
© 2004-2007 Nintendo NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

VRAM Managers

Version 1.0.0a

The contents in this document are highly

confidential and should be handled accordingly.

VRAM Managers

NTR-06-0140-001-B 2 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

VRAM Managers

© 2004-2007 Nintendo 3 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

Table of Contents

1 Introduction ...6

2 Overview of the VRAM Managers ...7
2.1 Common Functions of the VRAM Managers ..7

2.2 The Texture VRAM Manager and Palette VRAM Manager...8

2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM Manager...8

2.2.1.1 Allocating Memory for 4 × 4 Texel Compressed Texture ..8

2.2.2 NNSGfdTexKey ..8

2.2.2.1 Operation for NNSGfdTexKey..8

2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM Manager ..9

2.2.3.1 Allocating Memory for Four-Color Palette ..9

2.2.4 NNSGfdPlttKey ..9

2.2.4.1 Operation for NNSGfdPlttKey ..9

2.3 VRAM Managers Provided in NITRO System ..9

3 The Frame VRAM Managers ..10

3.1 The Frame Texture VRAM Manager...10

3.1.1 Initializing the Frame Texture VRAM Manager ... 11

3.1.2 Allocating Memory for Texture.. 11

3.1.2.1 Allocating Memory for Standard Texture ..12

3.1.2.2 Operation when Requesting Memory for 4 × 4 Texel Compressed Texture ...13

3.1.3 Releasing Texture Memory...14

3.1.4 Saving and Restoring Frame Texture VRAM Manager States..14

3.1.4.1 Saving the Use State of Texture Memory...14

3.1.4.2 Restoring a Use State of Texture Memory..14

3.1.4.3 Returning to the Initial Use State of Texture Memory ...14

3.2 The Frame Palette VRAM Manager ...15

3.2.1 Initializing the Frame Palette VRAM Manager..15

3.2.2 Allocating Memory for Palette ..15

3.2.2.1 Direction of Allocation for Palette Memory ...16

3.2.3 Releasing Palette Memory ...16

3.2.4 Saving and Restoring Frame Palette VRAM Manager States ..16

3.2.4.1 Saving the Use State of Palette Memory ...16

3.2.4.2 Restoring a Use State of Palette Memory ..16

3.2.4.3 Returning to the Initial Use State of Palette Memory..17

VRAM Managers

NTR-06-0140-001-B 4 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

4 The Linked-List VRAM Manager ...18

4.1 The Linked-List Texture VRAM Manager ..18

4.1.1 Initializing the Manager...18

4.1.2 Allocating Memory for Textures ..19

4.1.3 Deallocating Memory for Textures ..20

4.2 The Linked-List Palette VRAM Manager ..21

4.2.1 Initialization...21

4.2.2 Allocating and Deallocating Palette Memory ..21

Tables
Table 2-1 Common Functions for VRAM Managers ..7

Table 2-2 Function Pointers Referenced in the Common Functions..7

Figures
Figure 3-1 Diagram of the Frame Texture VRAM Manager ...10

Figure 3-2 Allocating Standard Texture Memory..12

Figure 3-3 Allocating 4 × 4 Texel Compressed Texture Memory..13

Figure 3-4 Allocating 4 × 4 Texel Compressed Texture Memory from Region 3 ..13

Figure 3-5 Diagram of the Frame Palette VRAM Manager..15

Figure 3-6 Allocating Palette Memory..16

Figure 4-1 The Linked-List VRAM Manager ..18

Figure 4-2 Allocating Memory for Textures ..19

Figure 4-3 Deallocating Memory for Textures..20

Figure 4-4 An Example of when the Empty List Joining Process Fails ..20

VRAM Managers

© 2004-2007 Nintendo 5 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

Revision History

Version Revision Date Description

1.0.0a 2007/04/27 Corrected typographical errors.

Changed Revision History dates to international format.

1.0.0 2005/01/05 Changed an instance of “NITRO” to “Nintendo DS.”

0.2.0 2004/10/03 Added a chapter on the Linked-List VRAM Manager.

0.1.0 2004/07/16 Initial Version.

