
 2004-2005 Nintendo NTR-06-0095-001-A4
Released: November 15, 2005

Memory Manager
Three Heaps Specialized for Games

Version 1.0.9

The contents in this document are highly
confidential and should be handled accordingly.

Memory Manager

NTR-06-0095-001-A4 2  2004-2005 Nintendo
Released: November 15, 2005

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

Memory Manager

 2004-2005 Nintendo 3 NTR-06-0095-001-A4
Released: November 15, 2005

Table of Contents
1 Preface..7
2 Extended Heap Manager ..8

2.1 Creating Heaps ...8
2.2 Allocating Memory Blocks...8

2.2.1 Allocating and Freeing Memory Blocks...8
2.2.2 The Minimum Memory Block Allocation Unit...8
2.2.3 Memory Allocation Procedure ...9
2.2.4 Allocating Memory Blocks from the Back of the Heap Region..10

2.3 Specifying Alignment...11
2.4 Changing Memory Block Size...11
2.5 Acquiring Free Space..12
2.6 Group ID..12
2.7 Processing Memory Blocks...13
2.8 Acquiring Memory Block Information ..13
2.9 Checking Heaps and Memory Blocks...13

3 Frame Heap Manager...14
3.1 Creating Heaps ...14
3.2 Allocating Memory Blocks...14

3.2.1 Allocating and Freeing Memory Blocks...14
3.2.2 The Minimum Memory Block Allocation Unit...15

3.3 Specifying Alignment...15
3.4 Freeing Memory Blocks ..15
3.5 Storing and Returning to a Memory Block Allocation Status...16
3.6 Adjusting Heap Region Size ...17
3.7 Changing the Size of Memory Blocks...17
3.8 Acquiring the Size That Can Be Allocated ..18

4 Unit Heaps ..19
4.1 Creating Heaps ...19
4.2 Memory Block Allocation...20

4.2.1 Allocating and Freeing Memory Blocks...20
4.2.2 The Minimum Memory Block Allocation Unit...20

4.3 Specifying Alignment...21
4.4 Acquiring the Number of Memory Blocks That Can Be Allocated ..21

5 Functionality Common to Each Heap ...22
5.1 Heap Options ..22
5.2 Changing the Values to Fill When Debugging ..22
5.3 Displaying Heap Contents ..23

Memory Manager

NTR-06-0095-001-A4 4  2004-2005 Nintendo
Released: November 15, 2005

5.4 Acquiring Heap Regions... 23
6 Multi-Heap Management .. 24

6.1 Multi-Heaps .. 24
6.2 Freeing Multi-Heap Memory... 24
6.3 Managing Heaps with a Tree.. 24

Tables
Table 2-1 Functions for Creating and Destroying Extended Heaps ... 8
Table 2-2 Functions for Allocating and Freeing Memory Blocks .. 8
Table 2-3 Memory Block Allocation Modes .. 9
Table 2-4 Allocation Mode Setting and Acquisition... 9
Table 2-5 Allocation Modes Used by the Functions ... 9
Table 2-6 Function for Changing Memory Block Size .. 11
Table 2-7 Functions For Acquiring Free Space, Etc. .. 12
Table 2-8 Functions for Setting and Acquiring Group IDs .. 12
Table 2-9 Functions for Acquiring Memory Block Information.. 13
Table 2-10 Functions that check extended heaps and memory blocks ... 13
Table 3-1 Functions for Creating and Destroying Heaps ... 14
Table 3-2 Functions for Allocating Memory Blocks... 15
Table 3-3 Methods Of Freeing Memory Blocks .. 15
Table 3-4 Function for Freeing Memory Blocks.. 15
Table 3-5 Values Specified in the Function for Freeing Memory Blocks .. 16
Table 3-6 Functions for Storing a Memory Block Allocation Status and Returning To It.......................... 17
Table 3-7 Function for Reducing Heap Region Size .. 17
Table 3-8 Function for changing the size of memory block.. 18
Table 3-9 Functions for Obtaining the Size That Can Be Allocated ... 18
Table 4-1 Functions for Creating and Destroying Heaps ... 19
Table 4-2 Function for Allocating Memory Blocks .. 20
Table 4-3 Function for Acquiring the Number of Memory Blocks That Can Be Allocated 21
Table 5-1 Options That Can Be Specified When Creating a Heap .. 22
Table 5-2 Functions for Setting and Acquiring Values That Are Filled At Debug Time............................... 22
Table 5-3 Type of heap operation to fill. ... 23
Table 5-4 Function for Displaying Internal Heap Information ... 23
Table 5-5 Functions For Acquiring Heap Regions.. 23
Table 6-1 Function for Searching for the Heap That Allocated a Memory Block 24

