NINTENDDO

NITRO-system

Memory Manager

Three Heaps Specialized for Games
Version 1.0.9

The contents in this document are highly

confidential and should be handled accordingly.

© 2004-2005 Nintendo NTR-06-0095-001-A4
Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0095-001-A4 2 © 2004-2005 Nintendo
Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System
Table of Contents
LI 1 = Lo TR PURSPPTPRRN 7
2 Extended Heap MENAGETo ittt et e et e e e e b e e e e b e e e b e e b 8
2.1 (01T (o [o ToT T oL SRR 8
2.2 AllOCatING MEMOTY BIOCKS. ... e i ssssssssnsnsennnnsnnssnnssnnnnnnnnnnnnns 8
2.21 Allocating and Freeing Memory BIOCKSccoooiieio i 8
222 The Minimum Memory Block Allocation Unit.............oooiiiiiiiiiii e 8
223 Memory AlIOCatioN ProCEAUNEccoo i 9
224 Allocating Memory Blocks from the Back of the Heap Region...........cccooeiiiiiiiiiiiie 10
2.3 SPECITYING AlIGNIMENTo e e e e e e e st re e e e e e e e e s ataaeeeaeeeseassraeeeeaeesaaannnrees 1"
2.4 Changing Memory BIOCK SIZE.........uuuiiiieiiiiiieeee ettt e e e e et e e e e e e e e s e e e e e e e e e e ennnrees 1"
25 ACQUINNG Fre@ SPACE. ... ettt e e e e e et e e e e e e e e e e ee e e e e e e e e e e annneeeeaaeeaanns 12
26 L] 0T o T 0 R 12
2.7 Processing Memory BIOCKS.........cooiiiiiii e 13
2.8 Acquiring Memory BIock INfOrmationooueiiiiiiii e 13
2.9 Checking Heaps and Memory BIOCKSuuuiiiiiiiiieciiieeee ettt a e e et e e e e e e e 13
T o = L (oY (== o B F= T = o [14
3.1 CrealiNg HEAPS ...t a e e e ea et e e ah bt e e aa et e e aa et e e e anbe e e e e e ee e 14
3.2 Allocating MemOry BIOCKSeeeeiieeeiie ettt ennneeeeeaeeeaanns 14
3.2.1 Allocating and Freeing Memory BIOCKSouuiiiiiiiiii e 14
3.2.2 The Minimum Memory Block Allocation Unit............cooooiiiiiiiiie e, 15
3.3 SPECIfYING AlIGNMENT ...ttt e ra b e e e e st e e e aabe e e e e anbe e e e s aabeeeeeas 15
3.4 Freeing Memory BIOCKS ...ttt et e e e 15
3.5 Storing and Returning to a Memory Block Allocation Status............cccceeeiiiiiiiiiiie e, 16
3.6 Adjusting HEAP REGION SHZEccoieieiie ettt e e e e e e e e e st re e e e e e e e e ennneees 17
3.7 Changing the Size of MemOry BIOCKSuuiiiiiiiciieceee et 17
3.8 Acquiring the Size That Can Be AlloCatedooooiiiiiiiiiiiie e 18
N U | 1 o 1= =T o R 19
4.1 L1 ¢= T (o [LT T oL TR 19
4.2 Memory BIOCK AIOCALION ... 20
421 Allocating and Freeing Memory BIOCKS........cooooiiie oo 20
422 The Minimum Memory Block Allocation Unit..............oooiiiiiiiii e 20
4.3 S oL Te 1YL aTe a1 [g 4= o | TSR 21
4.4 Acquiring the Number of Memory Blocks That Can Be Allocatedccccoooveviiiiiiiee i 21
5 Functionality Common t0 EACh HEAPcooiiiiiiiiiie ettt e e a e e e e reeea s 22
51 [(= T T] [0 o 1SS 22
5.2 Changing the Values to Fill When Debuggingccoccuiiiiiie i 22
5.3 Displaying Heap CONENTSuviiiiiii it e e e e e e e e e e e st e e e e e e e e snnrereeeaeas 23
© 2004-2005 Nintendo 3 NTR-06-0095-001-A4

Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager
54 ACQUIrNG HEAP REGIONS.....coeiiiiee ettt e et e e e e e e et e e e e e e e e e annneeeeeaaeeeaannneeeas 23
6 Multi-Heap Management e et e et e e e e e e e et e e e e e e e nanen e e e e e e e e anneeeneeaaeeaaann 24
6.1 U (o == T PRSPPIt 24
6.2 Freeing MUti-HEaP MEMIOIY ...t e e e e e re e e e e e e e aanes 24
6.3 Managing HEaps With @ T E.......uuuuiiiiiiiiiiiiiiiiiiiieieiei ettt etete e eaee e teteteeesesesesssssesssssssnsssnsnsnsnsnsnnnnes 24
Tables
Table 2-1 Functions for Creating and Destroying Extended Heapsccccoveeiiiiciiieeic e 8
Table 2-2 Functions for Allocating and Freeing Memory BIOCKS ... 8
Table 2-3 Memory Block AlloCation MOAEScooiiiiiiiiiie e e 9
Table 2-4 Allocation Mode Setting and ACQUISITION...........cooiiiiiiiiiiiiie e 9
Table 2-5 Allocation Modes Used by the FUNCLIONSoooiiiiiiii e 9
Table 2-6 Function for Changing Memory BIOCK Siz€ccoouiiiiiiiii i 1"
Table 2-7 Functions For Acquiring Free Space, ELC. ... 12
Table 2-8 Functions for Setting and Acquiring Group IDSuuiiiiiii i 12
Table 2-9 Functions for Acquiring Memory Block Information ... 13
Table 2-10 Functions that check extended heaps and memory blockscccccoveiiiiii 13
Table 3-1 Functions for Creating and Destroying Heapsc.couiiiiiiiiiiiiiii e 14
Table 3-2 Functions for Allocating Memory BIOCKS.........c.coooiiiiiiiiiiiee e 15
Table 3-3 Methods Of Freeing Memory BIOCKSooiiiiiiii e 15
Table 3-4 Function for Freeing Memory BIOCKS............uuiiiiiiiiiiiiiiiee et a e 15
Table 3-5 Values Specified in the Function for Freeing Memory BIOCKSccoocciiiiiiiieiiicciiiieeeee e 16
Table 3-6 Functions for Storing a Memory Block Allocation Status and Returning To It.......................... 17
Table 3-7 Function for Reducing Heap REGION SiZEcooiiiiiiiiiiiiiii et 17
Table 3-8 Function for changing the size of memory BIOCK ... 18
Table 3-9 Functions for Obtaining the Size That Can Be Allocatedcccoeeoeiiiiiiiiiie e, 18
Table 4-1 Functions for Creating and Destroying Heapsc.ocviiiiiiiiiiiiiiiiec e 19
Table 4-2 Function for Allocating Memory BIOCKScooiiiiiiiiiiiieee et 20
Table 4-3 Function for Acquiring the Number of Memory Blocks That Can Be Allocated...............ccece.. 21
Table 5-1 Options That Can Be Specified When Creating a Heapccccceeeveiiiiiiiiiiieie e, 22
Table 5-2 Functions for Setting and Acquiring Values That Are Filled At Debug Time..........c.ccccceiines 22
Table 5-3 Type of heap operation 0 fill.cooiiiiiiie e 23
Table 5-4 Function for Displaying Internal Heap Information ... 23
Table 5-5 Functions For Acquiring Heap REGIONS.........coiiiiiiiiiiiiiiie e 23
Table 6-1 Function for Searching for the Heap That Allocated a Memory Blockc.cccoovciiiieieeeeienn, 24
NTR-06-0095-001-A4 4 © 2004-2005 Nintendo

Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System

Figures
Figure 2-1 Procedure for Allocating Extended Heap Memory BIOCKSccoccuiiiiiiiiiiiiiiiecee e 9
Figure 2-2 Mechanism That Fragments Memory BIOCKScooiiiiiiiiiii e 10
Figure 2-3 Measures for Dealing with Extended Heap Memory Block Fragmentation....................cc....... 10
Figure 2-4 Changing Extended Heap Memory BIOCK SiZeoccuiiiiiiiiiii e 1"
Figure 3-1 Frame Heap Memory AIOCAtIONu i eeeeeneneesnnnnnnnnnnnes 14
Figure 3-2 Mechanism for Storing and Returning to Frame Heap Memory Block Allocation Status.................... 16
Figure 3-3 Adjusting Frame HEAP SiZE.......cooiii oot a e e e e e e e e e 17
Figure 3-4 Adjusting the size of the frame heap memory bIOCK............occoiiiiiiii e 18
Figure 4-1 Unit Heap Memory AllOCALIONuii i 20

© 2004-2005 Nintendo 5 NTR-06-0095-001-A4

Released: November 15, 2005

NINTENDD

NITRO-System

Memory Manager

Revision History

Version

Revision Date

Description

1.0.9

01/05/2005

Changed instances of “NITRO” to “Nintendo DS.”

1.0.8

08/20/2004

Added “Checking Heaps and Memory Blocks” to the Extended Heap

1.0.7

08/02/2004

Added “Changing Size of Memory Blocks” to Frame Heap

1.0.6

6/10/2004

Revised description of “Heap Options.”

1.0.5

4/12/2004

Revised Misspelling

1.04

3/30/2004

Changed title and header.
Added explanation to all areas that were difficult to understand.
Corrected spelling errors and omissions.

1.0.3

3/29/2004

Corrected spelling errors and omissions.

Deleted 2 sections from the main body of the Introduction
Revised the descriptions of the functionality of each heap.
Added “Functionality Common To Each Heap”.

1.0.2

3/25/2004

Added description of Extended Heap API.

Added to Extended Heap “Creating Heaps”.

Revised Extended Heap “Memory Allocation Procedure”.
Revised Extended Heap “Specifying Alignment”.

Deleted Extended Heap “Free Special Memory”.

Added to Extended Heap “Acquiring Free Capacity”.

Changed values in Extended Heap “Group ID”.

