NINTENDDO

NITRO-system

NITRO-Composer
Sound Programmer Guide

Version 1.2.4a

The contents in this document are highly
confidential and should be handled accordingly.

0 2004-2007 Nintendo
CONFIDENTIAL

NTR-06-0079-001-C
Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

NTR-06-0079-001-C 2 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

Table of Contents

1 Introduc

1110 [PRRRRE 8

2 Sound Program Development ENVIFONMIENT..........uiiiiiiiiiiiiiie e e ee ettt e e e e e s et e e e e e s s et ea e e e e e e s satbaa e et aeeseassnsbaeeeaeseassnsrenees 9
21 NITRO System BUild ENVIFONMENTooiiiiiiiieiiiiee ettt e e e e e e e s st e e snne e e s nnnneeeannneeenans 9
2.2 [1L @] o F=T g TF2= o] [PPSR 9

DA R W o - 1V 1= TP EERTR R 9
2.2.2 HEAUET Fle. ..ttt E e E bttt e e 9
G S To 10 o o 1 = PSP PURRP PP 9
2.2, 4 ARMY7 COMPONENT . ..ttt 9

3 Basic IMplementation EXAMPIE ... ittt e e oottt e e e e e e et e et e e e e e e e e nne e e e e e e e e e antbeeeaaaeeaanee 10

3.1 Development Environment

3.1.1 Makefile.....cooovvniiiiiiiiiiins ...10
T N (@ 1Y S o] = To T | L= O PPPP R PPPR 11
3.1.3 OPEratioNal PrOCEOUIEcuuiiiiiiitiieeie ettt ettt b e b e bt ebe e b e e b e et e e sne s reesnenan 11
3.2 The NItFOMEIN FUNCLONeeiie ettt e e ettt e e e e e sk e e e ann et e e s nn e e e s n e e e nannr e e e nannes 11
3.3 2 F T (oY= (1 o PSRRI 13
3.3.1 Initializing the OS and Other Processes .13
3.3.2 Initializing the Sound Library .13
3.3.3 Creating the SOUNG HEAPuiiiia ettt e oottt e e e e e ettt e e e e e e e e aatbeeeeeeaeeaannsbeeeaaeeaannneeeeas 13
3.3.4 Initializing the SOUNA ATCRIVEccoiii e e e e e s et e e e e s et e et e e e s e ennrreees 13
3.3.5 Setting UP the PIAYET ... ettt ettt e e e e e et bttt e e e e e e e n s be e e ee e e e e e annsbeeeaaeeeanneeeeeas 14
3.3.6 Stream Library INItAlIZAtONcoiiiiiiiiiee et e e e e s e e e e e e s e et e e e e e e s e e tatr e et e e e e eannrreees 14
3.3.7 SOUNA FraAmME PrOCESSING ... ueetetiaaiiiiiiiiit e e e e ettt ettt e e e e e ateeeeeaaeaeaaatteeeeaaeaeaantbeeeeaaeaeaansabeeeeeaesaannsbneeaaesaaannseeeeas 14
3.4 (I F= o 1 a o R To10 o o [BT L= U PSP URPRRO 14
o A o T- To [0 To T (01U o1 SO PRPRR PP 15
3.5 S Y=To 01T o (TSI @ o =T = 11 o] o P PR SPRRRTNE 15
RS T0 RS To 1 0 o o I o o g o 1= PSPPSR PPPRR 15
3511 USING SOUNG HANAIESoeiiiiee ettt e et e e e e e e e bt e et e e e s e e bbb aeteaeeesssstbaeeaaeeessnnnes 15
3.5.1.2 What iS @ SOUNT HANGIE?ttt e e s e e e arre e e e 15
3.5.13 DiSCONNECHNG the SEOUENCEuiiiiiiii ettt e et e e e e e e e et e e e s s e statb e et aaeesssatbaeeaaeessannnes 15
3514 Tips for Creating SOUNA HANAIES...........eiiiiiie ettt ettt e e e e e et e e e e e e s e nnnereeeaeeean 16
3.5.2 SEQUENCE PIAYDACK.cii ittt ettt e e e e e et e e e e e e st e e e e e e s s s tb e e eee e e s aa b b rb e e e eeeeaaantb e et aaeeaanrraeees 16
3.5.3 Sequence ArchiVe PIAYDACK..........o e ettt e e e e e e et e e e e e e e as 16
3.5.4 StOPPING the SEOUENCEeiiiiiiie ettt e e e et e e e e e e st e e e e e e s s e atbtb e et eeeesatntbaeeaaeeeasantreeees 17