Memory Manager

 2004-2005 Nintendo 5 NTR-06-0095-001-A4
Released: November 15, 2005

Figures
Figure 2-1 Procedure for Allocating Extended Heap Memory Blocks ..9
Figure 2-2 Mechanism That Fragments Memory Blocks..10
Figure 2-3 Measures for Dealing with Extended Heap Memory Block Fragmentation...............................10
Figure 2-4 Changing Extended Heap Memory Block Size ...11
Figure 3-1 Frame Heap Memory Allocation ..14
Figure 3-2 Mechanism for Storing and Returning to Frame Heap Memory Block Allocation Status....................16
Figure 3-3 Adjusting Frame Heap Size...17
Figure 3-4 Adjusting the size of the frame heap memory block..18
Figure 4-1 Unit Heap Memory Allocation ..20

Memory Manager

NTR-06-0095-001-A4 6  2004-2005 Nintendo
Released: November 15, 2005

Revision History
Version Revision Date Description

1.0.9 01/05/2005 • Changed instances of “NITRO” to “Nintendo DS.”

1.0.8 08/20/2004 • Added “Checking Heaps and Memory Blocks” to the Extended Heap

1.0.7 08/02/2004 • Added “Changing Size of Memory Blocks” to Frame Heap

1.0.6 6/10/2004 • Revised description of “Heap Options.”

1.0.5 4/12/2004 • Revised Misspelling

1.0.4 3/30/2004 • Changed title and header.
• Added explanation to all areas that were difficult to understand.
• Corrected spelling errors and omissions.

1.0.3 3/29/2004 • Corrected spelling errors and omissions.
• Deleted 2 sections from the main body of the Introduction
• Revised the descriptions of the functionality of each heap.
• Added “Functionality Common To Each Heap”.

1.0.2 3/25/2004 • Added description of Extended Heap API.
• Added to Extended Heap “Creating Heaps”.
• Revised Extended Heap “Memory Allocation Procedure”.
• Revised Extended Heap “Specifying Alignment”.
• Deleted Extended Heap “Free Special Memory”.
• Added to Extended Heap “Acquiring Free Capacity”.
• Changed values in Extended Heap “Group ID”.
• Added to Extended Heap “Acquiring Memory Block Information”.
• Added to Frame Heap “Creating Heaps”.
• Revised Frame Heap “Specifying Alignment”.
• Added to Frame Heap “Acquiring the Size That Can Be Allocated”.
• Added to Unit Heap “Creating Heaps”.
• Revised Unit Heap “Memory Block Allocation”.
• Added to Unit Heap “Minimum Unit When Allocating Memory Blocks”.
• Added to Unit Heap “Specifying Alignment”.
• Added to Unit Heap “Acquiring the Number of Memory Blocks That Can Be Allocated”.

1.0.1 2/6/2004 • Deleted Extended Heap “Freeing by Group ID”.
• Added to Extended Heap “Processing Memory Blocks”.
• Changed Unit Heap algorithm.

Memory Manager

 2004-2005 Nintendo 7 NTR-06-0095-001-A4
Released: November 15, 2005

1 Introduction
The Nintendo DS has 4 megabytes of main memory. It is difficult to manage this much memory with a
memory map. A memory manager allows you to dynamically allocate and free memory, eliminating the
need for memory maps or other such tools.

On the other hand, the Nintendo DS memory size is relatively small compared to a PC or workstation.
There are circumstances that are specific to a game machine in which the use of the generic
malloc() and free() functions are not sufficient. Nitro-System provides three memory managers
that are created specifically for use with the NITRO-System. These memory managers have additional
ideas beyond the heap mechanisms commonly used for games.

Memory Manager

NTR-06-0095-001-A4 8  2004-2005 Nintendo
Released: November 15, 2005

2 Extended Heap Manager
The Extended Heap Manager can allocate and free memory, in much the same way as the malloc()
function and the free() function in the C standard library. In addition to the basic functionality of
allocating and freeing memory, this manager has additional features for game software. This section
gives an overview of the Extended Heap Manager.

2.1 Creating Heaps
In order to use the Extended Heap Manager, you must first create an extended heap. The following
functions create and destroy (delete) extended heaps.

Table 2-1 Functions for Creating and Destroying Extended Heaps
Function Description

NNS_FndCreateExpHeap() Creates an extended heap
NNS_FndCreateExpHeapEx() Creates an extended heap and can specify heap options.
NNS_FndDestroyExpHeap() Destroys (deletes) an extended heap

2.2 Allocating Memory Blocks

2.2.1 Allocating and Freeing Memory Blocks

The following functions allocate and free memory blocks.

