
© 2004-2005 Nintendo NTR-06-0140-001-A2
Released: November 15, 2005

VRAM Managers

Version 1.0.0

The contents in this document are highly
confidential and should be handled accordingly.

VRAM Managers NITRO System

NTR-06-0140-001-A2 2 © 2004-2005 Nintendo
Released: November 15, 2005

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

NITRO System VRAM Managers

© 2004-2005 Nintendo 3 NTR-06-0140-001-A2
Released: November 15, 2005

Table of Contents
1 Introduction ...6

2 Overview of the VRAM Managers ...7
2.1 Common Functions of the VRAM Managers ..7
2.2 The Texture and Palette VRAM Managers ...8

2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM Manager...8
2.2.1.1 Allocating 4 × 4 Texel Compressed Texture Memory..8

2.2.2 NNSGfdTexKey ..8
2.2.2.1 NNSGfdTexKey Operation..8

2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM Manager ..9
2.2.3.1 Allocating Four-Color Palette Memory..9

2.2.4 NNSGfdPlttKey ..9
2.2.4.1 NNSGfdPlttKey Operation ..9

2.3 VRAM Managers Provided in the NITRO System ..9

3 The Frame VRAM Managers ..10
3.1 The Frame Texture VRAM Manager...10

3.1.1 Initializing the Frame Texture VRAM Manager ...10
3.1.2 Allocating Texture Memory ... 11
3.1.2.1 Allocating Standard Texture Memory .. 11
3.1.2.2 Operation for 4 × 4 Texel Compressed Texture Memory Requests ..12

3.1.3 Releasing Texture Memory...13
3.1.4 Saving and Restoring Frame Texture VRAM Manager States..13
3.1.4.1 Saving the Use State of Texture Memory..13
3.1.4.2 Restoring a Use State of Texture Memory ..13
3.1.4.3 Returning to the Initial Use State of Texture Memory..14

3.2 The Frame Palette VRAM Manager ...14
3.2.1 Initializing the Frame Palette VRAM Manager..14
3.2.2 Allocating Palette Memory..15
3.2.2.1 Direction of Allocation for Palette Memory..15

3.2.3 Releasing Palette Memory ...15
3.2.4 Saving and Restoring Frame Palette VRAM Manager States ..15
3.2.4.1 Saving the Use State of Palette Memory ..15
3.2.4.2 Restoring a Use State of Palette Memory...16
3.2.4.3 Returning to the Initial Use State of Palette Memory ..16

4 The Linked-List VRAM Manager ...17
4.1 The Linked-List Texture VRAM Manager..17

4.1.1 Initialization of the Manager ...17
4.1.2 Allocating Memory for Textures ..18
4.1.3 Deallocating Memory for Textures..18

VRAM Managers NITRO System

NTR-06-0140-001-A2 4 © 2004-2005 Nintendo
Released: November 15, 2005

4.2 The Linked-List Palette VRAM Manager ..19
4.2.1 Initialization...20
4.2.2 Allocating and Deallocating Palette Memory ..20

Tables
Table 2-1 Common Functions for VRAM Managers ..7
Table 2-2 Function Pointers Referenced in the Common Functions..7

Figures
Figure 3-1 Sketch of the Frame Texture VRAM Manager..10
Figure 3-2 Allocating Standard Texture Memory..12
Figure 3-3 Allocating 4 × 4 Texel Compressed Texture Memory..12
Figure 3-4 Allocating 4 × 4 Texel Compressed Texture Memory from Region 3 ..13
Figure 3-5 Sketch of the Frame Palette VRAM Manager ..14
Figure 3-6 Allocating Palette Memory..15
Figure 4-1 The Linked-List VRAM Manager ..17
Figure 4-2 Allocating Memory for Textures ..18
Figure 4-3 Deallocating Memory for Textures..19
Figure 4-4 An Example of when the Empty List Joining Process Fails ..19

NITRO System VRAM Managers

© 2004-2005 Nintendo 5 NTR-06-0140-001-A2
Released: November 15, 2005

Revision History
Version Revision Date Description

1.0.0 01/05/2005 Changed an instance of “NITRO” to “Nintendo DS.”

0.2.0 10/03/2004 Added a chapter on the Linked-List VRAM Manager.

0.1.0 07/16/2004 Initial version.

