Multiple Channel Stream Library

Communications between Nintendo DS
and Multiple Windows Applications

Version 1.0.2

The contents of this document are strictly
confidential and the document should be

handled accordingly.

© 2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0312-001-A2 2 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Contents
1 [1o [8 o3 1] o I RS UUPUUERRN 7
2 Communications Between Nintendo DS Programs and Windows AppliCationscccueevieeiiiiiiiiiiee e 8
2.1 Procedures on the NINTENAO DS et e e ettt e e e e e e et et e e e e e e e s nnaeeeeaaeeeaannnnseeeaaaaan 8
211 Initialize the MCS LIDIAIYttt ettt e e e e e et e e e e e e e e s naeeeeeaaeeaannneeeeaaaeeaannnreneas 8
2.1.2 Configure the Way to RECEIVE Dal@.........cccooiiiiiiiiiii et e e e e s et e e e e e e e eanreees 9
21.21 Register a Callback FUNCHON.........oc.uiiiiii e e e e e e 9
21.2.2 REGISIEr @ BUITEI ...t e e e e e e e e e e s e et e e e e e e e e e saatbeeeaeeeeesnsreees 9
2.1.3 OPEN TNE DBVICEceiiiiiiee ettt ettt r e e e bt e e st e e e e e e e b et e e et e e n e e e e n e et 10
bt I S 07014 io [0 (=R 01 =Y ¢ (U]) USRS PP 10
200 I S o)11 T SRR 12
b I T =T To [o B = - H USRS PR 12
2.1.61 When a Callback Function has been Registered...........cocuviiiiiiiiiii e 12
21.6.2 When a Receiving Buffer has been Registeredooouiiiiiiii i 12
b I A V1T |1 To [- | = U URPR PSPPI 13
2.1.8 When the Opened Device iS IS-NITRO-UICccooiiiiiiie e 14
2.2 Procedures in WINGOWSc.ooiiiiiiiii e b e et 15
221 Read DLL and Get FUNCHON AQAIESScouuiiiiiiiiieiiie ettt ettt e e s et e e st e e e ennees 15
A I O o1 o I (LTS (4 =Y o [USRS 16
2.2.3 Read from the SITEAIM.......c ittt et e e st e e et e e s ante e e e snnteeesanbeeeeanteeeeennees 17
P L | (= (o TS Y= o SRR 18
A T O (o 17 (1= IR (=Y oo I PSP 19
3 File Searches and File REAA/WVIILE..........cooi ettt e ettt e e e e e ettt e e e e e e e e ne bt eeaaaeaeansbneeeaaeeeaannes 20
3.1 Initialize the mcs File INpUt/OULPUL LIDIAIYuiiiiiiee et e e e e s et e e e e e s e araeeeaaeeas 20
3.2 File REAING @A WIING. ... s 21
B B O o1 o I (TN | RO ERPTRRPPR 21
3.2.2 REAA frOM FlE ...ttt ettt e e e oo ettt e e e e e e e sae et eeea e e e e s aebeeeaaaeaaannnreeeaaaeeaannneneean 22
B T2 B VAT | (= (o TN 1T PO PUPPP PP 22
B I S O [0 1T 1 T= N | = SRS SRR SR 23
3.2.5 MOVING the File POINIEN ... s 23
3.3 FlE SEAICRINGcee ittt e ettt e e et e e e e b e e et e e e e e e e e e nan 23
B T T B S = o g a1 (=R 1o (o o RS EER R SP 23
3.3.2 CoNtINUE FilE SEAICH ...ttt ettt e et e e ettt e e s ante e e e emnt e e e e s beeeeanneeeeennees 24
B TR IR B ! o To J o [IRT =T T o o IR ERRSR 25
4 Outputting Character Strings t0 the CONSOIE.........cccuuiiiiiie e e e e e s e e e e e s e anereeeaae s 26
4.1 Output With OS_Printf FUNCHON ..o et e e s 26
4.2 Output with mcs String OUtPUL FUNCHONSeiiiiiiii e 26
4.2.1 Initialize the Character String OULPUL LIDIaryooooiiiiiiii e 26
4.2.2 OUIPUL Character SIHNGcoocuiiiiiie ettt e e ettt e e e e e e et e e e eeeeeassatbeeeaaeeeassnsaeeeeaeeessnnsssaseaeeesaannes 26
© 2004-2005 Nintendo NTR-06-0312-001-A2

Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

5 ADOUL TNE MCS SEIVETottt e ettt e et e e ek et e e et et e e e abe e e e et et e eate e e e sane e e e anreeenanee 27
5.1 General OPerationNs FIOWcciiiiiiiiiii ittt e ettt e e e e e e et e e e e e e e e s atbaaeeaeeessasssseeaaeessasnsseeeaaeseannnnnes 27
ST O 0T [= To? T TSP U PPV PPPRTRRP 27
5.1.2 Load ROM File (if Device is IS-NITRO-EMULATOR)........coitiiiiiiiiieiiee ettt 27
ST I B B [F=ToTo o1 [=T o7 OO TSP U PP U R PPPRPRRP 27
5.1.4 Reset (if Device is IS-NITRO-EMULATORY)oiiiiiiiiiiiie ittt sttt san e sne e 27