Table 2-2 Functions for Allocating and Freeing Memory Blocks
Function Description

NNS_FndAllocFromExpHeap() Allocates memory blocks from an extended heap
NNS_FndAllocFromExpHeapEx() Allocates memory blocks from an extended heap and can

specify alignment
(Described in the next section.)

NNS_FndFreeToExpHeap() Frees memory blocks

2.2.2 Minimum Allocation Unit for Memory Blocks

The Extended Heap Manager requires a 16–byte memory block management region and allocated
memory blocks are aligned along a 4-byte minimum boundary. Therefore, 20 bytes of memory are
required to allocate even a one-byte memory block.

Memory Manager

 2004-2005 Nintendo 9 NTR-06-0095-001-A4
Released: November 15, 2005

2.2.3 Memory Block Allocation Procedure

The Extended Heap Manager has two modes of locating free regions from which to allocate to a
memory block. You can switch between these two modes. The allocation modes are described below:

Table 2-3 Memory Block Allocation Modes
Mode Description

FIRST Mode Allocates a memory block from the first free region that it finds that is at least
as large as the memory block size that you want to allocate

NEAR Mode Allocates a memory block from the free region whose size is the closest to the
size of the memory block you want to allocate

Figure 2-1 Procedure for Allocating Extended Heap Memory Blocks

FIRST is the default mode. NEAR differs from FIRST in that it allocates the free block that is as close to
the specified size as possible. If this mode does not find an exact fit, it searches all free regions for the
closest match. Therefore, if the free regions are fragmented, memory block allocation takes longer.

The following functions set and acquire the allocation mode.

Table 2-4 Allocation Mode Setting and Acquisition
Function Description

NNS_FndSetAllocModeForExpHeap() Sets the allocation mode

NNS_FndGetAllocModeForExpHeap() Gets the current allocation mode

The following table lists the values specified by the functions in relation to the allocation modes.

Table 2-5 Allocation Modes Used by the Functions
Mode Value Specified with Function

FIRST mode NNS_FND_EXPHEAP_ALLOC_MODE_FIRST
NEAR mode NNS_FND_EXPHEAP_ALLOC_MODE_NEAR

Memory Manager

NTR-06-0095-001-A4 10  2004-2005 Nintendo
Released: November 15, 2005

2.2.4 Allocating Memory Blocks from the Highest Address of the Heap Region

Normally the Extended Heap Manager searches for free regions from the lowest address of the heap
region to the highest address of the heap region. The Extended Heap Manager allocates memory
blocks from the lowest address of the free regions that it finds. As an alternative, you can now search
for free regions from the highest address of the heap region to the lowest address of the heap region.
You can also allocate memory blocks from the highest address of the free regions. Using this feature,
you can allocate longer–term memory blocks from the lowest address of the heap region, and
temporary memory blocks from the highest address of the heap region to help minimize heap
fragmentation.

For example, when loading compressed data into memory, expanding that data, then deleting the
original compressed data. If you were to use the normal method and allocate the memory block from
the lowest address of the heap region, the free region will be divided into two portions.

Figure 2-2 Mechanism of Memory Block Fragmentation
On the other hand, if you temporarily load the compressed data into a memory block that has been
allocated from the highest address of the heap region, the free space is not split.

Figure 2-3 Measures for Dealing with Extended Heap Memory Block Fragmentation
To allocate memory blocks from the highest address of the heap region, use the memory block
allocation function NNS_FndAllocFromExpHeapEx(), passing a negative value to the alignment
argument (this argument is described in the next section).

Memory Manager

 2004-2005 Nintendo 11 NTR-06-0095-001-A4
Released: November 15, 2005

2.3 Specifying Alignment
The Extended Heap Manager specifies alignment at the time that it allocates memory blocks. You can
specify the following alignment values in the NNS_FndAllocFromExpHeapEx() function: 4, 8, 16,
and 32. To allocate memory blocks from the highest address of the heap region, specify negative
alignment values (-4, -8, -16, -32). The NNS_FndAllocFromExpHeap() function always uses an
alignment value of 4.

2.4 Changing Memory Block Size
The Extended Heap Manager can change the size of the allocated memory blocks without moving
them when there is sufficient free space available. When the new memory blocks become smaller than
the original size, it will use the free spaces that remain after reduction as free regions. When the new
memory blocks become larger than the original size, there must be sufficient free space after the
memory blocks. If there are free regions after the memory blocks, the function will merge the free
regions into the memory block to increase the size of the memory block.