VRAM Managers NITRO System

NTR-06-0140-001-A2 6 © 2004-2005 Nintendo
Released: November 15, 2005

1 Introduction
When using the Nintendo DS 3D graphics engine to draw textured polygons, textures need to be
stored in VRAM. The NITRO System includes VRAM managers so the programmer does not need to
manage the fine details of texture positioning in the VRAM. VRAM managers dynamically allocate and
release memory from VRAM.

NITRO System VRAM Managers

© 2004-2005 Nintendo 7 NTR-06-0140-001-A2
Released: November 15, 2005

2 Overview of the VRAM Managers

2.1 Common Functions of the VRAM Managers
Methods for efficiently handling VRAM content may differ widely by application. For this reason, a
unique VRAM manager may be provided depending on the application. A mechanism is provided to
allow replacing the VRAM manager used by the NITRO-System graphics library.

Four functions are defined, as shown in the table below, to allow memory allocation and release to be
carried out using the same functions regardless of the type of VRAM manager being used with the
NITRO System.

Table 2-1 Common Functions for VRAM Managers

Function Name Function Processing
NNS_GfdAllocTexVram() Allocates texture memory from VRAM

NNS_GfdFreeTexVram() Releases texture memory allocated from VRAM
NNS_GfdAllocPlttVram() Allocates palette memory from the palette RAM
NNS_GfdFreePlttVram() Releases palette memory allocated from palette RAM

These functions internally call functions registered to function pointers to do the actual processing. By
default, a function that does not perform any processes and returns an error is registered. Function
pointers referenced internally by these functions are defined as the following global variables.

Table 2-2 Function Pointers Referenced in the Common Functions

Functions Referencing a
Pointer

Function Pointer Type Function Pointer Variable

NNS_GfdAllocTexVram() NNSGfdFuncAllocTexVram NNS_GfdDefaultFuncAllocTexVram
NNS_GfdFreeTexVram() NNSGfdFuncFreeTexVram NNS_GfdDefaultFuncFreeTexVram
NNS_GfdAllocPlttVram() NNSGfdFuncAllocPlttVram NNS_GfdDefaultFuncAllocPlttVram
NNS_GfdFreePlttVram() NNSGfdFuncFreePlttVram NNS_GfdDefaultFuncFreePlttVram

The NITRO System graphics library that uses VRAM managers allocates and releases memory from
VRAM by using these four functions. To change the VRAM manager used by the library, register to the
function pointer the function for allocating and releasing memory included in the desired VRAM
manager.

VRAM Managers NITRO System

NTR-06-0140-001-A2 8 © 2004-2005 Nintendo
Released: November 15, 2005

2.2 The Texture VRAM Manager and Palette VRAM Manager
There are two main VRAM managers. One is the texture VRAM manager for allocating and releasing
texture memory, and the other is the palette VRAM manager for allocating and releasing palette
memory.

2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM
Manager

Use the below functions to allocate or release texture memory with the texture VRAM manager.

// Allocating memory from the texture VRAM
NNSGfdTexKey NNS_GfdAllocTexVram(u32 szByte, BOOL is4x4comp, u32 opt);

// Releasing memory from the texture VRAM
int NNS_GfdFreeTexVram(NNSGfdTexKey key);

The NNS_GfdAllocTexVram function allocates the amount of texture memory specified by szSize
from the VRAM, and returns the NNSGfdTexKey type value indicating the allocated texture memory. If
the allocation of the texture memory failed, the constant NNS_GFD_ALLOC_ERROR_TEXKEY is returned.

The NNS_GfdFreeTexVram function releases the texture memory specified by the NNSGfdTexKey
type value. If the release succeeds, 0 is returned.

2.2.1.1 Allocating Memory for 4 × 4 Texel Compressed Texture
The texture VRAM manager has a feature that allows allocation of a memory region for 4 × 4 texel
compressed texture. If the second argument is4x4comp of NNS_GfdAllocTexVram function, which
is a function for allocating texture memory, is TRUE, a region for texture palette index data is allocated
at the same time as allocation of a region for texture image data. If either of these regions cannot be
allocated, calling the NNS_GfdAllocTexVram function fails.

