
 2004-2007 Nintendo NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NITRO-Composer
Sound Programmer Guide

Version 1.2.4a

The contents in this document are highly

confidential and should be handled accordingly.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 2  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 3 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

Table of Contents

1 Introduction ...8

2 Sound Program Development Environment..9

2.1 NITRO System Build Environment ...9

2.2 File Organization ..9

2.2.1 Library File ...9

2.2.2 Header File...9

2.2.3 Sound Data ..9

2.2.4 ARM7 Component..9

3 Basic Implementation Example ...10

3.1 Development Environment ...10

3.1.1 Makefile..10

3.1.2 ROM Storage File... 11

3.1.3 Operational Procedure ... 11

3.2 The NitroMain Function .. 11

3.3 Basic Setup ..13

3.3.1 Initializing the OS and Other Processes...13

3.3.2 Initializing the Sound Library ..13

3.3.3 Creating the Sound Heap...13

3.3.4 Initializing the Sound Archive ...13

3.3.5 Setting Up the Player ...14

3.3.6 Stream Library Initialization ..14

3.3.7 Sound Frame Processing...14

3.4 Loading Sound Data...14

3.4.1 Loading Groups..15

3.5 Sequence Operation...15

3.5.1 Sound Handles...15

3.5.1.1 Using Sound Handles...15

3.5.1.2 What is a Sound Handle?...15

3.5.1.3 Disconnecting the Sequence..15

3.5.1.4 Tips for Creating Sound Handles..16

3.5.2 Sequence Playback..16

3.5.3 Sequence Archive Playback...16

3.5.4 Stopping the Sequence ..17

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 4  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

3.6 Other Demos ..17

3.6.1 stream ..17

3.6.2 stream-2 ...17

3.6.3 stream-3 ...17

3.6.4 moveVolume...17

3.6.5 onMemory ..17

3.6.6 reverb ...18
3.6.7 effect...18

3.6.8 outputEffect ..18

3.6.9 sampling...18

3.6.10 waveout ..18

3.6.11 micThrough...18

3.6.12 driverInfo...18

4 Heap Operations ...19

4.1 Overview...19

4.2 Memory Management Basics ...19

4.2.1 The Sound Heap and the Player Heap...19

4.2.2 Appropriate Usage of the Two Heaps...19

4.3 Sound Heap Operations ...19

4.3.1 Clearing the Heap ..20

4.3.2 Restoring the Heap to the Previous State...20

4.3.3 Multiple Sound Heaps ..21

4.4 Player Heap Operations ...21

4.4.1 Deleting the Player Heap..21

5 Stream Playback ...22

5.1 Initializing the Stream Library..22

5.1.1 Stream Thread..22

5.1.2 Stream Buffer ...22

5.2 Stream Operations..23

5.2.1 The Stream Handle ..23

5.2.2 Stream Playback ..23

5.2.3 Stopping a Stream..23

5.2.4 Pausing a Stream...24

5.3 Avoid Interrupting Streams ...24

5.3.1 Stream Thread..24

5.3.1.1 Disabling Interrupts...24

5.3.1.2 DMA..24

5.3.1.3 Interrupt Handler Process...24

5.3.1.4 Higher Priority Threads...24

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 5 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

5.3.2 Accessing the DS Card / Backup Media...25

5.3.3 Stream Buffer ...25

5.3.4 Simultaneous Playback ..25

6 Cautions..26

6.1 Sound Processes in Sleep Mode ...26

6.1.1 Sequence Playback..26

6.1.2 Stream Playback ..26

6.1.3 Sound Capture ...26

7 Library Organization..27

7.1 Library Organization ...27

7.2 Player Library ...27

7.3 Sound Archive Player Library ...28

7.4 Sound Archive Stream Library ..29

7.5 Stream Library ..29

7.6 Sound Archive Library ..30

7.7 Sound Heap Library..30

7.8 Capture Library...30

7.9 Waveform Playback Library..31

Code
Code 3-1 Makefile ..10

Code 3-2 The NitroMain Function .. 11

Code 3-3 Initializing the Sound Library...13

Code 3-4 Sound Heap Creation ...13

Tables
Table 7-1 Player Library Functions ...28

Table 7-2 Sound Archive Player Library Functions ...28

Table 7-3 Sound Archive Stream Library Functions ..29

Table 7-4 Stream Library Functions ..29

Table 7-5 Sound Archive Library Functions ..30

Table 7-6 Sound Heap Library Functions..30

Table 7-7 Capture Library Functions...30

Table 7-8 Waveform Playback Library Functions..31

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 6  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

Figures
Figure 4-1 Restoring the Previous State..20

Figure 7-1 Library Organization Diagram ..27

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 7 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

Revision History
Version Revision Date Description

1.2.4a 2007/04/27 Corrected typographical errors.

Changed dates in Revision History to international format.

1.2.4 2006/05/29 Corrected the explanation of the Sound process in Sleep Mode.

Fixed errors.

1.2.3 2005/03/28 Added a description of the driverInfo demo.

1.2.2 2005/01/31 Added a description of the micThrough demo.