Reduce size of memory block B

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Work for manager

Memory block A

Memory block C

Memory block B

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Free region

Free region

Expand size of memory block B
Figure 2-4 Changing Extended Heap Memory Block Size

Use this function to change the memory block size.

Table 2-6 Function for Changing Memory Block Size
Function Description

NNS_FndResizeForMBlockExpHeap() Expands or reduces memory blocks. It returns the
changed memory block size.

If there is little difference between the specified memory block size and the current memory block size
after a reduction, there may be times when you cannot use the freed region. In such cases,
NNS_FndResizeForMBlockExpHeap() will not reduce the memory block size, and will return the
current memory block size. If you attempt to expand memory block size when there is either no free
region directly after the memory block, or if it was not possible to achieve the required expansion after
defragmenting the free space behind the current memory block,
NNS_FndResizeForMBlockExpHeap() fails and returns 0 (zero).

Memory Manager

NTR-06-0095-001-A4 12  2004-2005 Nintendo
Released: November 15, 2005

2.5 Acquiring Free Space
The Extended Heap Manager can obtain the total free regions. It can also obtain the size of the largest
memory block that can be allocated. The functions are shown in the following table.

Table 2-7 Functions For Acquiring Free Space, Etc.
Function Description

NNS_FndGetTotalFreeSizeForExpHeap() Gets the total size of the free regions in the
extended heap

NNS_FndGetAllocatableSizeForExpHeap() Gets the size of the largest memory block that can
be allocated
Alignment is fixed at 4.

NNS_FndGetAllocatableSizeForExpHeapEx() Gets the size of the largest memory block that can
be allocated
You can specify alignment.

2.6 Group ID
When the Extended Heap Manager acquires memory blocks, it stores group IDs 0 - 255 in the memory
block management region. You can arbitrarily change the group ID. When you change a group ID, the
change takes place during the next memory block allocation. You can use the group ID for the
following:

• Collectively free only memory blocks that have a specific group ID.
• Checks the memory usage for each group ID. By managing group IDs by usage or user, it

becomes easier to grasp how the memory is used.

The following functions set and acquire group IDs.

Table 2-8 Functions for Setting and Acquiring Group IDs
Function Description

NNS_FndSetGroupIDForExpHeap() Sets extended heap group IDs
NNS_FndGetGroupIDForExpHeap() Acquires extended heap group IDs.

Memory Manager

 2004-2005 Nintendo 13 NTR-06-0095-001-A4
Released: November 15, 2005

2.7 Processes for Memory Blocks
With the Extended Heap Manager, you can specify processes to be performed on allocated memory
blocks. Using this functionality, it is possible to perform various processes on the heap that are not
available in the Extended Heap Manager. Here are some examples:

• Call a function that collectively deletes only memory blocks that were allocated from the highest
address of the heap region because they were for temporary use.

• Get the total capacity of memory blocks that have a specific group ID.

This function runs the following process.

Function Description
NNS_FndVisitAllocatedForExpHeap() Calls a user-specified function for each allocated memory

block.

2.8 Acquiring Memory Block Information
The Extended Heap Manager can acquire information for allocated memory blocks that indicates
memory block size, group ID, and whether the allocated memory blocks were allocated from the lowest
address or the highest address. These functions acquire memory block information.

Table 2-9 Functions for Acquiring Memory Block Information
Function Description

NNS_FndGetSizeForMBlockExpHeap() Gets the memory block size
NNS_FndGetGroupIDForMBlockExpHeap() Gets the memory block group ID
NNS_FndGetAllocDirForMBlockExpHeap() Gets the direction from which the memory

blocks were allocated

2.9 Checking Heaps and Memory Blocks
With the Extended Heap Manager, extended heaps and memory blocks that are allocated from the
extended heap are checked if they are destroyed. The functions that check the extended heaps and
memory blocks are shown below:

Table 2-10 Functions that Check Extended Heaps and Memory Blocks
Function Description

NNS_FndCheckExpHeap () Checks if the extended heap is destroyed.

NNS_FndCheckForMBlockExpHeap () Checks if the memory block is destroyed.

Memory Manager

NTR-06-0095-001-A4 14  2004-2005 Nintendo
Released: November 15, 2005

3 Frame Heap Manager
The Frame Heap Manager is an extremely simple memory manager. It can only allocate memory
blocks in a specified size while simultaneously freeing all allocated memory blocks. Since it holds no
memory block management information, it is memory-efficient. This section gives an overview of the
Frame Heap Manager.