S o 1o b= ST (U =1 o) o - TSRS P U PRPPRRPONE 27
5.2.1 CoNNECHNG With @NSATA........cciiiiiiiiiii et eaat b e e e e e e e eanarbaaraaaeaaas 27
5.2.2 Share mode and EXCIUSIVE MOUEueiiiiiiiiiiiei ettt e e 28
5.2.3 CommaNnd LiN€ OPLIONScoiiiiiiiie ettt e ettt e e e e e e r e e e e e e e e e e e e e e e e n——aeeaaeeeaaarraaraaaeaaas 28
5.2.4 Powering ON the IS-NITRO-EMULATOR GBA Game Pak SIOt.........cccciiiiiiiiiiieiie e 28
5.2.5 About the Interval for Obtaining Data from the Nintendo DS..............ccomiiiiiiiiiiii e 28
NTR-06-0312-001-A2 4 © 2004-2005 Nintendo

Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Codes

Code 2-1 InitiliziNg the MCS LIDFAIY ..ottt e e e e ettt e e e e e e s et e e e e e e e eannnbeeeaaeeeaannnreneas 8
Code 2-2 Registering @ Callback FUNCHONooiiiii e e e e e s et e e e e e e e e saasreees 9
Code 2-3 Registering @ ReCEIVING DUFFEI ... 10
Code 2-4 OPENING the DEVICEeeiiiiiiie ettt e e e ettt e e e e e e e e e e e e e e aaeaeeaaeessasssaeeeaeeeeanansbaeeeaeseennnsseees 10
Code 2-5 Configuring INTEITUPESeeiiiii ettt e e et e e st e e e s 11
Code 2-6 Calling the PolliNG FUNCHONcoiiiieiiee ettt e e e e e e e e e e e e e a e e e e e e s eesansbeeeeaeseesnnsreeeas 12
Code 2-7 Reading the ReCEIVEA Data.........ccooiiiiiiiiii et 13
(07 To oI A 4 (g To B L= - OO UEPRRRPP 14
Code 2-9 Waiting for mcs Server CONNECHIONcoiuiiiiiie ettt e e e e e et e e e e e e et b e e e e e e s eesnsreees 15
Code 2-10 Reading DLL and Getting FUNCHON ADAreSS..........viiiiiiiiiee e 16
Code 2-11 OPENING @ SITEAM ...ttt ee ettt e e e e e ettt e e e e e e s et beaeeaaeesaasbeaeeaaeesaasssseeeeeeeeansnsbeeeaaeseennnsseees 17
Code 2-12 Reading from the SIrEaM..........ooi e e e 18
Code 2-13 Wrting t0 the SIrEaMuiiiiiii e e e e e e e e e e e s e e e e e e e e e eesaatreeeeaeseennnsreeeas 19
Code 2-14 ClOSING the SIrEAM ..ot e e b e e s st e e ra e e e nbre e e sanbe e e e e 19
COode 31 OPENING @ FlE ...ttt e e ettt e e e e e e st a e e e e e e e setaeaeeaaeessasssseeeaeeeeaannsbaeeeaeseennnsrenes 21
Code 3-2 ReadiNg frOM Fil@eiiii ettt e e st e na e e e e b e e e st e e 22
[07eTe [oTe e A 41 (1aTo I (o T 1= TSRO RPRPPP 22
Code 3-4 ClOSING the Fle......cooiiiiii ettt e et e e st e e e b e e e st e e s e e e e et r e e e sanne e e e nanees 23
Code 3-5 MoVING the FIle POINTET.........ooiii et e et e e e e e et e e e e e e e eeaa b e e e aeeseesaasbeeeaaeseesnnsseneas 23
Code 3-5 Starting File SEAICH ..ottt e et 24
Code 3-6 ContinUING File SEACHcoi e e et e st 24
Code 3-7 ENdiNG File SEAICH ... et e e e e e et e e e e e e e e e e e e e e e eeeantbeeeeaeeeennnnreees 25
Code 4-1 Initilzaing the Character String OULPUL LIDraryoooiiiiiiiie e 26
Code 4-2 Outputting @ Character StNGc..uviiiiee et e e e e e et e e e e s e e snsr e e e e e e s eesnnsreees 26
Figures
Fig. 2-1 Communications between Nintendo DS Program and Windows Applicationccccccvviiiiieieiniiee e 8
Fig. 3-1 Searching Files and Reading/Writing 10 Fl€Sooiiiiiiiiiiiii e a e 20
© 2004-2005 Nintendo NTR-06-0312-001-A2

Released: November 15, 2005

NITRO-System

Multiple Channel Stream Library

Revision History

Version | Revision Date Details of Revision
1.0.2 03/18/2005 1. Added a function that changes the position of the current file pointer.
2. Added a feature to change the load time interval from a Nintendo DS on an mcs server.
1.0.0 01/18/2005 Initial version.