Added to Extended Heap “Acquiring Memory Block Information”.
Added to Frame Heap “Creating Heaps”.

Revised Frame Heap “Specifying Alignment”.

Added to Frame Heap “Acquiring the Size That Can Be Allocated”.
Added to Unit Heap “Creating Heaps”.

Revised Unit Heap “Memory Block Allocation”.

Added to Unit Heap “Minimum Unit When Allocating Memory Blocks”.

Added to Unit Heap “Specifying Alignment”.

Added to Unit Heap “Acquiring the Number of Memory Blocks That Can Be Allocated”.

1.0.1

2/6/2004

Deleted Extended Heap “Freeing by Group ID”.
Added to Extended Heap “Processing Memory Blocks”.
Changed Unit Heap algorithm.

NTR-06-0095-001-A4

Released: November 15, 2005

6 © 2004-2005 Nintendo

NINTENDD

Memory Manager NITRO-System

1 Introduction

The Nintendo DS has 4 megabytes of main memory. It is difficult to manage this much memory with a
memory map. A memory manager allows you to dynamically allocate and free memory, eliminating the
need for memory maps or other such tools.

On the other hand, the Nintendo DS memory size is relatively small compared to a PC or workstation.
There are circumstances that are specific to a game machine in which the use of the generic

malloc () and free () functions are not sufficient. Nitro-System provides three memory managers
that are created specifically for use with the NITRO-System. These memory managers have additional
ideas beyond the heap mechanisms commonly used for games.

© 2004-2005 Nintendo 7 NTR-06-0095-001-A4
Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

2 Extended Heap Manager

The Extended Heap Manager can allocate and free memory, in much the same way as the malloc ()
function and the free () function in the C standard library. In addition to the basic functionality of
allocating and freeing memory, this manager has additional features for game software. This section
gives an overview of the Extended Heap Manager.

21 Creating Heaps

In order to use the Extended Heap Manager, you must first create an extended heap. The following
functions create and destroy (delete) extended heaps.

Table 2-1 Functions for Creating and Destroying Extended Heaps

Function Description
NNS FndCreateExpHeap () Creates an extended heap
NNS_FndCreateExpHeapEx () Creates an extended heap and can specify heap options.
NNS FndDestroyExpHeap () Destroys (deletes) an extended heap

2.2 Allocating Memory Blocks

2.21 Allocating and Freeing Memory Blocks

The following functions allocate and free memory blocks.

Table 2-2 Functions for Allocating and Freeing Memory Blocks

Function Description
NNS FndAllocFromExpHeap () Allocates memory blocks from an extended heap
NNS FndAllocFromExpHeapEx () Allocates memory blocks from an extended heap and can

specify alignment
(Described in the next section.)

NNS_FndFreeToExpHeap () Frees memory blocks

2.2.2 Minimum Allocation Unit for Memory Blocks

The Extended Heap Manager requires a 16—byte memory block management region and allocated
memory blocks are aligned along a 4-byte minimum boundary. Therefore, 20 bytes of memory are
required to allocate even a one-byte memory block.

NTR-06-0095-001-A4 8 © 2004-2005 Nintendo
Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System

2.2.3 Memory Block Allocation Procedure

The Extended Heap Manager has two modes of locating free regions from which to allocate to a
memory block. You can switch between these two modes. The allocation modes are described below:

Table 2-3 Memory Block Allocation Modes

Mode Description

FIRST Mode Allocates a memory block from the first free region that it finds that is at least
as large as the memory block size that you want to allocate

NEAR Mode Allocates a memory block from the free region whose size is the closest to the
size of the memory block you want to allocate

Free Region
c In NEAR mode, memory blocks
} are allocated from Free region C
In Use
Free Region
B
} In FIRST mode, memory blocks
are allocated from Free region B
In Use
Free Rogi Want to allocate a
ree Aeg'on memory block this size.
Work for Manager

Figure 2-1 Procedure for Allocating Extended Heap Memory Blocks

FIRST is the default mode. NEAR differs from FIRST in that it allocates the free block that is as close to
the specified size as possible. If this mode does not find an exact fit, it searches all free regions for the
closest match. Therefore, if the free regions are fragmented, memory block allocation takes longer.

The following functions set and acquire the allocation mode.

Table 2-4 Allocation Mode Setting and Acquisition

Function Description

NNS_ FndSetAllocModeForExpHeap () | Sets the allocation mode

NNS_FndGetAllocModeForExpHeap () | Gets the current allocation mode

The following table lists the values specified by the functions in relation to the allocation modes.

Table 2-5 Allocation Modes Used by the Functions

Mode Value Specified with Function
FIRST mode NNS_FND EXPHEAP ALLOC_MODE_ FIRST
NEAR mode NNS_FND_EXPHEAP ALLOC_MODE NEAR
© 2004-2005 Nintendo 9 NTR-06-0095-001-A4

Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

2.24 Allocating Memory Blocks from the Highest Address of the Heap Region

Normally the Extended Heap Manager searches for free regions from the lowest address of the heap
region to the highest address of the heap region. The Extended Heap Manager allocates memory
blocks from the lowest address of the free regions that it finds. As an alternative, you can now search
for free regions from the highest address of the heap region to the lowest address of the heap region.
You can also allocate memory blocks from the highest address of the free regions. Using this feature,
you can allocate longer—term memory blocks from the lowest address of the heap region, and
temporary memory blocks from the highest address of the heap region to help minimize heap
fragmentation.