VRAM Managers

NTR-06-0140-001-B 6 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

1 Introduction

When using the Nintendo DS 3D graphics engine to draw textured polygons, textures need to be

stored in VRAM. NITRO System includes VRAM managers so the programmer does not need to

manage the fine details of texture positioning in the VRAM. VRAM managers dynamically allocate and

release memory from VRAM.

VRAM Managers

© 2004-2007 Nintendo 7 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

2 Overview of the VRAM Managers

2.1 Common Functions of the VRAM Managers

Methods for efficiently handling VRAM content may differ widely by application. For this reason, a

unique VRAM manager may be provided depending on the application. A mechanism is provided to

allow replacing the VRAM manager used by the NITRO-System graphics library.

Four functions are defined, as shown in the table below, to allow memory allocation and release to be

carried out using the same functions regardless of the type of VRAM manager being used with NITRO

System.

Table 2-1 Common Functions for VRAM Managers

Function Name Function Processing

NNS_GfdAllocTexVram() Allocates texture memory from VRAM.

NNS_GfdFreeTexVram() Releases texture memory allocated from VRAM.

NNS_GfdAllocPlttVram() Allocates palette memory from the palette RAM.

NNS_GfdFreePlttVram() Releases palette memory allocated from palette RAM.

These functions internally call functions registered to function pointers to do the actual processing. By

default, a function that does not perform any processes and returns an error is registered. Function

pointers referenced internally by these functions are defined as the following global variables.

Table 2-2 Function Pointers Referenced in the Common Functions

Functions Referencing a

Pointer

Function Pointer Type Function Pointer Variable

NNS_GfdAllocTexVram() NNSGfdFuncAllocTexVram NNS_GfdDefaultFuncAllocTexVram

NNS_GfdFreeTexVram() NNSGfdFuncFreeTexVram NNS_GfdDefaultFuncFreeTexVram

NNS_GfdAllocPlttVram() NNSGfdFuncAllocPlttVram NNS_GfdDefaultFuncAllocPlttVram

NNS_GfdFreePlttVram() NNSGfdFuncFreePlttVram NNS_GfdDefaultFuncFreePlttVram

The NITRO System graphics library that uses VRAM managers allocates and releases memory from

VRAM by using these four functions. To change the VRAM manager used by the library, register to the

function pointer the function for allocating and releasing memory included in the desired VRAM

manager.

VRAM Managers

NTR-06-0140-001-B 8 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

2.2 The Texture VRAM Manager and Palette VRAM Manager

There are two main VRAM managers. One is the texture VRAM manager for allocating and releasing

texture memory, and the other is the palette VRAM manager for allocating and releasing palette

memory.

2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM
Manager

Use the below functions to allocate or release texture memory with the texture VRAM manager.

// Allocating memory from the texture VRAM
NNSGfdTexKey NNS_GfdAllocTexVram(u32 szByte, BOOL is4x4comp, u32 opt);

// Releasing memory from the texture VRAM
int NNS_GfdFreeTexVram(NNSGfdTexKey key);

The NNS_GfdAllocTexVram function allocates the amount of texture memory specified by szSize

from the VRAM, and returns the NNSGfdTexKey type value indicating the allocated texture memory. If

the allocation of the texture memory failed, the constant NNS_GFD_ALLOC_ERROR_TEXKEY is returned.

The NNS_GfdFreeTexVram function releases the texture memory specified by the NNSGfdTexKey

type value. If the release succeeds, 0 is returned.

2.2.1.1 Allocating Memory for 4 × 4 Texel Compressed Texture

The texture VRAM manager has a feature that allows allocation of a memory region for 4 × 4 texel

compressed texture. If the second argument is4x4comp of the NNS_GfdAllocTexVram function,

which is a function for allocating texture memory, is TRUE, a region for texture palette index data is

allocated at the same time as allocation of a region for texture image data. If either of these regions

cannot be allocated, the NNS_GfdAllocTexVram function call fails.

2.2.2 NNSGfdTexKey

NNSGfdTexKey is a 32-bit integer value that functions as a key for identifying texture memory

allocated by the texture VRAM manager. NNSGfdTexKey is generated from the texture memory

address and size, as well as a flag indicating the 4 × 4 texel compressed texture memory.

