NINTENDDO

NITRO-system

Memory Manager
Three Heaps Specialized for Games

Version 1.0.9a

The contents in this document are highly

confidential and should be handled accordingly.

0 2004-2007 Nintendo
CONFIDENTIAL

NTR-06-0095-001-B
Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

NTR-06-0095-001-B 2 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

Table of Contents

N o () - Vo = PRSPPI 7
A = (=T oo [To I Lo T T o RN 1Y = g F= o = SRR UPUPPPRTR 8
2.1 (1= i o =T o1 SRR 8
2 2 N | (o Yo=Y] o Y =T 4 L] A =] (ot SR 8
2.2.1 Allocating and Freeing MemOory BIOCKS........ccuiiiiiiiiiiiiicee et ee e e e e e 8
222 The Minimum Memory Block AlIOCation UNit.............ueiiiiii i 8
2.2.3 V[T o g YA AN [o o= u T g T d o Tod=To (U] = SRR 9
2.2.4 Allocating Memory Blocks from the Back of the Heap Region............oocuieiiiiiiiiiiiiiiii e 9

2.3 S o= Tox 1Y/ aTe I A [T [41T o | PR 11
2.4 Changing MemOry BIOCK SIZE.........uuuiiiieiiiiiiiieiee ettt s s e e e e e e s e e e e e e s s e s b e e e e e e s e e nnnnnees 11
2.5 ACQUINING FIEE SPACE......ueeeiiiaiie ittt et e e oottt ettt e e e e s e s bbb et e e e e e e e e asabb e et eeaeeeaaannbbeaeaaaeesaannreens 12
2.6 GOUP ID et 12
2.7 Processing MemOry BIOCKS.uuiiiiiiitiet ettt ettt e e e e bb e e e e e e e e snnbeeeeeaans 13
2.8 Acquiring Memory BIOCK INfOIMALIONcooiiiiiiiiiiiie e e e e 13
2.9 Checking Heaps and MemOry BIOCKSuuuiiiiie e s e s s e e e e e e s s s e e e e e e e e e nnnnees 13

G T = L[== T TNV =T = Vo = 14
3.1 01T g To o =TT oL TP URTT 14
3.2 Allocating MEmMOIY BIOCKS........cciiiiiiiiieieie ettt e e e e et e e e e e e e aabbeae e e e e e e e e nnnneees 14
3.2.1 Allocating and Freeing Memory BIOCKS.........coiii i 14
3.2.2 The Minimum Memory Block Allocation UNit.............ueevieeiiiiiiiiiicce e 15

3.3 SPECITYING AlIGNIMENT ...ttt e e e e e e b b e e et e e e e e e s s abbe e e e e aeeesaaanbbeeeeaaeaeaannnneees 15
3.4 Freeing MemOry BIOCKS ... ettt e et e e e e e e e snnbe e eeaeas 15
35 Storing and Returning to a Memory Block Allocation Status............c.eeevveeiiiviiiiiiecee e 16
3.6 JaNo OIS il ol [T Vo T R =T o] IR T - SRR 17
3.7 Changing the Size of MemMOry BIOCKS............uviiiiiie e e e e 18
3.8 Acquiring the Size That Can Be AllOCAtEdueeviiiiiiiiieiie e e e e e e e e 18

O U Lo 1 o (=TT o L PP RRRP T 19
4.1 O (=T 11 o T T == T PP OTPPPTPIN 19
4.2 1T 0 g T Y0 =3 [Yo 2 o o3 L1 o] o IS 20
4.2.1 Allocating and Freeing Memory BIOCKS........ciiiiiiiiiiiiiiie et e e e e e 20
4.2.2 The Minimum Memory Block Allocation UNit.............ueoiiiiiiiii e 20

4.3 Yo 1= Toa 1Y/ T aTe I A [T |41 o | SRR 21
4.4 Acquiring the Number of Memory Blocks That Can Be Allocatedccccvvveereeiiiiiciiieeeee e 21

5 Functionality Common t0 EACh HEAPceiiiiiiii et 22
5.1 [(ST 1ol @ 0 1] o I RO PUTTTT RO 22
5.2 Changing the Values to Fill When DebUGQINGcoouiiiiieiiiiiie ettt 22
5.3 (DY o1 F= 1Y Lo B [T= T o 0] g1 (=T o S 23