For example, when loading compressed data into memory, expanding that data, then deleting the
original compressed data. If you were to use the normal method and allocate the memory block from
the lowest address of the heap region, the free region will be divided into two portions.

Free region Free region Free region Free region
Extracted Extracted
data data
Compressed data Compressed data Free region
Work for manager Work for manager Work for manager Work for manager
Heap is empty Load compressed data Extract data Delete c;);gressed

Figure 2-2 Mechanism of Memory Block Fragmentation
On the other hand, if you temporarily load the compressed data into a memory block that has been
allocated from the highest address of the heap region, the free space is not split.

Compressed data Compressed data
Free region Free region Free region Free region
Extracted data Extracted data
Work for Manager Work for Manager Work for Manager Work for Manager
Heap is empty Load compressed data Extract data Delete (;oartnapressed

Figure 2-3 Measures for Dealing with Extended Heap Memory Block Fragmentation
To allocate memory blocks from the highest address of the heap region, use the memory block
allocation function NNS_ FndAllocFromExpHeapEx (), passing a negative value to the alignment
argument (this argument is described in the next section).

NTR-06-0095-001-A4 10 © 2004-2005 Nintendo

Released: November 15, 2005

Memory Manager

NINTENDD

NITRO-System

2.3

Specifying Alignment

2.4

The Extended Heap Manager specifies alignment at the time that it allocates memory blocks. You can
specify the following alignment values in the NNS FndAllocFromExpHeapEx () function: 4, 8, 16,
and 32. To allocate memory blocks from the highest address of the heap region, specify negative
alignment values (-4, -8, -16, -32). The NNS_FndAllocFromExpHeap () function always uses an
alignment value of 4.

Changing Memory Block Size

The Extended Heap Manager can change the size of the allocated memory blocks without moving
them when there is sufficient free space available. When the new memory blocks become smaller than
the original size, it will use the free spaces that remain after reduction as free regions. When the new
memory blocks become larger than the original size, there must be sufficient free space after the
memory blocks. If there are free regions after the memory blocks, the function will merge the free
regions into the memory block to increase the size of the memory block.

Free region

Free region

Memory block C

Memory block C

Memory block B

Free region

Memory block B

Memory block A

Memory block A

Work for manager

Work for manager

Memory block C

Memory block C

Free region

Memory block B

Free region

Memory block B

Memory block A

Memory block A

Work for manager

Work for manager

Reduce size of memory block B Expand size of memory block B

Figure 2-4 Changing Extended Heap Memory Block Size

Use this function to change the memory block size.

Table 2-6 Function for Changing Memory Block Size

Function Description

NNS FndResizeForMBlockExpHeap () Expands or reduces memory blocks. It returns the

changed memory block size.

If there is little difference between the specified memory block size and the current memory block size
after a reduction, there may be times when you cannot use the freed region. In such cases,

NNS FndResizeForMBlockExpHeap () will not reduce the memory block size, and will return the
current memory block size. If you attempt to expand memory block size when there is either no free
region directly after the memory block, or if it was not possible to achieve the required expansion after
defragmenting the free space behind the current memory block,

NNS_ FndResizeForMBlockExpHeap () fails and returns 0 (zero).

© 2004-2005 Nintendo 11

NTR-06-0095-001-A4
Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

2.5 Acquiring Free Space

The Extended Heap Manager can obtain the total free regions. It can also obtain the size of the largest
memory block that can be allocated. The functions are shown in the following table.

Table 2-7 Functions For Acquiring Free Space, Etc.

Function Description
NNS FndGetTotalFreeSizeForExpHeap () Gets the total size of the free regions in the
extended heap
NNS FndGetAllocatableSizeForExpHeap () Gets the size of the largest memory block that can
be allocated

Alignment is fixed at 4.

NNS FndGetAllocatableSizeForExpHeapEx () = Gets the size of the largest memory block that can
be allocated

You can specify alignment.

26 GrouplID

When the Extended Heap Manager acquires memory blocks, it stores group IDs 0 - 255 in the memory
block management region. You can arbitrarily change the group ID. When you change a group ID, the
change takes place during the next memory block allocation. You can use the group ID for the
following:

e Collectively free only memory blocks that have a specific group ID.
* Checks the memory usage for each group ID. By managing group IDs by usage or user, it
becomes easier to grasp how the memory is used.

The following functions set and acquire group IDs.

Table 2-8 Functions for Setting and Acquiring Group IDs

Function Description
NNS FndSetGroupIDForExpHeap () Sets extended heap group IDs
NNS FndGetGroupIDForExpHeap () Acquires extended heap group IDs.
NTR-06-0095-001-A4 12 © 2004-2005 Nintendo

Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System

2.7 Processes for Memory Blocks

With the Extended Heap Manager, you can specify processes to be performed on allocated memory
blocks. Using this functionality, it is possible to perform various processes on the heap that are not
available in the Extended Heap Manager. Here are some examples:

e Call a function that collectively deletes only memory blocks that were allocated from the highest
address of the heap region because they were for temporary use.
» Get the total capacity of memory blocks that have a specific group ID.

