NINTENDO

NITROSystem

VRAM Managers

Version 1.0.0a

The contents in this document are highly

confidential and should be handled accordingly.

© 2004-2007 Nintendo NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

NTR-06-0140-001-B 2 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

Table of Contents

N [1o T [[ox 1T o ISR PUPR 6
2 OVENVIEW Of the VRAM MaANGAGETS ... uitiiiiiie et iiiiiie et e e e e e ettt e e e e s st e e e eee e e s s s tbaaeeeaeessastbebaeeeeesaasssebeeeaeeeaasntbaeeaaeeeannnsbaeees 7
21 Common Functions of the VRAM MaNAGETSveiiiiiiiiiiieiee ettt e et e s e e e nnneee s 7
2.2 The Texture VRAM Manager and Palette VRAM MaNAGET............euiiiiiiiiiieiiiae et ee et a e e eiieeeea e e e s anees 8
2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM Manager...........occuuiieiieaiiiiiiieeeeae e 8
2211 Allocating Memory for 4 x 4 Texel ComMPresSed TEXIUIEc.uuiiiiiee et ee et e e e e e e s 8

A \ |\ 1 €1 0 1= = YOS 8
2221 Operation fOr NNSGIATEXKEYiiiiiiiiiiiiiit ettt e e e e st e e e e e s s b e e e e e e e e s santbaraeaeeessassaraeaaaaesan 8

2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM Manager............occuvieiiieaiiiiiiieeeee e 9
2231 Allocating Memory for FOUr-ColOr Palettecoiiiuiiiiiie et e e 9

b N NN ST €1 (o | o 11110 VORI 9
2241 Operation fOr NNSGIAPIIKEYcciiiiiiiiiiie ettt e e e e s s e e e e e s st ba e e e e e e e s satbrreaaaaesan 9

2.3 VRAM Managers Provided in NITRO SYSEIMcoiiiiiiiiiiiii et ee ettt e e et e e e e e s anbbeeeeeee e s aannneneeaaaeaan 9

3 The Frame VRAM MEBNAGENScoeiiiiiiiiiiiiia ettt eee e e e e e ettt ee e e e e e e aataeeeeaaeaaaaateeeeaaaeesaansbeseeeaaesaaasnsbneeaaesaaantbnneeaaeasannses 10
3.1 The Frame TeXtUrE® VRAM IMBNAGETcciiiiiiiiiete e e s ettt e e e s e et e et e e e s s assataeeteaeeassatbaeeaaaeessastbaseeaeeessansaraeeeaaesan 10
3.1.1 Initializing the Frame Texture VRAM MANAGETccociriiiieeeeiiiiieeee e e e e ettt ee e e e e s estata e e e e e e s sasansraeeaaesassansreeses 11
3.1.2 Allocating MemOTY fOF TEXEUIE ..ottt ettt e e e e e ettt e e e e e et bt et e e e e e e aan s beeeeeeaeeaannsbeeeaaeeeannneeeean 11
3.1.21 Allocating Memory for StAaNAard TEXEUIEciiieiiiiiiiiiee st e e e e e e e s e et e e e e e e e et e e e e e e e eannereees 12
3.1.2.2 Operation when Requesting Memory for 4 x 4 Texel Compressed TEXIUIEcoiiiiiiiereeeiiiiiiieeeeeenn 13

3.1.3 REICASING TEXIUIE IMEIMOIY .. uiiiiiieeiieiiitiet e e e e e ettt e e e e e e st e et e e e e e s s aatbeaeeaaeassastbeseeaaeesaassssbeeeeeessasntbaeeaaeseasnnsbeees 14
3.1.4 Saving and Restoring Frame Texture VRAM Manager StatesS..........couuiiaiiiiiiiiiieaaiaiiiiiiee e eeieeeee e 14
3.1.4.1 Saving the Use State of TEXIUIE MEMOIYcoiiuiiiiiee e ettt e e e e s e e e e s e e e e e s st ab e e e e e e s eaartaeeaaeeean 14
3.14.2 Restoring a Use State Of TEXIUIE MEIMOIYouii ittt e e e e et e e e e e e e e aneaeeeeaaeaeanees 14
3.1.4.3 Returning to the Initial Use State of TEXIUIE MEMOIYciiiiiiiiiiiiiee ettt e e e e s e e e e e s enees 14

