
 2005-2007 Nintendo NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

Multiple Channel Stream Library
Communications Between Nintendo DS

and Multiple Windows Applications

Version 1.1.0

The contents of this document are strictly

confidential and the document should be

handled accordingly.

Multiple Channel Stream Library

NTR-06-0312-001-C 2  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

Multiple Channel Stream Library

 2004-2007 Nintendo 3 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

Table of Contents

1 Introduction ...7

2 Communications Between Nintendo DS Programs and Windows Applications ..8

2.1 Procedures on the Nintendo DS ...8

2.1.1 Initialize the mcs Library ..8

2.1.2 Configure the Way to Receive Data...9

2.1.2.1 Register a Callback Function..9

2.1.2.2 Register a Buffer...10

2.1.3 Open the Device..10

2.1.4 Configure Interrupts ... 11

2.1.5 Polling..13

2.1.6 Reading Data...13

2.1.6.1 When a Callback Function has been Registered..13

2.1.6.2 When a Receiving Buffer has been Registered ..13

2.1.7 Writing Data ...14

2.1.8 When the Opened Device is IS-NITRO-UIC ..15

2.2 Procedures on the Windows Side...16

2.2.1 Read DLL and Get Function Address ..16

2.2.2 Open the Stream ...17

2.2.3 Read from the Stream..18

2.2.4 Write to Stream..18

2.2.5 Close the Stream ...19

3 File Search and File Read/Write ...20

3.1 Initialize the mcs File Input/Output Library..20

3.2 File Reading and Writing...21

3.2.1 Open the File ...21

3.2.2 Read from File ...22

3.2.3 Write to File..22

3.2.4 Close the File...23

3.2.5 Moving the File Pointer ..23

3.3 File Searching...24

3.3.1 Start File Search ..24

3.3.2 Continue File Search ...25

3.3.3 End File Search ...25

4 Outputting Character Strings to the Console...26

4.1 Output with OS_Printf Function...26

Multiple Channel Stream Library

NTR-06-0312-001-C 4  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

4.2 Output with mcs String Output Functions..26

4.2.1 Initialize the Character String Output Library ...26

4.2.2 Output Character String ...26

5 About the mcs Server..27

5.1 General Operations Flow ..27

5.1.1 Connect ...27

5.1.2 Load ROM File (if the Device is IS-NITRO-EMULATOR)...27

5.1.3 Disconnect ...27

5.1.4 Reset (if the Device is IS-NITRO-EMULATOR) ...27

5.2 Special Situations..28

5.2.1 Connecting with ensata ...28

5.2.2 Shared Mode and Dedicated Mode ...28

5.2.3 Command Line Options ...28

5.2.4 Powering ON the IS-NITRO-EMULATOR DS Game Card Slot and GBA Game Pak Slot29

5.2.5 About the Interval for Obtaining Data from the Nintendo DS..29

Code Samples
Code 2-1 Initilizing the mcs Library ...8

Code 2-2 Registering a Callback Function ..9

Code 2-3 Registering a Receiving buffer...10

Code 2-4 Opening the Device ...10

Code 2-5 Configuring Interrupts ..12

Code 2-6 Calling the Polling Function ...13

Code 2-7 Reading the Received Data...14

Code 2-8 Writing Data...15

Code 2-9 Waiting for mcs Server Connection ...15

Code 2-10 Reading DLL and Getting Function Address..16

Code 2-11 Opening a Stream..17

Code 2-12 Reading from the Stream...18

Code 2-13 Writing to the Stream ...19

Code 2-14 Closing the Stream ..19

Code 3-1 Opening a File ...21

Code 3-2 Reading from a File ...22

Code 3-3 Writing to a File..22

Code 3-4 Closing a File...23

Code 3-5 Moving the File Pointer ..23

Code 3-6 Starting File Search ...24

Code 3-7 Continuing File Search ..25

Code 3-8 Ending File Search ..25

Code 4-1 Initilzaing the Character String Output Library ...26

Multiple Channel Stream Library

 2004-2007 Nintendo 5 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

Code 4-2 Outputting a Character String ..26

Code 5-1 Command Line Options...28

Figures
Figure 2-1 Communications Between Nintendo DS Program and Windows Application...8

Figure 3-1 Searching Files and Reading/Writing to Files ..20

Multiple Channel Stream Library

NTR-06-0312-001-C 6  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

Revision History

Version Revision Date Details of Revision

1.1.0 2007/03/14 Added a feature for turning on the power to the DS Game Card slot.

1.0.2 2005/03/18 Added a function that changes the position of the current file pointer.

Added a feature to change the load time interval from a Nintendo DS on an mcs server.

1.0.0 2005/01/18 Initial version.

Multiple Channel Stream Library

 2004-2007 Nintendo 7 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

1 Introduction

The mcs (“Multiple Channel Stream”) library is the collective name of the library and a group of tool

programs that enable Nintendo DS programs to communicate with multiple Windows applications. The

library provides the following features.

