NINTENDDO

NITRO-system

Archive Format Manual
Explanation of Archive Format

Version 1.0.1a

The contents of this document are strictly
confidential and the document should be

handled accordingly.

© 2004-2007 Nintendo
CONFIDENTIAL

NTR-06-0110-001-B
Released: April 27, 2007

NINTENDD

Archive Format Manual NITRO-system

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0110-001-B 2 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system Archive Format Manual
Contents

1 [N geTo [UTe3 1To] o NN U 6

2 BasiC StrUCIUIE OFf @M ATCRIVEueeieieeeeeee e nnnnnnnsnnnnnnnnnnnnnnnnnnn 7

T N ol 1AV N (Y= o [PSP PRPORORRPRPPIN 8

3.1 The Structure of the ArChive HEAAENo it e e e e e e e e e e e e eraan e e eeeaes 8

B Tt Pt B 1T [0 = (U= SRR 8

T B o)1 (=10 (o (=] S O TSP PP PPPPP PR 8

1 TR I T V= 3 o RO 8

B TR I {110 9

B TR I T oY= (o [T £ YO 9

B TR LT o =1 =1 1o Yo 9

4 S1ISWA [[oTor=Yio] R F=1 o] (SN =1 o o QTR 10

4.1 The Structure of the File Allocation Table DIOCKiiiicece e e 10

A4 KINGe 10

I = . RO 10

413 NUMFIIES ..o 10

o = 1| To Tor=) ([0 g F= | o) [= TSR 1"

5 Filename Table BIOCKooooiieoeeeeeeeeeeeeeee 12

5.1 The Structure of the Filename Table BIOCKuo ittt e e e e e e e eeeees 12

£ 700 0 N (o Vo 12

LT O 1 T 12

5.1.3 DIFECIONY TADIE ...ttt b et e et e e e e e e e b e e e e a et e e e e e b e e 12

LT I S o1 VA N\ =T g TSR = o 1= T OO RPTRRPP 13

5.2 Example of @ FIlename TAbIE ...ttt e e e e e et e e e e e e e e nnnb e e e e e e e e e annnaneeas 14

(ST | (= g = To = = o T O PRSP PP SRR PUPROP 15

6.1 LT Lo PPN 15

L0 P 1 15

L {111 [0 = To = SO O P TO PP PPUP P PPPRR P 15

© 2004-2007 Nintendo 3 NTR-06-0110-001-B

CONFIDENTIAL Released: April 27, 2007

NINTENDD

Archive Format Manual NITRO-system
Tables
Table 3-1 ArChive HEAAEI SIUCIUIE.......eeeiii s s b asaaasasnsanasasnsnsnsnsnsnsnsnnnnn 8
Table 4-1 File AllOCAtioN TabIE BIOCKcciiiiiiiiiiiiiie ettt e e e e e et e e e e e e e e st e e e eeeeessnsraneeaaeeans 10
Table 4-2 File AllOCAtION ENLHESooiiiiiiieeii et e e et e e e e e ettt e e e e e e s ntbaaeeaaeessnnsreaeeeeas 11
Table 5-1 Filename Table BIOCK.........ccoooi oo 12
LE= Lo (=R S B I (=Tex (o] YA F= 1 o] (TN o o T PP 12
Table 5-3 File ENTrY SIIUCIUIE ..ottt e e e ettt e e e e e e et e et e e e e e e s nsbeeeeaae e e e nnnneeeeans 13
Table 5-4 Directory ENtry SHUCIUIE..........uuviiiiii e e e e e e et e e e e e e e st b e e e e e e e s eensbeaeeeeas 13
Table 6-1 File IMaQGE BIOCKeeiiiiie ettt e et e et e e s e e e e et 15
Figures
FIQUIE 2-1 ATCRIVE SITUCKIUIE ...ttt e e e e e ettt e e e e s e et b e eeaeeeeessatbeeeaeaeeesatbseeeeeeessnnssnneeeens 7
Figure 5-1 FIlename TabI@.......oo oottt ettt ettt e e e e e e et e et e e e e e e s ntbeseeaae e e e nsaeaeeeaeaesannnnneeeans 14
NTR-06-0110-001-B 4 © 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-System

Archive Format Manual

Revision History

Version Revision Date Description
1.0.1a 2007/04/27 Corrected typographical errors.
Changed dates in Revision History to international format.
1.0.1 2005/01/05 Changed an instance of “NITRO” to “Nintendo DS.”
1.0.0 2004/06/10 Initial Version.