3.2 The Frame Palette€ VRAM MaANGAGETuiii ittt e e e s ettt e e e e e e et e s e e e s s st e et e aeeassatbaeeaaeeessastbaseeaeeessansaraeeeaeesan 15
3.2.1 Initializing the Frame Palette VRAM MaNAGEToua ittt ee ettt e e e e e st e e e e e e e e nasbeeeaaeseaenneeeeeas 15
3.2.2 Allocating MemOrY fOF PAIELIEccuuiiiiiiee ittt s e e e e e e s e e e e e e s e et e et e e e s s e tatbaeeeaeseasansbeees 15
3.221 Direction of Allocation for Palette MEMOTYcoiiiiiiiiiie e a e e e e e e e anees 16

3.2.3 Releasing Palette MEMOIYoui ittt e ettt e e e e e e tb e et e e e e e s e e s beeeeeeaeeaannsbeeeaaesaannneneeas 16

3.2.4 Saving and Restoring Frame Palette VRAM Manager States

3.241 Saving the Use State of Palette Memory

3.24.2 Restoring a Use State Of Palette MEMOIYuiiii ittt e e e e e e e s e et e e e e e e e s sntbaeaeaeeaesnees 16
3.24.3 Returning to the Initial Use State of Palette MEeMOIY..........oooi i 17
© 2004-2007 Nintendo 3 NTR-06-0140-001-B

CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NlTRO—System
4 The LINKEd-LiSt VIRAM IMBINGAGETeeeteiieaiiiiieeea e e ettt tea e e e e e ataaeeeeea e s e e saeeeeeaaaeaaasneaeeeaaeaaaantbeeeeaaeesaansbeneeaaeasaansnnseeaans 18
4.1 The Linked-List TEXTUI® VRAM MaANAGETciieiiiiiiiiiiiiee e e s ittt et e e e s eeatr et e e e e s asatbaeaeaeesssstbaseaaaeessasbrreeseeessasnsne
4.1.1 Initializing the Manager..................
4.1.2 Allocating Memory for Textures

4.1.3 Deallocating Memory for Textures

4.2 The Linked-List Palette VRAM Manager
4.2.1 Initialization.........ccoceeiiiiiii e

4.2.2 Allocating and Deallocating Palette MEMOIYcciii ittt a e e e s r e e e e e s etbraeeeeas

Tables

Table 2-1 Common FUNCtioNS fOr VRAM IMANGAGETSeeiiieiiiiiieieee e ettt ee e e ettt e ee e e e e e e sae e et e e e s aaannebeeeaaeeeaansbeeeaaaeaaas 7

Table 2-2 Function Pointers Referenced in the Common Functions

Figures

Figure 3-1 Diagram of the Frame Texture VRAM MaNAGETuuiiiii it ee ettt a et e e e e e e ataeee e e e e e s seneneeeeaens 10
Figure 3-2 Allocating Standard TEXIUIE IMEIMOTYuuuiiiiie ettt e e e s eetr et e e e e e et e e e e e s st b e et e aee s s st baaeeeaeessansaaneeeeas

Figure 3-3 Allocating 4 x 4 Texel Compressed Texture Memory

Figure 3-4 Allocating 4 x 4 Texel Compressed Texture Memory from Region 3

Figure 3-5 Diagram of the Frame Palette VRAM MaNAGET...........uiiiiiiiiiiiiii ettt e ettt e e e e e e e e e e snsaeeeeaeas
Figure 3-6 AllOCAtiNg Palette IMEIMOIY......cciiuiiiiiiee e e sttt e e e s et e e e e e et e e e e e e e e bt e et eaeeeasastbaseaeeeassstbaaeeeaeessansansaeeens 16
Figure 4-1 The Linked-LiSt VRAM MENAGETccieiiiiiiiiiae ettt e e e ettt e e e e e s e nb b e e e e e e e e e antbeeeeaaeeeaansnnneeaens 18
Figure 4-2 Allocating MEMOIY fOr TEXIUIESvuviiiieiiiiiiiiiee e e e sttt e e e e ettt e e e e e et e et e e e e s e satb e et e e e e e s sstbaaeeeeeessnnsbaneeaeas 19
Figure 4-3 Deallocating MEMOTY fOr TEXIUMESuivie it iiiiiieee e ettt e e e s e ettt e e e e e et e e e e e e e e s sa b e et e e e e e s sstbaaeeeeeessnssaaneeeeas 20
Figure 4-4 An Example of when the Empty List Joining Process FalilS ..o 20
NTR-06-0140-001-B 4 © 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-System

VRAM Managers

Revision History

Version | Revision Date Description
1.0.0a 2007/04/27 Corrected typographical errors.
Changed Revision History dates to international format.
1.0.0 2005/01/05 Changed an instance of “NITRO” to “Nintendo DS.”
0.2.0 2004/10/03 Added a chapter on the Linked-List VRAM Manager.
0.1.0 2004/07/16 Initial Version.