2.2.2 NNSGfdTexKey
NNSGfdTexKey is a 32-bit integer value that functions as a key for identifying texture memory
allocated by the texture VRAM manager. NNSGfdTexKey is generated from the texture memory
address and size, as well as a flag indicating the 4 × 4 texel compressed texture memory.

2.2.2.1 Operation for NNSGfdTexKey
In order to transfer texture data to allocated texture memory, the actual VRAM address must be
obtained. The texture VRAM manager provides a function to find the VRAM address and size from
NNSGfdTexKey.

// Getting the address from NNSGfdTexKey
u32 NNS_GfdGetTexKeyAddr(NNSGfdTexKey memKey);

// Getting the size from NNSGfdTexKey
u32 NNS_GfdGetTexKeySize(NNSGfdTexKey memKey);

// Finding out whether NNSGfdTexKey is for compressed texture
BOOL NNS_GfdGetTexKey4x4Flag(NNSGfdTexKey memKey);

NITRO System VRAM Managers

© 2004-2005 Nintendo 9 NTR-06-0140-001-A2
Released: November 15, 2005

2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM
Manager

Use the following functions to allocate and release palette memory with the palette VRAM manager.

// Allocating memory from the palette RAM
NNSGfdPlttKey NNS_GfdAllocPlttVram(u32 szByte, BOOL is4pltt, u32 opt);

// Releasing memory from the palette RAM
int NNS_GfdFreePlttVram(NNSGfdPlttKey key);

NNS_GfdAllocPlttVram allocates the amount of palette memory specified by szSize from the palette
RAM, and returns the NNSGfdPlttKey type value indicating the allocated palette memory. If the
allocation of the palette memory failed, the constant NNS_GFD_ALLOC_ERROR_PLTTKEY is returned.

NNS_GfdFreeＰｌｔｔVRam then releases the palette memory specified by NNSGfdplttKey. If the
release succeeds, 0 is returned.

2.2.3.1 Allocating Memory for Four-Color Palette
For allocating four-color color palette memory using the palette VRAM manager, specify TRUE for the
second argument is4pltt of NNS_GfdAllocPlttVram function, which is a function for allocating
palette memory. When this is set, a determination is made whether memory was allocated at a position
that allows for a four-color palette. (Four-color palettes cannot be placed at 0x10000 or higher.)

2.2.4 NNSGfdPlttKey
NNSGfdPlttKey is a 32-bit integer value that functions as a key for identifying palette memory
allocated from the palette VRAM manager. NNSGfdPlttKey is generated from the address and size of
the allocated palette memory.

2.2.4.1 Operation for NNSGfdPlttKey
To transfer palette data to allocated palette memory, the actual palette RAM address must be obtained.
The palette VRAM manager provides a function to find the palette RAM address and size from
NNSGfdPlttKey.

// Getting the address from NNSGfdPlttKey.
u32 NNS_GfdGetPlttKeyAddr(NNSGfdPlttKey memKey)

// Getting the size from NNSGfdPlttKey
u32 NNS_GfdGetPlttKeySize(NNSGfdPlttKey memKey)

2.3 VRAM Managers Provided in the NITRO System
As explained in 2.1, the functions for allocating and releasing memory provided by the NITRO System
VRAM managers in their initial state do not execute processing. For the future, VRAM managers are
planned for NITRO-System that will have additional memory management functions for memory
allocation and release. However, currently, only the frame VRAM manager (the frame texture VRAM
manager and the frame palette VRAM manager) and the linked list VRAM manager (linked list texture
VRAM manager and linked list palette VRAM manager) are provided.

VRAM Managers NITRO System

NTR-06-0140-001-A2 10 © 2004-2005 Nintendo
Released: November 15, 2005

3 The Frame VRAM Managers
Like the Foundation library frame heap managers, the frame VRAM managers can only allocate
memory blocks with a specified size and to release all allocated memory blocks simultaneously. The
trade-off is that because the memory blocks do not have any management information, high memory
efficiency is achieved. The frame VRAM managers have the following characteristics.

� No memory management region is required.
� Memory blocks are allocated from the lowest address and highest address of each VRAM slot

without any gaps.
� It is not possible to release allocated memory blocks individually.
� All the allocated memory blocks can be released simultaneously.
� Memory block allocation states can be saved and restored.