NTR-06-0312-001-A2
Released: November 15, 2005

6 © 2004-2005 Nintendo

NITRO-System Multiple Channel Stream Library

1 Introduction

The mcs library is the collective name for the library and a group of tool programs that enable Nintendo
DS programs to communicate with multiple Windows applications. The mcs library provides these
features:

e The feature that enables communications between Nintendo DS programs and Windows
applications.

e The feature to access files on the PC from the Nintendo DS program.

e The display of text strings output from the Nintendo DS program.

Among the hardware that run Nintendo DS programs, the following hardware devices support the mcs
library:

e IS-NITRO-EMULATOR
e Nintendo DS System + IS-NITRO-UIC
e The ensata software emulator

If you are using IS-NITRO-EMULATOR or IS-NITRO-UIC, the ISNITRO.d11 must be installed on the

system.

ISNITRO.d11 gets installed on the system by installing the IS-NITRO-DEBUGGER software.

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System

Multiple Channel Stream Library

2 Communications Between Nintendo DS
Programs and Windows Applications

One of the basic purposes of the mcs library is to enable communications between Nintendo DS
programs and multiple Windows applications running on a PC. Figure 2-1 provides a schematic

diagram of this process.

Nintendo DS

mcs library

v

-~

Program for
Nintendo DS

| jouueyd
L1 [ouueyd
91 ouueyd

0 louueyd

Data Data Data

Data

mcs server

Channel 0

J

Channel 1

Channel 17

mcs library

Windows
application 1

Channel 17

4
mcs library

Windows
application 2

Fig. 2-1 Communications between Nintendo DS Program and Windows Application

Communications require procedures to be carried out by both the Nintendo DS program and the
Windows application. Because the procedures differ, they will be explained separately.

2.1 Procedures on the Nintendo DS

2.1.1 Initialize the mcs Library

In order to use the mcs library, you must first call the NNS_McsInit function and initialize the library.

Code 2-1 Initilizing the mcs Library

void
NitroMain

{
0s_Init();

NNS McsInit();

NTR-06-0312-001-A2
Released: November 15, 2005

© 2004-2005 Nintendo

NITRO-System Multiple Channel Stream Library

2.1.2 Configure the Way to Receive Data

There are two ways to receive data: by calling a callback function when the data is received or by
having the program read the data at a time of its own discretion. But for either method, each channel
must be set ahead of time.

21.21 Register a Callback Function

To call a callback when data has been received, register a callback function. Secure the variable of the
NNSMcsRecvCBInfo structure ahead of time, and call the function

NNS McsRegisterRecvCallback by passing a pointer to this variable as an argument. Other
arguments include the channel value for differentiating from Windows applications, callback functions,
and the user-defined value passed to the callback function. When NNS McsRegisterRecvCallback
is called, the registered contents gets set to the specified NNSMcsRecvCBInfo type variable.

Code 2-2 Registering a Callback Function
#define MCS CHANNEL ID 10 // Channel value

// The callback function that gets called when data is received from PC
static void

DataRecvCallback (
const void* pRecv, // Pointer to the data buffer
u32 recvSize, // Size of received data
u32 userData, // User defined value
u32 offset, // Offset value to all received data
u32 totalSize // Total size of received data
)
{
}
void
NitroMain ()

{

static NNSMcsRecvCBInfo sRecvCBInfo;

// Register the callback function
NNS McsRegisterRecvCallback(

&sRecvCBInfo, // NNSMcsRecvCBInfo type variable
MCS CHANNEL ID, // Channel value
DataRecvCallback, // Callback function

0); // User defined value

2.1.2.2 Register a Buffer

To have the program read the data at a given time, a buffer for the received data must be registered.
Memory for receiving must be secured ahead of time. Call the function

NNS McsRegisterStreamRecvBuffer as well as the channel value.

The memory for managing the receiving buffer is secured from the buffer-use memory specified here,

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

so the size must be at least 48 bytes. If received data accumulates in this buffer without being read and
the buffer overflows, that received data will be deleted. Thus, it is essential to allocate a buffer of the
appropriate size for your intended use of every channel.

Code 2-3 Registering a Receiving buffer

#define MCS_CHANNEL ID 10 // Channel value

static u32 sRecvBuf[64 * 1024 /sizeof (u32)];

NNS McsRegisterStreamRecvBuffer (

MCS_CHANNEL ID, // Channel value
sRecvBuf, // Pointer to Receiving buffer
sizeof (sRecvBuf)) ; // Size of Receiving buffer

2.1.3 Open the Device

Open the device used for communications. First call the NNS_ McsGetMaxCaps function to get the total
number of devices that are capable of communicating. If the total number is 0, this indicates that no
devices were found. If there are 1 or more devices, use the NNS_McsOpen function to open a device. The
argument for this function is the pointer to the NNSMcsDeviceCaps type variable, which was secured
ahead of time. Information relating to the opened device is placed in this variable.