Supplement to the description of the waveform playback library.

Changed “NITRO” to “Nintendo DS.”

1.2.1 2004/12/06 Added the description of stream-2 and stream-3 demos.

1.2.0 2004/10/12 Added description of changing to Sleep Mode.

Added description to avoid interrupting streams.

Added description of sampling demo and outputEffect demo.

1.1.2 2004/09/16 Unified the name of .sadl files as “sound label files.”

1.1.1 2004/09/02 Revised due to the change in the sample source code.

1.1.0 2004/08/10 Added a description of stream playback.

Added a description of stream library.

1.0.0 2004/07/20 Revised text to reflect the addition of the Waveform Playback Library.

Revised text to reflect the addition of effect functionality.

Changed the file extension from .bin to .srl.

Revised the description of the ARM7 component.

0.4.0 2004/06/01 Revised text to reflect file system support.

Revised text to reflect the ability for a player to play multiple sequences.

Added description of heap operations.

Changed the library organization.

0.3.0 2004/04/01 A complete organizational change was done.

Added a description of the library organization.

Added an overview of the sample demo.

0.2.0 2004/03/18 Fixed the makefile of the SoundPlayer.

Added cautions for OS_EnableIrqMask().

Added a tempo change function.

0.1.0 2004/03/01 Initial Version.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 8  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

1 Introduction

This document provides programmers with fundamental information about developing sound programs

on the Nintendo DS (DS).

The setup for the NITRO-Composer environment is explained. This is followed by an example that

shows how to implement a sound program. The last section explains the structure of the sound library,

and lists the type of provided functions.

For a detailed explanation of each function, refer to the function reference.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 9 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

2 Sound Program Development Environment

2.1 NITRO System Build Environment

NITRO-Composer is part of the NITRO-System. By setting up the NITRO-System build environment,

you will be able to use NITRO-Composer.

Refer to the NITRO-System documentation for details.

2.2 File Organization

2.2.1 Library File

The NITRO-SDK and NITRO-System Library files listed below must be linked.

libsnd.a

libnnssnd.a

2.2.2 Header File

Header files that include definitions for created functions must be placed in an include statement using

the following statement format.

#include <nnsys/snd.h>

By listing an include statement for the sound label file (*.sadl) created by the sound designer as

shown below, the sound data can be specified using the label defined by the sound designer instead of

the number.

#include "../data/sound_data.sadl"

2.2.3 Sound Data

All sound data sets are stored in a single sound archive file that has the *.sdat file extension. Set the

configuration to ensure that this sound archive file is stored in ROM. An example of how to store this

file in ROM is shown in Chapter 3.

2.2.4 ARM7 Component

The ARM7 component is stored in the NITRO-SDK. The sound functionality must be implemented in

the ARM7 component. If the ARM7 component is not specified explicitly, the component that

implements the sound functionality will be used.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 10  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

3 Basic Implementation Example

This chapter demonstrates a basic implementation using NITRO-Composer for a project called

simple. The simple project can be found in $NitroSystem/build/demos/snd/simple.

3.1 Development Environment

This section explains how to set up the development environment.

3.1.1 Makefile

The following is an example makefile. Some of the comments have been omitted.

Code 3-1 Makefile

#! make -f

#---

SRCS = main.c

TARGET NEF = main.nef

TARGET_BIN = main.srl

MAKEROM_ROMROOT = ../data

MAKEROM_ROMFILES = sound_data.sdat

include $(NITROSYSTEM_ROOT)/build/buildtools/commondefs

#---

do-build: $(TARGETS)

include $(NITROSYSTEM_ROOT)/build/buildtools/modulerules

#===== End of Makefile =====

The basic elements of a makefile are not discussed in this section. Refer to the NITRO-SDK and

NITRO-System manuals for makefile information. Setting the two MAKEROM_.* variables is crucial.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 11 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

3.1.2 ROM Storage File

MAKEROM_ROMROOT defines the root directory in ROM. MAKEROM_ROMFILES defines the files to be

stored in the root directory. In other words, the files that have the path, /data/sound_data.sdat are

stored in ROM using the path directory and filename.

3.1.3 Operational Procedure

If the makefile in 3.1.1 is used, the program builds in the following sequence.

� The main.c file registered in SRCS compiles

� The compiled file is linked to the library, which creates the ARM9 component main

� The ARM9 component main combines with the ARM7 component and sound archive which

creates main.srl

� The main.srl file becomes the executable file

3.2 The NitroMain Function

First, examine the NitroMain function in src/main.c. Some of the comments have been omitted.