3.1 The Frame Texture VRAM Manager
A diagram of the frame texture VRAM manager is shown in Figure 3-1. The frame texture VRAM
manager splits VRAM into five regions for management. Each region has two pointers at the top and
bottom of that region. These two pointers indicate the boundaries between the used and unused
regions; the area between the two pointers is unused. Texture memory is allocated from the highest
address and lowest address of the regions, and every time memory is allocated, the two pointers move
toward the center of the region.

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

top pointer

bottom
pointer

Figure 3-1 Diagram of the Frame Texture VRAM Manager

3.1.1 Initializing the Frame Texture VRAM Manager

Before using the frame texture VRAM manager, it must be initialized. Use the following function to
initialize.

NITRO System VRAM Managers

© 2004-2005 Nintendo 11 NTR-06-0140-001-A2
Released: November 15, 2005

void NNS_GfdInitFrmTexVramManager(u16 numSlot, BOOL useAsDefault)；
The first argument numSlot specifies the number of slots for the frame texture VRAM manager to
manage. The frame texture VRAM manager is initialized to manage the number of VRAM slots
specified by numSlot beginning at VRAM slot 0. The maximum value that may be specified for
numSlot is 4.

If TRUE is specified for the second argument useAsDefault, a function pointer is initialized when
either NNS_GfdAllcTexVram() or NNS_GfdFreeTexVram() (common functions for the texture
VRAM manager) is called, so the memory allocation and release functions of the frame texture VRAM
manager can be used. This argument should be set to TRUE, except in special situations such as
when replacing the texture VRAM manager processing later on.

3.1.2 Allocating Memory for Texture

To allocate memory for texture, the texture VRAM manager common function
NNS_GfdAllocTexVram is normally used.

NNSGfdTexKey NNS_GfdAllocTexVram(u32 szByte, BOOL is4x4comp, u32 opt);

The third argument opt of the NNS_GfdAllocTexVram function is not used with the frame texture
VRAM manager.

The specific operations of the managers are described below. Refer to the example in the description
as the case where 4 is passed as the parameter numSlot (the number of slots the manager manages)
during initialization. (The manager will slightly change the search order of the empty region depending
on the value of numSlot.)

3.1.2.1 Allocating Memory for Standard Texture
To allocate memory for standard texture (other than 4 × 4 texel compressed texture), specify FALSE for
the second argument is4x4comp.

To allocate memory for standard texture, allocate the memory using the top pointer for each region.
The frame texture VRAM manager first tries to allocate memory from region 4. If there is not enough
free space for allocation, the manager then attempts to allocate from regions 3, 0, 2 and 1, in that order.

VRAM Managers NITRO System

NTR-06-0140-001-A2 12 © 2004-2005 Nintendo
Released: November 15, 2005

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

used
region

used
region

Figure 3-2 Allocating Standard Texture Memory

3.1.2.2 Operation when Requesting Memory for 4 × 4 Texel Compressed Texture
To allocate 4 × 4 texel compressed texture memory, specify TRUE for the second argument
is4x4comp.

To allocate memory for 4 x 4 texel compressed texture, first an attempt is made to allocate that
memory using the bottom pointer of region 0. To store 4 × 4 texel compressed texture in the VRAM, the
texture palette index data also needs to be stored at the same time at the position corresponding to the
address where the texture image data is placed. Therefore, a region for texture palette index data is
allocated at the same time using the bottom pointer for region 1.

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

texture

image

data

texture

palette

index

data

Figure 3-3 Allocating 4 × 4 Texel Compressed Texture Memory

If 4 × 4 texel compressed texture memory of the requested size cannot be allocated from region 0, an
attempt is made to allocate memory using the bottom pointer for region 3. At the same time, a region
for the texture palette index data is allocated using the bottom pointer for region 2.

NITRO System VRAM Managers

© 2004-2005 Nintendo 13 NTR-06-0140-001-A2
Released: November 15, 2005

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

texture

image
texture

palette

index

Figure 3-4 Allocating 4 × 4 Texel Compressed Texture Memory from Region 3

3.1.3 Releasing Texture Memory

Due to the characteristics of the memory management algorithm, the frame texture VRAM manager
does not allow allocated texture memory to be released individually.

The frame texture VRAM manager provides a NNS_GfdFreeFrmTexVram function as a function to
release memory, though this function returns without processing anything. This function is provided to
register the function pointer to NNS_GfdFreeTexVram(), which is a common function for the texture
VRAM manager.