� Ability to communicate between Nintendo DS programs and Windows applications

� Ability to access files on the PC from the Nintendo DS program

� Display of text strings output from the Nintendo DS program

Among the pieces of hardware that run Nintendo DS programs, the following devices support the mcs

library.

� IS-NITRO-EMULATOR

� Nintendo DS System + IS-NITRO-UIC

� ensata software emulator

If you are using IS-NITRO-EMULATOR or IS-NITRO-UIC, the ISNITRO.dll must be installed on the

system.

ISNITRO.dll gets installed on the system when you install the IS-NITRO-DEBUGGER software.

Multiple Channel Stream Library

NTR-06-0312-001-C 8  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

2 Communications Between Nintendo DS
Programs and Windows Applications

One of the basic purposes of the mcs library is to enable communications between Nintendo DS

programs and multiple Windows applications running on a PC. Figure 2-1 provides a schematic

diagram of this process.

Figure 2-1 Communications Between Nintendo DS Program and Windows Application

Communications require procedures to be carried out by both the Nintendo DS program and the

Windows application. Because the procedures differ, they will be explained separately.

2.1 Procedures on the Nintendo DS

2.1.1 Initialize the mcs Library

To use the mcs library, you must first call the NNS_McsInit function and initialize the library.

Code 2-1 Initilizing the mcs Library

void
NitroMain
{

OS_Init();
…
NNS_McsInit();
…

Multiple Channel Stream Library

 2004-2007 Nintendo 9 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

2.1.2 Configure the Way to Receive Data

There are two ways to receive data: by calling a callback function when the data is received, or by

having the program read the data at a time of its own discretion. For both methods, each channel must

be set ahead of time.

2.1.2.1 Register a Callback Function

To call a callback when data have been received, register a callback function. Secure the variable of

the NNSMcsRecvCBInfo structure ahead of time, and call the function

NNS_McsRegisterRecvCallback by passing a pointer to this variable as an argument. Other

arguments include the channel value used to identify the Windows application, the registered callback

function, and the user-defined value passed to this callback function. When

NNS_McsRegisterRecvCallback is called, the registered information gets set in the specified type

NNSMcsRecvCBInfo variable.

Code 2-2 Registering a Callback Function

#define MCS_CHANNEL_ID 10 // Channel value

// The callback function that gets called when data is received from PC
static void
DataRecvCallback(

const void* pRecv, // Pointer to the data buffer
u32 recvSize, // Size of received data
u32 userData, // User defined value
u32 offset, // Offset value to all received data
u32 totalSize // Total size of received data

)
{
}

…
void
NitroMain()
{

…
static NNSMcsRecvCBInfo sRecvCBInfo;
…

// Register the callback function
NNS_McsRegisterRecvCallback(

&sRecvCBInfo, // NNSMcsRecvCBInfo type variable
MCS_CHANNEL_ID, // Channel value
DataRecvCallback, // Callback function
0); // User defined value

…

Multiple Channel Stream Library

NTR-06-0312-001-C 10  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

2.1.2.2 Register a Buffer

To have the program read the data at a time of its own discretion, you need to register a buffer that can

hold the received data. Memory for the received data must be secured ahead of time. Using this and

the channel value as arguments, call the NNS_McsRegisterStreamRecvBuffer function to register

the buffer.

The memory for managing the Receiving buffer is secured from the memory-use buffer specified here,

so make sure you secure at least 48 bytes. If received data accumulates in this buffer without being

read and the buffer overflows, that received data will be discarded. Thus, it is essential to allocate a

buffer of the appropriate size for your objectives for every channel.

Code 2-3 Registering a Receiving buffer

#define MCS_CHANNEL_ID 10 // Channel value

static u32 sRecvBuf[64 * 1024 /sizeof(u32)];

…

NNS_McsRegisterStreamRecvBuffer(
MCS_CHANNEL_ID, // Channel value
sRecvBuf, // Pointer to Receiving buffer
sizeof(sRecvBuf)); // Size of Receiving buffer

2.1.3 Open the Device

Open the device used for communications. First call the NNS_McsGetMaxCaps function to get the total

number of devices that are capable of communicating. If the total number is 0, this indicates that no

devices were found. If there are 1 or more devices, use the NNS_McsOpen function to open a device. The

argument for this function is the pointer to the NNSMcsDeviceCaps type variable, which was secured

ahead of time. Information related to the opened device is placed in this variable.