This function runs the following process.

Function Description

NNS_FndVisitAllocatedForExpHeap () = Calls a user-specified function for each allocated memory
block.

2.8 Acquiring Memory Block Information

The Extended Heap Manager can acquire information for allocated memory blocks that indicates
memory block size, group ID, and whether the allocated memory blocks were allocated from the lowest
address or the highest address. These functions acquire memory block information.

Table 2-9 Functions for Acquiring Memory Block Information

Function Description
NNS FndGetSizeForMBlockExpHeap () Gets the memory block size
NNS FndGetGroupIDForMBlockExpHeap () Gets the memory block group ID
NNS FndGetAllocDirForMBlockExpHeap () Gets the direction from which the memory
blocks were allocated

2.9 Checking Heaps and Memory Blocks

With the Extended Heap Manager, extended heaps and memory blocks that are allocated from the
extended heap are checked if they are destroyed. The functions that check the extended heaps and
memory blocks are shown below:

Table 2-10 Functions that Check Extended Heaps and Memory Blocks

Function Description
NNS FndCheckExpHeap () Checks if the extended heap is destroyed.
NNS FndCheckForMBlockExpHeap () Checks if the memory block is destroyed.
© 2004-2005 Nintendo 13 NTR-06-0095-001-A4

Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

3 Frame Heap Manager

The Frame Heap Manager is an extremely simple memory manager. It can only allocate memory
blocks in a specified size while simultaneously freeing all allocated memory blocks. Since it holds no
memory block management information, it is memory-efficient. This section gives an overview of the
Frame Heap Manager.

3.1 Creating Heaps

To use the Frame Heap Manager you must create a frame heap. These functions create and destroy
frame heaps.

Table 3-1 Functions for Creating and Destroying Heaps

Function Description
NNS FndCreateFrmHeap () Creates a frame heap.
NNS_FndCreateFrmHeapEx () Creates a frame heap. You can specify options

for the heap.

NNS FndDestroyFrmHeap () Destroys a frame heap.

3.2 Allocating Memory Blocks

3.2.1 Allocating and Freeing Memory Blocks

The Frame Heap Manager allocates memory blocks by packing them with no open space from the
lowest address and the highest address of the heap region. Because it allocates memory blocks this
way, it does not fragment the heap. Also, because there is no management region in the memory
blocks that the Frame Heap Manager allocates, memory usage is efficient and less processing is
required to allocate the memory blocks.

Allocate memory blocks starting
from the highest address of heap
memory

Memory block B

Memory block D

Free region |:> Free region

Memory block C

Allocate memory blocks starting
from the lowest address of heap

Memory block A memory
Work for manager Work for manager
Create frame heap Allocate memory blocks

Figure 3-1 Frame Heap Memory Allocation

NTR-06-0095-001-A4 14 © 2004-2005 Nintendo
Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System

The following functions allocate memory blocks:

Table 3-2 Functions for Allocating Memory Blocks

Function Description
NNS_FndAllocFromFrmHeap () Allocates memory blocks from a frame heap
NNS FndAllocFromFrmHeapEX () Allocates memory blocks from a frame heap

It is possible to specify alignment (Described in the next
section).

Use negative alignment numbers in the NNS_FndAllocFromFrmHeapEx () function to allocate
memory from the highest address of the heap region.

3.2.2 The Minimum Unit of Memory Block Allocation

Although the Frame Heap Manager does not have a management region in the memory blocks,
memory blocks must be aligned on a minimum 4-byte boundary. Therefore, even allocating a 1-byte
memory block uses 4 bytes of memory.

3.3 Specifying Alignment

The Frame Heap Manager can specify alignment when it allocates memory blocks. You can specify the
following alignment values in the NNS_FndAllocFromFrmHeapEx () function: 4, 8, 16, and 32. To
allocate memory blocks from the highest address of the heap region, specify negative alignment values
(-4, -8, -16,and -32). The NNS_FndAllocFromFrmHeap () function does not specify alignment, it is
always a value of 4.

3.4 Freeing Memory Blocks

Because the Frame Heap Manager does not manage individual allocated memory blocks, it cannot
free allocated blocks individually. The Frame Heap Manager uses one of the three following methods to
free memory blocks.

Table 3-3 Methods Of Freeing Memory Blocks

Freeing method Description

Free from the lowest address Collectively frees memory blocks that were allocated from the lowest
address of the heap region

Free from the highest address | Collectively frees memory blocks that were allocated from the highest
address of the heap region

Free all Collectively frees all of the memory blocks that were allocated from
the heap

The following function frees memory blocks.
Table 3-4 Function for Freeing Memory Blocks

Function Description

NNS FndFreeToFrmHeap () Collectively frees memory blocks using the method specified.