© 2004-2007 Nintendo
CONFIDENTIAL

NTR-06-0140-001-B
Released: April 27, 2007

NINTENDD

NITRO-System

VRAM Managers

1 Introduction

When using the Nintendo DS 3D graphics engine to draw textured polygons, textures need to be
stored in VRAM. NITRO System includes VRAM managers so the programmer does not need to
manage the fine details of texture positioning in the VRAM. VRAM managers dynamically allocate and

release memory from VRAM.

NTR-06-0140-001-B 6 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

2

2.1

Overview of the VRAM Managers

Common Functions of the VRAM Managers

Methods for efficiently handling VRAM content may differ widely by application. For this reason, a
uniqgue VRAM manager may be provided depending on the application. A mechanism is provided to
allow replacing the VRAM manager used by the NITRO-System graphics library.

Four functions are defined, as shown in the table below, to allow memory allocation and release to be
carried out using the same functions regardless of the type of VRAM manager being used with NITRO
System.

Table 2-1 Common Functions for VRAM Managers

Function Name Function Processing

NNS_G dAl | ocTexVr an() Allocates texture memory from VRAM.

NNS_Gf dFr eeTexVr am() Releases texture memory allocated from VRAM.

NNS_G dAl | ocPl tt Vrany() Allocates palette memory from the palette RAM.

NNS_Gf dFreePl tt Vram() Releases palette memory allocated from palette RAM.

These functions internally call functions registered to function pointers to do the actual processing. By
default, a function that does not perform any processes and returns an error is registered. Function
pointers referenced internally by these functions are defined as the following global variables.

Table 2-2 Function Pointers Referenced in the Common Functions

Functions Referencing a Function Pointer Type Function Pointer Variable

Pointer

NNS_Gf dAl | ocTexVram() NNSGF dFuncAl | ocTexVr am NNS_Gf dDef aul t FuncAl | ocTexVram

NNS_Gf dFr eeTexVram() NNSG dFuncFr eeTexVr am NNS_G& dDef aul t FuncFr eeTexVr am

NNS_Gf dAl | ocPl tt Vram() NNSG dFuncAl | ocPl ttVram | NNS_Gf dDef aul t FuncAl | ocPl tt Vram

NNS_G dFreePl tt Vram() NNSGF dFuncFr eePl tt Vram NNS_Gf dDef aul t FuncFreePl tt Vram

The NITRO System graphics library that uses VRAM managers allocates and releases memory from
VRAM by using these four functions. To change the VRAM manager used by the library, register to the
function pointer the function for allocating and releasing memory included in the desired VRAM
manager.

© 2004-2007 Nintendo 7 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

2.2

The Texture VRAM Manager and Palette VRAM Manager

There are two main VRAM managers. One is the texture VRAM manager for allocating and releasing
texture memory, and the other is the palette VRAM manager for allocating and releasing palette
memory.

2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM
Manager

Use the below functions to allocate or release texture memory with the texture VRAM manager.

/1 Alocating nmenory fromthe texture VRAM
NNSG dTexKey NNS_Gf dAl | ocTexVram(u32 szByte, BOOL i s4x4conp, u32 opt);

/1 Rel easing nmenory fromthe texture VRAM

i nt NNS_G dFreeTexVr an{ NNSE dTexKey key);
The NNS_G dAI | oc TexVr amfunction allocates the amount of texture memory specified by szSi ze
from the VRAM, and returns the NNSGf dTexKey type value indicating the allocated texture memory. If
the allocation of the texture memory failed, the constant NNS_GFD_ALLOC ERROR_TEXKEY is returned.

The NNS_Gf dFr eeTexVr amfunction releases the texture memory specified by the NNSG dTexKey
type value. If the release succeeds, 0 is returned.

2211 Allocating Memory for 4 x 4 Texel Compressed Texture

The texture VRAM manager has a feature that allows allocation of a memory region for 4 x 4 texel

compressed texture. If the second argument i s4x4conp of the NNS_G dAl | oc TexVr amfunction,
which is a function for allocating texture memory, is TRUE, a region for texture palette index data is
allocated at the same time as allocation of a region for texture image data. If either of these regions
cannot be allocated, the NNS_GF dAl | oc TexVr amfunction call fails.