2.2.2.1 Operation for NNSGfdTexKey

In order to transfer texture data to allocated texture memory, the actual VRAM address must be

obtained. The texture VRAM manager provides a function to find the VRAM address and size from

NNSGfdTexKey.

// Getting the address from NNSGfdTexKey
u32 NNS_GfdGetTexKeyAddr(NNSGfdTexKey memKey);

// Getting the size from NNSGfdTexKey
u32 NNS_GfdGetTexKeySize(NNSGfdTexKey memKey);

// Finding out whether NNSGfdTexKey is for compressed texture
BOOL NNS_GfdGetTexKey4x4Flag(NNSGfdTexKey memKey);

VRAM Managers

© 2004-2007 Nintendo 9 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM
Manager

Use the following functions to allocate and release palette memory with the palette VRAM manager.

// Allocating memory from the palette RAM
NNSGfdPlttKey NNS_GfdAllocPlttVram(u32 szByte, BOOL is4pltt, u32 opt);

// Releasing memory from the palette RAM
int NNS_GfdFreePlttVram(NNSGfdPlttKey key);

NNS_GfdAllocPlttVram allocates the amount of palette memory specified by szSize from the palette

RAM, and returns the NNSGfdPlttKey type value indicating the allocated palette memory. If the

allocation of the palette memory failed, the constant NNS_GFD_ALLOC_ERROR_PLTTKEY is returned.

NNS_GfdFreeＰｌｔｔVRam then releases the palette memory specified by NNSGfdplttKey. If the

release succeeds, 0 is returned.

2.2.3.1 Allocating Memory for Four-Color Palette

For allocating four-color color palette memory using the palette VRAM manager, specify TRUE for the

second argument is4pltt of NNS_GfdAllocPlttVram function, which is a function for allocating

palette memory. When this is set, a determination is made whether memory was allocated at a position

that allows for a four-color palette. (Four-color palettes cannot be placed at 0x10000 or higher.)

2.2.4 NNSGfdPlttKey

NNSGfdPlttKey is a 32-bit integer value that functions as a key for identifying palette memory

allocated from the palette VRAM manager. NNSGfdPlttKey is generated from the address and size of

the allocated palette memory.

2.2.4.1 Operation for NNSGfdPlttKey

To transfer palette data to allocated palette memory, the actual palette RAM address must be obtained.

The palette VRAM manager provides a function to find the palette RAM address and size from

NNSGfdPlttKey.

// Getting the address from NNSGfdPlttKey.
u32 NNS_GfdGetPlttKeyAddr(NNSGfdPlttKey memKey)

// Getting the size from NNSGfdPlttKey
u32 NNS_GfdGetPlttKeySize(NNSGfdPlttKey memKey)

2.3 VRAM Managers Provided in NITRO System

As explained in paragraph 2.1, the functions for allocating and releasing memory provided by the

NITRO System VRAM managers in their initial state do not execute processing. For the future, VRAM

managers are planned for NITRO-System that will have additional memory management functions for

memory allocation and release. However currently, only the frame VRAM manager (the frame texture

VRAM manager and the frame palette VRAM manager) and the linked list VRAM manager (linked list

texture VRAM manager and linked list palette VRAM manager) are provided.

VRAM Managers

NTR-06-0140-001-B 10 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

3 The Frame VRAM Managers

Like the Foundation library frame heap managers, the frame VRAM managers can only allocate

memory blocks with a specified size and to release all allocated memory blocks simultaneously. The

trade-off is that because the memory blocks do not have any management information, high memory

efficiency is achieved. The frame VRAM managers have the following characteristics.

� No memory management region is required.

� Memory blocks are allocated from the lowest address and highest address of each VRAM slot

without any gaps.

� It is not possible to release allocated memory blocks individually.

� All the allocated memory blocks can be released simultaneously.

� Memory block allocation states can be saved and restored.