© 2004-2005 Nintendo 15 NTR-06-0095-001-A4
Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

The following methods are specified in the NNS_FndFreeToFrmHeap () function.
Table 3-5 Values Specified in the Function for Freeing Memory Blocks

Freeing method Value to Specify in the Function

Free from the NNS_FND_FRMHEAP FREE HEAD
lowest address

Free from the NNS_FND_FRMHEAP FREE TAIL
highest address

Free all NNS FND FRMHEAP FREE ALL

(Same as simultaneously specifying NNS_FND_ FRMHEAP FREE HEAD and
NNS_FND_ FRMHEAP FREE TAIL)

The Frame Heap Manager also offers you the option of: saving the memory block allocation status,
collectively freeing subsequently allocated memory blocks, and returning to the status immediately
prior to saving. These options are described in the next section.

3.5 Saving and Restoring a Memory Block Allocation Status

The Frame Heap Manager offers you the option of saving the memory block allocation status of the
heap region and restoring that status later.

20 bytes of memory are required to save each memory block allocation status. You can store memory
block allocation status as many times as you want to the limit that the heap capacity allows. When

saving the memory block allocation status, a 4-byte tag can be attached. When you restore a memory
block allocation status, you can return to the previous status or to a status that is specified by the flag.

Memory block C Memory block C Memory block C Memory block C
Memory block E
Free region Free region Free region Free region
|:> |::> Memory block D |::>
Stored status data Stored status data

Memory block B Memory block B Memory block B Memory block B

Memory block A Memory block A Memory block A Memory block A
Work for manager Work for manager Work for manager Work for manager

Original state Status Allocate more memory blocks Restore status

Figure 3-2 Mechanism for Saving and Restoring Frame Heap Memory Block Allocation Status

The following functions store memory block allocation status and return to it.

NTR-06-0095-001-A4 16 © 2004-2005 Nintendo
Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System

Table 3-6 Functions for Storing a
Memory Block Allocation Status and Returning to It

Function Description
NNS_FndRecordStateForFrmHeap () Saves a memory block allocation status.
NNS FndFreeByStateToFrmHeap () Restores a memory block allocation status.

3.6 Adjusting Heap Region Size

The Frame Heap Manager can reduce the heap region size to match the heap region content.

However, use this functionality only if no memory blocks have been allocated from the highest address
of the heap region.

Use this functionality when you want to pack an indefinite amount of data into memory without leaving
spaces in the heap. First create a heap that has a sufficient size, allocate memory blocks from the
lowest address of the heap region, and store the data. After storing all of the required data, reduce the
size of the heap region to match the contents of the heap.

Reduce heap size to match heap
utilization
Free region Free region

Memory block D Memory block D

Memory block C Memory block C

> Memory block B > Memory block B

Memory block A Memory block A
Work for manager Work for manager Work for manager
Create frame heap Allocate memory blocks Adjust heap size

Figure 3-3 Adjusting Frame Heap Size

The following function reduces the heap region size.
Table 3-7 Function for Reducing Heap Region Size

Function Description
FndAdjustFrmHeap () Reduces the size of the heap region by freeing space at the highest
address of the heap region from the allocated block

3.7 Changing the Size of Memory Blocks

You can change the size of the memory block with the frame heap manager if it is the last memory
block that is allocated from the lowest address of the empty region in the heap. When the memory
block is reduced, the remaining area after reduction becomes part of the empty area. When the

memory block is enlarged, it reduces the free region of the higher address and expands the memory
block.

© 2004-2005 Nintendo 17 NTR-06-0095-001-A4
Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

Free region Free region Memory block C Memory block C
Free region Free region
Memory block C Memory block C
Free region
Memory block B Memory block B Memory block B Memory block B
Memory block A Memory block A Memory block A Memory block A
Work for manager Work for manager Work for manager Work for manager
Reduce size of memory block B Expand size of memory block B

Figure 3-4 Adjusting the size of the frame heap memory block

The following function changes the size of memory block.

Table 3-8 Function for Changing the Size of Memory Block

Function Description

NNS FndResizeForMBlockFrmHeap () Expands or reduces the memory block. The changed
memory block size is returned as the return value.

When expanding a memory block, if there is not enough free space to expand to the requested size,
the NNS_FndResizeForMBlockExpHeap () function fails and returns 0.

3.8 Acquiring the Size That Can Be Allocated

The Frame Heap Manager can find the size of the largest memory block that can be allocated. The
following functions do this.

Table 3-9 Functions for Obtaining the Size That Can Be Allocated

Function Description

NNS_FndGetAllocatableSizeForFrmHeap () Gets the size of the largest memory block that can be
allocated

Alignment is fixed at 4.

NNS_FndGetAllocatableSizeForFrmHeapEx () | Gets the size of the largest memory block that can be
allocated

You can specify alignment.

NTR-06-0095-001-A4 18 © 2004-2005 Nintendo
Released: November 15, 2005

Memory Manager

NINTENDD

NITRO-System

4 Unit Heaps

The Unit Heap Manager is an extremely simple memory manager. It allocates only memory blocks in
the size that is specified when the unit heap is created. In other words, this memory manager is for
allocating and freeing memory blocks that have a fixed size. The unit heap does not have a
management region in memory blocks, making it more memory-efficient. This section provides an
overview of the Unit Heap Memory Manager.