Code 2-4 Opening the Device

NNSMcsDeviceCaps deviceCaps;

if (NNS_ McsGetMaxCaps () == 0)
{
0S Panic(“Could not find device.”);

}

if (! NNS McsOpen (&deviceCaps))
{
0S Panic(“Failed to open the device.”);

}

2.1.4 Configure Interrupts

Depending on the type of device that has been opened, certain functions need to be called periodically.
The function that needs to be called for a given device is set in the maskResource member variable of
the NNSMcsDeviceCaps type variable that was specified when the NNS McsOpen function was called.

Take this variable and mask and set the interrupt handler so that necessary functions are called.

For example, if the bitwise AND result of the maskResource variable and

NITROMASK RESOURCE VBLANK is not zero, then the device needs to call the

NNS McsVBlankInterrupt function in every frame. Configure a V-blank interrupt handler so that
NNS McsVBlankInterrupt is called from inside the interrupt handler.

Similarly, if the bitwise AND result of the maskResource variable and

NTR-06-0312-001-A2 10 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System

Multiple Channel Stream Library

NITROMASK RESOURCE_CARTRIDGE is not zero, then the device needs to call the
NNS McsCartridgeInterrupt function every time a cartridge interrupt occurs. Configure a cartridge
interrupt handler so that NNS_McsCartridgeInterrupt is called from inside the interrupt handler.

Code 2-5 Configuring Interrupts

(deviceCaps.maskResource & NITROMASK RESOURCE VBLANK)

// Enable VBlank interrupts and configure so NNS McsVBlankInterrupt ()
// gets called from inside VBlank interrupt

BOOL preIRQ = OS DisableIrq();
0S_SetIrqgFunction(0OS IE V BLANK, VBlankIntr);
(void) OS EnablelIrgMask (0OS IE V BLANK) ;

(void) 0S_Restorelrqg(preIRQ);

(void) GX VBlankIntr (TRUE) ;

(deviceCaps.maskResource & NITROMASK RESOURCE CARTRIDGE)

// Enable cartridge interrupts and configure so
// NNS McsCartridgeInterrupt () gets called from inside
// cartridge interrupt

BOOL preIRQ = 0S DisableIrqg();
OSisetIquunction(OSilE7CARTRIDGE, CartIntrFunc) ;
(void)OS EnableIrgMask (0S IE CARTRIDGE) ;

(void) 0S RestorelIrq(preIRQ) ;

static void
VBlankIntr (void)

{

0S SetIrqgCheckFlag(OS IE V BLANK) ;

NNS McsVBlankInterrupt () ;

static void
CartIntrFunc (void)

{

0S_SetIrgCheckFlag(OS IE CARTRIDGE) ;

NNS McsCartridgeInterrupt () ;

Until it becomes necessary to open the device, nothing happens when the NNS McsVBlankInterrupt
function or the NNS McsCartridgeInterrupt function is called. Thus, interrupts can be configured
before opening the device, regardless of the device type.

© 2004-2005 Nintendo NTR-06-0312-001-A2

Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

21.5 Polling

In addition to configuring interrupts explained above, call the NNS McsPollingIdle function
periodically. For example, call NNS McsPollingIdle every time in the main loop.

Code 2-6 Calling the Polling Function

// Main loop
while (TRUE)

{
SVC WaitVBlankIntr();

// Polling process
NNS McsPollingIdle();
}

2.1.6 Reading Data

21.61 When a Callback Function has been Registered
If a callback function is registered, then that function gets called when data is received.

21.6.2 When a Receiving Buffer has been Registered

If a Receiving buffer is registered, the received data is accumulated in the buffer for receiving. To read
the data from the buffer, call the NNS McsReadStream function. Use the

NNS McsGetStreamReadableSize function to get the data size that can be read with a single call to
NNS McsReadStream. Use the NNS McsGetTotalStreamReadableSize function to get the total
size of data accumulated in the buffer for reading.

NTR-06-0312-001-A2 12 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 2-7 Reading the Received Data

static u8 sBuf[10247];
u32 nLength = NNS McsGetStreamReadableSize (MCS CHANNEL ID);

if (nLength > 0)
{
u32 readSize;
BOOL result = NNS McsReadStream (
MCS_CHANNEL_ID, // Channel value

sBuf, // Pointer to the buffer for reading
sizeof (sBuf), // Size of the buffer for reading
&readSize) ; // Pointer to the variable that stores the

// size actually read
if (result)
{
// Read OK
}

else

{
// Read failure
}

2.1.7 Writing Data

Use the NNS_McsWriteStream function to write data. Use the NNS McsGetStreamWritableLength
function to get the size of the data that can be written at that time. If the size of the data to be written with
NNS_McsWriteStream is less than the size that can be obtained by
NNS_McsGetStreamWritableLength, then NNS McsWriteStream ends immediately. If the data
size is larger than the size that can be obtained with NNS McsGetStreamWritableLength, then calls
to NNS_ McsWriteStream are blocked until writing of the specified size has completed.

