepAliveTime function.
Applications must send some type of reliable or unreliable communication to all connected hosts
within the timeout interval set by this function. This is because there is no automatic
communication within the DWC library to maintain a connection.

Nintendo Wi-Fi Connection TWL DWC Programming Manual

 2005-2010 Nintendo 65 TWL-06-0047-001-I
CONFIDENTIAL Released: Review

Microsoft, Windows, Internet Explorer, and Visual Studio are registered trademarks or trademarks of Microsoft Corporation in the United

States and other countries.

Metrowerks and CodeWarrior are registered trademarks or trademarks of Metrowerks Inc. in the United States and other countries.

Avid, Softimage, SOFTIMAGE|3D and SOFTIMAGE|XSI are registered trademarks or trademarks of Avid Technology Inc.

Maya, Discreet, and 3ds Max are registered trademarks or trademarks of Autodesk Inc./Autodesk Canada Inc. in the United States and

other countries.

Adobe, Photoshop, Acrobat, and Acrobat Reader are registered trademarks or trademarks of Adobe Systems Incorporated.

OPTPiX web technology and iMageStudio are registered trademarks or trademarks of Web Technology Corp.

All other company and product names in this document are the trademarks or registered trademarks of their respective companies.

TWL DWC Programming Manual Nintendo Wi-Fi Connection

TWL-06-0047-001-I 66  2005-2010 Nintendo
Released: Review CONFIDENTIAL

© 2005-2010 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed, or loaned in whole or in part without
the prior approval of Nintendo.

	1 Introduction
	2 User Management Under TWL DWC
	2.1 Managing Wi-Fi User Information
	2.1.1 User ID and Player ID
	2.1.2 Difference Between a User ID and Player ID
	2.1.3 Player Information by Game: Login ID
	2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games

	2.2 Friend Management Overview
	2.2.1 Building Friend Relationships
	2.2.2 Building Friendships Using DS Wireless Communications
	Building Friendships Using Friend Registration Keys
	2.2.4 Friend Information Saved by Games

	2.3 Exception Handling
	2.3.1 Removing the Association Between a Nintendo DS System and a DS Card

	3 TWL DWC Initialization
	4 Creating User Data
	5 Connection Process
	5.1 Connecting to the Internet
	5.2 Disconnecting from the Internet
	5.3 Connecting to the Nintendo Wi-Fi Connection Server

	6 Creating Friend Rosters and Information
	6.1 Exchanging Friend Information via DS Wireless Communications
	6.2 Exchanging Friend Registration Keys
	6.3 Synchronizing Friend Rosters
	6.4 Getting Friend Information Types
	6.5 Getting Friend Status

	7 Matchmaking
	7.1 Peer Matchmaking with Friend Unspecified
	7.2 Peer Matchmaking with Friend Specified
	7.3 Evaluating Candidate Players for Matchmaking
	7.4 Server-Client Matchmaking
	7.5 Reconnection Using the Group ID
	7.6 Closing Participation
	7.7 ConnectAttemptCallback
	7.7.1 Differences Between DWCEvalPlayerCallback and DWCConnectAttemptCallback

	7.8 Server Migration
	7.9 Increasing Matchmaking Speed
	7.10 Names That Cannot Be Used for Matchmaking Index Keys

	8 Sending and Receiving Data
	8.1 Peer-to-Peer Data Exchange
	8.2 Connection Configurations
	8.3 Closing Connections
	8.4 Estimated Buffer Sizes to Specify with DWC_InitFriendsMatch
	8.5 Emulating Delays and Packet Loss
	8.6 Amount of Data Sent and Received

	9 Communication Errors
	9.1 Error Handling
	9.2 List of Error Codes

	10 Network Storage Support
	11 Differences Between Versions Before NITRO DWC 3.X
	11.1 Matchmaking