2.2.2 NNSGfdTexKey

NNSG dTexKey is a 32-bit integer value that functions as a key for identifying texture memory
allocated by the texture VRAM manager. NNSG dTexKey is generated from the texture memory
address and size, as well as a flag indicating the 4 x 4 texel compressed texture memory.

2221 Operation for NNSGfdTexKey

In order to transfer texture data to allocated texture memory, the actual VRAM address must be
obtained. The texture VRAM manager provides a function to find the VRAM address and size from
NNSG dTexKey.

/1 CGetting the address from NNSG dTexKey
u32 NNS_ dGet TexKeyAddr (NNSG dTexKey nenKey);

/1l Cetting the size from NNSG dTexKey
u32 NNS_ dGet TexKeySi ze(NNSG dTexKey nenKey);

/1 Finding out whether NNSG dTexKey is for conpressed texture
BOCOL NNS_G dGet TexKey4x4Fl ag(NNSG dTexKey nenKey);

NTR-06-0140-001-B 8 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM
Manager

Use the following functions to allocate and release palette memory with the palette VRAM manager.

/1 Alocating memory fromthe palette RAM
NNSG dPl tt Key NNS_G dAl | ocPlttVran(u32 szByte, BOOL is4pltt, u32 opt);

/'l Rel easing nmenory fromthe palette RAM

int NNS_ & dFreePlttVram(NNSG dPl tt Key key);
NNS_Gf dAl | ocPI t t Vr amallocates the amount of palette memory specified by szSi ze from the palette
RAM, and returns the NNSG dPI t t Key type value indicating the allocated palette memory. If the
allocation of the palette memory failed, the constant NNS_GFD ALLOC ERROR _PLTTKEY is returned.

NNS_G& dFr eePlttVRamthen releases the palette memory specified by NNSGf dpl t t Key. If the
release succeeds, O is returned.

2.23.1 Allocating Memory for Four-Color Palette

For allocating four-color color palette memory using the palette VRAM manager, specify TRUE for the
second argument i s4pl tt of NNS_Gf dAl | ocPI tt Vr amfunction, which is a function for allocating
palette memory. When this is set, a determination is made whether memory was allocated at a position
that allows for a four-color palette. (Four-color palettes cannot be placed at 0x10000 or higher.)

2.2.4 NNSGfdPIlttKey

NNSG dPI t t Key is a 32-bit integer value that functions as a key for identifying palette memory
allocated from the palette VRAM manager. NNS& dPI t t Key is generated from the address and size of
the allocated palette memory.

2.2.4.1 Operation for NNSGfdPIttKey

To transfer palette data to allocated palette memory, the actual palette RAM address must be obtained.
The palette VRAM manager provides a function to find the palette RAM address and size from

NNSG dPI t t Key.

/1 CGetting the address from NNSG dPItt Key.
u32 NNS_G dGet Pl tt KeyAddr (NNSG dPl tt Key nenKey)

/1 CGetting the size from NNSG dPI tt Key
u32 NNS_GFdGet Pl tt KeySi ze(NNSG dPI tt Key nenKey)

2.3 VRAM Managers Provided in NITRO System

As explained in paragraph 2.1, the functions for allocating and releasing memory provided by the
NITRO System VRAM managers in their initial state do not execute processing. For the future, VRAM
managers are planned for NITRO-System that will have additional memory management functions for
memory allocation and release. However currently, only the frame VRAM manager (the frame texture
VRAM manager and the frame palette VRAM manager) and the linked list VRAM manager (linked list
texture VRAM manager and linked list palette VRAM manager) are provided.

© 2004-2007 Nintendo 9 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

The Frame VRAM Managers

Like the Foundation library frame heap managers, the frame VRAM managers can only allocate
memory blocks with a specified size and to release all allocated memory blocks simultaneously. The
trade-off is that because the memory blocks do not have any management information, high memory
efficiency is achieved. The frame VRAM managers have the following characteristics.

¢ No memory management region is required.

e Memory blocks are allocated from the lowest address and highest address of each VRAM slot
without any gaps.

e lItis not possible to release allocated memory blocks individually.

e All the allocated memory blocks can be released simultaneously.

e Memory block allocation states can be saved and restored.