0 2004-2007 Nintendo 3 NTR-06-0095-001-B

CONFIDENTIAL Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem
5.4 ACQUINNG HEAP REGIONS...ccci ittt e e ettt e e e e e e e e bbb bt e e e e e e e e anbbbaeeeaaaeeeannnnnneeas 23
6 MUlti-HEAP MANAGEIMENT ...ttt e e oottt e e e e e e et bt b e et e e e e e e aanbbeseeeaaeeaaannbbeeeaaaaeaaannnes 24
6.1 T L T= = T PSSR 24
6.2 Freeing MUlti-HEAP MEIMOIYc.viiiiiiiiiie ettt et ne e 24
6.3 Managing HeapS With @ TIE.......ciiiieiiiiiee e st s s e e e e s s e e e e e e s st ee e e e e e s s e snnrnneeeaeeeannnnes 24
Tables
Table 2-1 Functions for Creating and Destroying Extended Heapscccccevveeeiiiiciiiiieee e ceciiiieeee e 8
Table 2-2 Functions for Allocating and Freeing Memory BIOCKScoooiiiiiiiiiii e 8
Table 2-3 Memory BloCk AllOCAtION MOAEScoooiiiiiiiiiiiie ettt e e e e e e e e eeeaae e e e nnes 9
Table 2-4 Allocation Mode Setting and ACQUISITION..........ciiiiiiiiiiiiiiiie e e s s e e e s s srreer e e e e e e s nnes 9
Table 2-5 Allocation Modes Used by the FUNCHONSooiiiiiiiiiiiiiie e e e e e 9
Table 2-6 Function for Changing Memory BIOCK SiZ€cooociiiiiiiiic e 11
Table 2-7 Functions For AcqUIring Free SPace, ELC. ... e e 12
Table 2-8 Functions for Setting and ACQUIrNG Group IDSc.uvuiiiieeeiiiiiiieie e s s e e e e srrree e e e e e s eennes 12
Table 2-9 Functions for Acquiring Memory Block INfOrmation.............cooouiiiiiiiiiiiiiiie e 13
Table 2-10 Functions that check extended heaps and memory bIOCKSccoovviiiiiiiiie e 13
Table 3-1 Functions for Creating and Destroying HEAPScc.uvuiiiiiiiiiiiiiiiee et e e e 14
Table 3-2 Functions for Allocating Memory BIOCKS.........cuuie i e e e e e e s 14
Table 3-3 Methods Of Freeing Memory BIOCKSuuiiiiiiiiiiiii et 15
Table 3-4 Function for Freeing Memory BIOCKS...........uuuiiiiiiiiiiiiiiiee e e e e e e snree e e e e e s e e nnnes 15
Table 3-5 Values Specified in the Function for Freeing Memory BIOCKSccooviiiiiiieeieci i 16
Table 3-6 Functions for Storing a Memory Block Allocation Status and Returning To It............ccccoee 17
Table 3-7 Function for Reducing Heap REQION SIZEcvvieiiiiiiiiiiiiee e e e e snree e e e e e s ennes 17
Table 3-8 Function for changing the size of memory bIOCK............cooii e 18
Table 3-9 Functions for Obtaining the Size That Can Be Allocatedcccccveeveiviiiiiieeee e 18
Table 4-1 Functions for Creating and Destroying HEAPScc.uuuiiiiiiiiiiiiiiiie e 19
Table 4-2 Function for Allocating Memory BIOCKSuiiiieiiiiiiiiiieee e e e srree e e e e e s 20
Table 4-3 Function for Acquiring the Number of Memory Blocks That Can Be Allocatedccccccc.....e. 21
Table 5-1 Options That Can Be Specified When Creating a Heapccccvvvveeiv i cviiieeee e 22
Table 5-2 Functions for Setting and Acquiring Values That Are Filled At Debug Time...........cccoeveeeinnnns 22
Table 5-3 Type of heap operation tO fill.oovriiiii e e e 23
Table 5-4 Function for Displaying Internal Heap INformation ... 23
Table 5-5 Functions For Acquiring HEap REGIONSuuiiiiiiiiiiiiiiiie ettt e e e e e e e anes 23
Table 6-1 Function for Searching for the Heap That Allocated a Memory BIOCKcccccovvvcviiiiinieeninnns 24
NTR-06-0095-001-B 4 0 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

Figures
Figure 2-1 Procedure for Allocating Extended Heap Memory BIOCKSccoocuviieiieeii i 9
Figure 2-2 Mechanism That Fragments Memory BIOCKSccooiiiiiii e 10
Figure 2-3 Measures for Dealing with Extended Heap Memory Block Fragmentation..............ccccccoeeueeeee. 10
Figure 2-4 Changing Extended Heap Memory BIOCK SiZe ... 11
Figure 3-1 Frame Heap Memory AllOCAtIONuviiiiiee e e e e e e e e et e e e e e s e s e e e e e e s e e nnnnees 14
Figure 3-2 Mechanism for Storing and Returning to Frame Heap Memory Block Allocation Status.................... 16
Figure 3-3 AdjuSting Frame HEAP SIZE......uuiiiiiiiiiiiiiieie ettt e e e s e s e e e e e e s s e e e e e e e s e nnnnnees 17
Figure 3-4 Adjusting the size of the frame heap memory bloCK.............c..uuiiiiiiiii 18
Figure 4-1 Unit Heap MemOry AlIOCALIONcoiiiiiiiiiiiie ettt e e e e e e e e e e e naenees 20

0 2004-2007 Nintendo 5 NTR-06-0095-001-B

CONFIDENTIAL Released: April 27, 2007

Memory Manager

NINTENDD

NITRO-System

Revision History

Version

Revision Date

Description

1.0.9a

2007/04/27

Corrected typographical errors.
Changed Revision History dates to international format.

1.0.9

2005/01/05

Changed instances of “NITRO” to “Nintendo DS.”

1.0.8

2004/08/20

Added “Checking Heaps and Memory Blocks” to the Extended Heap

1.0.7

2004/08/02

Added “Changing Size of Memory Blocks” to Frame Heap

1.0.6

2004/06/10

Revised description of “Heap Options.”