3.1 Creating Heaps
To use the Frame Heap Manager you must create a frame heap. These functions create and destroy
frame heaps.

Table 3-1 Functions for Creating and Destroying Heaps
Function Description

NNS_FndCreateFrmHeap() Creates a frame heap.
NNS_FndCreateFrmHeapEx() Creates a frame heap. You can specify options

for the heap.
NNS_FndDestroyFrmHeap() Destroys a frame heap.

3.2 Allocating Memory Blocks

3.2.1 Allocating and Freeing Memory Blocks

The Frame Heap Manager allocates memory blocks by packing them with no open space from the
lowest address and the highest address of the heap region. Because it allocates memory blocks this
way, it does not fragment the heap. Also, because there is no management region in the memory
blocks that the Frame Heap Manager allocates, memory usage is efficient and less processing is
required to allocate the memory blocks.

Work for manager

Free region

Allocate memory blocks

Work for manager

Memory block A

Memory block D

Free region

Memory block B

Memory block C

Create frame heap

Allocate memory blocks starting
from the lowest address of heap
memory

Allocate memory blocks starting
from the highest address of heap
memory

Figure 3-1 Frame Heap Memory Allocation

Memory Manager

 2004-2005 Nintendo 15 NTR-06-0095-001-A4
Released: November 15, 2005

The following functions allocate memory blocks:

Table 3-2 Functions for Allocating Memory Blocks
Function Description

NNS_FndAllocFromFrmHeap() Allocates memory blocks from a frame heap
NNS_FndAllocFromFrmHeapEx() Allocates memory blocks from a frame heap

It is possible to specify alignment (Described in the next
section).

Use negative alignment numbers in the NNS_FndAllocFromFrmHeapEx() function to allocate
memory from the highest address of the heap region.

3.2.2 The Minimum Unit of Memory Block Allocation

Although the Frame Heap Manager does not have a management region in the memory blocks,
memory blocks must be aligned on a minimum 4-byte boundary. Therefore, even allocating a 1-byte
memory block uses 4 bytes of memory.

3.3 Specifying Alignment
The Frame Heap Manager can specify alignment when it allocates memory blocks. You can specify the
following alignment values in the NNS_FndAllocFromFrmHeapEx() function: 4, 8, 16, and 32. To
allocate memory blocks from the highest address of the heap region, specify negative alignment values
(-4, -8, -16, and -32). The NNS_FndAllocFromFrmHeap() function does not specify alignment, it is
always a value of 4.

3.4 Freeing Memory Blocks
Because the Frame Heap Manager does not manage individual allocated memory blocks, it cannot
free allocated blocks individually. The Frame Heap Manager uses one of the three following methods to
free memory blocks.

Table 3-3 Methods Of Freeing Memory Blocks
Freeing method Description

Free from the lowest address Collectively frees memory blocks that were allocated from the lowest
address of the heap region

Free from the highest address Collectively frees memory blocks that were allocated from the highest
address of the heap region

Free all Collectively frees all of the memory blocks that were allocated from
the heap

The following function frees memory blocks.
Table 3-4 Function for Freeing Memory Blocks

Function Description
NNS_FndFreeToFrmHeap() Collectively frees memory blocks using the method specified.

Memory Manager

NTR-06-0095-001-A4 16  2004-2005 Nintendo
Released: November 15, 2005

The following methods are specified in the NNS_FndFreeToFrmHeap() function.
Table 3-5 Values Specified in the Function for Freeing Memory Blocks

Freeing method Value to Specify in the Function

Free from the
lowest address

NNS_FND_FRMHEAP_FREE_HEAD

Free from the
highest address

NNS_FND_FRMHEAP_FREE_TAIL

Free all NNS_FND_FRMHEAP_FREE_ALL
(Same as simultaneously specifying NNS_FND_FRMHEAP_FREE_HEAD and
NNS_FND_FRMHEAP_FREE_TAIL)

The Frame Heap Manager also offers you the option of: saving the memory block allocation status,
collectively freeing subsequently allocated memory blocks, and returning to the status immediately
prior to saving. These options are described in the next section.

3.5 Saving and Restoring a Memory Block Allocation Status
The Frame Heap Manager offers you the option of saving the memory block allocation status of the
heap region and restoring that status later.

20 bytes of memory are required to save each memory block allocation status. You can store memory
block allocation status as many times as you want to the limit that the heap capacity allows. When
saving the memory block allocation status, a 4-byte tag can be attached. When you restore a memory
block allocation status, you can return to the previous status or to a status that is specified by the flag.