3.1 The Frame Texture VRAM Manager
A diagram of the frame texture VRAM manager is shown in Figure 3-1. The frame texture VRAM
manager splits VRAM into five regions for management. Each region has two pointers, at the top and
bottom of that region. These two pointers indicate the boundaries between the used and unused
regions. The area between the two pointers is not used. Texture memory is allocated from the highest
address and lowest address of the regions, and every time memory is allocated the two pointers move
toward the center of the region.
top pointer slot 0O slot 1 slot 2 . slot 3
: | | |
1 | | 1
] | |]
] v 1]
] | 1
: region 2 : :
v T \ v
1
. 0 !
e region 3 region 4
, g g
1
|
A ' A A
H \ region 1 ! ,
1 1 1
| 4 i i
1 1 1 1
1 1 1 1
bo.ttom ! ' ! '
pointer
Figure 3-1 Diagram of the Frame Texture VRAM Manager
NTR-06-0140-001-B 10 © 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

3.1.1 Initializing the Frame Texture VRAM Manager

Before using the frame texture VRAM manager, it must be initialized. Use the following function to
initialize.

voi d NNS_G dl ni t Fr niTexVr amvanager (ul6 nunSl ot, BOOL useAsDefault) ;
The first argument nunl ot specifies the number of slots for the frame texture VRAM manager to
manage. The frame texture VRAM manager is initialized to manage the number of VRAM slots

specified by nunl ot beginning at VRAM slot 0. The maximum value that may be specified for
nunsl ot is 4.

If TRUE is specified for the second argument useAsDef aul t , a function pointer is initialized when
either NNS_Gf dAl | cTexVran() or NNS_Gf dFr eeTexVr an() (common functions for the texture
VRAM manager) is called, so the memory allocation and release functions of the frame texture VRAM
manager can be used. This argument should be set to TRUE, except in special situations such as
when replacing the texture VRAM manager processing later on.

3.1.2 Allocating Memory for Texture

To allocate memory for texture, the texture VRAM manager common function
NNS_GF dAl | oc TexVr amis normally used.

NNSG dTexKey NNS_Gf dAl | ocTexVram(u32 szByte, BOOL i s4x4conp, u32 opt);

The third argument opt of the NNS_G&f dAI | oc TexVr amfunction is not used with the frame texture
VRAM manager.

The specific operations of the managers are described below. Refer to the example in the description
where 4 is passed as the parameter nunsl ot (the number of slots the manager manages) during
initialization. (The manager will slightly change the search order of the empty region depending on the
value of nunfl ot .)

© 2004-2007 Nintendo 11 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

3.1.21 Allocating Memory for Standard Texture
To allocate memory for standard texture (other than 4 x 4 texel compressed texture), specify FALSE for
the second argument i s4x4conp.

To allocate memory for standard texture, allocate the memory using the top pointer for each region.
The frame texture VRAM manager first tries to allocate memory from region 4. If there is not enough
free space for allocation, the manager then attempts to allocate from regions 3, 0, 2 and 1, in that order.

slot O slot 1 slot 2 slot 3
! !
1 used 1
i region '
region 2 v :
I
|
i 0
e region 3 : region 4
— . |
1
1
1
region 1 H used
L region
—_— —
Figure 3-2 Allocating Standard Texture Memory
NTR-06-0140-001-B 12 © 2004-2007 Nintendo

Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

3.1.2.2 Operation when Requesting Memory for 4 x 4 Texel Compressed Texture
To allocate 4 x 4 texel compressed texture memory, specify TRUE for the second argument
i s4x4conp.

To allocate memory for 4 x 4 texel compressed texture, first an attempt is made to allocate that
memory using the bottom pointer of region 0. To store 4 x 4 texel compressed texture in the VRAM, the
texture palette index data also needs to be stored at the same time at the position corresponding to the
address where the texture image data is placed. Therefore, a region for texture palette index data is
allocated at the same time using the bottom pointer for region 1.

slot O slot 1 slot 2 slot 3

i 2

A region

1

1

|

' region 0 region 3 region 4

1

! region 1

1

i 4

' tlexture ' texture

! (2 ! palette

' data ' ;

' ' index

' ' data

1 1 N

Figure 3-3 Allocating 4 x 4 Texel Compressed Texture Memory

If 4 x 4 texel compressed texture memory of the requested size cannot be allocated from region 0, an
attempt is made to allocate memory using the bottom pointer for region 3. At the same time, a region
for the texture palette index data is allocated using the bottom pointer for region 2.

slot O slot 1 slot 2 slot 3
—
i 2
A region
1
1
| A
' region 0 region 3 region 4
1
! region 1
| 4
1 1
: t.exture : texture
' image ' palette
' ' index
1 1
1 1

Figure 3-4 Allocating 4 x 4 Texel Compressed Texture Memory from Region 3

© 2004-2007 Nintendo 13 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

3.1.3 Releasing Texture Memory

Due to the characteristics of the memory management algorithm, the frame texture VRAM manager
does not allow allocated texture memory to be released individually.