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 2-8 Writing Data

u8 sendBuf[32];
u32 nLength;

// Get the writable size of data
if (NNS McsGetStreamWritableLength (&nLength))
{
// Write if can write without blocking
if (sizeof (sendBuf) <= nLength)
{
// Write
if (! NNS McsWriteStream
MCS_CHANNEL_ID,
sendBuf,
sizeof (sendBuf)))
{
// Write succeeds
}
else
{
// Write fails
}

2.1.8 When the Opened Device is IS-NITRO-UIC

When the opened device is IS-NITRO-UIC and the NNS_McsWriteStream function is called while the
mcs server is not connected to IS-NITRO-UIC, NNS McsWriteStread does not return control until
the mcs server connects to the device. If this is going to be a problem, call the
NNS_McsIsServerConnect function to check whether the mcs server is connected. If the mcs server
is connected, NNS_McsIsServerConnect will return TRUE.

The communications state of the mcs server is checked by using the mcs communications functionality.

Therefore, there may be a slight time lag before the actual connection state of the mcs server gets
reflected.

NTR-06-0312-001-A2 14

© 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 2-9 Waiting for mcs Server Connection

NNSMcsDeviceCaps deviceCaps;

if (NNS_ McsOpen (&deviceCaps))
{
// Wait for connection from mcs server
while (! NNS McsIsServerConnect())
{
SVC WaitVBlankIntr();
}

2.2 Procedures in Windows

2.2.1 Read DLL and Get Function Address

The library for Windows is provided in the form of the dynamic link library nnsmcs.d11. This file can
be found in the tools¥win¥mcsserver directory under the directory where NITRO-System was
installed.

The functions exported with this library are the functions for opening the stream, NNS McsOpenStream
and NNS_McsOpenStreamEx. Get the addresses for these functions as needed.

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 2-10 Reading DLL and Getting Function Address

#include <nnsys/mcs.h>

_TCHAR modulePath[MAX PATH];
DWORD writtenChars;

HMODULE hModule;
NNSMcsPFOpenStream pfOpenStream;

// Obtain the absolute path for nnsmcs.dll
writtenChars = ExpandEnvironmentStrings (
_T("SNITROSYSTEM ROOTS¥¥tools¥¥win¥¥mcsserver¥¥nnsmcs.dll"),
modulePath,
MAX PATH) ;
if (writtenChars > MAX PATH)
{
// Path is too long
return 1;

hModule = LoadLibrary (modulePath) ;
if (NULL == hModule)
{
// Reading of module fails
return 1;

}

// Get address of function

pfOpenStream = (NNSMcsPFOpenStream)GetProcAddress (
hModule,
NNS MCS API OPENSTREAM) ;

2.2.2 Open the Stream

In Windows, a stream gets opened for every channel. Open the stream using the functions
NNS_McsOpenStream Or NNS McsOpenStreamEx. NNS_McsOpenStreamEx has the same features
as NNS_McsOpenStrean plus the ability to get information about the connected device.

A stream is actually a Win32 System named pipe. The NNS McsOpenStream (Ex) function opens the
named pipe as a message type and registers the specified channel to the mcs server.

NTR-06-0312-001-A2 16 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 2-11 Opening a Stream

HANDLE hStream;

// Open the stream
hStream = pfOpenStream(

MCS_CHANNEL ID, // Channel value
0); // Flag
if (hStream == INVALID HANDLE VALUE)

{
// Open fails
return 1;

2.2.3 Read from the Stream

To read the stream, use the Win32 APl ReadFile or ReadFileEx. To get the readable size, use
PeekNamedPipe.

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 2-12 Reading from the Stream

static BYTE buf[1024];
DWORD totalBytesAvail;
BOOL fSuccess;

fSuccess = PeekNamedPipe (
hStream, // Stream's handle
NULL,
OI
NULL,
&totalBytesAvail, // Number of bytes available
NULL) ;
if (! fSuccess)

// Peek fails
return 1;
// When there is readable data:

if (totalBytesAvail > 0)

DWORD readBytes;

fSuccess = ReadFile (
hStream, // Stream's handle
buf, // Pointer to Reading buffer
sizeof (buf), // Number of bytes to read
&readBytes, // Number of bytes actually read
NULL) ;

if (! fSuccess)

// Read fails
return 1;

2.2.4 Write to Stream

To write to the stream, use the Win32 APl WiriteFile or WriteFileEx.

NTR-06-0312-001-A2 18 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 2-13 Writing to the Stream

static BYTE buf[1024];
BOOL fSuccess;
DWORD writtenBytes;

fSuccess = WriteFile(

hStream, // Stream's handle
buf, // Pointer to Writing buffer
sizeof (buf), // Number of bytes to write
swrittenBytes, // Number of bytes actually written
NULL) ;

if (! fSuccess)

// Write fails
return 1;

2.2.5 Close the Stream

To close the stream, use the Win32 APl CloseHandle.