1.05

2004/04/12

Revised Misspelling

1.0.4

2004/03/30

Changed title and header.
Added explanation to all areas that were difficult to understand.
Corrected spelling errors and omissions.

103

2004/03/29

Corrected spelling errors and omissions.

Deleted 2 sections from the main body of the Introduction
Revised the descriptions of the functionality of each heap.
Added “Functionality Common To Each Heap”.

1.0.2

2004/03/25

Added description of Extended Heap API.

Added to Extended Heap “Creating Heaps”.

Revised Extended Heap “Memory Allocation Procedure”.

Revised Extended Heap “Specifying Alignment”.

Deleted Extended Heap “Free Special Memory”.

Added to Extended Heap “Acquiring Free Capacity”.

Changed values in Extended Heap “Group ID".

Added to Extended Heap “Acquiring Memory Block Information”.
Added to Frame Heap “Creating Heaps”.

Revised Frame Heap “Specifying Alignment”.

Added to Frame Heap “Acquiring the Size That Can Be Allocated”.
Added to Unit Heap “Creating Heaps".

Revised Unit Heap “Memory Block Allocation”.

Added to Unit Heap “Minimum Unit When Allocating Memory Blocks”.
Added to Unit Heap “Specifying Alignment”.

Added to Unit Heap “Acquiring the Number of Memory Blocks That Can Be Allocated”.

1.0.1

2004/02/06

Deleted Extended Heap “Freeing by Group ID".
Added to Extended Heap “Processing Memory Blocks”.

Changed Unit Heap algorithm.

NTR-06-0095-001-B
Released: April 27, 2007

6 0 2004-2007 Nintendo
CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

1 Introduction

The Nintendo DS has 4 megabytes of main memory. It is difficult to manage this much memory with a
memory map. A memory manager allows you to dynamically allocate and free memory, eliminating the
need for memory maps or other such tools.

On the other hand, the Nintendo DS memory size is relatively small compared to a PC or workstation.
There are circumstances that are specific to a game machine in which the use of the generic

mal | oc() and free() functions are not sufficient. Nitro-System provides three memory managers
that are created specifically for use with the NITRO-System. These memory managers have additional
functionality beyond the heap mechanisms commonly used for games.

0 2004-2007 Nintendo 7 NTR-06-0095-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

2 Extended Heap Manager

The Extended Heap Manager can allocate and free memory, in much the same way as the mal | oc()
function and the f r ee()) function in the C standard library. In addition to the basic functionality of

allocating and freeing memory, this manager has additional features for game software. This section
gives an overview of the Extended Heap Manager.

2.1 Creating Heaps

In order to use the Extended Heap Manager, you must first create an extended heap. The following
functions create and destroy (delete) extended heaps.

Table 2-1 Functions for Creating and Destroying Extended Heaps

Function Description
NNS_FndCr eat eExpHeap() Creates an extended heap.
NNS_FndCr eat eExpHeapEXx() Creates an extended heap and can specify heap options.
NNS_FndDest r oyExpHeap() Destroys (deletes) an extended heap.

2.2 Allocating Memory Blocks

2.2.1 Allocating and Freeing Memory Blocks

The following functions allocate and free memory blocks.

Table 2-2 Functions for Allocating and Freeing Memory Blocks
Function Description
NNS_FndAl | ocFr onExpHeap() Allocates memory blocks from an extended heap.

NNS_FndAl | ocFr onExpHeapEXx() Allocates memory blocks from an extended heap and can
specify alignment.

(Described in the next section.)
NNS_FndFr eeToExpHeap() Frees memory blocks.

2.2.2 Minimum Allocation Unit for Memory Blocks

The Extended Heap Manager requires a 16—byte memory block management region and allocated
memory blocks are aligned along a 4-byte minimum boundary. Therefore, 20 bytes of memory are
required to allocate even a one-byte memory block.

NTR-06-0095-001-B 8 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

2.2.3 Memory Block Allocation Procedure

The Extended Heap Manager has two modes of locating free regions from which to allocate to a
memory block. You can switch between these two modes. The allocation modes are described below:

Table 2-3 Memory Block Allocation Modes
Mode Description

FI RST Mode Allocates a memory block from the first free region that it finds that is at least
as large as the memory block size that you want to allocate.

NEAR Mode Allocates a memory block from the free region whose size is the closest to the
size of the memory block you want to allocate.

Error! Not avalid link.
Figure 2-1 Procedure for Allocating Extended Heap Memory Blocks

FI RST is the default mode. NEAR differs from FI RST in that it allocates the free block that is as close to
the specified size as possible. If this mode does not find an exact fit, it searches all free regions for the
closest match. Therefore, if the free regions are fragmented, memory block allocation takes longer.

The following functions set and acquire the allocation mode.

Table 2-4 Allocation Mode Setting and Acquisition
Function Description
NNS_FndSet Al | ocMbdeFor ExpHeap() | Sets the allocation mode.

NNS_FndGet Al | ocModeFor ExpHeap() | Gets the current allocation mode.

The following table lists the values specified by the functions in relation to the allocation modes.