3.1 The Frame Texture VRAM Manager

A diagram of the frame texture VRAM manager is shown in Figure 3-1. The frame texture VRAM

manager splits VRAM into five regions for management. Each region has two pointers, at the top and

bottom of that region. These two pointers indicate the boundaries between the used and unused

regions. The area between the two pointers is not used. Texture memory is allocated from the highest

address and lowest address of the regions, and every time memory is allocated the two pointers move

toward the center of the region.

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

top pointer

bottom
pointer

Figure 3-1 Diagram of the Frame Texture VRAM Manager

VRAM Managers

© 2004-2007 Nintendo 11 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

3.1.1 Initializing the Frame Texture VRAM Manager

Before using the frame texture VRAM manager, it must be initialized. Use the following function to

initialize.

void NNS_GfdInitFrmTexVramManager(u16 numSlot, BOOL useAsDefault)；

The first argument numSlot specifies the number of slots for the frame texture VRAM manager to

manage. The frame texture VRAM manager is initialized to manage the number of VRAM slots

specified by numSlot beginning at VRAM slot 0. The maximum value that may be specified for

numSlot is 4.

If TRUE is specified for the second argument useAsDefault, a function pointer is initialized when

either NNS_GfdAllcTexVram() or NNS_GfdFreeTexVram() (common functions for the texture

VRAM manager) is called, so the memory allocation and release functions of the frame texture VRAM

manager can be used. This argument should be set to TRUE, except in special situations such as

when replacing the texture VRAM manager processing later on.

3.1.2 Allocating Memory for Texture

To allocate memory for texture, the texture VRAM manager common function

NNS_GfdAllocTexVram is normally used.

NNSGfdTexKey NNS_GfdAllocTexVram(u32 szByte, BOOL is4x4comp, u32 opt);

The third argument opt of the NNS_GfdAllocTexVram function is not used with the frame texture

VRAM manager.

The specific operations of the managers are described below. Refer to the example in the description

where 4 is passed as the parameter numSlot (the number of slots the manager manages) during

initialization. (The manager will slightly change the search order of the empty region depending on the

value of numSlot.)

VRAM Managers

NTR-06-0140-001-B 12 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

3.1.2.1 Allocating Memory for Standard Texture

To allocate memory for standard texture (other than 4 × 4 texel compressed texture), specify FALSE for

the second argument is4x4comp.

To allocate memory for standard texture, allocate the memory using the top pointer for each region.

The frame texture VRAM manager first tries to allocate memory from region 4. If there is not enough

free space for allocation, the manager then attempts to allocate from regions 3, 0, 2 and 1, in that order.

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

used
region

used
region

Figure 3-2 Allocating Standard Texture Memory

VRAM Managers

© 2004-2007 Nintendo 13 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

3.1.2.2 Operation when Requesting Memory for 4 × 4 Texel Compressed Texture

To allocate 4 × 4 texel compressed texture memory, specify TRUE for the second argument

is4x4comp.

To allocate memory for 4 x 4 texel compressed texture, first an attempt is made to allocate that

memory using the bottom pointer of region 0. To store 4 × 4 texel compressed texture in the VRAM, the

texture palette index data also needs to be stored at the same time at the position corresponding to the

address where the texture image data is placed. Therefore, a region for texture palette index data is

allocated at the same time using the bottom pointer for region 1.

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

texture

image

data

texture

palette

index

data

Figure 3-3 Allocating 4 × 4 Texel Compressed Texture Memory

If 4 × 4 texel compressed texture memory of the requested size cannot be allocated from region 0, an

attempt is made to allocate memory using the bottom pointer for region 3. At the same time, a region

for the texture palette index data is allocated using the bottom pointer for region 2.

slot 0 slot 1 slot 2 slot 3

region 0

region 1

region 2

region 3 region 4

texture

image
texture

palette

index

Figure 3-4 Allocating 4 × 4 Texel Compressed Texture Memory from Region 3

VRAM Managers

NTR-06-0140-001-B 14 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

3.1.3 Releasing Texture Memory

Due to the characteristics of the memory management algorithm, the frame texture VRAM manager

does not allow allocated texture memory to be released individually.

The frame texture VRAM manager provides a NNS_GfdFreeFrmTexVram function to release memory,

though this function returns without processing anything. This function is provided to register the

function pointer to NNS_GfdFreeTexVram(), which is a common function for the texture VRAM

manager.