Code 2-14 Closing the Stream

// Close the stream
CloseHandle (hStream) ;

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

3 File Searches and File Read/Write

The mcs library has features to read and write to PC files from the Nintendo DS program, and to
search for files on the PC from the Nintendo DS program. The following diagram illustrates the concept.

| Nintendo DS | | PC |

Directory

|

Search for file D D

-~
v

Program for
Nintendo DS ¢)

mcs server

File

Read/write to file

-~
v

Fig. 3-1 Searching Files and Reading/Writing to Files

There is no Windows library for these features. Reading and writing become possible when the mcs
server is connected to a Nintendo DS device.

The following sections explain the procedures for file searching and for file reading/writing.

3.1 Initialize the mcs File Input/Output Library

To use the features for file searching and file reading/writing, call the NNS McsInit function to
initialize the mcs library, then call and initialize the NNS McsInitFileIO function.

NNS McsInit(); // Initialize the mcs library
NNS McsInitFileIO(); // Initialize the file I/O features
NTR-06-0312-001-A2 20 © 2004-2005 Nintendo

Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

3.2 File Reading and Writing

3.2.1 Open the File

To open a file on the PC, call the NNS_McsOpenFile function. As arguments, specify the pointer to the
previously secured NNSMcsFile type variable, the name of the file to open, and the read/write flag. If
the file is opened successfully, the function returns 0 and the information pertaining to the opened file is
entered in the NNSMcsFile type variable. If the process fails, the function returns a nonzero value.

Code 3-1 Opening a File

NNSMcsFile infoRead;
NNSMcsFile infoWrite;
u32 errCode;

// Open file for reading
errCode = NNS McsOpenFile (

&infoRead,

"c:¥YtestApp¥¥test.txt", // File name

NNS_MCS FILEIO FLAG READ); // Reading mode
if (errCode != 0)

// File fails to open
return 1;

}

// Open file for writing
errCode = NNS McsOpenFile (
&infoWrite,
"c:¥¥testApp¥¥outTest.txt",
NNS_MCS_FILEIO FLAG WRITE);
if (errCode != 0)
{
// File fails to open
return 1;

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

3.2.2 Read from File

To read the file, use the NNS McsReadFile function. The size of the file can be obtained with the
NNS McsGetFileSize function.

Code 3-2 Reading from File

static u8 buf[1024];
u32 errCode;
u32 fileSize;
u32 readSize;

// Get the size of the file
fileSize = NNS McsGetFileSize (&infoRead);

if (fileSize <= sizeof (buf))

{
// Read entire file at once
errCode = NNS McsReadFile (

&infoRead,

buf, // Pointer to the Reading buffer

fileSize, // Number of bytes to read

&readSize) ; // Number of bytes actually read
if (errCode != 0)

// Reading from file fails
return 1;

3.2.3 Wirite to File

To write to the file, use the NNS_ McsWriteFile function.

Code 3-3 Writing to File

static u8 buf[1024];
u32 errCode;
u32 fileSize;
u32 readSize;

// Write everything in buf
errCode = NNS McsWriteFile (

&infoWrite,
buf, // Pointer to the Writing buffer
sizeof (buf)); // Number of bytes to write

if (errCode != 0)

// Writing to file fails
return 1;

NTR-06-0312-001-A2 22 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

3.2.4 Close the File

To close the file, use the NNS_McsCloseFile function.

Code 3-4 Closing the File

u32 errCode;

errCode = NNS McsCloseFile (&infoRead) ;
if (errCode)

{
// Closing of file fails
return 1;

3.2.5 Moving the File Pointer

Use the NNS_McsSeekFile function to move the current file pointer. By passing a u32 type variable
pointer, the position of the moved file pointer can be obtained.

Code 3-5 Moving the File Pointer

u32 errorcode;
u32 filePointer // variable for storing the file pointer position

// Move to the 100™ byte from the start of the file
errCode = NNS McsSeekFile (&infoRead, 100, NNS MCS FILEIO SEEK BEGIN, NULL);

// Move 200 bytes from the current file pointer position

// Get the position of the moved file pointer

errCode = NNS McsSeekFile (&infoRead, 200, NNS MCS FILEIO SEEK CURRENT,
&filePointer) ;

// Get the current file pointer position

// Do not move the file pointer

errCode = NNS McsSeekFile (&infoRead, 0, NNS MCS FILEIO SEEK CURRENT,
&filePointer) ;

3.3 File Searching

3.3.1 Start File Search

To conduct a file search, first call the NNS McsFindFirstFile function, using for its arguments the
pointer to the previously secured NNSMcsFile type variable, the pointer to the previously secured
NNSMcsFileFindData type variable, and the pattern character string of the file to search for.

If the function finds a matching file, it returns 0 and sets the search-related information in the NNSMcsFile type
variable and sets the information pertaining to the found file in the NNSMcsFileFindData type variable. If the
file that matches the pattern was not found, NNS_MCS FILEIO ERROR NOMOREFILES is returned.