Code 3-2 The NitroMain Function

void NitroMain()

{

OS_Init();

GX_Init();

// VBlank settings

OS_SetIrqFunction(OS_IE_V_BLANK, VBlankIntr);

(void)OS_EnableIrqMask(OS_IE_V_BLANK);

(void)OS_EnableIrq();

(void)GX_VBlankIntr(TRUE);

FS_Init(MI_DMA_MAX_NUM);

// Initialize sound

NNS_SndInit();

heap = NNS_SndHeapCreate(& sndHeap, sizeof(sndHeap));

NNS_SndArcInit(&arc, "/sound_data.sdat", heap, FALSE);

(void)NNS_SndArcPlayerSetup(heap);

NNS_SndArcStrmInit(STREAM_THREAD_PRIO, heap);

// Load sound data

(void)NNS_SndArcLoadSeq(SEQ_MARIOKART64_TITLE, heap);

(void)NNS_SndArcLoadSeqArc(SEQ_SE, heap);

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 12  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

(void)NNS_SndArcLoadBank(BANK_SE, heap);

// Initialize sound handles

NNS_SndHandleInit(&bgmHandle);

NNS_SndHandleInit(&seHandle);

// dummy pad read

Cont = PAD_Read();

//================ Main Loop

while(1)

{

u16 ReadData;

SVC_WaitVBlankIntr();

ReadData = PAD_Read();

Trg = (u16)(ReadData & (ReadData ^ Cont));

Cont = ReadData;

if (Trg & PAD_BUTTON_A) {

// start BGM

(void)NNS_SndArcPlayerStartSeq(&bgmHandle, SEQ_MARIOKART64_TITLE);

}

if (Trg & PAD_BUTTON_B) {

// stop BGM

(void)NNS_SndPlayerStopSeq(&bgmHandle, 1);

}

if (Trg & PAD_KEY_UP) {

// start SE

(void)NNS_SndArcPlayerStartSeqArc(&seHandle, SEQ_SE, SE_COIN);

}

//---- framework

NNS_SndMain();

}

}

The key points are described in subsequent sections.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 13 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

3.3 Basic Setup

This section explains fundamental functions (for example, library initialization).

3.3.1 Initializing the OS and Other Processes

First initialize the OS and other basic processes.

OS_Init();

GX_Init();

// VBlank settings

OS_SetIrqFunction(OS_IE_V_BLANK, VBlankIntr);

(void)OS_EnableIrqMask(OS_IE_V_BLANK);

(void)OS_EnableIrq();

(void)GX_VBlankIntr(TRUE);

FS_Init(MI_DMA_MAX_NUM);

3.3.2 Initializing the Sound Library

The sound library must be initialized before any NNS_Snd functions are called.

Code 3-3 Initializing the Sound Library

NNS_SndInit();

3.3.3 Creating the Sound Heap

Create the heap that is used to store sound data.

Code 3-4 Sound Heap Creation

heap = NNS_SndHeapCreate(&sndHeap, sizeof(sndHeap));

The first argument is the starting address in memory that is used for the sound heap. The second

argument is the size of the sound heap.

The return value is the heap handle. The heap handle is used to allocate memory from the sound heap.

3.3.4 Initializing the Sound Archive

Initialize the sound archive. The sound archive structure must be allocated statically.

NNS_SndArcInit(&arc, "/sound_data.sdat", heap, FALSE);

The first argument is the sound archive structure. The second argument is the path to the sound

archive on the ROM file system.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 14  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

The third argument is the heap needed to allocate memory for initialization of sound archives. The

sound heap handle that was just created is used. Note that if the allocated memory is released, the

sound archive will no longer be usable.

The fourth argument is a flag that controls the loading of symbol data in the sound archive. If the

argument is set to True, symbol data is used for debugging. Set the argument to FALSE for standard

initialization.

3.3.5 Setting Up the Player

Set up the player.

NNS_SndArcPlayerSetup(heap);

The player settings in the sound archive determine the setup.

Because the player setup requires memory, enter the heap handle as an argument.

3.3.6 Stream Library Initialization

To do stream playback, the stream library must be initialized.

NNS_SndArcStrmInit(STREAM_THREAD_PRIO, heap);

For details on streams, see Chapter 5.

3.3.7 Sound Frame Processing

Perform sound library frame processing. This function should be called once for each frame. The

location of the function call is not important.

NNS_SndMain();

3.4 Loading Sound Data

Before playing a sound sequence, the sound data must be loaded.

(void)NNS_SndArcLoadSeq(SEQ_MARIOKART64_TITLE, heap);

(void)NNS_SndArcLoadSeqArc(SEQ_SE, heap);

(void)NNS_SndArcLoadBank(BANK_SE, heap);

NNS_SndArcLoadSeq loads the data that is required to play the sequence

SEQ_MARIOKART64_TITLE. This function concurrently loads the bank and waveform data in addition

to the sequence data.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 15 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NNS_SndArcLoadSeqArc loads the SE sequence archive. Because sequence archives are

associated with multiple banks, bank and waveform data are not loaded automatically. The following

function, NNS_SndArcLoadBank, loads the bank data for SE. With this function, both the bank and

waveform data are loaded. Therefore, it is unnecessary to load waveform data separately.

3.4.1 Loading Groups

Sound data is not normally loaded alone, unlike the example. If the sound designer defines a group,

the group can be loaded as shown in the following example.

(void)NNS_SndArcLoadGroup(GROUP_STATIC, heap);

The group defines which data sets to load. By calling NNS_SndArcLoadGroup, all the data sets are

loaded at once. By loading groups, the data can be loaded without changing the code in the program.