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Status

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Stored status data

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Stored status data

Memory block D

Memory block E

Allocate more memory blocks Restore statusOriginal state
Figure 3-2 Mechanism for Saving and Restoring Frame Heap Memory Block Allocation Status

The following functions store memory block allocation status and return to it.

Memory Manager

 2004-2005 Nintendo 17 NTR-06-0095-001-A4
Released: November 15, 2005

Table 3-6 Functions for Storing a
Memory Block Allocation Status and Returning to It

Function Description
NNS_FndRecordStateForFrmHeap() Saves a memory block allocation status.
NNS_FndFreeByStateToFrmHeap() Restores a memory block allocation status.

3.6 Adjusting Heap Region Size
The Frame Heap Manager can reduce the heap region size to match the heap region content.
However, use this functionality only if no memory blocks have been allocated from the highest address
of the heap region.

Use this functionality when you want to pack an indefinite amount of data into memory without leaving
spaces in the heap. First create a heap that has a sufficient size, allocate memory blocks from the
lowest address of the heap region, and store the data. After storing all of the required data, reduce the
size of the heap region to match the contents of the heap.

Work for manager

Free region

Allocate memory blocks

Work for manager

Memory block A

Memory block D

Free region

Memory block B

Memory block C

Adjust heap sizeCreate frame heap

Work for manager

Memory block A

Memory block B

Memory block C

Memory block D

Reduce heap size to match heap
utilization

Figure 3-3 Adjusting Frame Heap Size

The following function reduces the heap region size.
Table 3-7 Function for Reducing Heap Region Size

Function Description
FndAdjustFrmHeap() Reduces the size of the heap region by freeing space at the highest

address of the heap region from the allocated block

3.7 Changing the Size of Memory Blocks
You can change the size of the memory block with the frame heap manager if it is the last memory
block that is allocated from the lowest address of the empty region in the heap. When the memory
block is reduced, the remaining area after reduction becomes part of the empty area. When the
memory block is enlarged, it reduces the free region of the higher address and expands the memory
block.

Memory Manager

NTR-06-0095-001-A4 18  2004-2005 Nintendo
Released: November 15, 2005

Reduce size of memory block B

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Work for manager

Memory block A

Memory block C

Memory block B

Work for manager

Memory block A

Memory block C

Free region

Memory block B

Free region

Free region

Expand size of memory block B
Figure 3-4 Adjusting the size of the frame heap memory block

The following function changes the size of memory block.

Table 3-8 Function for Changing the Size of Memory Block
Function Description

NNS_FndResizeForMBlockFrmHeap() Expands or reduces the memory block. The changed
memory block size is returned as the return value.

When expanding a memory block, if there is not enough free space to expand to the requested size,
the NNS_FndResizeForMBlockExpHeap() function fails and returns 0.

3.8 Acquiring the Size That Can Be Allocated
The Frame Heap Manager can find the size of the largest memory block that can be allocated. The
following functions do this.

Table 3-9 Functions for Obtaining the Size That Can Be Allocated
Function Description

NNS_FndGetAllocatableSizeForFrmHeap() Gets the size of the largest memory block that can be
allocated
Alignment is fixed at 4.

NNS_FndGetAllocatableSizeForFrmHeapEx() Gets the size of the largest memory block that can be
allocated
You can specify alignment.

Memory Manager

 2004-2005 Nintendo 19 NTR-06-0095-001-A4
Released: November 15, 2005

4 Unit Heaps
The Unit Heap Manager is an extremely simple memory manager. It allocates only memory blocks in
the size that is specified when the unit heap is created. In other words, this memory manager is for
allocating and freeing memory blocks that have a fixed size. The unit heap does not have a
management region in memory blocks, making it more memory-efficient. This section provides an
overview of the Unit Heap Memory Manager.

4.1 Creating Heaps
To use the Unit Heap Manager you must create a unit heap. The following functions create and destroy
(delete) unit heaps.

Table 4-1 Functions for Creating and Destroying Heaps
Function Description

NNS_FndCreateUnitHeap() Creates a unit heap
NNS_FndCreateUnitHeapEx() Creates a unit heap. You can specify alignment and options for the heap
NNS_FndDestroyUnitHeap() Destroys (deletes) a unit heap

Memory Manager

NTR-06-0095-001-A4 20  2004-2005 Nintendo
Released: November 15, 2005

4.2 Memory Block Allocation

4.2.1 Allocating and Freeing Memory Blocks

The Unit Heap Manager manages the regions in a heap in chunks that are of a pre-specified size.
Memory block allocation means allocating these chunks.