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Code 3-6 Starting File Search

NNSMcsFile info;
NNSMcsFileFindData findData;
u32 errCode;

errCode = NNS McsFindFirstFile (
&info,
&findData,
"c:¥¥testApp¥¥*r.txt");

// File with matching pattern was not found
if (errCode == NNS MCS FILEIO ERROR NOMOREFILES)
{

O0S_Printf ("no match *.txt .¥n");

return 0;

if (errCode != 0)

// File search fails
return 1;

3.3.2 Continue File Search

To search for the next pattern that matches, call the NNS_McsFindNextFile function, using the pointer
to the NNSMcsFile type variable that was specified when NNS McsFindFirstFile was called, and
the pointer to the previously secured NNSMcsFileFindData type variable. If the function finds a
matching file, it returns 0 and sets the search-related information in the NNSMcsFile type variable and
the information pertaining to the found file in the NNSMcsFileFindData type variable, just like with the
NNS McsFindFirstFile function. If there is no file that matches the pattern, it returns

NNS MCS FILEIO ERROR NOMOREFILES.

Code 3-7 Continuing File Search

do
{
// Display the file name
O0S Printf ("find filename %s¥n", findData.name);

// Search for the next file with a matching pattern
errCode = NNS McsFindNextFile (&info, &findData);
l}while (errCode == 0);

if (errCode != NNS_MCS FILEIO ERROR NOMOREFILES)
{
// File search fails

NTR-06-0312-001-A2 24 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

3.3.3 End File Search

To end the file search, call the NNS_McsCloseFind function.

Code 3-8 Ending File Search

errCode = NNS McsCloseFind(&info);
if (errCode != 0)
{
// Failed to end file search
return 1;

© 2004-2005 Nintendo NTR-06-0312-001-A2

Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

4 Outputting Character Strings to the Console

The mcs library provides features for outputting strings to the mcs server's console. There are two

ways to output these character strings: by using the NITRO-SDK function 0S_Printf, or by using one
of the mcs library's string output functions. Both of these methods have advantages and disadvantages,
so use them according to the situation.

41 Output with OS_Printf Function

If you output using the 0S_ Printf function, the string will be displayed on the mcs console only if the
connected device is IS-NITRO-EMULATOR. The string will not be displayed on the console of the mcs
server if the connected device is IS-NITRO-UIC or ensata.

The advantage of this method is that the same procedure can be used to output strings to other
applications that support 0S_Printf, such as IS-NITRO-DEBUGGER.

4.2 Output with mcs String Output Functions

With the string output feature of mcs, the strings can be output no matter what the connected device,
as long as mcs communications have been established. However, the output can only go to the
console of the mcs server.

Following is an explanation of how to use the string output function of mcs.

4.2.1 Initialize the Character String Output Library

To use the features for outputting character strings, you must first call the NNS McsInit function to
initialize the mcs library, then initialize the features by calling the NNS McsInitPrint function.

Code 4-1 Initilzaing the Character String Output Library

NNS McsInit(); // Initialize the mcs library

NNS McsInitPrint (); // Initialize the string output feature

4.2.2 Output Character String

To simply output a character string, use the NNS_McsPutString function. To output a formatted string,
use the NNS McsPrintf function.

Code 4-2 Outputting a Character String

u32 val = 16;

NNS McsPutString (“print string¥n”);
NNS McsPrintf (“val = %d¥n”, val);

NTR-06-0312-001-A2 26 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

5 About the mcs Server

The mcs server is a program that bridges communications to enable simultaneous communications
between Nintendo DS programs and multiple Windows applications on a PC. The mcs server also
provides features that allow Nintendo DS programs to access files on the PC and to output character
strings to the console of the mcs server.

5.1 General Operations Flow

5.1.1 Connect

To perform communication between the Windows application and Nintendo DS program, or to access
files on PC from the Nintendo DS program, or to output character strings to the mcs server console, it
is necessary to first connect to the hardware that runs the Nintendo DS program.

If an IS-NITRO-EMULATOR device and an IS-NITRO-UIC device are both connected on the PC,
connect to the IS-NITRO-UIC device. If two or more devices of the same kind exist, the mcs server will

connect to the first device that was found.

5.1.2 Load ROM File (if Device is IS-NITRO-EMULATOR)

If the mcs server is connected to an IS-NITRO-EMULATOR device, load the ROM file after the
connection is established. Select Open from the File menu. When the File dialog box appears, select
the file you want to read. After the file has been loaded, the Nintendo DS program will start.

If the mcs server is connected to an IS-NITRO-UIC device, you cannot load a ROM file.

5.1.3 Disconnect

To end communications, select Disconnect from the Device menu.

5.1.4 Reset (if Device is IS-NITRO-EMULATOR)

If the connected device is an IS-NITRO-EMULATOR, you can reset the system by selecting Reset
from the Device menu.