0J 2004-2007
CONFIDENT

Nintendo 3 NTR-06-0079-001-C
IAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NlTRO-SyStem
3.6 (@1 g1 g D T=T 10 PSP PP PR PPURPPOPRNS 17
R 2L A {1 (=T o PP STPUU PPN 17
G0 =11 £=T= 11 PPN 17
R TR {1 (=T o L PSSP PUPPRRRTN 17
3.8.4 MOVEVOIUIMIE. ...ttt h ettt s bt e ekt e e b et e s bt she e e s bt e sbe e e s b bt e s be e e nb bt e sen e e ner e e sene e e e 17
365 ONMEMIONY ...ttt 17
I I G (=1 =T ¢ o U O TP U PP URPPPTOPRP 18
G A = (=X P PP P PR PPN
3.6.8 outputEffect
3.6.9 sampling.................
3.6.10 1122\ VL=T o | PSP P PP TP
3.6.11 a1 To I g T o1 To | o O PUPPRSPTPP 18
3.6.12 (o L1V =T | | o T PP PP OTPRP PRSI 18
O (=T o @] o 1T -1 o] o 1SRRI 19
4.1 L@ =T YT PSP PPPRPPRRP PO 19
4.2 Memory ManagemMENT BASICSueiiiiiieiiiiiii et e ettt e e e ettt e e e e e e e ettt e e e e e e s anebeeeeeeaesaannebeeeaaeeaaanntbneeeaeeaaaan 19
4.2.1 The Sound Heap and the Player HEAP.......cc.uuviiiiii ettt et a e e e et e e e e e e s stbaraeeeas 19
4.2.2 Appropriate Usage Of the TWO HEAPSc ittt e e e e e st e e e e e e s aneneeeeeeas 19
4.3 Yo 10 oTo I o =T To I @ o 1=T = 110 £ L3RR EPT SO 19
o T R O 1= Ty T To IR g LT o 1= = o P RRP TP 20
4.3.2 Restoring the Heap t0 the PrevioUS SEAtE..........ciii et e et e e e e e e eee s 20
4.3.3 MUILIPIE SOUNG HEAPSevieiiiiie ettt ettt e ettt e e e e e et e et e e e s e e bbb e et e e e s sasastb e et aaeesassstbaneeeeeessnntbeneeeeas 21
4.4 Player HEAP OPEIALIONSuuiiiieiiiiiiiiiite e e s eeitit ettt e e e e sttt e e e e e s st b e et e eeeessastbeseeeaeessassbebeeeeaesaasstbaeeeaesaassstbanaeaeenaans 21
4.4.1 Deleting the Player HEAP.cou ittt ettt e e e ettt e e e e e e aa e e et e e e e e e annbbaneeaeeesantneneeaens 21
RS = -1 g T oY o - Vo G PP UPPPRN 22
5.1 Initializing the Stream Library
5.1.1 Stream Thread
5.1.2 Stream Buffer
5.2 LT 1 O o T=T = 11T] 1T REPT SO
5.2.1 The Stream Handle
5.2.2 Stream Playback
LI RS (o] o o1 [0 I TS £ (== 1 RO UPPTRN
LN e U | [0 - N £ £=T- 2 PRSP PPPRRN
5.3 Avoid Interrupting Streams
LR 0 RS 1 1T 10 I 0 (5T U PRSPPI
5.3.1.1 Disabling Interrupts
5.3.1.2 DM A e e 24
5.3.1.3 INEEITUPE HANAIET PrOCESSiiiiiiiie ittt et e ettt e e e e e et et e e e e e e sntbaeeeaeeeasnntbaeeeaeeeaas 24
5.3.14 HIGhEr PrOMtY TRIEAUS ... eiiiiiiie et e e e e e et e et e e e e e s saa e b e et e e e e easantbaeaeaeeeaas 24
NTR-06-0079-001-C 4 0 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-System NITRO-Composer Sound Programmer Guide
5.3.2 Accessing the DS Card / BaCKUP MEIA..........ociiiiiiiiiiiii et e e e e e eaae e an 25
5.3.3 SHEAM BUFEI ...ttt 25
5.3.4 SIMURANEOUS PIAYDACK ...ttt e e et e e e e e e ettt e e e e e e e et beeeeaeeeenneeeeeas 25

[7= 101110] - ST T T T T TSRO U R UPRTOTRR 26

6.1 Sound Processes iN SIEEP MOUEccoiiiiiiiiii e e e 26
6.1.1 SEQUENCE PIAYDACK. ...cc ittt ettt ettt e e e oo ek e et e e e e e n b bttt e e e e e e e b hee e e e e e e e e e nntrn et e aeeaaannrreeean 26
6.1.2 Stream PlaybaCKccoiiiiiiiii i 26
[0 S Yo 10 o To IO o (1 O ESPT R 26

A I | o171 V@ (o =T V2 i{o] o FS TP PPRUPTN 27

7.1 [T o] £= 1 VA @] o T=TgT 2=\ 1o] o [P URRR PR 27

7.2 L PN Y=t g 1 o] = oY PO RPR PO 27

7.3 Yo 10 oL N (ol g TNVl o PN =T g] o] = U YA PRSP SPRTRTNE 28

7.4 Sound Archive SEream LIDIAryt e ettt e e e e e et e e e e e e e e antbeneeaaeeeanees 29

7.5 SEIEAM LIDTAIY ...ttt e et e e e e e e ettt eeee e e e et bt b e et eeeeeas s s et aeeaeeeaaaaatbaeeaaeeeeantbeaeaaeeaeannes 29

7.6 Yo 10 oo A (ol o T\ V=T I o] - o PR OO PPRRPOE 30

7.7 Yo 10 ol I o LT To I o - oY/ PO UR OO PPRRRNE 30

7.8 (O 1o 100 (=T I o - U Y2 PR OPPRRPOE 30

7.9 Waveform PlaybDaCK LIDFAYoo et e e e e ettt e e e e s et e et e e e e e e sannteeeeaaesaanneaeeeas 31

Code

(0o To [T o R IV = 1 (= {1 [T PP OPPRR 10
Code 3-2 The NItrOMAIN FUNCHONccoiiiiiiiiiii ettt e e e e e ettt e e e e e e s e anbbeeeeeeaesaannsbeeeaaeeaaanneneeeas 11
Code 3-3 Initializing the SOUNG LIDIAIY........uviiiiii ittt e e e e e e e e s e et e et e e e s e e antb e et e e e s easansreees 13
[0]e [SIe B 1o 1W [[o [o [T= T o @ L= L1 T o TSP UR 13

Tables

Table 7-1 Player LIDrary FUNCHIONSoi ittt e e e e e ettt e e e e e e e st e e e e e e e eeantbeeeaaaeesannes 28
Table 7-2 Sound Archive Player Library FUNCHONSuviiiiiiiiiiiiies ettt e e st r e e e e e s satvaer e e e e e s eaees 28
Table 7-3 Sound Archive Stream Library FUNCHONSuuiiiiiiiiiiiies e e e e e e e s r e e e e e s enees 29
Table 7-4 Stream LIDrary FUNCHONScoii ittt e ettt e e e e e e ettt et e e e e e s nntbeeeeaeeeeanntbeeeaaaeesaannes 29
Table 7-5 Sound Archive LIDrary FUNCHONSoiiiiiiiiiiiiee ettt e e s e e e e e e e st e e e e e e e s sntbaeeaaeeessnees 30
Table 7-6 Sound Heap Library FUNCHONS...........uu ittt ettt e et et e e e e e st e e e e e e e e e anntbeeeeaeeeeannes 30
Table 7-7 Capture LIDrary FUNCHONS.iii ittt e e ettt e e e s e et e e e e e e eassstbe et eaeesesntbaeeeaeeessnnees 30
Table 7-8 Waveform Playback Library FUNCHONS............uuiiiiie ittt e e et a e e e e 31
0 2004-2007 Nintendo 5 NTR-06-0079-001-C

CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NlTRO-SyStem
Figures
Figure 4-1 ReStOriNg the PreVIOUS SEALE........ccuii ettt e ettt e e e e e st e e e e e e s antbaeeeaaeeesansnneeeaens 20
Figure 7-1 Library Organization DIAQIAMcoiiiiuiiieree e s iiiiiiiere e e s s asatree s e e e e s s atbaeaeaeesasstbaeeeaeeassstbaaeeaeeessassanneeeens 27
NTR-06-0079-001-C 6 O 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-System