3.1.4 Saving and Restoring Frame Texture VRAM Manager States

The frame texture VRAM manager has a feature to save the use state of texture memory and to

restore a saved texture memory use state.

3.1.4.1 Saving the Use State of Texture Memory

The below function is used to save the use state of texture memory.

NNS_GfdGetFrmTexVramState(NNSGfdFrmTexVramState* pState);

When the NNS_GfdGetFrmTexVramState function is called, the current use state of the texture

memory is written to the NNSGfdFrmTexVramState structure specified in the argument.

3.1.4.2 Restoring a Use State of Texture Memory

The below function is used to return the frame texture VRAM manager to a texture memory allocation

state saved using the NNS_GfdGetFrmTexVramState function.

void NNS_GfdSetFrmTexVramState(const NNSGfdFrmTexVramState* pState);

This operation releases texture memory allocated after a texture memory allocation state specified by

pState has been saved.

3.1.4.3 Returning to the Initial Use State of Texture Memory

The below function is used to return the frame texture VRAM manager to its initial state.

void NNS_GfdResetFrmTexVramState(void);

This operation releases all texture memory allocated from the frame texture VRAM manager.

VRAM Managers

© 2004-2007 Nintendo 15 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

3.2 The Frame Palette VRAM Manager

A diagram of the frame palette VRAM manager is provided in Figure 3-5. The frame palette VRAM

manager can allocate palette memory either from the beginning or the end of palette RAM. Top and

bottom pointers are provided for that purpose. These two pointers indicate the boundaries between the

used and unused regions. The area between two pointers is unused.

paletteRAM

top pointer

bottom
pointer

Figure 3-5 Diagram of the Frame Palette VRAM Manager

3.2.1 Initializing the Frame Palette VRAM Manager

Before using the frame palette VRAM manager, it must be initialized. Use the following function for

initialization.

void NNS_GfdInitFrmPlttVramManager(u32 szByte, BOOL useAsDefault)；

The first argument szSize specifies the size of the palette RAM managed by the frame palette VRAM

manager. The frame palette VRAM manager is initialized so as to manage the amount of palette RAM

specified by szSize in bytes starting at the beginning of the palette RAM.

If TRUE is specified for the second argument useAsDefault, a function pointer is initialized when

either NNS_GfdAllocPlttVram or NNS_GfdFreePlttVram (common functions for the palette

VRAM managers) is called, so the memory allocation and release functions of the frame palette VRAM

manager are used. This should be set to TRUE, except in special situations such as when replacing

the palette VRAM manager processing later on.

3.2.2 Allocating Memory for Palette

Normally, the palette VRAM manager common function NNS_GfdAllocPlttVram is used to allocate

palette memory.

NNSGfdPlttKey NNS_GfdAllocPlttVram(u32 szByte, BOOL is4Pltt, u32 opt);

VRAM Managers

NTR-06-0140-001-B 16 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

3.2.2.1 Direction of Allocation for Palette Memory

With the frame palette VRAM manager, the third argument opt can be used to specify the direction of

the palette memory allocation. If NNS_GFD_ALLOC_FROM_LOW is specified in opt, allocation will be

made from the lowest address of the palette RAM. If NNS_GFD_ALLOC_FROM_HIGH is specified in opt,

allocation will be made from the highest address of the palette RAM.

paletteRAM

NNS_GFD_ALLOC_FROM_HIGH

NNS_GFD_ALLOC_FROM_LOW

used
region

used
region

Figure 3-6 Allocating Palette Memory

3.2.3 Releasing Palette Memory

Due to the characteristics of the memory management algorithm, the frame palette VRAM manager

does not allow allocated palette memory to be released individually.

The frame palette VRAM manager provides a NNS_GfdFreeFrmPlttVram function for releasing

memory, though this function returns without processing anything. This is provided to register the

function pointer of NNS_GfdFreeFrmPlttVram, which is a common frame palette VRAM manager

function.

3.2.4 Saving and Restoring Frame Palette VRAM Manager States

The frame texture VRAM manager has the feature to save the use state of palette memory and to

restore saved palette memory use states.