3.1.4 Saving and Restoring Frame Texture VRAM Manager States

The frame texture VRAM manager has a feature to save the use state of texture memory and to
restore a saved texture memory use state.

3.1.4.1 Saving the Use State of Texture Memory
The below function is used to save the use state of texture memory.

NNS_GfdGetFrmTexVramState(NNSGfdFrmTexVramState* pState);

When the NNS_GfdGetFrmTexVramState function is called, the current use state of the texture
memory is written to the NNSGfdFrmTexVramState structure specified in the argument.

3.1.4.2 Restoring a Use State of Texture Memory
The below function is used to return the frame texture VRAM manager to a texture memory allocation
state saved using the NNS_GfdGetFrmTexVramState function.

void NNS_GfdSetFrmTexVramState(const NNSGfdFrmTexVramState* pState);

This operation releases texture memory allocated after a texture memory allocation state specified by
pState has been saved.

VRAM Managers NITRO System

NTR-06-0140-001-A2 14 © 2004-2005 Nintendo
Released: November 15, 2005

3.1.4.3 Returning to the Initial Use State of Texture Memory
The below function is used to return the frame texture VRAM manager to its initial state.

void NNS_GfdResetFrmTexVramState(void);

This operation releases all texture memory allocated from the frame texture VRAM manager.

3.2 The Frame Palette VRAM Manager
A diagram of the frame palette VRAM manager is provided in Figure 3-5. The frame palette VRAM
manager can allocate palette memory either from the beginning or the end of palette RAM. Top and
bottom pointers are provided for that purpose. These two pointers indicate the boundaries between the
used and unused regions; the area between two pointers is unused.

paletteRAM

top pointer

bottom
pointer

Figure 3-5 Diagram of the Frame Palette VRAM Manager

3.2.1 Initializing the Frame Palette VRAM Manager

Before using the frame palette VRAM manager, it must be initialized. Use the following function to
initialize.

void NNS_GfdInitFrmPlttVramManager(u32 szByte, BOOL useAsDefault)；

The first argument szSize specifies the size of the palette RAM managed by the frame palette VRAM
manager. The frame palette VRAM manager is initialized so as to manage the amount of palette RAM
specified by szSize in bytes starting at the beginning of the palette RAM.

If TRUE is specified for the second argument useAsDefault, a function pointer is initialized when
either NNS_GfdAllocPlttVram or NNS_GfdFreePlttVram (common functions for the palette
VRAM managers) is called, so the memory allocation and release functions of the frame palette VRAM
manager are used. This should be set to TRUE, except in special situations such as when replacing
the palette VRAM manager processing later on.

NITRO System VRAM Managers

© 2004-2005 Nintendo 15 NTR-06-0140-001-A2
Released: November 15, 2005

3.2.2 Allocating Memory for Palette
Normally, the palette VRAM manager common function NNS_GfdAllocPlttVram is used to allocate
palette memory.

NNSGfdPlttKey NNS_GfdAllocPlttVram(u32 szByte, BOOL is4Pltt, u32 opt);

3.2.2.1 Direction of Allocation for Palette Memory
With the frame palette VRAM manager, the third argument opt can be used to specify the direction of
the palette memory allocation. If NNS_GFD_ALLOC_FROM_LOW is specified in opt, allocation will be
made from the lowest address of the palette RAM. If NNS_GFD_ALLOC_FROM_HIGH is specified in opt,
allocation will be made from the highest address of the palette RAM.

paletteRAM

NNS_GFD_ALLOC_FROM_HIGH

NNS_GFD_ALLOC_FROM_LOW

used
region

used
region

Figure 3-6 Allocating Palette Memory

3.2.3 Releasing Palette Memory

Due to the characteristics of the memory management algorithm, the frame palette VRAM manager
does not allow allocated palette memory to be released individually.

The frame palette VRAM manager provides a NNS_GfdFreeFrmPlttVram function as a function to
release memory, though this function returns without processing anything. This is provided to register
the function pointer of NNS_GfdFreeFrmPlttVram, which is a common frame palette VRAM
manager function.

3.2.4 Saving and Restoring Frame Palette VRAM Manager States

The frame texture VRAM manager has the feature to save the use state of palette memory and to
restore saved palette memory use states.