© 2004-2007 Nintendo
CONFIDENTIAL

NTR-06-0110-001-B
Released: April 27, 2007

NINTENDD

Archive Format Manual NITRO-system

1 Introduction

An archive is a file comprising a collection of files. An archive file can also contain hierarchical directory
information, allowing you to access the individual files in the archive by specifying a file ID (an index
value) or a path name.

NTR-06-0110-001-B 6 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITROsystem Archive Format Manual

2 Basic Structure of an Archive

Archives conform to NITRO-System's binary file rules and have the structure shown in Figure 2-1. At
the beginning of the archive file is the archive header. This is followed by data blocks storing a file
allocation table, a filename table, and the file images. These data blocks do not have to be placed in
any specific order, so the order depicted in Figure 2-1 is only one possibility.

The file allocation table and filename table are similar in basic structure to that of the NITRO-SDK's
ROM file system.

Archive Header
File Allocation Table Block

Filename Table Block

File Image Block

Figure 2-1 Archive Structure

© 2004-2007 Nintendo 7 NTR-06-0110-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

Archive Format Manual NITRO-system

Archive Header

The archive header is always located at the start of the archive file. This header contains information
pertaining to the overall archive file.

3.1 The Structure of the Archive Header
The archive header has the structure shown in Table 3-1.
Table 3-1 Archive Header Structure
Type Parameter Name Description Size

char[4] signature File signature. (N, 2, R, C) 4 bytes

u16 byteOrder Byte order marks. (Oxfeff) 2 bytes

u16 version Archive format version number. (0x0100) 2 bytes

u32 fileSize The size of the archive file. 4 bytes

u16 headerSize The size of the archive header. (16) 2 bytes

u16 dataBlocks The number of data blocks. (3) 2 bytes
3.1.1 signature
The signature parameter stores the file signature, which is used to determine the binary file type.
This file signature stores the four characters N, A, R, and C — always in this order — regardless of the
endian method.
3.1.2 byteOrder
The byteOrder parameter stores the byte order marks (Zero-Width No-Break Space) Oxfeff, which
are used to determine the endian method. The Nintendo DS uses the little-endian method, so
byteOrder stores the byte order marks in the order Oxff, Oxfe. The NITRO-System archiver
nnsarc.exe always creates archives using the little-endian method.
3.1.3 version
The version parameter stores the archive format's version number. The upper byte stores the major
version (an integer value) and the lower byte stores the minor version (a decimal value). The current
version is 1.0, so version stores the value 0x0100.

NTR-06-0110-001-B 8 © 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITROsystem Archive Format Manual

3.1.4 fileSize

The fileSize parameter stores a value that indicates the overall size of the archive. This value
includes the size of the archive header.

3.1.5 headerSize

The headersize parameter stores the value 16, which is the size of the archive header. In future
versions, the size of the archive header might change, so do not assume the size of the header is 16.

3.1.6 dataBlocks

The dataBlocks parameter stores the number of data blocks contained in the archive. In the current
version, there are always three blocks so dataBlocks holds the value 3. However, new data blocks
might be added in the future.

© 2004-2007 Nintendo 9 NTR-06-0110-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

Archive Format Manual NITRO-system

4 File Allocation Table Block

The File Allocation Table block stores information indicating the location of the contents of each file in
the archive.

4.1 The Structure of the File Allocation Table block

The File Allocation Table block has the structure shown in Table 4-1. Each entry in this table is
allocated a number called a file ID. The numbers allocated as file IDs begin at 0x0000 and increment to
a maximum value of Oxefff. The allocation table array is equal in size to the number of files, and the

array subscripts are the same as these file IDs.