3.5 Sequence Operation

3.5.1 Sound Handles

3.5.1.1 Using Sound Handles

A sound handle is required to work with a sequence.

NNSSndHandle bgmHandle;

NNSSndHandle seHandle;

Temporarily allocate a sound handle statically. Before using a sound handle, initialize it with the

following function.

void NNS_SndHandleInit(NNSSndHandle* handle);

3.5.1.2 What is a Sound Handle?

A sound handle is an object that controls the sequence after playback. A sound handle can control one

sequence. If a sequence playback is successful, that sequence will be linked to a sound handle. From

that point and until that link is disconnected, operations for that sound handle will operate the

sequence.

3.5.1.3 Disconnecting the Sequence

Sometimes a sequence is manually or automatically disconnected. A sequence can be automatically

disconnected if a second sequence attempts to start when a player can play only one sequence. The

sequence played back is forcibly stopped. Under these circumstances, the sound handle is

involuntarily disconnected from the sequence and disabled. Even if operations are performed on a

disabled sound handle, no processing will occur.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 16  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

This means that the programmer does not need to check to see if the sequence played back is still

playing. Even if the same process is executed while the sequence is being played or if the sequence is

stopped, there will be no problems such as a separate sequence being operated by error.

3.5.1.4 Tips for Creating Sound Handles

When sound is played back without any pauses, as with one-shot sound effects, the same sound handle

can be used to play repeated sounds. All sounds can be played simultaneously as long as the number

does not exceed the maximum number of simultaneous sequences that are allowed. Each parameter

can be changed separately, immediately after the playback occurs.

Because continuous sounds such as background music or engine noises must be stopped, each of

these sound effects requires a separate sound handle.

3.5.2 Sequence Playback

The following function plays back a sequence.

BOOL NNS_SndArcPlayerStartSeq(NNSSndHandle* handle, int seqNo);

seqNo is the sequence number, and the sounds are ordered as they appear in the sound archive.

If the function executes, the sequence links to a sound handle that is passed in as an argument. From

this point, this sound handle can be used to carry out processes (for example, stopping the sequence).

If the sound handle is already linked to a sequence, the connection to the original sequence is

disconnected and the sound handle connects to the new sequence. The sequence disconnected from

the sound handle can no longer be controlled, so be careful. However, when a one-shot sound effect is

generated, or when there will be no need to control the sequence later, there is no need for concern.

if (Trg & PAD_BUTTON_A) {

(void)NNS_SndArcPlayerStartSeq(&bgmHandle, SEQ_MARIOKART64_TITLE);

}

3.5.3 Sequence Archive Playback

The following function plays back the sequence from the sequence archive.

BOOL NNS_SndArcPlayerStartSeqArc(

NNSSndHandle* handle, int seqArcNo, int index);

seqArcNo is the sequence archive number, which is the order of the sequences in the sound archive.

index is the index number of the sequence in the sequence archive. The rest is the same as the

playback of the sequence.

if (Trg & PAD_KEY_UP) {

(void)NNS_SndArcPlayerStartSeqArc(&seHandle, SEQ_SE, SE_COIN);

}

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 17 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

3.5.4 Stopping the Sequence

The following function stops the sequence.

void NNS_SndPlayerStopSeq(NNSSndHandle* handle, int fadeFrame);

Enter the sound handle passed into NNSSndHandle when played back to handle. fadeFrame is the

fadeout frame. The volume level gradually decreases over the specified number of frames.

if (Trg & PAD_BUTTON_B) {

(void)NNS_SndPlayerStopSeq(&bgmHandle, 1);

}

3.6 Other Demos

No descriptions for the functions that are used with the simple demo are described. This section

contains an overview of other demos. The demo programs for NITRO-Composer are all stored under

$NitroSystem/build/demos/snd.

3.6.1 stream

Plays back streams. Stream playback is explained in Chapter 5.

3.6.2 stream-2

Combines multiple stream data in real time and plays back. It registers the callback function that

performs the combining process by using the NNS_SndArcStrmStartEx2 function.

3.6.3 stream-3

Applies effects to the stream and plays back. It registers the callback function that processes effects by

using the NNS_SndArcStrmStartEx2 function.

3.6.4 moveVolume

Changes the volume of a sequence over a period of time. This demo uses the

NNS_SndPlayerMoveVolume()function to change the volume. It includes code for a fade-in

playback.

3.6.5 onMemory

The demo uses the entire sound archives that are loaded into memory. For that purpose, the sound

archives are initialized with NNS_SndArcInitOnMemory() function.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 18  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

3.6.6 reverb

A reverb demo that uses the capture feature. This demo uses NNS_SndCaptureStartReverb and

NNS_SndCaptureStopReverb.

3.6.7 effect

An effects demo that uses the sound capture feature. It passes the output through a simple low-pass

filter (moving average).

This demo uses NNS_SndCaptureStartEffect and NNS_SndCaptureStopEffect.

3.6.8 outputEffect

Effects demo that uses the sound capture feature. Switches between the surround mode and the

headphones mode for output.