3.2.4.1 Saving the Use State of Palette Memory
The following function is used to save a use state of palette memory.

NNS_GfdGetFrmPlttVramState(NNSGfdFrmPlttVramState* pState);

When the NNS_GfdGetFrmPlttVramState function is called, the current use state of palette
memory is written to the NNSGfdFrmPlttVramState structure specified in the argument.

VRAM Managers NITRO System

NTR-06-0140-001-A2 16 © 2004-2005 Nintendo
Released: November 15, 2005

3.2.4.2 Restoring a Use State of Palette Memory
To return the frame palette VRAM manager to the palette memory allocation state saved by using the
NNS_GfdGetFrmPlttVramState() function, the following function is used.

void NNS_GfdSetFrmPlttVramState(const NNSGfdFrmPlttVramState* pState);

This operation releases palette memory allocated after a palette memory allocation state specified by
pState has been saved.

3.2.4.3 Returning to the Initial Use State of Palette Memory
The below function is used to return the frame palette VRAM manager to its initial state.

void NNS_GfdResetFrmPlttVramState(void);

This operation releases all palette memory allocated from the frame palette VRAM manager.

NITRO System VRAM Managers

© 2004-2005 Nintendo 17 NTR-06-0140-001-A2
Released: November 15, 2005

4 The Linked-List VRAM Manager

Figure 4-1 The Linked-List VRAM Manager

The Linked-List VRAM Manager manages the VRAM region using the VRAM management information
in the main memory. The management information consists of the starting address and the byte size of
the VRAM region that will be managed.

The management information contains the reference information that references the previous and the
next management information and is set up as a doubly-linked list structure. The VRAM manager uses
this doubly-linked list of management information to manage the empty space scattered throughout
VRAM.

The characteristics of the linked-list VRAM manager are as follows:

� It can perform the sectional deallocation of VRAM regions.
� Its management information must be allocated in main memory.
� It has a processing load for searching the list of empty regions when allocating and deallocating.

4.1 The Linked-List Texture VRAM Manager
The texture VRAM manager individually manages the management region for the normal textures and
the management region for 4x4 compressed textures. If there is a request to allocate a region, this
manager searches for an empty region that fulfills that request from the empty region information list.

4.1.1 Initializing the Manager
void NNS_GfdInitLnkTexVramManager
(

u32 szByte,
u32 szByteFor4x4,
void* pManagementWork,
u32 szByteManagementWork,
BOOL useAsDefault

)

Starting Address
Region Size

VRAM
Management Information Block

The Management Information Doubly-linked List

VRAM Managers NITRO System

NTR-06-0140-001-A2 18 © 2004-2005 Nintendo
Released: November 15, 2005

When initializing, individually designate the size of the texture management region and the size of the
region within the texture management region to be used for 4x4 compressed texture. The texture
management region size must be larger than the region size used for the 4x4 compressed texture. The
manager initializes the free blocks with the designated size. The memory region used as the
management information is passed as an argument to pManagementWork. In order to compute the
size of the management information region, use

u32 NNS_GfdGetLnkTexVramManagerWorkSize(u32 numMemBlk)

numMemBlk specified here is the maximum number of blocks the empty memory region can be broken
up into.

The texture VRAM manager does not manage the region for the palette index of the 4x4 compressed
texture. Therefore, the region for the palette index is always not yet in use, and the user can assume
that it is always usable. Also, regions other than the regions for the palette index are initialized as
empty regions for normal textures.

4.1.2 Allocating Memory for Textures

If there is a new allocation request, the manager will search the list of empty regions to find a region
according to the type of region to be allocated (Normal or 4x4 Compressed). If an empty region that
meets the requirements is found, the empty region information is updated with the information that
subtracted the used region, and the allocated region is returned as a texture key.

Figure 4-2 Allocating Memory for Textures

4.1.3 Deallocating Memory for Textures

This section deals with the calculation of the memory region from the texture key to be deallocated. A
linear search is performed on the empty region list to determine if there are contiguous empty regions
at the highest address or the lowest address of the calculated region. If a contiguous region block is
found, those neighboring blocks are joined to form one region block. This process makes it harder for
memory fragmentation to occur.