The frame texture VRAM manager provides a NNS_G&f dFr eeFr nifexVr amfunction to release memory,
though this function returns without processing anything. This function is provided to register the
function pointer to NNS_G&f dFr eeTexVr am() , which is a common function for the texture VRAM
manager.

3.1.4 Saving and Restoring Frame Texture VRAM Manager States

The frame texture VRAM manager has a feature to save the use state of texture memory and to
restore a saved texture memory use state.

3.14.1 Saving the Use State of Texture Memory
The below function is used to save the use state of texture memory.

NNS_Gf dGet Fr niTexVr anSt at e(NNSGF dFr niTexVr anSt at e* pState) ;

When the NNS_ G dGet Fr nTexVr anst at e function is called, the current use state of the texture
memory is written to the NNSGf dFr nifexVr anfst at e structure specified in the argument.

3.1.4.2 Restoring a Use State of Texture Memory
The below function is used to return the frame texture VRAM manager to a texture memory allocation
state saved using the NNS_Gf dGet Fr mTexVr antt at e function.

voi d NNS_G dSet Fr niTexVr antt at e(const NNSG dFr nifexVr anSt at e* pState) ;

This operation releases texture memory allocated after a texture memory allocation state specified by
pSt at e has been saved.

3.1.4.3 Returning to the Initial Use State of Texture Memory
The below function is used to return the frame texture VRAM manager to its initial state.

voi d NNS_Gf dReset Fr nTexVr anftst at e(voi d) ;

This operation releases all texture memory allocated from the frame texture VRAM manager.

NTR-06-0140-001-B 14 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

3.2 The Frame Palette VRAM Manager

A diagram of the frame palette VRAM manager is provided in Figure 3-5. The frame palette VRAM
manager can allocate palette memory either from the beginning or the end of palette RAM. Top and
bottom pointers are provided for that purpose. These two pointers indicate the boundaries between the
used and unused regions. The area between two pointers is unused.

top pointer ===y,
|
1
1
\
v
palette RAM
A
1
1
1
bottom !
X —!
pointer

Figure 3-5 Diagram of the Frame Palette VRAM Manager

3.2.1 Initializing the Frame Palette VRAM Manager
Before using the frame palette VRAM manager, it must be initialized. Use the following function for
initialization.

void NNS_G dl nit FrnPl tt Vramvanager (u32 szByte, BOOL useAsDefault) ;

The first argument sz Si ze specifies the size of the palette RAM managed by the frame palette VRAM
manager. The frame palette VRAM manager is initialized so as to manage the amount of palette RAM
specified by szSi ze in bytes starting at the beginning of the palette RAM.

If TRUE is specified for the second argument useAsDef aul t, a function pointer is initialized when
either NNS_G& dAl | ocPl t t Vramor NNS_G dFr eePl t t Vr am(common functions for the palette
VRAM managers) is called, so the memory allocation and release functions of the frame palette VRAM
manager are used. This should be set to TRUE, except in special situations such as when replacing
the palette VRAM manager processing later on.

3.2.2 Allocating Memory for Palette

Normally, the palette VRAM manager common function NNS_Gf dAl | ocPl t t Vr amis used to allocate
palette memory.

NNSG dPl tt Key NNS_G dAl | ocPlttVran(u32 szByte, BOOL is4Pltt, u32 opt);

© 2004-2007 Nintendo 15 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

3.2.21 Direction of Allocation for Palette Memory

With the frame palette VRAM manager, the third argument opt can be used to specify the direction of
the palette memory allocation. If NNS_GFD_ALLOC FROM LOWis specified in opt , allocation will be
made from the lowest address of the palette RAM. If NNS_GFD_ALLOC FROM HI GH is specified in opt ,
allocation will be made from the highest address of the palette RAM.

NNS_GFD_ALLOC_FROM_HIGH used

1
1
1
v region

palette RAM

|

used

NNS_GFD_ALLOC_FROM_LOW region

b

Figure 3-6 Allocating Palette Memory

3.2.3 Releasing Palette Memory

Due to the characteristics of the memory management algorithm, the frame palette VRAM manager
does not allow allocated palette memory to be released individually.

The frame palette VRAM manager provides a NNS_G dFr eeFr nPl t t Vr amfunction for releasing
memory, though this function returns without processing anything. This is provided to register the
function pointer of NNS_G&f dFr eeFr nPl t t Vr am which is a common frame palette VRAM manager
function.