NITRO-Composer Sound Programmer Guide

Revision History

Version | Revision Date Description
1.2.4a 2007/04/27 |Corrected typographical errors.
Changed dates in Revision History to international format.
1.2.4 2006/05/29 |Corrected the explanation of the Sound process in Sleep Mode.
Fixed errors.
1.2.3 2005/03/28 |Added a description of the dri ver | nf o demo.
1.2.2 2005/01/31 |Added a description of the mi ¢ Thr ough demo.
Supplement to the description of the waveform playback library.
Changed “NITRO” to “Nintendo DS.”
1.2.1 2004/12/06 |Added the description of stream-2 and stream-3 demos.
1.2.0 2004/10/12 |Added description of changing to Sleep Mode.
Added description to avoid interrupting streams.
Added description of sanpl i ng demo and out put Ef f ect demo.
1.1.2 2004/09/16 |Unified the name of . sadl files as “sound label files.”
1.1.1 2004/09/02 |Revised due to the change in the sample source code.
1.1.0 2004/08/10 |Added a description of stream playback.
Added a description of stream library.
1.0.0 2004/07/20 |Revised text to reflect the addition of the Waveform Playback Library.
Revised text to reflect the addition of effect functionality.
Changed the file extension from . binto.srl.
Revised the description of the ARM7 component.
0.4.0 2004/06/01 |Revised text to reflect file system support.
Revised text to reflect the ability for a player to play multiple sequences.
Added description of heap operations.
Changed the library organization.
0.3.0 2004/04/01 |A complete organizational change was done.
Added a description of the library organization.
Added an overview of the sample demo.
0.2.0 2004/03/18 |Fixed the makefile of the SoundPlayer.
Added cautions for OS_Enabl el r gMask() .
Added a tempo change function.
0.1.0 2004/03/01 |Initial Version.

0 2004-2007 Nintendo
CONFIDENTIAL

NTR-06-0079-001-C

Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

1 Introduction

This document provides programmers with fundamental information about developing sound programs
on the Nintendo DS (DS).

The setup for the NITRO-Composer environment is explained. This is followed by an example that
shows how to implement a sound program. The last section explains the structure of the sound library,

and lists the type of provided functions.

For a detailed explanation of each function, refer to the function reference.

NTR-06-0079-001-C 8 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

2 Sound Program Development Environment

2.1 NITRO System Build Environment

NITRO-Composer is part of the NITRO-System. By setting up the NITRO-System build environment,
you will be able to use NITRO-Composer.

Refer to the NITRO-System documentation for details.

2.2 File Organization

2.2.1 Library File

The NITRO-SDK and NITRO-System Library files listed below must be linked.

l'ibsnd. a

l'i bnnssnd. a

2.2.2 Header File

Header files that include definitions for created functions must be placed in an include statement using
the following statement format.

#i ncl ude <nnsys/snd. h>

By listing an include statement for the sound label file (*. sadl) created by the sound designer as
shown below, the sound data can be specified using the label defined by the sound designer instead of
the number.

#i nclude "../data/sound_data. sadl "

2.2.3 Sound Data

All sound data sets are stored in a single sound archive file that has the *. sdat file extension. Set the
configuration to ensure that this sound archive file is stored in ROM. An example of how to store this
file in ROM is shown in Chapter 3.

2.24 ARM7 Component

The ARM7 component is stored in the NITRO-SDK. The sound functionality must be implemented in
the ARM7 component. If the ARM7 component is not specified explicitly, the component that
implements the sound functionality will be used.

0 2004-2007 Nintendo 9 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

3 Basic Implementation Example

3.1

This chapter demonstrates a basic implementation using NITRO-Composer for a project called
si npl e. The si npl e project can be found in $Ni t r oSyst ent bui | d/ denos/ snd/ si npl e.

Development Environment

This section explains how to set up the development environment.

3.1.1 Makefile

The following is an example makefile. Some of the comments have been omitted.

Code 3-1 Makefile

#! make -f

e o m e o eeeao s
SRCS = mai n. c

TARGET NEF = mai n. nef

TARGET_BIN = mai n. srl

MAKEROM ROVMROOT = ../data

MAKEROM ROWFI LES = sound_dat a. sdat

i ncl ude $(Nl TROSYSTEM ROOT) / bui | d/ bui | dt ool s/ commondef s

do-bui | d: $(TARGETS)

i ncl ude $(NI TROSYSTEM _ROQT) / bui | d/ bui | dt ool s/ nodul er ul es

The basic elements of a makefile are not discussed in this section. Refer to the NITRO-SDK and
NITRO-System manuals for makefile information. Setting the two MAKEROM . * variables is crucial.

NTR-06-0079-001-C 10 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

3.1.2 ROM Storage File

MAKEROM ROVROOT defines the root directory in ROM. MAKEROM ROWVFI LES defines the files to be
stored in the root directory. In other words, the files that have the path, / dat a/ sound_dat a. sdat are
stored in ROM using the path directory and filename.

3.1.3 Operational Procedure

If the makefile in 3.1.1 is used, the program builds in the following sequence.

e The mai n. c file registered in SRCS compiles

e The compiled file is linked to the library, which creates the ARM9 component mai n

e The ARM9 component mai n combines with the ARM7 component and sound archive which
creates mai n. sr |

e Themain. srl file becomes the executable file

3.2 The NitroMain Function

First, examine the Ni t r oMai n function in sr ¢/ mai n. c. Some of the comments have been omitted.