Pre-Allocation

VRAM VRAM Empty Region List Empty Region List

Post-Allocation

NITRO System VRAM Managers

© 2004-2005 Nintendo 19 NTR-06-0140-001-A2
Released: November 15, 2005

Figure 4-3 Deallocating Memory for Textures

If the joining of the region blocks fails, a new empty region block is generated, and that block is added
to and registered in the empty region list. Be aware that in such an event, if there is insufficient
management information for the manager and a new empty region block cannot be obtained, the
deallocation of the memory region will fail.

Figure 4-4 An Example of when the Empty List Joining Process Fails

4.2 The Linked-List Palette VRAM Manager
In the same way as the texture VRAM manager, the palette VRAM manager manages the empty space
scattered throughout VRAM via a doubly-linked list of management information.

VRAM Empty Region List

Newly deallocated

VRAM region

VRAM Empty Region List

Registered as a

new empty

region

VRAM Empty Region List

Post-Deallocation
VRAM Empty Region List

Newly deallocated

VRAM region

Pre-Deallocation

Pre-Deallocation Post-Deallocation

VRAM Managers NITRO System

NTR-06-0140-001-A2 20 © 2004-2005 Nintendo
Released: November 15, 2005

4.2.1 Initialization
void NNS_GfdInitLnkPlttVramManager
(

u32 szByte,
void* pManagementWork,
u32 szByteManagementWork,
BOOL useAsDefault

);

Initialize the palette VRAM manager in the same way as the texture VRAM manager, by passing the
memory region used in the management information and its size as an argument.

4.2.2 Allocating and Deallocating Palette Memory

Memory allocation and deallocation is performed in essentially the same manner as with the texture
VRAM manager.

Since an 8-byte alignment is needed when allocating a 4-color palette, allocate an aligned region. The
empty blocks generated when performing the alignment are registered as free blocks. In order to avoid
unnecessary fragmentation of the management region, it is recommended that you allocate the regions
for 4-color palettes and palettes in other formats in good-sized groups.

NITRO System VRAM Managers

© 2004-2005 Nintendo 21 NTR-06-0140-001-A2
Released: November 15, 2005

© 2004-2005 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

	1 Introduction
	2 Overview of the VRAM Managers
	2.1 Common Functions of the VRAM Managers
	2.2 The Texture VRAM Manager and Palette VRAM Manager
	2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM Manager
	2.2.1.1 Allocating Memory for 4 × 4 Texel Compressed Texture

	2.2.2 NNSGfdTexKey
	2.2.2.1 Operation for NNSGfdTexKey

	2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM Manager
	2.2.3.1 Allocating Memory for Four-Color Palette

	2.2.4 NNSGfdPlttKey
	2.2.4.1 Operation for NNSGfdPlttKey

	2.3 VRAM Managers Provided in the NITRO System

	3 The Frame VRAM Managers
	3.1 The Frame Texture VRAM Manager
	3.1.1 Initializing the Frame Texture VRAM Manager
	3.1.2 Allocating Memory for Texture
	3.1.2.1 Allocating Memory for Standard Texture
	3.1.2.2 Operation when Requesting Memory for 4 × 4 Texel Compressed Texture

	3.1.3 Releasing Texture Memory
	3.1.4 Saving and Restoring Frame Texture VRAM Manager States
	3.1.4.1 Saving the Use State of Texture Memory
	3.1.4.2 Restoring a Use State of Texture Memory
	3.1.4.3 Returning to the Initial Use State of Texture Memory

	3.2 The Frame Palette VRAM Manager
	3.2.1 Initializing the Frame Palette VRAM Manager
	3.2.2 Allocating Memory for Palette
	3.2.2.1 Direction of Allocation for Palette Memory

	3.2.3 Releasing Palette Memory
	3.2.4 Saving and Restoring Frame Palette VRAM Manager States
	3.2.4.1 Saving the Use State of Palette Memory
	3.2.4.2 Restoring a Use State of Palette Memory
	3.2.4.3 Returning to the Initial Use State of Palette Memory

	4 The Linked-List VRAM Manager
	4.1 The Linked-List Texture VRAM Manager
	4.1.1 Initializing the Manager
	4.1.2 Allocating Memory for Textures
	4.1.3 Deallocating Memory for Textures

	4.2 The Linked-List Palette VRAM Manager
	4.2.1 Initialization
	4.2.2 Allocating and Deallocating Palette Memory