It uses the NNS_SndCaptureStartOutputEffect and NNS_SndCaptureChangeOutputEffect

functions.

3.6.9 sampling

Sampling demo that uses the sound capture feature. Calculates output levels using sampling data for

the display.

It uses NNS_SndCaptureStartSampling and other functions.

3.6.10 waveout

Plays waveform data directly instead of using sequence playback. It plays back sounds recorded with a

microphone. Uses NNS_SndWaveOutStart for the playback of waveform data.

3.6.11 micThrough

Uses the low-level stream library NNS_SndStrm. Plays back real-time input from the microphone and

applies effects to output sounds.

This demo uses NNS_SndStrmSetup and NNS_SndStrmStart.

3.6.12 driverInfo

Displays on-screen sound driver information.

The sound driver information is updated with NNS_SndUpdateDriverInfo, and the player

information in the sound driver can be obtained with NNS_SndPlayerReadDriverPlayerInfo.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 19 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

4 Heap Operations

4.1 Overview

In the simple demo, memory management functions are not used. In the simple demo, only the sound

heap is created using NNS_SndheapCreate during initialization, and data is loaded into the memory.

The heap operations are explained in subsequent sections.

4.2 Memory Management Basics

For information about the basics of memory management, see the NITRO-Composer Sound System

Manual. The following is a brief explanation about memory management.

4.2.1 The Sound Heap and the Player Heap

There are two heaps, the sound heap and the player heap.

The sound heap is a stack-based heap that programmers use for loading and deleting data.

The player heap is used for loading data automatically during the sequence playback. Programmers do

not need to work directly with the player heap.

4.2.2 Appropriate Usage of the Two Heaps

The sound heap loads relatively large blocks of data at system startup and during scene changes. The

player heap loads relatively small blocks of data (for example, BGM data) during sequence playback.

Even though sound and player heap are generally used in this way, everything can be managed in the

sound heap to improve the load efficiency.

4.3 Sound Heap Operations

Because the sound heap is stack-based, memory is allocated from the top to the bottom and is

released from the bottom to the top. Memory is allocated automatically from the heap when sound data

loads. To delete unwanted sound data, the memory regions must be released. There are two ways to

release memory regions.

� Clearing the heap

� Restoring the heap to the previous state

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 20  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

4.3.1 Clearing the Heap

All of the sound data can be cleared from the heap. This process is very simple, but when the used

function is executed, all sounds playing will stop. If the memory region that is used for the initialization

of the sound archive is released, the sound archive will no longer be available.

To clear all sound data from the heap, call the NNS_SndHeapClear function.

4.3.2 Restoring the Heap to the Previous State

Restoring the heap to the previous state is used more frequently than clearing the heap..

NNS_SndHeapSaveState saves the current state. After saving, the return value is the hierarchy level

of the heap. The hierarchy level indicates the value for the state that was saved. The hierarchy level

value can be used to restore the sound heap to the saved state.

After loading several blocks of sound data, calling NNS_SndHeapLoadState by passing the hierarchy

level value will return the heap to the state that it was in immediately after the call was made to

NNS_SndHeapSaveState. In other words, all data that was loaded after the call to

NNS_SndHeapSaveState is deleted.

Figure 4-1 Restoring the Previous State

Loaded
Sound Data

Loaded
Sound Data

Loaded
Sound Data

Newly Loaded
Sound Data

NNS_SndHeapSaveState Load Sound Data NNS_SndHeapLoadState

Loaded
Sound Data

Level 0 Level 1 Level 1 Level 1

When the data is deleted, already loaded sounds will not be stopped.

Also, NNS_SndHeapSaveState can be called repeatedly, and the value of the hierarchy level will

increase each time the function is called.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 21 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

4.3.3 Multiple Sound Heaps

Usually, a single sound heap is used to restore the heap, but multiple sound heaps can be also used to

restore different heap states. If there are several sound heaps, each sound heap can save and restore

an individual state.

To use multiple sound heaps, you only need to create multiple heaps using NNS_SndHeapCreate.

When allocating memory for a sound heap, the heap handle must always be specified. To allocate the

memory, specify the sound heap by passing the heap handle return value as the argument of the

function.

4.4 Player Heap Operations

Normally, the programmer does not have to manage the player heap. The player heap is created using

the following function.

BOOL NNS_SndArcPlayerSetup(NNSSndHeapHandle heap);

The sound designer sets the size of the heap needed by the player. The amount of memory is

allocated from the sound heap and is passed as an argument in the function to create the player heap.

4.4.1 Deleting the Player Heap

The player heap allocates memory from the sound heap. When the memory region that is allocated to

the player heap is released, the player heap is automatically deleted.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 22  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

5 Stream Playback

This chapter explains stream playback, which was not included in the simple demo.

5.1 Initializing the Stream Library

To play a stream, the stream library must be initialized.

NNS_SndArcStrmInit(STREAM_THREAD_PRIO, heap);

The first argument is the stream thread priority. The second argument is the sound heap handle, which

is used to allocate the stream buffer.