Code 3-2 The NitroMain Function

void NitroMin()
{
OS_ Init();
G lnit();

/1 VBl ank settings

OS_SetlrqgFunction(OS_| E_V_BLANK, VBl anklntr);
(voi d) Os_Enabl el rgMask(OS_ | E_V_BLANK);

(voi d)Cs_Enablelrq();

(voi d) GX_VBI ankl ntr (TRUE) ;

FS Init(M _DVA MAX_NUM);

/1 Initialize sound

NNS_Sndlnit ();

heap = NNS_SndHeapCreate(& sndHeap, sizeof(sndHeap));
NNS_SndArclnit(&arc, "/sound_data.sdat", heap, FALSE);
(voi d) NNS_SndAr cPl ayer Set up(heap);

NNS_SndArcStrm nit (STREAM THREAD PRI O, heap);

/] Load sound data
(voi d) NNS_SndAr cLoadSeq(SEQ MARI OKART64_TI TLE, heap);
(voi d) NNS_SndAr cLoadSeqArc(SEQ SE, heap);

0 2004-2007 Nintendo 11 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NITRO-Composer Sound Programmer Guide

NINTENDD

NITRO-System

(voi d) NNS_SndAr cLoadBank(BANK_SE, heap);
/] Initialize sound handl es
NNS_SndHandl el nit (&gnHandl e);
NNS_SndHandl el nit(&seHandl e);

/1 dunmy pad read
Cont =

PAD Read();

I Mai n Loop
whi | e(1)
{

ul6é ReadDat a;

SVC Wi t VBl ankl ntr();

ReadDat a =

PAD_Read();

Trg
Cont

(ul6) (ReadData & (ReadData ™ Cont));
ReadDat a;

if (Trg & PAD BUTTON A) {
/] start BGM
(voi d) NNS_SndAr cPl ayer St art Seq(&gnHandl e, SEQ MARI OKART64_TI TLE) ;
}

if (Trg & PAD BUTTON B) {
/1 stop BGM

(voi d) NNS_SndPl ayer St opSeq(&bgrmHandle, 1);
}

if (Trg & PAD KEY_UP) {
Il start SE
(voi d) NNS_SndAr cPl ayer St art SeqArc(&seHandl e, SEQ SE, SE CON);
}

[]---- framework
NNS_SndMai n() ;

The key points are described in subsequent sections.

NTR-06-0079-001-C

12
Released: April 27, 2007

[0 2004-2007 Nintendo
CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

3.3

Basic Setup

This section explains fundamental functions (for example, library initialization).

3.3.1 Initializing the OS and Other Processes

First initialize the OS and other basic processes.

CS Init();
GX_Init();

/1 VBl ank settings

OS_SetlrgFuncti on(OS_I E_V_BLANK, VBl anklntr);
(voi d) CS_Enabl el rgMask(OS_ | E V_BLANK);

(voi d)Cs_Enablelrq();

(voi d) GX_VBI ankl nt r (TRUE) ;

FS_ Init(M _DVA MAX_NUM);

3.3.2 Initializing the Sound Library

The sound library must be initialized before any NNS_Snd functions are called.

Code 3-3 Initializing the Sound Library

NNS_Sndlnit();

3.3.3 Creating the Sound Heap

Create the heap that is used to store sound data.

Code 3-4 Sound Heap Creation

heap = NNS_SndHeapCreat e(&sndHeap, sizeof(sndHeap));

The first argument is the starting address in memory that is used for the sound heap. The second
argument is the size of the sound heap.

The return value is the heap handle. The heap handle is used to allocate memory from the sound heap.

3.3.4 Initializing the Sound Archive

Initialize the sound archive. The sound archive structure must be allocated statically.

NNS_SndArclnit(&arc, "/sound_data.sdat", heap, FALSE);

The first argument is the sound archive structure. The second argument is the path to the sound
archive on the ROM file system.

0 2004-2007 Nintendo 13 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

3.4

The third argument is the heap needed to allocate memory for initialization of sound archives. The
sound heap handle that was just created is used. Note that if the allocated memory is released, the
sound archive will no longer be usable.

The fourth argument is a flag that controls the loading of symbol data in the sound archive. If the
argument is set to True, symbol data is used for debugging. Set the argument to FALSE for standard
initialization.

3.3.5 Setting Up the Player

Set up the player.

NNS_SndAr cPl ayer Set up(heap);

The player settings in the sound archive determine the setup.

Because the player setup requires memory, enter the heap handle as an argument.

3.3.6 Stream Library Initialization

To do stream playback, the stream library must be initialized.

NNS_SndArcStrm nit (STREAM THREAD PRI O, heap);

For details on streams, see Chapter 5.

3.3.7 Sound Frame Processing

Perform sound library frame processing. This function should be called once for each frame. The
location of the function call is not important.

NNS_SndMai n() ;

Loading Sound Data

Before playing a sound sequence, the sound data must be loaded.

(voi d) NNS_SndAr cLoadSeq(SEQ MARI OKART64_TI TLE, heap);
(voi d) NNS_SndAr cLoadSegArc(SEQ SE, heap);
(voi d) NNS_SndAr cLoadBank(BANK_SE, heap);

NNS_SndAr cLoadSeq loads the data that is required to play the sequence
SEQ MARI OKART64_TI TLE. This function concurrently loads the bank and waveform data in addition
to the sequence data.

NTR-06-0079-001-C 14 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

NNS_SndAr cLoadSeqAr ¢ loads the SE sequence archive. Because sequence archives are
associated with multiple banks, bank and waveform data are not loaded automatically. The following
function, NNS_SndAr cLoadBank, loads the bank data for SE. With this function, both the bank and
waveform data are loaded. Therefore, it is unnecessary to load waveform data separately.

3.4.1 Loading Groups

Sound data is not normally loaded alone, unlike the example. If the sound designer defines a group,
the group can be loaded as shown in the following example.

(voi d) NNS_SndAr cLoadG oup(GROUP_STATIC, heap);

The group defines which data sets to load. By calling NNS_SndAr cLoadG oup, all the data sets are
loaded at once. By loading groups, the data can be loaded without changing the code in the program.

3.5 Sequence Operation

3.5.1 Sound Handles

3.5.1.1 Using Sound Handles
A sound handle is required to work with a sequence.

NNSSndHandl e bgnHandl e;
NNSSndHandl e seHandl e;

Temporarily allocate a sound handle statically. Before using a sound handle, initialize it with the
following function.

voi d NNS_SndHandl el ni t (NNSSndHandl e* handl e);

3.5.1.2 What is a Sound Handle?

A sound handle is an object that controls the sequence after playback. A sound handle can control one
sequence. If a sequence playback is successful, that sequence will be linked to a sound handle. From
that point and until that link is disconnected, operations for that sound handle will operate the
sequence.

3.5.1.3 Disconnecting the Sequence

Sometimes a sequence is manually or automatically disconnected. A sequence can be automatically
disconnected if a second sequence attempts to start when a player can play only one sequence. The
sequence played back is forcibly stopped. Under these circumstances, the sound handle is
involuntarily disconnected from the sequence and disabled. Even if operations are performed on a
disabled sound handle, no processing will occur.