Table 2-5 Allocation Modes Used by the Functions

Mode Value Specified with Function
FI RST mode NNS_FND_EXPHEAP_ALLCC_MODE_FI RST
NEAR mode NNS_FND_EXPHEAP_ALLOC_MODE_NEAR

2.2.4 Allocating Memory Blocks from the Highest Address of the Heap Region

Normally the Extended Heap Manager searches for free regions from the lowest address of the heap
region to the highest address of the heap region. The Extended Heap Manager allocates memory
blocks from the lowest address of the free regions that it finds. As an alternative, you can now search
for free regions from the highest address of the heap region to the lowest address of the heap region.
You can also allocate memory blocks from the highest address of the free regions. Using this feature,
you can allocate longer—term memory blocks from the lowest address of the heap region, and
temporary memory blocks from the highest address of the heap region to help minimize heap
fragmentation.

For example, when loading compressed data into memory, expanding that data, then deleting the

0 2004-2007 Nintendo 9 NTR-06-0095-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

original compressed data. If you were to use the normal method and allocate the memory block from
the lowest address of the heap region, the free region will be divided into two portions.

Error! Not avalid link.
Figure 2-2 Mechanism of Memory Block Fragmentation
On the other hand, if you temporarily load the compressed data into a memory block that has been
allocated from the highest address of the heap region, the free space is not split.

Error! Not avalid link.
Figure 2-3 Measures for Dealing with Extended Heap Memory Block Fragmentation
To allocate memory blocks from the highest address of the heap region, use the memory block
allocation function NNS_FndAl | ocFr onExpHeapEXx() , passing a negative value to the alignment
argument (this argument is described in the next section).

NTR-06-0095-001-B 10 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-System

Memory Manager

2.3

Specifying Alignment

2.4

The Extended Heap Manager specifies alignment at the time that it allocates memory blocks. You can
specify the following alignment values in the NNS_FndAl | ocFr onExpHeapEx() function: 4, 8, 16,
and 32. To allocate memory blocks from the highest address of the heap region, specify negative
alignment values (- 4, - 8, - 16, - 32). The NNS_FndAl | ocFr omExpHeap() function always uses an
alignment value of 4.

Changing Memory Block Size

The Extended Heap Manager can change the size of the allocated memory blocks without moving
them when there is sufficient free space available. When the new memory blocks become smaller than
the original size, it will use the free spaces that remain after reduction as free regions. When the new
memory blocks become larger than the original size, there must be sufficient free space after the
memory blocks. If there are free regions after the memory blocks, the function will merge the free
regions into the memory block to increase the size of the memory block.

Free region

Free region

Memory block C

Memory block C

Memory block B

Free region

Memory block B

Memory block A

Memory block A

Work for manager

Work for manager

Memory block C

Memory block C

Free region

Free region

Memory block B

Memory block B

Memory block A

Memory block A

Work for manager

Work for manager

Reduce size of memory block B Expand size of memory block B

Figure 2-4 Changing Extended Heap Memory Block Size

Use this function to change the memory block size.

Table 2-6 Function for Changing Memory Block Size

Function
NNS_FndResi zeFor MBI ockExpHeap()

Description

Expands or reduces memory blocks. It returns the
changed memory block size.

If there is little difference between the specified memory block size and the current memory block size
after a reduction, there may be times when you cannot use the freed region. In such cases,
NNS_FndResi zeFor MBI ockExpHeap() will not reduce the memory block size, and will return the
current memory block size. If you attempt to expand memory block size when there is either no free
region directly after the memory block, or if it was not possible to achieve the required expansion after
defragmenting the free space behind the current memory block,

NNS_FndResi zeFor MBI ockExpHeap() fails and returns 0 (zero).

0 2004-2007 Nintendo 11
CONFIDENTIAL

NTR-06-0095-001-B
Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

2.5 Acquiring Free Space

The Extended Heap Manager can obtain the total free regions. It can also obtain the size of the largest
memory block that can be allocated. The functions are shown in the following table.

Table 2-7 Functions For Acquiring Free Space, Etc.

Function Description

NNS_FndGCet Tot al Fr eeSi zeFor ExpHeap() Gets the total size of the free regions in the
extended heap.

NNS_FndCet Al | ocat abl eSi zeFor ExpHeap() | Gets the size of the largest memory block that can
be allocated.

Alignment is fixed at 4.

NNS_FndGet Al | ocat abl eSi zeFor ExpHeapEx() | Gets the size of the largest memory block that can
be allocated.

You can specify alignment.

26 GroupID

When the Extended Heap Manager acquires memory blocks, it stores group IDs 0 - 255 in the memory
block management region. You can arbitrarily change the group ID. When you change a group ID, the
change takes place during the next memory block allocation. You can use the group ID for the
following:

e Collectively free only memory blocks that have a specific group ID.
« Checks the memory usage for each group ID. By managing group IDs by usage or user, it
becomes easier to grasp how the memory is used.

The following functions set and acquire group IDs.

Table 2-8 Functions for Setting and Acquiring Group IDs

Function Description
NNS_FndSet G- oupl DFor ExpHeap() Sets extended heap group IDs.
NNS_FndGet Gr oupl DFor ExpHeap() Acquires extended heap group IDs.