4.1 Creating Heaps

To use the Unit Heap Manager you must create a unit heap. The following functions create and destroy

(delete) unit heaps.

Table 4-1 Functions for Creating and Destroying Heaps

Function

Description

NNS FndCreateUnitHeap ()

Creates a unit heap

NNS FndCreateUnitHeapEx ()

Creates a unit heap. You can specify alignment and options for the heap

NNS FndDestroyUnitHeap ()

Destroys (deletes) a unit heap

© 2004-2005 Nintendo

19

NTR-06-0095-001-A4
Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

4.2 Memory Block Allocation

4.2.1 Allocating and Freeing Memory Blocks

The Unit Heap Manager manages the regions in a heap in chunks that are of a pre-specified size.
Memory block allocation means allocating these chunks.

Free chunks are linked as a singly-linked list (free chunk list). The pointer to the next free chunk is
placed at the beginning of the chunk. There is no pointer for chunks that are in use. (There is also no
management region.) When allocating memory blocks, the manager returns the memory block that is
linked to the beginning of this free chunk list. When freeing a memory block that is in use, it links the
memory block to the beginning of the free chunk list.

Free chunk 5 Free chunk 5 Free chunk 5
Free chunk 4 Free chunk 4 Free chunk 4
Free chunk 3 Free chunk 3 Free chunk 3
Allocate i Free memo i
Free chunk 2 memory Chunk 2, in use ry Chunk 2, in use
(Chunk 1) (Chunk 1)
(Chunk 2)
Free chunk 1 Chunk 1, in use Free chunk 1
L4 Work for manager Work for manager L3 Work for manager

Pointer to next free chunk

Figure 4-1 Unit Heap Memory Allocation

The following functions allocate and free memory blocks.
Table 4-2 Function for Allocating Memory Blocks

Function Description
NNS FndAllocFromUnitHeap () Allocates memory blocks from a unit heap
NNS FndFreeToUnitHeap () Frees memory blocks

4.2.2 Minimum Unit for Memory Block Allocation

Although the Unit Heap Manager does not have a management region in the memory blocks, allocated
memory blocks must be aligned on a minimum 4-byte boundary. Therefore, even allocating a 1-byte
memory block uses 4 bytes of memory.

NTR-06-0095-001-A4 20 © 2004-2005 Nintendo
Released: November 15, 2005

Memory Manager

NINTENDD

NITRO-System

4.3 Specifying Alignment

The Unit Heap Manager can specify alignment when it creates a heap. It does not do this for each

allocated memory block. All allocated memory blocks will be aligned the same. You can specify the
following alignment values in the NNS_FndCreateUnitHeapEx () function: 4, 8, 16, and 32. The
NNS FndCreateUnitHeap () function does not specify alignment, its alignment is always 4.

4.4 Acquiring the Number of Memory Blocks That Can Be Allocated

The Unit Heap Manager can get the number of memory blocks can be allocated. In other words, it can

get the number of free chunks. The following function gets the number of memory blocks that can be

allocated.

Table 4-3 Function for Acquiring the Number of Memory Blocks That Can Be Allocated

Function

Description

NNS FndCountFreeBlockForUnitHeap ()

Returns the number of memory blocks that can be

allocated.

© 2004-2005 Nintendo

21

NTR-06-0095-001-A4
Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

5 Functionality Common to Each Heap

5.1

This section describes the functionality that is common to the extended heap, the frame heap, and the
unit heap.

Heap Options

5.2

Three of the functions that create heaps specify heap options: NNS FndCreateExpHeapEx (),
NNS_ FndCreateFrmHeapEx (), and NNS_FndCreateUnitHeapEx (). You can specify the following
options.

Table 5-1 Options That Can Be Specified When Creating a Heap
Flag Description

NNS_FND_HEAP OPT 0 CLEAR When memory is allocated from a heap, this fills the allocated
memory blocks with Os.

NNS_FND HEAP OPT DEBUG FILL When a heap is created and memory blocks are allocated and
freed, this fills the memory regions respectively with different
32-bit values.

The flag NNS_FND HEAP OPT DEBUG FILL was made for debugging. Use it to find memory access
bugs by tracing the pointer that points to the memory initialization failure or invalid memory regions.
This will not function in the final ROM version (FINALROM) library.

The following values are filled into the memory regions by default. See the next section for instructions
on how to change them.

* When creating a heap 0xC3C3C3C3
e When allocating memory OxF3F3F3F3
¢ When freeing memory 0xD3D3D3D3

Changing the Values to Fill When Debugging

When the heap is created, and when memory blocks are allocated and freed, you will be able to fill
each memory region with different 32-bit values if you specify the NNS_FND HEAP OPT DEBUG_ FILL.
You can set and get the fill values using the following functions.

Table 5-2 Functions for Setting and Acquiring Values to Fill when Debugging

Function Description

NNS_ FndSetFillValForHeap () Sets fill values.

NNS_ FndGetFillValForHeap () Acquires fill values.