0 2004-2007 Nintendo 15 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

This means that the programmer does not need to check to see if the sequence played back is still
playing. Even if the same process is executed while the sequence is being played or if the sequence is
stopped, there will be no problems such as a separate sequence being operated by error.

3.5.14 Tips for Creating Sound Handles

When sound is played back without any pauses, as with one-shot sound effects, the same sound handle
can be used to play repeated sounds. All sounds can be played simultaneously as long as the number
does not exceed the maximum number of simultaneous sequences that are allowed. Each parameter
can be changed separately, immediately after the playback occurs.

Because continuous sounds such as background music or engine noises must be stopped, each of
these sound effects requires a separate sound handle.

3.5.2 Sequence Playback

The following function plays back a sequence.

BOOL NNS_SndArcPl ayer St art Seq(NNSSndHandl e* handl e, int seqNo);
segNo is the sequence number, and the sounds are ordered as they appear in the sound archive.

If the function executes, the sequence links to a sound handle that is passed in as an argument. From
this point, this sound handle can be used to carry out processes (for example, stopping the sequence).

If the sound handle is already linked to a sequence, the connection to the original sequence is
disconnected and the sound handle connects to the new sequence. The sequence disconnected from
the sound handle can no longer be controlled, so be careful. However, when a one-shot sound effect is
generated, or when there will be no need to control the sequence later, there is no need for concern.

if (Trg & PAD BUTTON A) {
(voi d) NNS_SndAr cPl ayer St art Seq(&gnHandl e, SEQ MARI CKART64_TI TLE);

3.5.3 Sequence Archive Playback

The following function plays back the sequence from the sequence archive.

BOOL NNS_SndAr cPl ayer St art SeqAr c(
NNSSndHandl e* handl e, int seqArcNo, int index);

segAr cNo is the sequence archive number, which is the order of the sequences in the sound archive.
i ndex is the index number of the sequence in the sequence archive. The rest is the same as the
playback of the sequence.

if (Trg & PAD KEY_UP) {
(voi d) NNS_SndAr cPl ayer Start SeqArc(&seHandle, SEQ SE, SE CON);

NTR-06-0079-001-C 16 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

3.5.4 Stopping the Sequence

The following function stops the sequence.

voi d NNS_SndPl ayer St opSeq(NNSSndHandl e* handl e, int fadeFranme);

Enter the sound handle passed into NNSSndHand! e when played back to handl e. f adeFr ane is the
fadeout frame. The volume level gradually decreases over the specified number of frames.

if (Trg & PAD BUTTON B) {
(voi d) NNS_SndPI ayer St opSeq(&bgnHandle, 1);

3.6 Other Demos

No descriptions for the functions that are used with the si npl e demo are described. This section
contains an overview of other demos. The demo programs for NITRO-Composer are all stored under
$Ni t r oSyst ent bui | d/ denos/ snd.

3.6.1 stream

Plays back streams. Stream playback is explained in Chapter 5.

3.6.2 stream-2

Combines multiple stream data in real time and plays back. It registers the callback function that
performs the combining process by using the NNS_SndAr ¢St r n5t ar t Ex2 function.

3.6.3 stream-3

Applies effects to the stream and plays back. It registers the callback function that processes effects by
using the NNS_SndAr ¢St r nSt ar t Ex2 function.

3.6.4 moveVolume

Changes the volume of a sequence over a period of time. This demo uses the
NNS_SndPI ayer MoveVol une() function to change the volume. It includes code for a fade-in
playback.

3.6.5 onMemory

The demo uses the entire sound archives that are loaded into memory. For that purpose, the sound
archives are initialized with NNS_SndAr cl ni t OnMenor y() function.

0 2004-2007 Nintendo 17 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

3.6.6 reverb

Areverb demo that uses the capture feature. This demo uses NNS_SndCapt ur eSt art Rever b and
NNS_SndCapt ur eSt opRever b.

3.6.7 effect

An effects demo that uses the sound capture feature. It passes the output through a simple low-pass
filter (moving average).

This demo uses NNS_SndCapt ur eSt art Ef f ect and NNS_SndCapt ur eSt opEf f ect .

3.6.8 outputEffect

Effects demo that uses the sound capture feature. Switches between the surround mode and the
headphones mode for output.

It uses the NNS_SndCapt ur eSt ar t Qut put Ef f ect and NNS_SndCapt ur eChangeQut put Ef f ect
functions.

3.6.9 sampling

Sampling demo that uses the sound capture feature. Calculates output levels using sampling data for
the display.

It uses NNS_SndCaptureStartSampling and other functions.

3.6.10 waveout

Plays waveform data directly instead of using sequence playback. It plays back sounds recorded with a
microphone. Uses NNS_SndWaveQut St art for the playback of waveform data.

3.6.11 micThrough

Uses the low-level stream library NNS_SndSt r m Plays back real-time input from the microphone and
applies effects to output sounds.

This demo uses NNS_SndSt r nSet up and NNS_SndStrnSSt art .

3.6.12 driverinfo

Displays on-screen sound driver information.

The sound driver information is updated with NNS_SndUpdat eDr i ver | nf o, and the player
information in the sound driver can be obtained with NNS_SndPI ayer ReadDri ver Pl ayer | nf o.

NTR-06-0079-001-C 18 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

4 Heap Operations

4.1 Overview

In the simple demo, memory management functions are not used. In the simple demo, only the sound
heap is created using NNS_SndheapCr eat e during initialization, and data is loaded into the memory.

The heap operations are explained in subsequent sections.

4.2 Memory Management Basics

For information about the basics of memory management, see the NITRO-Composer Sound System
Manual. The following is a brief explanation about memory management.

4.2.1 The Sound Heap and the Player Heap

There are two heaps, the sound heap and the player heap.
The sound heap is a stack-based heap that programmers use for loading and deleting data.

The player heap is used for loading data automatically during the sequence playback. Programmers do
not need to work directly with the player heap.

4.2.2 Appropriate Usage of the Two Heaps

The sound heap loads relatively large blocks of data at system startup and during scene changes. The
player heap loads relatively small blocks of data (for example, BGM data) during sequence playback.

Even though sound and player heap are generally used in this way, everything can be managed in the
sound heap to improve the load efficiency.