3.2.4.1 Saving the Use State of Palette Memory

The following function is used to save a use state of palette memory.

NNS_GfdGetFrmPlttVramState(NNSGfdFrmPlttVramState* pState);

When the NNS_GfdGetFrmPlttVramState function is called, the current use state of palette

memory is written to the NNSGfdFrmPlttVramState structure specified in the argument.

3.2.4.2 Restoring a Use State of Palette Memory

To return the frame palette VRAM manager to the palette memory allocation state saved by using the

NNS_GfdGetFrmPlttVramState() function, the following function is used.

void NNS_GfdSetFrmPlttVramState(const NNSGfdFrmPlttVramState* pState);

VRAM Managers

© 2004-2007 Nintendo 17 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

This operation releases palette memory allocated after a palette memory allocation state specified by

pState has been saved.

3.2.4.3 Returning to the Initial Use State of Palette Memory

The below function is used to return the frame palette VRAM manager to its initial state.

void NNS_GfdResetFrmPlttVramState(void);

This operation releases all palette memory allocated from the frame palette VRAM manager.

VRAM Managers

NTR-06-0140-001-B 18 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

4 The Linked-List VRAM Manager

Figure 4-1 The Linked-List VRAM Manager

The Linked-List VRAM Manager manages the VRAM region using the VRAM management information

in the main memory. The management information consists of the starting address and the byte size of

the VRAM region that will be managed.

The management information contains the reference information that references the previous and the

next management information and is set up as a doubly-linked list structure. The VRAM manager uses

this doubly-linked list of management information to manage the empty space scattered throughout

VRAM.

The characteristics of the linked-list VRAM manager are as follows:

� It can perform the sectional deallocation of VRAM regions.

� Its management information must be allocated in main memory.

� It has a processing load for searching the list of empty regions when allocating and deallocating.

4.1 The Linked-List Texture VRAM Manager

The texture VRAM manager individually manages the management region for the normal textures and

the management region for 4x4 compressed textures. If there is a request to allocate a region, this

manager searches for an empty region that fulfills that request from the empty region information list.

4.1.1 Initializing the Manager

void NNS_GfdInitLnkTexVramManager
(

u32 szByte,
u32 szByteFor4x4,
void* pManagementWork,
u32 szByteManagementWork,
BOOL useAsDefault

)

Starting Address
Region Size

VRAM
Management Information Block

The Management Information Doubly-linked List

VRAM Managers

© 2004-2007 Nintendo 19 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

When initializing, individually designate the size of the texture management region and the size of the

region within the texture management region to be used for 4x4 compressed texture. The texture

management region size must be larger than the region size used for the 4x4 compressed texture. The

manager initializes the free blocks with the designated size. The memory region used as the

management information is passed as an argument to pManagementWork. In order to compute the

size of the management information region, use

u32 NNS_GfdGetLnkTexVramManagerWorkSize(u32 numMemBlk)

numMemBlk specified here is the maximum number of blocks into which the empty memory region can

be broken.

The texture VRAM manager does not manage the region for the palette index of the 4x4 compressed

texture. Therefore, the region for the palette index is always not yet in use, and the user can assume

that it is always usable. Also, regions other than the regions for the palette index are initialized as

empty regions for normal textures.

4.1.2 Allocating Memory for Textures

If there is a new allocation request, the manager will search the list of empty regions to find a region

according to the type of region to be allocated (Normal or 4x4 Compressed). If an empty region that

meets the requirements is found, the empty region information is updated with the information that

subtracted the used region, and the allocated region is returned as a texture key.

Figure 4-2 Allocating Memory for Textures

Pre-Allocation

VRAM VRAMEmpty Region List Empty Region List

Post-Allocation

VRAM Managers

NTR-06-0140-001-B 20 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

4.1.3 Deallocating Memory for Textures

This section deals with the calculation of the memory region from the texture key to be deallocated. A

linear search is performed on the empty region list to determine if there are contiguous empty regions

at the highest address or the lowest address of the calculated region. If a contiguous region block is

found, those neighboring blocks are joined to form one region block. This process makes it harder for

memory fragmentation to occur.