Free chunks are linked as a singly-linked list (free chunk list). The pointer to the next free chunk is
placed at the beginning of the chunk. There is no pointer for chunks that are in use. (There is also no
management region.) When allocating memory blocks, the manager returns the memory block that is
linked to the beginning of this free chunk list. When freeing a memory block that is in use, it links the
memory block to the beginning of the free chunk list.

Work for manager

Free chunk 1

Free chunk 3

Free chunk 5

Free chunk 4

Free chunk 2

Work for manager

Chunk 1, in use

Free chunk 3

Free chunk 5

Free chunk 4

Chunk 2, in use
Allocate
memory

（Chunk 1）

(Chunk 2)

Work for manager

Free chunk 1

Free chunk 3

Free chunk 5

Free chunk 4

Chunk 2, in useFree memory

(Chunk 1)

Pointer to next free chunk

Figure 4-1 Unit Heap Memory Allocation

The following functions allocate and free memory blocks.
Table 4-2 Function for Allocating Memory Blocks

Function Description
NNS_FndAllocFromUnitHeap() Allocates memory blocks from a unit heap
NNS_FndFreeToUnitHeap() Frees memory blocks

4.2.2 Minimum Unit for Memory Block Allocation

Although the Unit Heap Manager does not have a management region in the memory blocks, allocated
memory blocks must be aligned on a minimum 4-byte boundary. Therefore, even allocating a 1-byte
memory block uses 4 bytes of memory.

Memory Manager

 2004-2005 Nintendo 21 NTR-06-0095-001-A4
Released: November 15, 2005

4.3 Specifying Alignment
The Unit Heap Manager can specify alignment when it creates a heap. It does not do this for each
allocated memory block. All allocated memory blocks will be aligned the same. You can specify the
following alignment values in the NNS_FndCreateUnitHeapEx() function: 4, 8, 16, and 32. The
NNS_FndCreateUnitHeap() function does not specify alignment, its alignment is always 4.

4.4 Acquiring the Number of Memory Blocks That Can Be Allocated
The Unit Heap Manager can get the number of memory blocks can be allocated. In other words, it can
get the number of free chunks. The following function gets the number of memory blocks that can be
allocated.

Table 4-3 Function for Acquiring the Number of Memory Blocks That Can Be Allocated
Function Description

NNS_FndCountFreeBlockForUnitHeap() Returns the number of memory blocks that can be
allocated.

Memory Manager

NTR-06-0095-001-A4 22  2004-2005 Nintendo
Released: November 15, 2005

5 Functionality Common to Each Heap
This section describes the functionality that is common to the extended heap, the frame heap, and the
unit heap.

5.1 Heap Options
Three of the functions that create heaps specify heap options: NNS_FndCreateExpHeapEx(),
NNS_FndCreateFrmHeapEx(), and NNS_FndCreateUnitHeapEx(). You can specify the following
options.

Table 5-1 Options That Can Be Specified When Creating a Heap
Flag Description

NNS_FND_HEAP_OPT_0_CLEAR When memory is allocated from a heap, this fills the allocated
memory blocks with 0s.

NNS_FND_HEAP_OPT_DEBUG_FILL When a heap is created and memory blocks are allocated and
freed, this fills the memory regions respectively with different
32-bit values.

The flag NNS_FND_HEAP_OPT_DEBUG_FILL was made for debugging. Use it to find memory access
bugs by tracing the pointer that points to the memory initialization failure or invalid memory regions.
This will not function in the final ROM version (FINALROM) library.

The following values are filled into the memory regions by default. See the next section for instructions
on how to change them.

• When creating a heap 0xC3C3C3C3
• When allocating memory 0xF3F3F3F3
• When freeing memory 0xD3D3D3D3

5.2 Changing the Values to Fill When Debugging
When the heap is created, and when memory blocks are allocated and freed, you will be able to fill
each memory region with different 32-bit values if you specify the NNS_FND_HEAP_OPT_DEBUG_FILL.
You can set and get the fill values using the following functions.

Table 5-2 Functions for Setting and Acquiring Values to Fill when Debugging
Function Description

NNS_FndSetFillValForHeap() Sets fill values.
NNS_FndGetFillValForHeap() Acquires fill values.

You can set different values for: when heaps are created, when memory blocks are allocated, and
when memory blocks are freed. When you set or acquire values, specify which heap operation the
value is for. The following table shows the types of heap operations that are specified in the function.