You can set different values for: when heaps are created, when memory blocks are allocated, and
when memory blocks are freed. When you set or acquire values, specify which heap operation the
value is for. The following table shows the types of heap operations that are specified in the function.

NTR-06-0095-001-A4 22 © 2004-2005 Nintendo
Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System

Table 5-3 Type of Heap Operation for Filling the Value

Value to Specify in the Function Heap Operation
NNS FND HEAP FILL NOUSE When creating a heap
NNS FND HEAP FILL ALLOC When allocating memory blocks
NNS_FND_HEAP FILL FREE When freeing memory blocks

5.3 Displaying Heap Contents

This feature is for debugging. It displays internal heap information.

Table 5-4 Function for Displaying Internal Heap Information

Function Description

NNS_FndDumpHeap Displays internal heap information

5.4 Acquiring Heap Regions

This feature obtains the start and end addresses of the memory region that a heap is using.

Table 5-5 Functions For Acquiring Heap Regions

Function Description
NNS_FndGetHeapStartAddress () Gets the start address of the memory region that the heap is
using
NNS_FndGetHeapEndAddress () Gets the end address (+1) of the memory region that the heap
is using
© 2004-2005 Nintendo 23 NTR-06-0095-001-A4

Released: November 15, 2005

NINTENDD

NITRO-system Memory Manager

6 Multi-Heap Management

This section covers instances in which the game software creates and uses multiple heaps.

6.1 Multi-Heaps

There are various types of data that are used during a game, such as data for graphics, music, and the
system. Using multiple heaps such as a game heap, a sound heap, a system heap, etc., will make it
easier to manage this data. Such use of multiple heaps is referred to as multi-heaps.

6.2 Freeing Multi-Heap Memory

A programmer should know from which heap to allocate memory blocks. Therefore, the programmer
can specify a heap and allocate memory blocks from it.

What about freeing memory blocks? If these are memory blocks that you have allocated, you will know
to which heap you should return the memory blocks. Even in the case where you free memory blocks
received from another programmer, you will probably be able to determine the correct heap, as long as
the use of the multiple heaps is clearly defined. However, what do you do when multiple heaps are
candidates for the return of memory blocks?

6.3 Managing Heaps Using a Tree Structure

When you free memory blocks and you do not know from where they were allocated, it would be
convenient if there were a mechanism that searched for the heap from which the memory block had
been allocated. You can do this by managing the heaps with a tree structure. This allows you to use
memory blocks allocated from a heap as heap memory (hierarchical heap structure).

If you manage heaps with trees, you can recursively check the memory region that the heap occupies,
thus checking from which heap the memory block was allocated.

The NITRO-System memory manager internally creates a hierarchical structure for each heap that it
creates. There is also a function that searches for the heap from which a memory block has been
allocated.

Table 6-1 Function for Searching for the Heap That Allocated a Memory Block

Function Description

NNS_ FndFindContainHeap () Searches for the heap from which the specified memory block was
allocated

Returns a handle to the found heap.

NTR-06-0095-001-A4 24 © 2004-2005 Nintendo
Released: November 15, 2005

NINTENDD

Memory Manager NITRO-System

© 2004-2005 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

© 2004-2005 Nintendo 25 NTR-06-0095-001-A4
Released: November 15, 2005

	1 Introduction
	2 Extended Heap Manager
	2.1 Creating Heaps
	2.2 Allocating Memory Blocks
	2.2.1 Allocating and Freeing Memory Blocks
	2.2.2 Minimum Allocation Unit for Memory Blocks
	2.2.3 Memory Block Allocation Procedure
	2.2.4 Allocating Memory Blocks from the Highest Address of the Heap Region

	2.3 Specifying Alignment
	2.4 Changing Memory Block Size
	2.5 Acquiring Free Space
	2.6 Group ID
	2.7 Processes for Memory Blocks
	2.8 Acquiring Memory Block Information
	2.9 Checking Heaps and Memory Blocks

	3 Frame Heap Manager
	3.1 Creating Heaps
	3.2 Allocating Memory Blocks
	3.2.1 Allocating and Freeing Memory Blocks
	3.2.2 The Minimum Unit of Memory Block Allocation

	3.3 Specifying Alignment
	3.4 Freeing Memory Blocks
	3.5 Saving and Restoring a Memory Block Allocation Status
	3.6 Adjusting Heap Region Size
	3.7 Changing the Size of Memory Blocks
	3.8 Acquiring the Size That Can Be Allocated

	4 Unit Heaps
	4.1 Creating Heaps
	4.2 Memory Block Allocation
	4.2.1 Allocating and Freeing Memory Blocks
	4.2.2 Minimum Unit for Memory Block Allocation

	4.3 Specifying Alignment
	4.4 Acquiring the Number of Memory Blocks That Can Be Allocated

	5 Functionality Common to Each Heap
	5.1 Heap Options
	5.2 Changing the Values to Fill When Debugging
	5.3 Displaying Heap Contents
	5.4 Acquiring Heap Regions

	6 Multi-Heap Management
	6.1 Multi-Heaps
	6.2 Freeing Multi-Heap Memory
	6.3 Managing Heaps Using a Tree Structure