NTR-06-0095-001-B 12 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

2.7 Processes for Memory Blocks

With the Extended Heap Manager, you can specify processes to be performed on allocated memory
blocks. Using this functionality, it is possible to perform various processes on the heap that are not
available in the Extended Heap Manager. Here are some examples:

e Call afunction that collectively deletes only memory blocks that were allocated from the highest
address of the heap region because they were for temporary use.
» Get the total capacity of memory blocks that have a specific group ID.

This function runs the following process.

Function Description

NNS_FndVi si t Al | ocat edFor ExpHeap() | Calls a user-specified function for each allocated memory
block.

2.8 Acquiring Memory Block Information

The Extended Heap Manager can acquire information for allocated memory blocks that indicates
memory block size, group ID, and whether the allocated memory blocks were allocated from the lowest
address or the highest address. These functions acquire memory block information.

Table 2-9 Functions for Acquiring Memory Block Information

Function Description
NNS_FndGet Si zeFor MBI ockExpHeap() Gets the memory block size.
NNS_FndGet Gr oupl DFor MBIl ockExpHeap() Gets the memory block group ID.

NNS_FndGet Al | ocDi r For MBI ockExpHeap() Gets the direction from which the memory
blocks were allocated.

2.9 Checking Heaps and Memory Blocks

With the Extended Heap Manager, extended heaps and memory blocks that are allocated from the
extended heap are checked if they are destroyed. The functions that check the extended heaps and
memory blocks are shown below.

Table 2-10 Functions that Check Extended Heaps and Memory Blocks

Function Description
NNS_FndCheckExpHeap () Checks if the extended heap is destroyed.
NNS_FndCheckFor MBI ockExpHeap () Checks if the memory block is destroyed.

0 2004-2007 Nintendo 13 NTR-06-0095-001-B

CONFIDENTIAL Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

3 Frame Heap Manager

The Frame Heap Manager is an extremely simple memory manager. It can only allocate memory
blocks in a specified size while simultaneously freeing all allocated memory blocks. Since it holds no
memory block management information, it is memory-efficient. This section gives an overview of the
Frame Heap Manager.

3.1 Creating Heaps

To use the Frame Heap Manager you must create a frame heap. These functions create and destroy
frame heaps.

Table 3-1 Functions for Creating and Destroying Heaps

Function Description
NNS_FndCr eat eFr nHeap() Creates a frame heap.
NNS_FndCr eat eFr mHeapEXx () Creates a frame heap. You can specify options
for the heap.
NNS_FndDest r oyFr nHeap() Destroys a frame heap.

3.2 Allocating Memory Blocks

3.2.1 Allocating and Freeing Memory Blocks

The Frame Heap Manager allocates memory blocks by packing them with no open space from the
lowest address and the highest address of the heap region. Because it allocates memory blocks this
way, it does not fragment the heap. Also, because there is no management region in the memory
blocks that the Frame Heap Manager allocates, memory usage is efficient and less processing is
required to allocate the memory blocks.

Error! Not a valid link.
Figure 3-1 Frame Heap Memory Allocation
The following functions allocate memory blocks.

Table 3-2 Functions for Allocating Memory Blocks

Function Description
NNS_FndAl | ocFr onfr nHeap() Allocates memory blocks from a frame heap.
NNS_FndAl | ocFr onfr nHeapEx () Allocates memory blocks from a frame heap.

It is possible to specify alignment (described in the next
section).

Use negative alignment numbers in the NNS_FndAl | ocFr onfFr mHeapEx() function to allocate
memory from the highest address of the heap region.

NTR-06-0095-001-B 14 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

3.2.2 The Minimum Unit of Memory Block Allocation

3.3

Although the Frame Heap Manager does not have a management region in the memory blocks,
memory blocks must be 4-byte aligned. Therefore, even allocating a 1-byte memory block uses 4 bytes
of memory.

Specifying Alignment

3.4

The Frame Heap Manager can specify alignment when it allocates memory blocks. You can specify the
following alignment values in the NNS_FndAl | ocFr onfr mHeapEx() function: 4, 8, 16, and 32. To
allocate memory blocks from the highest address of the heap region, specify negative alignment values
(-4,-8,-16,and - 32). The NNS_FndAl | ocFr onfr mHeap() function does not specify alignment, it is
always a value of 4.

Freeing Memory Blocks

Because the Frame Heap Manager does not manage individual allocated memory blocks, it cannot
free allocated blocks individually. The Frame Heap Manager uses one of the three following methods to
free memory blocks.

Table 3-3 Methods Of Freeing Memory Blocks

Freeing method Description

Free from the lowest address Collectively frees memory blocks that were allocated from the lowest
address of the heap region.

Free from the highest address | Collectively frees memory blocks that were allocated from the highest
address of the heap region.

Free all Collectively frees all of the memory blocks that were allocated from
the heap.

The following function frees memory blocks.
Table 3-4 Function for Freeing Memory Blocks

Function Description

NNS_FndFr eeToFr nHeap() Collectively frees memory blocks using the method specified.