4.3 Sound Heap Operations

Because the sound heap is stack-based, memory is allocated from the top to the bottom and is
released from the bottom to the top. Memory is allocated automatically from the heap when sound data
loads. To delete unwanted sound data, the memory regions must be released. There are two ways to
release memory regions.

e Clearing the heap
e Restoring the heap to the previous state

0 2004-2007 Nintendo 19 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

4.3.1 Clearing the Heap

All of the sound data can be cleared from the heap. This process is very simple, but when the used
function is executed, all sounds playing will stop. If the memory region that is used for the initialization
of the sound archive is released, the sound archive will no longer be available.

To clear all sound data from the heap, call the NNS_SndHeapCl ear function.

4.3.2 Restoring the Heap to the Previous State

Restoring the heap to the previous state is used more frequently than clearing the heap..

NNS_SndHeapSavesSt at e saves the current state. After saving, the return value is the hierarchy level
of the heap. The hierarchy level indicates the value for the state that was saved. The hierarchy level
value can be used to restore the sound heap to the saved state.

After loading several blocks of sound data, calling NNS_SndHeaplLoadSt at e by passing the hierarchy
level value will return the heap to the state that it was in immediately after the call was made to
NNS_SndHeapSaveSt at e. In other words, all data that was loaded after the call to
NNS_SndHeapSavesSt at e is deleted.

Figure 4-1 Restoring the Previous State

NNS_SndHeapSaveSt at e Load Sound Data NNS_SndHeapLoadsSt at e
Loaded Loaded Loaded Loaded
Sound Data Sound Data Sound Data Sound Data
: : Newly Loaded :
Sound Data
Level 0 Level 1 Level 1 Level 1

When the data is deleted, already loaded sounds will not be stopped.

Also, NNS_SndHeapSavesSt at e can be called repeatedly, and the value of the hierarchy level will
increase each time the function is called.

NTR-06-0079-001-C 20 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

4.4

4.3.3 Multiple Sound Heaps

Usually, a single sound heap is used to restore the heap, but multiple sound heaps can be also used to
restore different heap states. If there are several sound heaps, each sound heap can save and restore
an individual state.

To use multiple sound heaps, you only need to create multiple heaps using NNS_SndHeapCr eat e.
When allocating memory for a sound heap, the heap handle must always be specified. To allocate the
memory, specify the sound heap by passing the heap handle return value as the argument of the
function.

Player Heap Operations

Normally, the programmer does not have to manage the player heap. The player heap is created using
the following function.

BOOL NNS_SndAr cPl ayer Set up(NNSSndHeapHandl e heap);

The sound designer sets the size of the heap needed by the player. The amount of memory is
allocated from the sound heap and is passed as an argument in the function to create the player heap.

4.4.1 Deleting the Player Heap

The player heap allocates memory from the sound heap. When the memory region that is allocated to
the player heap is released, the player heap is automatically deleted.

0 2004-2007 Nintendo 21 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

5 Stream Playback

This chapter explains stream playback, which was not included in the si npl e demo.

5.1 Initializing the Stream Library

To play a stream, the stream library must be initialized.

NNS_SndArcStrm nit (STREAM THREAD PRI O, heap);

The first argument is the stream thread priority. The second argument is the sound heap handle, which
is used to allocate the stream buffer.

5.1.1 Stream Thread

The stream thread is a thread that loads the data from ROM when necessary.

Data is loaded while stream playback is played; the sound stops if the data is not loaded in time.
Therefore, the data must be loaded quickly. When a stream thread needs to load data, a stream thread
can interrupt other processes running on the main loop of the game and load the data.

If you want the stream thread to interrupt the main processing loop and load data, the stream thread
must be assigned a higher thread priority. The main loop (main thread) has a default value of 16
Therefore, specify a value that is less than 16.

5.1.2 Stream Buffer

To play a stream, a buffer is required to load data. To play a single stream, the buffer needs
approximately 2 to 4 KB of memory. This buffer uses part of the sound heap and is passed as the
second argument in the function.

Note that once the stream buffer is released, the stream cannot be played.

NTR-06-0079-001-C 22 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

5.2 Stream Operations

5.2.1 The Stream Handle

Just as a sound handle is necessary to play a sequence, a stream handle is required to play a stream.

NNSSndSt r nHandl e strnHandl e;

The stream handle should be allocated statically for now. Before using the stream handle, initialize a
stream function with the following function.

voi d NNS_SndSt r nHandl el ni t (NNSSndSt r rHandl e* handl e);

In other respects, a stream handle is identical to a sound handle.

5.2.2 Stream Playback

To play back a stream, call the following function.

BOOL NNS_SndArcStrntStart(NNSSndStrnHandl e* handle, int strmNo, u32 offset);

st r m\o is the stream number that specifies which stream to play. of f set specifies in milliseconds
when to start playing back the stream data. Playback generally starts at the beginning of the stream, so
set this parameter to zero.

Similar to a when using a sequence, the stream handle is bound to the stream if playback is successful.

5.2.3 Stopping a Stream

To stop a stream, call the following function.

voi d NNS_SndAr cSt rntSt op(NNSSndSt r mHandl e* handl e, int fadeFrames);

f adeFr anmes specifies the number of frames over which the volume should be gradually lowered
before the stream stops. If f adeFr anes is set to a value of zero, the stream stops immediately.

0 2004-2007 Nintendo 23 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

5.2.4 Pausing a Stream

There is no function to pause a stream. However, a process similar to pausing a stream is possible.
The following procedure allows you to create the effect of pausing.

1. When you want to pause the stream, use the following function to obtain the current position of
playback.

u32 NNS_SndAr cStrnGet Current Pl ayi ngPos(NNSSndSt r nHandl e* handl e);

2. Use NNS_SndAr cSt r nSt op to stop the stream.

3. Restart the stream playback by passing the playback location as the of f set argument of
NNS_SndAr ¢St rnfSt art and start the stream playback. The playback will start from where
the stream stopped.

The stream will not restart at the precise position in the stream.