5.1.1 Stream Thread

The stream thread is a thread that loads the data from ROM when necessary.

Data is loaded while stream playback is played; the sound stops if the data is not loaded in time.

Therefore, the data must be loaded quickly. When a stream thread needs to load data, a stream thread

can interrupt other processes running on the main loop of the game and load the data.

If you want the stream thread to interrupt the main processing loop and load data, the stream thread

must be assigned a higher thread priority. The main loop (main thread) has a default value of 16

Therefore, specify a value that is less than 16.

5.1.2 Stream Buffer

To play a stream, a buffer is required to load data. To play a single stream, the buffer needs

approximately 2 to 4 KB of memory. This buffer uses part of the sound heap and is passed as the

second argument in the function.

Note that once the stream buffer is released, the stream cannot be played.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 23 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

5.2 Stream Operations

5.2.1 The Stream Handle

Just as a sound handle is necessary to play a sequence, a stream handle is required to play a stream.

NNSSndStrmHandle strmHandle;

The stream handle should be allocated statically for now. Before using the stream handle, initialize a

stream function with the following function.

void NNS_SndStrmHandleInit(NNSSndStrmHandle* handle);

In other respects, a stream handle is identical to a sound handle.

5.2.2 Stream Playback

To play back a stream, call the following function.

BOOL NNS_SndArcStrmStart(NNSSndStrmHandle* handle, int strmNo, u32 offset);

strmNo is the stream number that specifies which stream to play. offset specifies in milliseconds

when to start playing back the stream data. Playback generally starts at the beginning of the stream, so

set this parameter to zero.

Similar to a when using a sequence, the stream handle is bound to the stream if playback is successful.

5.2.3 Stopping a Stream

To stop a stream, call the following function.

void NNS_SndArcStrmStop(NNSSndStrmHandle* handle, int fadeFrames);

fadeFrames specifies the number of frames over which the volume should be gradually lowered

before the stream stops. If fadeFrames is set to a value of zero, the stream stops immediately.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 24  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

5.2.4 Pausing a Stream

There is no function to pause a stream. However, a process similar to pausing a stream is possible.

The following procedure allows you to create the effect of pausing.

1. When you want to pause the stream, use the following function to obtain the current position of

playback.

u32 NNS_SndArcStrmGetCurrentPlayingPos(NNSSndStrmHandle* handle);

2. Use NNS_SndArcStrmStop to stop the stream.

3. Restart the stream playback by passing the playback location as the offset argument of

NNS_SndArcStrmStart and start the stream playback. The playback will start from where

the stream stopped.

The stream will not restart at the precise position in the stream.

5.3 Avoid Interrupting Streams

With stream playback, data is loaded in real-time. Therefore, if the sound is not loaded in time, the

sound will be interrupted. Here are some tips to avoid interrupting streams.

5.3.1 Stream Thread

Stream data is loaded with the stream thread. The basic rule is to maintain stream thread processes

without delay.

Here are some circumstances that cause delays in the stream thread processes.

5.3.1.1 Disabling Interrupts

Stream threads cannot run while interrupts are disabled. Interrupts should be disabled only for short

periods of time.

5.3.1.2 DMA

Stream threads cannot run while DMA is running. By dividing a large DMA into chunks, the delay in

stream thread processes can be reduced.

5.3.1.3 Interrupt Handler Process

Stream threads cannot run while an interrupt handler is being processed. Interrupt handler processes

should last only for short periods of time.

5.3.1.4 Higher Priority Threads

Stream threads cannot run while higher priority threads are being processed. Higher priority thread

processes need to last only for short periods of time or the priority of stream threads needs to be raised.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 25 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

5.3.2 Accessing the DS Card / Backup Media

Stream data cannot be loaded while the DS Card or backup media is accessed. Therefore, divide the

bandwidth between the DS Card and stream data.

5.3.3 Stream Buffer

If the buffer size for stream playback is large, the sound will not be interrupted even if the stream

thread process speed is reduced. However, when the buffer size is larger, the process for one stream

thread requires more bandwidth, and a negative effect on the lower priority threads may occur.

5.3.4 Simultaneous Playback

When multiple streams are played simultaneously, the stream thread processes increase and require

more bandwidth. The sound may be interrupted even with a short delay in the processes. Exercise

caution when playing back multiple streams simultaneously.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 26  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

6 Cautions

6.1 Sound Processes in Sleep Mode

When entering Sleep Mode, the library automatically performs the processes to stop the sound

features. In other words, the programmer simply calls the PM_GoSleepMode function to enter Sleep

Mode and the necessary processes are carried out by the library.

Similarly, the library carries out all the processes needed to restart sound features when returning from

Sleep Mode. However, pay attention to the following.

6.1.1 Sequence Playback

The sequence process resumes from the place where it was before entering Sleep Mode, but the

channel that was playing sounds in the sequence restarts from the very beginning of its waveform data.

If this is a problem, the programmer must pause the playback before Sleep Mode and cancel the

pause after Sleep Mode. However, the channel that was playing sounds in the sequence will not play

upon returning from Sleep Mode.