3.2.4 Saving and Restoring Frame Palette VRAM Manager States

The frame texture VRAM manager has the feature to save the use state of palette memory and to
restore saved palette memory use states.

3.24.1 Saving the Use State of Palette Memory
The following function is used to save a use state of palette memory.

NNS_G dGet FrnPl tt Vr anSt at e(NNSG dFrnPl tt Vrantt at e* pState);

When the NNS_GF dGet Fr nPl t t Vr anst at e function is called, the current use state of palette
memory is written to the NNSG dFr nPl t t Vr anSt at e structure specified in the argument.

3.2.4.2 Restoring a Use State of Palette Memory
To return the frame palette VRAM manager to the palette memory allocation state saved by using the
NNS_GF dGet Fr Pl t t Vr anfst at e() function, the following function is used.

voi d NNS_G dSet FrnPl tt Vranfst at e(const NNSG dFr Pl t t Vr anfst at e* pState);

NTR-06-0140-001-B 16 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

This operation releases palette memory allocated after a palette memory allocation state specified by
pSt at e has been saved.

3.24.3 Returning to the Initial Use State of Palette Memory
The below function is used to return the frame palette VRAM manager to its initial state.

voi d NNS_Gf dReset FrnPl tt Vrantt at e(voi d) ;

This operation releases all palette memory allocated from the frame palette VRAM manager.

© 2004-2007 Nintendo 17 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

4

4.1

The Linked-List VRAM Manager

Region Size v A
Starting Address
v 4

| Management Information Block |

VRAM The Management Information Doubly-linked List

Figure 4-1 The Linked-List VRAM Manager

The Linked-List VRAM Manager manages the VRAM region using the VRAM management information
in the main memory. The management information consists of the starting address and the byte size of
the VRAM region that will be managed.

The management information contains the reference information that references the previous and the
next management information and is set up as a doubly-linked list structure. The VRAM manager uses
this doubly-linked list of management information to manage the empty space scattered throughout
VRAM.

The characteristics of the linked-list VRAM manager are as follows:

e It can perform the sectional deallocation of VRAM regions.
e Its management information must be allocated in main memory.
e It has a processing load for searching the list of empty regions when allocating and deallocating.

The Linked-List Texture VRAM Manager

The texture VRAM manager individually manages the management region for the normal textures and
the management region for 4x4 compressed textures. If there is a request to allocate a region, this
manager searches for an empty region that fulfills that request from the empty region information list.

4.1.1 Initializing the Manager

voi d NNS_G dI ni t LnkTexVr anVanager
(
u32 szByt e,
u32 szByt eFor 4x4,
voi d* pManagenent Wr Kk,
u32 szByt eManagenent Wr k,
BOOL useAsDef aul t

NTR-06-0140-001-B 18 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

When initializing, individually designate the size of the texture management region and the size of the
region within the texture management region to be used for 4x4 compressed texture. The texture
management region size must be larger than the region size used for the 4x4 compressed texture. The
manager initializes the free blocks with the designated size. The memory region used as the
management information is passed as an argument to pManagenent Wor k. In order to compute the
size of the management information region, use

u32 NNS_G dGet LnkTexVr amvanager Wr kSi ze(u32 numivenBl k)

nunmvenBl k specified here is the maximum number of blocks into which the empty memory region can
be broken.

The texture VRAM manager does not manage the region for the palette index of the 4x4 compressed
texture. Therefore, the region for the palette index is always not yet in use, and the user can assume
that it is always usable. Also, regions other than the regions for the palette index are initialized as
empty regions for normal textures.

4.1.2 Allocating Memory for Textures

If there is a new allocation request, the manager will search the list of empty regions to find a region
according to the type of region to be allocated (Normal or 4x4 Compressed). If an empty region that
meets the requirements is found, the empty region information is updated with the information that
subtracted the used region, and the allocated region is returned as a texture key.

T~ | o

e |

VRAM Empty Region List VRAM Empty Region List

Pre-Allocation Post-Allocation

Figure 4-2 Allocating Memory for Textures

© 2004-2007 Nintendo 19 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

4.1.3 Deallocating Memory for Textures

This section deals with the calculation of the memory region from the texture key to be deallocated. A
linear search is performed on the empty region list to determine if there are contiguous empty regions
at the highest address or the lowest address of the calculated region. If a contiguous region block is
found, those neighboring blocks are joined to form one region block. This process makes it harder for
memory fragmentation to occur.