0 2004-2007 Nintendo 15 NTR-06-0095-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

The following methods are specified in the NNS_FndFr eeToFr nHeap() function.
Table 3-5 Values Specified in the Function for Freeing Memory Blocks
Freeing method Value to Specify in the Function

Free from the NNS_FND_FRVHEAP_FREE_HEAD
lowest address

Free from the NNS_FND_FRVHEAP_FREE_TAI L
highest address

Free all NNS_FND_FRMHEAP_FREE_ALL

(Same as simultaneously specifying NNS_FND_FRVHEAP_FREE_HEAD and
NNS_FND_FRVHEAP_FREE_TAI L)

The Frame Heap Manager also offers you the option of saving the memory block allocation status,
collectively freeing subsequently allocated memory blocks, and returning to the status immediately
prior to saving. These options are described in the next section.

3.5 Saving and Restoring a Memory Block Allocation Status

The Frame Heap Manager offers you the option of saving the memory block allocation status of the
heap region and restoring that status later.

20 bytes of memory are required to save each memory block allocation status. You can store memory
block allocation status as many times as you want to the limit of heap capacity. When saving the
memory block allocation status, a 4-byte tag can be attached. When you restore a memory block
allocation status, you can return to the previous status or to a status that is specified by the flag.

Memory block C Memory block C Memory block C Memory block C
Memory block E
Free region Free region Free region Free region
|:> |::> Memory block D |::>
Stored status data Stored status data

Memory block B Memory block B Memory block B Memory block B

Memory block A Memory block A Memory block A Memory block A
Work for manager Work for manager Work for manager Work for manager

Original state Status Allocate more memory blocks Restore status

Figure 3-2 Mechanism for Saving and Restoring Frame Heap Memory Block Allocation Status

The following functions store memory block allocation status and return to it.

NTR-06-0095-001-B 16 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

Table 3-6 Functions for Storing a
Memory Block Allocation Status and Returning to It

Function Description
NNS_FndRecor dSt at eFor Fr nHeap() Saves a memory block allocation status.
NNS_FndFr eeBy St at eToFr mHeap() Restores a memory block allocation status.

3.6 Adjusting Heap Region Size

The Frame Heap Manager can reduce the heap region size to match the heap region content.
However, use this functionality only if no memory blocks have been allocated from the highest address
of the heap region.

Use this functionality when you want to pack an indefinite amount of data into memory without leaving
spaces in the heap. First create a heap that has a sufficient size, allocate memory blocks from the
lowest address of the heap region, and store the data. After storing all of the required data, reduce the
size of the heap region to match the contents of the heap.

Reduce heap size to match heap
utilization
Free region Free region
Memory block D Memory block D
Memory block C Memory block C
> Memory block B > Memory block B

Memory block A Memory block A
Work for manager Work for manager Work for manager
Create frame heap Allocate memory blocks Adjust heap size

Figure 3-3 Adjusting Frame Heap Size

The following function reduces the heap region size.
Table 3-7 Function for Reducing Heap Region Size

Function Description

FndAdj ust Fr nHeap() Reduces the size of the heap region by freeing space at the highest
address of the heap region from the allocated block.

0 2004-2007 Nintendo 17 NTR-06-0095-001-B
CONFIDENTIAL Released: April 27, 2007

Memory Manager

NINTENDD

NITRO-System

3.7 Changing the Size of Memory Blocks

You can change the size of the memory block with the frame heap manager if it is the last memory
block that is allocated from the lowest address of the empty region in the heap. When the memory
block is reduced, the remaining area after reduction becomes part of the empty area. When the
memory block is enlarged, it reduces the free region of the higher address and expands the memory

block.

Free region

Free region

Memory block C

Memory block C

Memory block B

Free region

Memory block B

Memory block A

Memory block A

Work for manager

Work for manager

Memory block C

Memory block C

Free region

Free region

Memory block B

Memory block B

Memory block A

Memory block A

Work for manager

Work for manager

Reduce size of memory block B

Expand size of memory block B

Figure 3-4 Adjusting the size of the frame heap memory block

The following function changes the size of memory block.

Table 3-8 Function for Changing the Size of Memory Block

Function

Description

NNS_FndResi zeFor MBI ockFr nHeap()

Expands or reduces the memory block. The changed
memory block size is returned as the return value.

When expanding a memory block, if there is not enough free space to expand to the requested size,
the NNS_FndResi zeFor MBI ockExpHeap() function fails and returns 0.

3.8 Acquiring the Size That Can Be Allocated
The Frame Heap Manager can find the size of the largest memory block that can be allocated. The
following functions do this.
Table 3-9 Functions for Obtaining the Size That Can Be Allocated
Function Description
NNS_FndGet Al | ocat abl eSi zeFor Fr mHeap() Gets the size of the largest memory block that can be
allocated.
Alignment is fixed at 4.
NNS_FndCet Al | ocat abl eSi zeFor Fr mHeapEX() | Gets the size of the largest memory block that can be
allocated.
You can specify alignment.
NTR-06-0095-001-B 18 0 2004-2007 Nintendo

Released: April 27, 2007

CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

4 Unit Heaps

The Unit Heap Manager is an extremely simple memory manager. It allocates only memory blocks in
the size that is specified when the unit heap is created. In other words, this memory manager is for
allocating and freeing memory blocks that have a fixed size. The unit heap does not have a
management region in memory blocks, making it more memory-efficient. This section provides an
overview of the Unit Heap Memory Manager.