Figure 4-3 Deallocating Memory for Textures

If the joining of the region blocks fails, a new empty region block is generated, and that block is added

to and registered in the empty region list. Be aware that in such an event, if there is insufficient

management information for the manager and a new empty region block cannot be obtained, the

deallocation of the memory region will fail.

Figure 4-4 An Example of when the Empty List Joining Process Fails

VRAM Empty Region List

Newly deallocated

VRAM region

VRAM Empty Region List

Registered as a

new empty

region

VRAM Empty Region List

Post-Deallocation
VRAM Empty Region List

Newly deallocated

VRAM region

Pre-Deallocation

Pre-Deallocation Post-Deallocation

VRAM Managers

© 2004-2007 Nintendo 21 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

4.2 The Linked-List Palette VRAM Manager

In the same way as the texture VRAM manager, the palette VRAM manager manages the empty space

scattered throughout VRAM via a doubly-linked list of management information.

4.2.1 Initialization

void NNS_GfdInitLnkPlttVramManager
(

u32 szByte,
void* pManagementWork,
u32 szByteManagementWork,
BOOL useAsDefault

);

Initialize the palette VRAM manager in the same way as the texture VRAM manager, by passing the

memory region used in the management information and its size as an argument.

4.2.2 Allocating and Deallocating Palette Memory

Memory allocation and deallocation is performed in essentially the same manner as with the texture

VRAM manager.

Since an 8-byte alignment is needed when allocating a 4-color palette, allocate an aligned region. The

empty blocks generated when performing the alignment are registered as free blocks. In order to avoid

unnecessary fragmentation of the management region, we recommend that you allocate the regions

for 4-color palettes and palettes in other formats in good-sized groups.

VRAM Managers

NTR-06-0140-001-B 22 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

© 2004-2007 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed or loaned in whole or in part without

the prior approval of Nintendo.

	1 Introduction
	2 Overview of the VRAM Managers
	2.1 Common Functions of the VRAM Managers
	2.2 The Texture VRAM Manager and Palette VRAM Manager
	2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM Manager
	2.2.1.1 Allocating Memory for 4 × 4 Texel Compressed Texture

	2.2.2 NNSGfdTexKey
	2.2.2.1 Operation for NNSGfdTexKey

	2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM Manager
	2.2.3.1 Allocating Memory for Four-Color Palette

	2.2.4 NNSGfdPlttKey
	2.2.4.1 Operation for NNSGfdPlttKey

	2.3 VRAM Managers Provided in NITRO System

	3 The Frame VRAM Managers
	3.1 The Frame Texture VRAM Manager
	3.1.1 Initializing the Frame Texture VRAM Manager
	3.1.2 Allocating Memory for Texture
	3.1.2.1 Allocating Memory for Standard Texture
	3.1.2.2 Operation when Requesting Memory for 4 × 4 Texel Compressed Texture

	3.1.3 Releasing Texture Memory
	3.1.4 Saving and Restoring Frame Texture VRAM Manager States
	3.1.4.1 Saving the Use State of Texture Memory
	3.1.4.2 Restoring a Use State of Texture Memory
	3.1.4.3 Returning to the Initial Use State of Texture Memory

	3.2 The Frame Palette VRAM Manager
	3.2.1 Initializing the Frame Palette VRAM Manager
	3.2.2 Allocating Memory for Palette
	3.2.2.1 Direction of Allocation for Palette Memory

	3.2.3 Releasing Palette Memory
	3.2.4 Saving and Restoring Frame Palette VRAM Manager States
	3.2.4.1 Saving the Use State of Palette Memory
	3.2.4.2 Restoring a Use State of Palette Memory
	3.2.4.3 Returning to the Initial Use State of Palette Memory

	4 The Linked-List VRAM Manager
	4.1 The Linked-List Texture VRAM Manager
	4.1.1 Initializing the Manager
	4.1.2 Allocating Memory for Textures
	4.1.3 Deallocating Memory for Textures

	4.2 The Linked-List Palette VRAM Manager
	4.2.1 Initialization
	4.2.2 Allocating and Deallocating Palette Memory