5.3 Avoid Interrupting Streams
With stream playback, data is loaded in real-time. Therefore, if the sound is not loaded in time, the
sound will be interrupted. Here are some tips to avoid interrupting streams.
5.3.1 Stream Thread
Stream data is loaded with the stream thread. The basic rule is to maintain stream thread processes
without delay.
Here are some circumstances that cause delays in the stream thread processes.
5.3.1.1 Disabling Interrupts
Stream threads cannot run while interrupts are disabled. Interrupts should be disabled only for short
periods of time.
53.12 DMA
Stream threads cannot run while DMA is running. By dividing a large DMA into chunks, the delay in
stream thread processes can be reduced.
5.3.1.3 Interrupt Handler Process
Stream threads cannot run while an interrupt handler is being processed. Interrupt handler processes
should last only for short periods of time.
5.3.1.4 Higher Priority Threads
Stream threads cannot run while higher priority threads are being processed. Higher priority thread
processes need to last only for short periods of time or the priority of stream threads needs to be raised.
NTR-06-0079-001-C 24 0 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

5.3.2 Accessing the DS Card / Backup Media

Stream data cannot be loaded while the DS Card or backup media is accessed. Therefore, divide the
bandwidth between the DS Card and stream data.

5.3.3 Stream Buffer

If the buffer size for stream playback is large, the sound will not be interrupted even if the stream
thread process speed is reduced. However, when the buffer size is larger, the process for one stream
thread requires more bandwidth, and a negative effect on the lower priority threads may occur.

5.3.4 Simultaneous Playback

When multiple streams are played simultaneously, the stream thread processes increase and require
more bandwidth. The sound may be interrupted even with a short delay in the processes. Exercise
caution when playing back multiple streams simultaneously.

0 2004-2007 Nintendo 25 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

6 Cautions

6.1 Sound Processes in Sleep Mode

When entering Sleep Mode, the library automatically performs the processes to stop the sound
features. In other words, the programmer simply calls the PM _GoSl eepMbde function to enter Sleep
Mode and the necessary processes are carried out by the library.

Similarly, the library carries out all the processes needed to restart sound features when returning from
Sleep Mode. However, pay attention to the following.

6.1.1 Sequence Playback

The sequence process resumes from the place where it was before entering Sleep Mode, but the
channel that was playing sounds in the sequence restarts from the very beginning of its waveform data.

If this is a problem, the programmer must pause the playback before Sleep Mode and cancel the
pause after Sleep Mode. However, the channel that was playing sounds in the sequence will not play
upon returning from Sleep Mode.

6.1.2 Stream Playback

There is a process that stops steam playback before entering Sleep Mode and resumes play when
returning from Sleep Mode. At this time, any data left in the Stream buffer will be destroyed and sounds
will partially skip.

There is no effective work-around to this problem.

6.1.3 Sound Capture

A process is performed that stops capture before entering Sleep Mode and resumes capture upon
returning. At that time, any data left in the capture buffer will be destroyed, so there will be no capture
data when returning from Sleep Mode.

There is no effective work-around to this problem.

NTR-06-0079-001-C 26 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

7 Library Organization

This chapter describes the organization of the NITRO-Composer library.

7.1 Library Organization

The NITRO-Composer library is composed of several libraries as shown below.

Figure 7-1 Library Organization Diagram

Sound Archive Sound Archive
Player Stream
NNS_SndArcPlayer NNS_SndArcStrm

Sound Archive
NNS_SndArc

\

Player Stream Waveform Playback Capture
NNS_SndPlayer NNS_SndStrm NNS_SndWaveOut NNS_SndCapture

Sound Heap
NNS_SndHeap

N
{ Sound Driver Interface (ARM9)

l

N
{ Sound Driver (ARM7)

The libraries with NNS_Snd prefixes are the sound libraries included in Ni t r oSyst em Usually, the
programmer uses these library functions. The libraries are described in the following sections.

7.2 Player Library

The Player Library is the most basic library for playing back sequences. The function prefix set is
NNS_SndPI ayer .

This library is used to change parameters for sequences and stopping sequences. However, the sound
archive player functions from the upper library are used for only playback. The sequence playback
functions in the player library are used to simply run sequences. For actual sequence playback,
complex processing (for example, data loading) is required. Therefore, sequence playback is
processed with the sound archive player.

0 2004-2007 Nintendo 27 NTR-06-0079-001-C
CONFIDENTIAL Released: April 27, 2007

NITRO-Composer Sound Programmer Guide

NINTENDD

NITRO-System

The player library also includes some functions that operate the sound handles. The function set prefix
is NNS_SndHandl e. The sound handle and player are closely related. Refer to paragraph 3.5.1 Sound

Handle for an overview of the sound handle.

The main functions of the Player Library are shown in Table 7-1.

Table 7-1 Player Library Functions

Function Name

Description

NNS_SndPI ayer St opSeq
NNS_SndPI ayer Pause
NNS_SndPI ayer Set TenpoRati o
NNS_SndPI ayer Set Vol une
NNS_SndPI ayer Set Tr ack Vol une
NNS_SndPI ayer Set Tr ackPi t ch
NNS_SndPI ayer Set Tr ackPan

Stops the sequence.

Pauses or restarts the sequence.

Changes the tempo of the sequence.

Changes the volume of the sequence.

Changes the volume of the sequence track.
Changes the pitch of the sequence track.
Changes the pan (location) of the sequence track.

7.3 Sound Archive Player Library

The Sound Archive Player Library plays back the sequence using the sound archive. The function set

prefix is NNS_SndAr cPl ayer .

The Sound Archive Player Library is located in the upper-level libraries of the player library and the

sound archive library. Sequences can be easily played back using these functionalities.

The main functions of the Sound Archive Player Library are shown in Table 7-2.

Table 7-2 Sound Archive Player Library Functions

Function Name

Description

NNS_SndAr cPl ayer Set up

NNS_SndAr cPl ayer St art Seq
NNS_SndAr cPl ayer St art SegAr ¢

Sets up the player using the settings in the sound
archive.

Plays back the sequence.
Plays back the sequence archive.

NTR-06-0079-001-C
Released: April 27, 2007

28 0 2004-2007 Nintendo

CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

7.4 Sound Archive Stream Library

Sound Archive Stream Library is used to play stream data in a sound archive. The function names
begin with NNS_SndAr cSt rm

This library is an upper-level library of the stream library and the sound archive library. The Sound
Archive Stream Library uses the functionality of the stream library and the sound archive library to
make playing streams simple.

The main functions of the Sound Archive Stream Library are shown in Table 7-3.

Table 7-3 Sound Archive Stream Library Functions

Function Name Description
NNS_SndArcStrm ni t Initializes the sound archive stream library.
NNS_SndArcStrnft art Plays a stream.

NNS_SndAr cSt r nSt op Stops a stream.