If the mcs server is connected to an IS-NITRO-UIC device, you cannot perform a reset.

5.2 Special Situations

5.2.1 Connecting with ensata

To connect to ensata, select ensata from the Device menu to place a check mark next to “ensata”.

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Next, select Connect from the Device menu. This starts up ensata. Loading a ROM file after this
enables communications with a Nintendo DS program running on ensata.

5.2.2 Share Mode and Exclusive Mode

The mcs server has two modes: share mode and exclusive mode. When Share Mode in the Resource
menu is checked, it is in share mode, otherwise it is in exclusive mode.

Exclusive mode is designed to allow only one Windows application at a time to communicate with the
Nintendo DS program.

When the channel value is seen in hexadecimal, the upper 12 bits are taken as the group value.
Connections are allowed only to channels with the same group value as that of the first connected
channel. Connections to channels in other groups are denied.

In share mode, there are no such restrictions.

5.2.3 Command Line Options

Parameters are passed when starting the mcs server. The switch is not case-sensitive.

mcsserv [/U] [/E] [/A] [ROM filename]

/U Connect to device after startup. Invalid
if ROM file has been specified.
/E Connect to ensata.
/A Turn on power to IS-NITRO-EMULATOR GBA Game Pak slot.

Valid when connected to IS-NITRO-EMULATOR.

ROM filename After startup, connect and load specified file. Valid
when mcs server connected to IS-NITRO-EMULATOR.

5.2.4 Powering ON the IS-NITRO-EMULATOR GBA Game Pak Slot

When the command line option /2 is specified, power will be turned on to the GBA Game Pak slot
when connecting to the IS-NITRO-EMULATOR device. This enables simultaneous use of hardware
that supports the GBA Game Pak slot.

Do not insert or remove Game Paks while power is ON to the Game Pak slot, as this could
damage the Game Pak.

5.2.5 About the Interval for Obtaining Data from the Nintendo DS

While the mcs server is connected to hardware that is run by a program for the Nintendo DS, it is
checking for a fixed time interval regardless of whether there is any data to be sent from the Nintendo
DS to the Windows application. This time interval can be changed in the Options dialog box. For
example, if the operations of the program for the Nintendo DS start to slow down when sending a large
amount of data to the Windows application, there are cases where shortening this time interval will

NTR-06-0312-001-A2 28 © 2004-2005 Nintendo
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

improve those operations. However, if the time interval is shortened, the processing load in Windows
will increase proportionally.

© 2004-2005 Nintendo NTR-06-0312-001-A2
Released: November 15, 2005

NITRO-System Multiple Channel Stream Library

Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation in the U.S. and other countries.

All other company names and product names mentioned in this document are the registered trademarks or trademarks of those other
companies.

© 2005 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo Co. Ltd.

NTR-06-0312-001-A2 30 © 2004-2005 Nintendo
Released: November 15, 2005

	1 Introduction
	2 Communications Between Nintendo DS Programs and Windows Applications
	2.1 Procedures on the Nintendo DS
	2.1.1 Initialize the mcs Library
	2.1.2 Configure the Way to Receive Data
	2.1.2.1 Register a Callback Function
	2.1.2.2 Register a Buffer

	2.1.3 Open the Device
	2.1.4 Configure Interrupts
	2.1.5 Polling
	2.1.6 Reading Data
	2.1.6.1 When a Callback Function has been Registered
	2.1.6.2 When a Receiving Buffer has been Registered

	2.1.7 Writing Data
	2.1.8 When the Opened Device is IS-NITRO-UIC

	2.2 Procedures in Windows
	2.2.1 Read DLL and Get Function Address
	2.2.2 Open the Stream
	2.2.3 Read from the Stream
	2.2.4 Write to Stream
	2.2.5 Close the Stream

	3 File Searches and File Read/Write
	3.1 Initialize the mcs File Input/Output Library
	3.2 File Reading and Writing
	3.2.1 Open the File
	3.2.2 Read from File
	3.2.3 Write to File
	3.2.4 Close the File
	3.2.5 Moving the File Pointer

	3.3 File Searching
	3.3.1 Start File Search
	3.3.2 Continue File Search
	3.3.3 End File Search

	4 Outputting Character Strings to the Console
	4.1 Output with OS_Printf Function
	4.2 Output with mcs String Output Functions
	4.2.1 Initialize the Character String Output Library
	4.2.2 Output Character String

	5 About the mcs Server
	5.1 General Operations Flow
	5.1.1 Connect
	5.1.2 Load ROM File (if Device is IS-NITRO-EMULATOR)
	5.1.3 Disconnect
	5.1.4 Reset (if Device is IS-NITRO-EMULATOR)

	5.2 Special Situations
	5.2.1 Connecting with ensata
	5.2.2 Share Mode and Exclusive Mode
	5.2.3 Command Line Options
	5.2.4 Powering ON the IS-NITRO-EMULATOR GBA Game Pak Slot
	5.2.5 About the Interval for Obtaining Data from the Nintendo DS