Table 4-1 File Allocation Table Block

Type Parameter Name Description Size
u32 kind The type of data block. (‘FATB’) 4 bytes
u32 size The size of the data block. 4 bytes
u16 numFiles The number of files. 2 bytes
u16 reserved Reserved. 2 bytes

allocationTable File allocation table. (8 bytes per entry) 8xn bytes
411 kind

kind stores a 4-byte code that defines the data block type. These 4 bytes store the code "FATB."
Since the archive uses the little-endian method, the characters are stored in reverse order.

41.2 size

size stores the size of the data block stored in the File Allocation Table.

4.1.3 numfFiles

numFiles stores the number of files stored in the File Allocation Table. This value represents the
number of files stored in the archive.

NTR-06-0110-001-B 10 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-System

Archive Format Manual

4.1.4 allocationTable

allocationTable is an array of file allocation entries; its size increases by 8 bytes for every file entry.
A number called a file ID is allocated to every entry. The file IDs begin at 0x0000 and increment to a

maximum of Oxefff. The array is equal in size to the number of files, and the array subscripts are the
same as these file IDs.

Table 4-2 File Allocation Entries

Type Parameter Name Description Size
u32 fileTop Offset from start of file. 4 bytes
u32 fileBottom Offset +1 from end of file. 4 bytes

The offsets that indicate the positions at the start and the end of the file store values that assume 0 to
be the location of the File Image block's fileImage parameter (8th byte from the start of the File
Image block).

To calculate the size of the file, use the following formula:

u32 fileSize = fileBottom - fileTop;

© 2004-2007 Nintendo 11 NTR-06-0110-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

Archive Format Manual NITRO-system

Filename Table Block

The Filename Table block stores information for use in obtaining file IDs from path names. It is
composed of a Directory Table and an Entry Name Table, and it supports hierarchical directories.

5.1 The Structure of the Filename Table Block
The Filename Table block has the structure shown in Table 5-1.
Table 5-1 Filename Table Block
Type Parameter Name Description Size
u32 kind The type of data block. (FNTB) 4 bytes
u32 size The size of the data block. 4 bytes
directoryTable | The Directory Table. n bytes
entryNameTable | The Entry Name Table. m bytes
5.1.1 kind
kind stores a 4-byte code that defines the data block type. These 4 bytes store the code FNTB. Since
the archive uses the little-endian method, the letters are stored in reverse order.
5.1.2 size
size stores the size of the data block stored in the Filename Table.
5.1.3 Directory Table
The Directory Table is an array of data structures shown in Table 5-2. A number called a directory ID is
allocated to each entry. These directory ID numbers increment in the order the entries are stored.
Directory IDs take numbers from 0xf000 to 0xffff so they can be distinguished from file IDs. As a result
of this specification, an archive can store up to 61440 files and up to 4096 directories.
Table 5-2 Directory Table Entries
Type Parameter Name Description Size
u32 dirEntryStart Entry-name search location. 4 bytes
u16 dirEntryFileID | File ID of the entry at the start of the directory. 2 bytes
u16 dirParentID ID of the parent directory. (In the special case of the 2 bytes
root directory, the number of directory entries.)
NTR-06-0110-001-B 12 © 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITROsystem Archive Format Manual

dirEntryStart indicates the first entry (which could be either a file or a directory) in the directory. It
stores an offset value that assumes 0 to be the start of the Directory Table (8th byte from the start of
the Filename Table block).

The number of elements in the directory entry array is the same as the number of directories, and the
array subscripts are equal to the directory IDs minus 0xf0O00. The directory with the directory ID 0xf000
is the root directory. In the special case of the root directory, the di rParentID member stores a value
that represents the total number of directory entries.

5.1.4 Entry Name Table

The Entry Name Table is an aggregate of two kinds of variable-length data. The structure differs
depending on whether the entry is a file or a directory.