7.5 Stream Library

The Stream Library is a low-level library for the playback of streams. The function names begin with
NNS SndStrm

This library is used to play data that is received through communications in real time, and for stream
playback of waveform data in unique stream data format.

The main functions of the Stream Library are shown in Table 7-4.

Table 7-4 Stream Library Functions

Function Name Description
NNS_SndSt rm ni t Initializes a stream.
NNS_SndSt r mAl | ocChannel Allocates a channel for stream playback.
NNS_SndSt r nFr eeChannel Frees a stream playback channel.
NNS_SndSt r nSet up Prepares for stream playback.
NNS_SndSt rnft ar t Plays a stream.
NNS_SndSt r nf5t op Stops a stream.
0 2004-2007 Nintendo 29 NTR-06-0079-001-C

CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

7.6 Sound Archive Library

The Sound Archive Library loads sound data in the sound archives and retrieves parameters. The
function set prefix is NNS_SndAr c.

The main functions of the Sound Archive Library are shown in Table 7-5.

Table 7-5 Sound Archive Library Functions

Function Name Description
NNS_SndArcl ni t Initializes a sound archive.
NNS_SndAr cLoadG oup Loads sound data in units of the group.

7.7 Sound Heap Library

The Sound Heap Library manages the sound heap. The function set prefix is NNS_SndHeap.

The main functions of the Sound Heap Library are shown in Table 7-6.

Table 7-6 Sound Heap Library Functions

Function Name Description
NNS_SndHeapCr eat e Creates the sound heap.
NNS_SndHeapd ear Clears all heap memory.
NNS_SndHeapSavesSt at e Saves the heap state.
NNS_SndHeapLoadSt at e Restores the heap state.

7.8 Capture Library

Nintendo DS has the sound capture feature. The Capture Library is used for generating effects using
the capture feature (for example, reverb). The function set prefix is NNS_SndCapt ur e.

The main functions of the Capture Library are shown in Table 7-7.

Table 7-7 Capture Library Functions

Function Names Description
NNS_SndCapt ureSt art Reverb Starts the reverb.
NNS_SndCapt ur eSt opRever b Stops the reverb.
NNS_SndCapt ur eSt art Ef f ect Starts the effect.
NNS_SndCapt ur eSt opEf f ect Stops the effect.
NTR-06-0079-001-C 30 O 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system NITRO-Composer Sound Programmer Guide

7.9 Waveform Playback Library

The Waveform Playback Library provides functionality to play waveform data without using sequence
playback. The function set prefix is NNS_SnhdWaveQut .

The Waveform Playback Library is used for playing sampled data captured with a microphone. Use this
stream library to play back waveform data that is generated in real time.

The main functions of the Waveform Playback Library are shown in Table 7-8.

Table 7-8 Waveform Playback Library Functions

Function Names Description
NNS_SndWaveCQut Al | ocChannel Allocates a channel for playing waveform.
NNS_SndWaveCQut St ar t Starts waveform playback.
NNS_SndWaveQut St op Stops waveform playback.
0 2004-2007 Nintendo 31 NTR-06-0079-001-C

CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-Composer Sound Programmer Guide NITRO-system

© 2004-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

NTR-06-0079-001-C 32 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

	1 Introduction
	2 Sound Program Development Environment
	2.1 NITRO System Build Environment
	2.2 File Organization
	2.2.1 Library File
	2.2.2 Header File
	2.2.3 Sound Data
	2.2.4 ARM7 Component

	3 Basic Implementation Example
	3.1 Development Environment
	3.1.1 Makefile
	3.1.2 ROM Storage File
	3.1.3 Operational Procedure

	3.2 The NitroMain Function
	3.3 Basic Setup
	3.3.1 Initializing the OS and Other Processes
	3.3.2 Initializing the Sound Library
	3.3.3 Creating the Sound Heap
	3.3.4 Initializing the Sound Archive
	3.3.5 Setting Up the Player
	3.3.6 Stream Library Initialization
	3.3.7 Sound Frame Processing

	3.4 Loading Sound Data
	3.4.1 Loading Groups

	3.5 Sequence Operation
	3.5.1 Sound Handles
	3.5.1.1 Using Sound Handles
	3.5.1.2 What is a Sound Handle?
	3.5.1.3 Disconnecting the Sequence
	3.5.1.4 Tips for Creating Sound Handles

	3.5.2 Sequence Playback
	3.5.3 Sequence Archive Playback
	3.5.4 Stopping the Sequence

	3.6 Other Demos
	3.6.1 stream
	3.6.2 stream-2
	3.6.3 stream-3
	3.6.4 moveVolume
	3.6.5 onMemory
	3.6.6 reverb
	3.6.7 effect
	3.6.8 outputEffect
	3.6.9 sampling
	3.6.10 waveout
	3.6.11 micThrough
	3.6.12 driverInfo

	4 Heap Operations
	4.1 Overview
	4.2 Memory Management Basics
	4.2.1 The Sound Heap and the Player Heap
	4.2.2 Appropriate Usage of the Two Heaps

	4.3 Sound Heap Operations
	4.3.1 Clearing the Heap
	4.3.2 Restoring the Heap to the Previous State
	4.3.3 Multiple Sound Heaps

	4.4 Player Heap Operations
	4.4.1 Deleting the Player Heap

	5 Stream Playback
	5.1 Initializing the Stream Library
	5.1.1 Stream Thread
	5.1.2 Stream Buffer

	5.2 Stream Operations
	5.2.1 The Stream Handle
	5.2.2 Stream Playback
	5.2.3 Stopping a Stream
	5.2.4 Pausing a Stream

	5.3 Avoid Interrupting Streams
	5.3.1 Stream Thread
	5.3.1.1 Disabling Interrupts
	5.3.1.2 DMA
	5.3.1.3 Interrupt Handler Process
	5.3.1.4 Higher Priority Threads

	5.3.2 Accessing the DS Card / Backup Media
	5.3.3 Stream Buffer
	5.3.4 Simultaneous Playback

	6 Cautions
	6.1 Sound Processes in Sleep Mode
	6.1.1 Sequence Playback
	6.1.2 Stream Playback
	6.1.3 Sound Capture

	7 Library Organization
	7.1 Library Organization
	7.2 Player Library
	7.3 Sound Archive Player Library
	7.4 Sound Archive Stream Library
	7.5 Stream Library
	7.6 Sound Archive Library
	7.7 Sound Heap Library
	7.8 Capture Library
	7.9 Waveform Playback Library