4.1 Creating Heaps

To use the Unit Heap Manager you must create a unit heap. The following functions create and destroy
(delete) unit heaps.

Table 4-1 Functions for Creating and Destroying Heaps

Function Description

NNS_FndCr eat eUni t Heap() Creates a unit heap.
NNS_FndCr eat eUni t HeapEXx() Creates a unit heap. You can specify alignment and options for the heap.
NNS_FndDest r oyUni t Heap() Destroys (deletes) a unit heap.

0 2004-2007 Nintendo 19 NTR-06-0095-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

NITRO-System

Memory Manager

4.2 Memory Block Allocation

4.2.1 Allocating and Freeing Memory Blocks

The Unit Heap Manager manages the regions in a heap in chunks that are of a pre-specified size.
Memory block allocation means allocating these chunks.

Free chunks are linked as a singly-linked list (free chunk list). The pointer to the next free chunk is
placed at the beginning of the chunk. There is no pointer for chunks that are in use. (There is also no
management region.) When allocating memory blocks, the manager returns the memory block that is
linked to the beginning of this free chunk list. When freeing a memory block that is in use, it links the
memory block to the beginning of the free chunk list.

Free chunk 5

Free chunk 4

Free chunk 5

Free chunk 4

Free chunk 5

Free chunk 4

Free chunk 3

Free chunk 2

Allocate
memory
(Chunk 1)

Free chunk 1

(Chunk 2)

Work for manager

Free chunk 3

Chunk 2, in use

Chunk 1, in use

Work for manager

Free memory
(Chunk 1)

Free chunk 3

Chunk 2, in use

I

Free chunk 1

&

Work for manager

Pointer to next free chunk

Figure 4-1 Unit Heap Memory Allocation

The following functions allocate and free memory blocks.
Table 4-2 Function for Allocating Memory Blocks

Function
NNS_FndAl | ocFr omni t Heap()
NNS_FndFr eeToUni t Heap()

Description

Allocates memory blocks from a unit heap.

Frees memory blocks.

4.2.2 Minimum Unit for Memory Block Allocation

Although the Unit Heap Manager does not have a management region in the memory blocks, allocated

memory blocks must be 4-byte aligned. Therefore, even allocating a 1-byte memory block uses 4 bytes
of memory.

NTR-06-0095-001-B 20
Released: April 27, 2007

[0 2004-2007 Nintendo
CONFIDENTIAL

NINTENDD

NITRO-System

Memory Manager

4.3 Specifying Alignment

The Unit Heap Manager can specify alignment when it creates a heap. It does not do this for each

allocated memory block. All allocated memory blocks will be aligned the same. You can specify the
following alignment values in the NNS_FndCr eat eUni t HeapEx() function: 4, 8, 16, and 32. The
NNS_FndCr eat eUni t Heap() function does not specify alignment, its alignment is always 4.

4.4 Acquiring the Number of Memory Blocks That Can Be Allocated

The Unit Heap Manager can get the number of memory blocks that can be allocated. In other words, it

can get the number of free chunks. The following function gets the number of memory blocks that can

be allocated.

Table 4-3 Function for Acquiring the Number of Memory Blocks That Can Be Allocated

Function

Description

NNS_FndCount Fr eeBl ockFor Uni t Heap()

Returns the number of memory blocks that can be

allocated.

0 2004-2007 Nintendo
CONFIDENTIAL

21

NTR-06-0095-001-B
Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

5 Functionality Common to Each Heap

This section describes the functionality that is common to the extended heap, the frame heap, and the
unit heap.

5.1 Heap Options

Three of the functions that create heaps specify heap options (NNS_FndCr eat eExpHeapEx() ,
NNS_FndCr eat eFr nHeapEXx(), and NNS_FndCr eat eUni t HeapEXx()) . You can specify the
following options.

Table 5-1 Options That Can Be Specified When Creating a Heap

Flag Description
NNS_FND_HEAP_OPT_0_CLEAR When memory is allocated from a heap, this fills the allocated
memory blocks with Os.
NNS_FND_HEAP_COPT_DEBUG FI LL When a heap is created and memory blocks are allocated and
freed, this fills the memory regions respectively with different
32-bit values.

The flag NNS_FND_HEAP_OPT_DEBUG FI LL was made for debugging. Use it to find memory access
bugs by tracing the pointer that points to the memory initialization failure or invalid memory regions.
This will not function in the final ROM version (FI NALROM library.

The following values are filled into the memory regions by default. See the next section for instructions
on how to change them.

* When creating a heap 0xC3C3C3C3
¢ When allocating memory OxF3F3F3F3
e When freeing memory 0xD3D3D3D3

5.2 Changing the Values to Fill When Debugging

When the heap is created, and when memory blocks are allocated and freed, you will be able to fill
each memory region with different 32-bit values if you specify the NNS_FND_HEAP_OPT_DEBUG FI LL.
You can set and get the fill values using the following functions.