Memory Manager

 2004-2005 Nintendo 23 NTR-06-0095-001-A4
Released: November 15, 2005

Table 5-3 Type of Heap Operation for Filling the Value
Value to Specify in the Function Heap Operation

NNS_FND_HEAP_FILL_NOUSE When creating a heap
NNS_FND_HEAP_FILL_ALLOC When allocating memory blocks
NNS_FND_HEAP_FILL_FREE When freeing memory blocks

5.3 Displaying Heap Contents
This feature is for debugging. It displays internal heap information.

Table 5-4 Function for Displaying Internal Heap Information
Function Description

NNS_FndDumpHeap Displays internal heap information

5.4 Acquiring Heap Regions
This feature obtains the start and end addresses of the memory region that a heap is using.

Table 5-5 Functions For Acquiring Heap Regions
Function Description

NNS_FndGetHeapStartAddress() Gets the start address of the memory region that the heap is
using

NNS_FndGetHeapEndAddress() Gets the end address (+1) of the memory region that the heap
is using

Memory Manager

NTR-06-0095-001-A4 24  2004-2005 Nintendo
Released: November 15, 2005

6 Multi-Heap Management
This section covers instances in which the game software creates and uses multiple heaps.

6.1 Multi-Heaps
There are various types of data that are used during a game, such as data for graphics, music, and the
system. Using multiple heaps such as a game heap, a sound heap, a system heap, etc., will make it
easier to manage this data. Such use of multiple heaps is referred to as multi-heaps.

6.2 Freeing Multi-Heap Memory
A programmer should know from which heap to allocate memory blocks. Therefore, the programmer
can specify a heap and allocate memory blocks from it.

What about freeing memory blocks? If these are memory blocks that you have allocated, you will know
to which heap you should return the memory blocks. Even in the case where you free memory blocks
received from another programmer, you will probably be able to determine the correct heap, as long as
the use of the multiple heaps is clearly defined. However, what do you do when multiple heaps are
candidates for the return of memory blocks?

6.3 Managing Heaps Using a Tree Structure
When you free memory blocks and you do not know from where they were allocated, it would be
convenient if there were a mechanism that searched for the heap from which the memory block had
been allocated. You can do this by managing the heaps with a tree structure. This allows you to use
memory blocks allocated from a heap as heap memory (hierarchical heap structure).

If you manage heaps with trees, you can recursively check the memory region that the heap occupies,
thus checking from which heap the memory block was allocated.

The NITRO-System memory manager internally creates a hierarchical structure for each heap that it
creates. There is also a function that searches for the heap from which a memory block has been
allocated.

Table 6-1 Function for Searching for the Heap That Allocated a Memory Block
Function Description

NNS_FndFindContainHeap() Searches for the heap from which the specified memory block was
allocated
Returns a handle to the found heap.

Memory Manager

 2004-2005 Nintendo 25 NTR-06-0095-001-A4
Released: November 15, 2005

© 2004-2005 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

	1 Introduction
	2 Extended Heap Manager
	2.1 Creating Heaps
	2.2 Allocating Memory Blocks
	2.2.1 Allocating and Freeing Memory Blocks
	2.2.2 Minimum Allocation Unit for Memory Blocks
	2.2.3 Memory Block Allocation Procedure
	2.2.4 Allocating Memory Blocks from the Highest Address of the Heap Region

	2.3 Specifying Alignment
	2.4 Changing Memory Block Size
	2.5 Acquiring Free Space
	2.6 Group ID
	2.7 Processes for Memory Blocks
	2.8 Acquiring Memory Block Information
	2.9 Checking Heaps and Memory Blocks

	3 Frame Heap Manager
	3.1 Creating Heaps
	3.2 Allocating Memory Blocks
	3.2.1 Allocating and Freeing Memory Blocks
	3.2.2 The Minimum Unit of Memory Block Allocation

	3.3 Specifying Alignment
	3.4 Freeing Memory Blocks
	3.5 Saving and Restoring a Memory Block Allocation Status
	3.6 Adjusting Heap Region Size
	3.7 Changing the Size of Memory Blocks
	3.8 Acquiring the Size That Can Be Allocated

	4 Unit Heaps
	4.1 Creating Heaps
	4.2 Memory Block Allocation
	4.2.1 Allocating and Freeing Memory Blocks
	4.2.2 Minimum Unit for Memory Block Allocation

	4.3 Specifying Alignment
	4.4 Acquiring the Number of Memory Blocks That Can Be Allocated

	5 Functionality Common to Each Heap
	5.1 Heap Options
	5.2 Changing the Values to Fill When Debugging
	5.3 Displaying Heap Contents
	5.4 Acquiring Heap Regions

	6 Multi-Heap Management
	6.1 Multi-Heaps
	6.2 Freeing Multi-Heap Memory
	6.3 Managing Heaps Using a Tree Structure