Table 5-3 File Entry Structure

Type Parameter Name Description Size

u8 entryNameLength Length of filename. 1 byte

(Upper 1 bit indicates entry type.)

char entryName [n] File name. (n = entryNameLength) n bytes

Table 5-4 Directory Entry Structure

Type Parameter Name Description Size

us entryNameLength Length of filename. 1 byte

(Upper 1 bit indicates entry type.)

char entryName [n] File name. (n = entryNameLength) n bytes

u16 directoryID Directory ID. 2 bytes

Entries in the same directory are positioned in a contiguous region and allocated consecutive file IDs. A
file entry with an entry name length of 0 (\0) is placed after the last entry in the directory.

The entry name length is indicated by the lower 7 bits in entryNameLength, so the entry name can
be a maximum of 127 characters (calculated on the basis that each character is 1 byte).

The highest-order bit of entryNameLength indicates the entry type. When the highest-order bit is 0,
the entry is a file entry. When the highest-order bit is 1, it is a directory entry.

© 2004-2007 Nintendo 13 NTR-06-0110-001-B
CONFIDENTIAL Released: April 27, 2007

Archive Format Manual

NINTENDD

NITRO-System

5.2 Example of a Filename Table

Figure 5-1 depicts a Filename Table storing the following three files.

/sprite.bin
/screen.bin
/model/player.nmd

Entry-Name Table

Directory Table
| dirEntryStart -> @
dirEntryFileID 0
numDirs 2
»| dirEntryStart -> @
dirEntryFileID 2
dirParentID 0xf000

TYPE FILE
entryNameLength 10
entryName sprite.bin
TYPE FILE
entryNameLength 10
entryName screen.bin
TYPE DIR
entryNamelLength 5
entryName model
directorylD 0xf001
TYPE FILE
entryNamelLength 0

TYPE FILE
entryNameLength 10
entryName player.nmd
TYPE FILE
entryNameLength 0

Figure 5-1 Filename Table

File ID =0

FileID =1

FileID =2

NTR-06-0110-001-B
Released: April 27, 2007

14

© 2004-2007 Nintendo

CONFIDENTIAL

NINTENDD

NITROsystem Archive Format Manual

6 File Image Block

The File Image block stores images of the archived files. The starting location and ending location of
each file image are indicated by the entries in the File Allocation Table.

Table 6-1 File Image Block

Type Parameter Name Description Size
u32 kind The type of data block (FIMG) 4 bytes
u32 size The size of the data block. 4 bytes

fileImage The file images. n bytes
6.1 kind

kind stores a 4-byte code that defines the data block type. These 4 bytes store the code FIMG. Since
the archive uses the little-endian method, the code is stored in reverse order.

6.1.1 size

size stores the size of the data block stored in the File Image.

6.1.2 filelmage

fileImage stores images of all the files in the archive file in a packed form. Each file image is aligned

to a 4-byte boundary.

15 NTR-06-0110-001-B

© 2004-2007 Nintendo
Released: April 27, 2007

CONFIDENTIAL

NINTENDD

Archive Format Manual NITRO-system

© 2004-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo Co. Ltd.

NTR-06-0110-001-B 16 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

	1 Introduction
	2 Basic Structure of an Archive
	3 Archive Header
	3.1 The Structure of the Archive Header
	3.1.1 signature
	3.1.2 byteOrder
	3.1.3 version
	3.1.4 fileSize
	3.1.5 headerSize
	3.1.6 dataBlocks

	4 File Allocation Table Block
	4.1 The Structure of the File Allocation Table block
	4.1.1 kind
	4.1.2 size
	4.1.3 numFiles
	4.1.4 allocationTable

	5 Filename Table Block
	5.1 The Structure of the Filename Table Block
	5.1.1 kind
	5.1.2 size
	5.1.3 Directory Table
	5.1.4 Entry Name Table

	5.2 Example of a Filename Table

	6 File Image Block
	6.1 kind
	6.1.1 size
	6.1.2 fileImage