6.1.2 Stream Playback

There is a process that stops steam playback before entering Sleep Mode and resumes play when

returning from Sleep Mode. At this time, any data left in the Stream buffer will be destroyed and sounds

will partially skip.

There is no effective work-around to this problem.

6.1.3 Sound Capture

A process is performed that stops capture before entering Sleep Mode and resumes capture upon

returning. At that time, any data left in the capture buffer will be destroyed, so there will be no capture

data when returning from Sleep Mode.

There is no effective work-around to this problem.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 27 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

7 Library Organization

This chapter describes the organization of the NITRO-Composer library.

7.1 Library Organization

The NITRO-Composer library is composed of several libraries as shown below.

Figure 7-1 Library Organization Diagram

Sound Driver (ARM7)

Sound Driver Interface (ARM9)

Capture
NNS_SndCapture

Player
NNS_SndPlayer

Sound Archive
NNS_SndArc

Sound Archive
Player

NNS_SndArcPlayer

Waveform Playback
NNS_SndWaveOut

Stream
NNS_SndStrm

Sound Archive
Stream

NNS_SndArcStrm

Sound Heap

NNS_SndHeap

The libraries with NNS_Snd prefixes are the sound libraries included in NitroSystem. Usually, the

programmer uses these library functions. The libraries are described in the following sections.

7.2 Player Library

The Player Library is the most basic library for playing back sequences. The function prefix set is

NNS_SndPlayer.

This library is used to change parameters for sequences and stopping sequences. However, the sound

archive player functions from the upper library are used for only playback. The sequence playback

functions in the player library are used to simply run sequences. For actual sequence playback,

complex processing (for example, data loading) is required. Therefore, sequence playback is

processed with the sound archive player.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 28  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

The player library also includes some functions that operate the sound handles. The function set prefix

is NNS_SndHandle. The sound handle and player are closely related. Refer to paragraph 3.5.1 Sound

Handle for an overview of the sound handle.

The main functions of the Player Library are shown in Table 7-1.

Table 7-1 Player Library Functions

Function Name Description

NNS_SndPlayerStopSeq Stops the sequence.

NNS_SndPlayerPause Pauses or restarts the sequence.

NNS_SndPlayerSetTempoRatio Changes the tempo of the sequence.

NNS_SndPlayerSetVolume Changes the volume of the sequence.

NNS_SndPlayerSetTrackVolume Changes the volume of the sequence track.

NNS_SndPlayerSetTrackPitch Changes the pitch of the sequence track.

NNS_SndPlayerSetTrackPan Changes the pan (location) of the sequence track.

7.3 Sound Archive Player Library

The Sound Archive Player Library plays back the sequence using the sound archive. The function set

prefix is NNS_SndArcPlayer.

The Sound Archive Player Library is located in the upper-level libraries of the player library and the

sound archive library. Sequences can be easily played back using these functionalities.

The main functions of the Sound Archive Player Library are shown in Table 7-2.

Table 7-2 Sound Archive Player Library Functions

Function Name Description

NNS_SndArcPlayerSetup Sets up the player using the settings in the sound
archive.

NNS_SndArcPlayerStartSeq Plays back the sequence.

NNS_SndArcPlayerStartSeqArc Plays back the sequence archive.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 29 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

7.4 Sound Archive Stream Library

Sound Archive Stream Library is used to play stream data in a sound archive. The function names

begin with NNS_SndArcStrm.

This library is an upper-level library of the stream library and the sound archive library. The Sound

Archive Stream Library uses the functionality of the stream library and the sound archive library to

make playing streams simple.

The main functions of the Sound Archive Stream Library are shown in Table 7-3.

Table 7-3 Sound Archive Stream Library Functions

Function Name Description

NNS_SndArcStrmInit Initializes the sound archive stream library.

NNS_SndArcStrmStart Plays a stream.

NNS_SndArcStrmStop Stops a stream.

7.5 Stream Library

The Stream Library is a low-level library for the playback of streams. The function names begin with

NNS_SndStrm.

This library is used to play data that is received through communications in real time, and for stream

playback of waveform data in unique stream data format.

The main functions of the Stream Library are shown in Table 7-4.

Table 7-4 Stream Library Functions

Function Name Description

NNS_SndStrmInit Initializes a stream.

NNS_SndStrmAllocChannel Allocates a channel for stream playback.

NNS_SndStrmFreeChannel Frees a stream playback channel.

NNS_SndStrmSetup Prepares for stream playback.

NNS_SndStrmStart Plays a stream.

NNS_SndStrmStop Stops a stream.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 30  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

7.6 Sound Archive Library

The Sound Archive Library loads sound data in the sound archives and retrieves parameters. The

function set prefix is NNS_SndArc.

The main functions of the Sound Archive Library are shown in Table 7-5.

Table 7-5 Sound Archive Library Functions

Function Name Description

NNS_SndArcInit Initializes a sound archive.

NNS_SndArcLoadGroup Loads sound data in units of the group.

7.7 Sound Heap Library

The Sound Heap Library manages the sound heap. The function set prefix is NNS_SndHeap.