Table 5-2 Functions for Setting and Acquiring Values to Fill when Debugging

Function Description
NNS_FndSet Fi | | Val For Heap() Sets fill values.
NNS_FndGet Fi | | Val For Heap() Acquires fill values.
NTR-06-0095-001-B 22 O 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-System

Memory Manager

You can set different values for creating heaps, allocating memory blocks, and freeing memory blocks.
Specify which heap operation the value is for, when you set or acquire values. The following table
shows the types of heap operations that are specified in the function.

Table 5-3 Type of Heap Operation for Filling the Value

Value to Specify in the Function

Heap Operation

NNS_FND_HEAP_FI LL_NOUSE

When creating a heap.

NNS_FND_HEAP_FI LL_ALLOC

When allocating memory blocks.

NNS_FND_HEAP_FI LL_FREE

When freeing memory blocks.

5.3 Displaying Heap Contents

This feature is for debugging. It displays internal heap information.

Table 5-4 Function for Displaying Internal Heap Information

Function

Description

NNS_FndDunpHeap

Displays internal heap information.

5.4 Acquiring Heap Regions

This feature obtains the start and end addresses of the memory region that a heap is using.

Table 5-5 Functions For Acquiring Heap Regions

Function

Description

NNS_FndGet HeapSt ar t Addr ess() Gets the start address of the memory region that the heap is

using.
NNS_FndGet HeapEndAddr ess() Gets the end address (+1) of the memory region that the heap
is using.
0 2004-2007 Nintendo 23 NTR-06-0095-001-B

CONFIDENTIAL

Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

6 Multi-Heap Management

6.1

This section covers instances in which the game software creates and uses multiple heaps.

Multi-Heaps

6.2

There are various types of data that are used during a game, such as data for graphics, music, and the
system. Using multiple heaps such as a game heap, a sound heap, and a system heap will make it
easier to manage this data. Such use of multiple heaps is referred to as multi-heaps.

Freeing Multi-Heap Memory

6.3

A programmer should know from which heap to allocate memory blocks. Therefore, the programmer
can specify a heap and allocate memory blocks from it.

What about freeing memory blocks? If these are memory blocks that you have allocated, you will know
to which heap you should return the memory blocks. Even in the case where you free memory blocks
received from another programmer, you will probably be able to determine the correct heap, as long as
the use of the multiple heaps is clearly defined. However, what do you do when multiple heaps are
candidates for the return of memory blocks?

Managing Heaps Using a Tree Structure

When you free memory blocks and you do not know from where they were allocated, it would be
convenient if there were a mechanism that searched for the heap from which the memory block had
been allocated. You can do this by managing the heaps with a tree structure. This allows you to use
memory blocks allocated from a heap as heap memory (hierarchical heap structure).

If you manage heaps with trees, you can recursively check the memory region that the heap occupies,
thus checking from which heap the memory block was allocated.

The NITRO-System memory manager internally creates a hierarchical structure for each heap that it
creates. There is also a function that searches for the heap from which a memory block has been
allocated.

Table 6-1 Function for Searching for the Heap That Allocated a Memory Block

Function Description

NNS_FndFi ndCont ai nHeap() Searches for the heap from which the specified memory block was
allocated.

Returns a handle to the found heap.

NTR-06-0095-001-B 24 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Memory Manager

0 2004-2007 Nintendo 25 NTR-06-0095-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

Memory Manager NITROsystem

© 2004-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

NTR-06-0095-001-B 26 0 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

	1 Introduction
	2 Extended Heap Manager
	2.1 Creating Heaps
	2.2 Allocating Memory Blocks
	2.2.1 Allocating and Freeing Memory Blocks
	2.2.2 Minimum Allocation Unit for Memory Blocks
	2.2.3 Memory Block Allocation Procedure
	2.2.4 Allocating Memory Blocks from the Highest Address of the Heap Region

	2.3 Specifying Alignment
	2.4 Changing Memory Block Size
	2.5 Acquiring Free Space
	2.6 Group ID
	2.7 Processes for Memory Blocks
	2.8 Acquiring Memory Block Information
	2.9 Checking Heaps and Memory Blocks

	3 Frame Heap Manager
	3.1 Creating Heaps
	3.2 Allocating Memory Blocks
	3.2.1 Allocating and Freeing Memory Blocks
	3.2.2 The Minimum Unit of Memory Block Allocation

	3.3 Specifying Alignment
	3.4 Freeing Memory Blocks
	3.5 Saving and Restoring a Memory Block Allocation Status
	3.6 Adjusting Heap Region Size
	3.7 Changing the Size of Memory Blocks
	3.8 Acquiring the Size That Can Be Allocated

	4 Unit Heaps
	4.1 Creating Heaps
	4.2 Memory Block Allocation
	4.2.1 Allocating and Freeing Memory Blocks
	4.2.2 Minimum Unit for Memory Block Allocation

	4.3 Specifying Alignment
	4.4 Acquiring the Number of Memory Blocks That Can Be Allocated

	5 Functionality Common to Each Heap
	5.1 Heap Options
	5.2 Changing the Values to Fill When Debugging
	5.3 Displaying Heap Contents
	5.4 Acquiring Heap Regions

	6 Multi-Heap Management
	6.1 Multi-Heaps
	6.2 Freeing Multi-Heap Memory
	6.3 Managing Heaps Using a Tree Structure