Newly deallocated
/ VRAM region

]
™ ”|

VRAM Empty Region List VRAM Empty Region List
Pre-Deallocation Post-Deallocation

Figure 4-3 Deallocating Memory for Textures

If the joining of the region blocks fails, a new empty region block is generated, and that block is added
to and registered in the empty region list. Be aware that in such an event, if there is insufficient
management information for the manager and a new empty region block cannot be obtained, the
deallocation of the memory region will fail.

Newly deallocated Registered as a
/ VRAM region new empty
region

e |

VRAM Empty Region List VRAM Emntv Renion List
Pre-Deallocation Post-Deallocation

Figure 4-4 An Example of when the Empty List Joining Process Fails

NTR-06-0140-001-B 20 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

NINTENDD

NITRO-system VRAM Managers

4.2 The Linked-List Palette VRAM Manager

In the same way as the texture VRAM manager, the palette VRAM manager manages the empty space
scattered throughout VRAM via a doubly-linked list of management information.

4.2.1 Initialization

voi d NNS_ dl nit LnkPl tt Vramvanager

(
u32 szByt e,

voi d* pManagenent Wr k,
u32 szByt eManagenent Wr k,
BOOL useAsDef aul t

)

Initialize the palette VRAM manager in the same way as the texture VRAM manager, by passing the
memory region used in the management information and its size as an argument.

4.2.2 Allocating and Deallocating Palette Memory

Memory allocation and deallocation is performed in essentially the same manner as with the texture
VRAM manager.

Since an 8-byte alignment is needed when allocating a 4-color palette, allocate an aligned region. The
empty blocks generated when performing the alignment are registered as free blocks. In order to avoid
unnecessary fragmentation of the management region, we recommend that you allocate the regions
for 4-color palettes and palettes in other formats in good-sized groups.

© 2004-2007 Nintendo 21 NTR-06-0140-001-B
CONFIDENTIAL Released: April 27, 2007

NINTENDD

VRAM Managers NITRO-System

© 2004-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

NTR-06-0140-001-B 22 © 2004-2007 Nintendo
Released: April 27, 2007 CONFIDENTIAL

	1 Introduction
	2 Overview of the VRAM Managers
	2.1 Common Functions of the VRAM Managers
	2.2 The Texture VRAM Manager and Palette VRAM Manager
	2.2.1 Allocating and Releasing Texture Memory with the Texture VRAM Manager
	2.2.1.1 Allocating Memory for 4 × 4 Texel Compressed Texture

	2.2.2 NNSGfdTexKey
	2.2.2.1 Operation for NNSGfdTexKey

	2.2.3 Allocating and Releasing Palette Memory with the Palette VRAM Manager
	2.2.3.1 Allocating Memory for Four-Color Palette

	2.2.4 NNSGfdPlttKey
	2.2.4.1 Operation for NNSGfdPlttKey

	2.3 VRAM Managers Provided in NITRO System

	3 The Frame VRAM Managers
	3.1 The Frame Texture VRAM Manager
	3.1.1 Initializing the Frame Texture VRAM Manager
	3.1.2 Allocating Memory for Texture
	3.1.2.1 Allocating Memory for Standard Texture
	3.1.2.2 Operation when Requesting Memory for 4 × 4 Texel Compressed Texture

	3.1.3 Releasing Texture Memory
	3.1.4 Saving and Restoring Frame Texture VRAM Manager States
	3.1.4.1 Saving the Use State of Texture Memory
	3.1.4.2 Restoring a Use State of Texture Memory
	3.1.4.3 Returning to the Initial Use State of Texture Memory

	3.2 The Frame Palette VRAM Manager
	3.2.1 Initializing the Frame Palette VRAM Manager
	3.2.2 Allocating Memory for Palette
	3.2.2.1 Direction of Allocation for Palette Memory

	3.2.3 Releasing Palette Memory
	3.2.4 Saving and Restoring Frame Palette VRAM Manager States
	3.2.4.1 Saving the Use State of Palette Memory
	3.2.4.2 Restoring a Use State of Palette Memory
	3.2.4.3 Returning to the Initial Use State of Palette Memory

	4 The Linked-List VRAM Manager
	4.1 The Linked-List Texture VRAM Manager
	4.1.1 Initializing the Manager
	4.1.2 Allocating Memory for Textures
	4.1.3 Deallocating Memory for Textures

	4.2 The Linked-List Palette VRAM Manager
	4.2.1 Initialization
	4.2.2 Allocating and Deallocating Palette Memory