The main functions of the Sound Heap Library are shown in Table 7-6.

Table 7-6 Sound Heap Library Functions

Function Name Description

NNS_SndHeapCreate Creates the sound heap.

NNS_SndHeapClear Clears all heap memory.

NNS_SndHeapSaveState Saves the heap state.

NNS_SndHeapLoadState Restores the heap state.

7.8 Capture Library

Nintendo DS has the sound capture feature. The Capture Library is used for generating effects using

the capture feature (for example, reverb). The function set prefix is NNS_SndCapture.

The main functions of the Capture Library are shown in Table 7-7.

Table 7-7 Capture Library Functions

Function Names Description

NNS_SndCaptureStartReverb Starts the reverb.

NNS_SndCaptureStopReverb Stops the reverb.

NNS_SndCaptureStartEffect Starts the effect.

NNS_SndCaptureStopEffect Stops the effect.

NITRO-Composer Sound Programmer Guide

 2004-2007 Nintendo 31 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

7.9 Waveform Playback Library

The Waveform Playback Library provides functionality to play waveform data without using sequence

playback. The function set prefix is NNS_SndWaveOut.

The Waveform Playback Library is used for playing sampled data captured with a microphone. Use this

stream library to play back waveform data that is generated in real time.

The main functions of the Waveform Playback Library are shown in Table 7-8.

Table 7-8 Waveform Playback Library Functions

Function Names Description

NNS_SndWaveOutAllocChannel Allocates a channel for playing waveform.

NNS_SndWaveOutStart Starts waveform playback.

NNS_SndWaveOutStop Stops waveform playback.

NITRO-Composer Sound Programmer Guide

NTR-06-0079-001-C 32  2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

© 2004-2007 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed or loaned in whole or in part without

the prior approval of Nintendo.

	1 Introduction
	2 Sound Program Development Environment
	2.1 NITRO System Build Environment
	2.2 File Organization
	2.2.1 Library File
	2.2.2 Header File
	2.2.3 Sound Data
	2.2.4 ARM7 Component

	3 Basic Implementation Example
	3.1 Development Environment
	3.1.1 Makefile
	3.1.2 ROM Storage File
	3.1.3 Operational Procedure

	3.2 The NitroMain Function
	3.3 Basic Setup
	3.3.1 Initializing the OS and Other Processes
	3.3.2 Initializing the Sound Library
	3.3.3 Creating the Sound Heap
	3.3.4 Initializing the Sound Archive
	3.3.5 Setting Up the Player
	3.3.6 Stream Library Initialization
	3.3.7 Sound Frame Processing

	3.4 Loading Sound Data
	3.4.1 Loading Groups

	3.5 Sequence Operation
	3.5.1 Sound Handles
	3.5.1.1 Using Sound Handles
	3.5.1.2 What is a Sound Handle?
	3.5.1.3 Disconnecting the Sequence
	3.5.1.4 Tips for Creating Sound Handles

	3.5.2 Sequence Playback
	3.5.3 Sequence Archive Playback
	3.5.4 Stopping the Sequence

	3.6 Other Demos
	3.6.1 stream
	3.6.2 stream-2
	3.6.3 stream-3
	3.6.4 moveVolume
	3.6.5 onMemory
	3.6.6 reverb
	3.6.7 effect
	3.6.8 outputEffect
	3.6.9 sampling
	3.6.10 waveout
	3.6.11 micThrough
	3.6.12 driverInfo

	4 Heap Operations
	4.1 Overview
	4.2 Memory Management Basics
	4.2.1 The Sound Heap and the Player Heap
	4.2.2 Appropriate Usage of the Two Heaps

	4.3 Sound Heap Operations
	4.3.1 Clearing the Heap
	4.3.2 Restoring the Heap to the Previous State
	4.3.3 Multiple Sound Heaps

	4.4 Player Heap Operations
	4.4.1 Deleting the Player Heap

	5 Stream Playback
	5.1 Initializing the Stream Library
	5.1.1 Stream Thread
	5.1.2 Stream Buffer

	5.2 Stream Operations
	5.2.1 The Stream Handle
	5.2.2 Stream Playback
	5.2.3 Stopping a Stream
	5.2.4 Pausing a Stream

	5.3 Avoid Interrupting Streams
	5.3.1 Stream Thread
	5.3.1.1 Disabling Interrupts
	5.3.1.2 DMA
	5.3.1.3 Interrupt Handler Process
	5.3.1.4 Higher Priority Threads

	5.3.2 Accessing the DS Card / Backup Media
	5.3.3 Stream Buffer
	5.3.4 Simultaneous Playback

	6 Cautions
	6.1 Sound Processes in Sleep Mode
	6.1.1 Sequence Playback
	6.1.2 Stream Playback
	6.1.3 Sound Capture

	7 Library Organization
	7.1 Library Organization
	7.2 Player Library
	7.3 Sound Archive Player Library
	7.4 Sound Archive Stream Library
	7.5 Stream Library
	7.6 Sound Archive Library
	7.7 Sound Heap Library
	7.8 Capture Library
	7.9 Waveform Playback Library