Code 2-4 Opening the Device

NNSMcsDeviceCaps deviceCaps;

if (NNS_McsGetMaxCaps() == 0)
{

OS_Panic(“Could not find device.”);
}

if (! NNS_McsOpen(&deviceCaps))
{

OS_Panic(“Failed to open the device.”);
}

Multiple Channel Stream Library

 2004-2007 Nintendo 11 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

2.1.4 Configure Interrupts

Depending on the type of the device that has been opened, certain functions need to be called

periodically. The function that needs to be called for a given device is set in the maskResource

member variable of the NNSMcsDeviceCaps type variable that was specified when the NNS_McsOpen

function was called. Using this variable and a mask, configure an interrupt handler so the necessary

function is called.

For example, if the bitwise AND result of the maskResource variable and

NITROMASK_RESOURCE_VBLANK is not zero, the device needs to call the

NNS_McsVBlankInterrupt function in every frame. Configure a V-Blank interrupt handler so that

NNS_McsVBlankInterrupt gets called from inside of the interrupt handler.

Similarly, if the bitwise AND result of the maskResource variable and

NITROMASK_RESOURCE_CARTRIDGE is not zero, the device needs to call the

NNS_McsCartridgeInterrupt function every time a cartridge interrupt occurs. Configure a cartridge

interrupt handler so that NNS_McsCartridgeInterrupt is called from inside of the interrupt handler.

Multiple Channel Stream Library

NTR-06-0312-001-C 12  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

Code 2-5 Configuring Interrupts

…

if (deviceCaps.maskResource & NITROMASK_RESOURCE_VBLANK)
{

// Enable VBlank interrupts and configure so NNS_McsVBlankInterrupt()
// gets called from inside VBlank interrupt

BOOL preIRQ = OS_DisableIrq();
OS_SetIrqFunction(OS_IE_V_BLANK, VBlankIntr);
(void)OS_EnableIrqMask(OS_IE_V_BLANK);
(void)OS_RestoreIrq(preIRQ);

(void)GX_VBlankIntr(TRUE);
}

if (deviceCaps.maskResource & NITROMASK_RESOURCE_CARTRIDGE)
{

// Enable cartridge interrupts and configure so
// NNS_McsCartridgeInterrupt() gets called from inside
// cartridge interrupt

BOOL preIRQ = OS_DisableIrq();
OS_SetIrqFunction(OS_IE_CARTRIDGE, CartIntrFunc);
(void)OS_EnableIrqMask(OS_IE_CARTRIDGE);
(void)OS_RestoreIrq(preIRQ);

}

…

static void
VBlankIntr(void)
{

OS_SetIrqCheckFlag(OS_IE_V_BLANK);

NNS_McsVBlankInterrupt();
}

static void
CartIntrFunc(void)
{

OS_SetIrqCheckFlag(OS_IE_CARTRIDGE);

NNS_McsCartridgeInterrupt();
}

Until it becomes necessary to open the device, nothing happens when the NNS_McsVBlankInterrupt

or the NNS_McsCartridgeInterrupt function gets called. Thus, interrupts can be configured at any

time before opening the device, regardless of the device type.

Multiple Channel Stream Library

 2004-2007 Nintendo 13 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

2.1.5 Polling

In addition to configuring interrupts explained above, call the NNS_McsPollingIdle function

periodically. For example, call NNS_McsPollingIdle every time in the main loop.

Code 2-6 Calling the Polling Function

// Main loop
while (TRUE)
{

SVC_WaitVBlankIntr();

…

// Polling process
NNS_McsPollingIdle();

}

2.1.6 Reading Data

2.1.6.1 When a Callback Function has been Registered

If you have registered a callback function, that function will get called when data are received.

2.1.6.2 When a Receiving Buffer has been Registered

If you have registered a Receiving buffer, the received data will get stored in that buffer. As shown in

the code sample below, to read the data stored in the buffer, call the NNS_McsReadStream function.

Use the NNS_McsGetStreamReadableSize function to get the size of data that can be read with a

single call to NNS_McsReadStream. Use the NNS_McsGetTotalStreamReadableSize function to

get the total size of data available in the buffer for reading.

Multiple Channel Stream Library

NTR-06-0312-001-C 14  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

Code 2-7 Reading the Received Data

static u8 sBuf[1024];

u32 nLength = NNS_McsGetStreamReadableSize(MCS_CHANNEL_ID);

if (nLength > 0)
{

u32 readSize;
BOOL result = NNS_McsReadStream(

MCS_CHANNEL_ID, // Channel value
sBuf, // Pointer to the buffer for reading
sizeof(sBuf), // Size of the buffer for reading
&readSize); // Pointer to the variable that stores the

// size actually read
if (result)
{

// Read OK
}
else
{

// Read failure
}

}

2.1.7 Writing Data

Use the NNS_McsWriteStream function to write data. Use the NNS_McsGetStreamWritableLength

function to get the amount of data that can be written at a given time. If the amount of data to write with

NNS_McsWriteStream is less than the writable amount obtained by

NNS_McsGetStreamWritableLength, the NNS_McsWriteStream function will quit immediately. If

the amount of data to write is larger than the writable amount, calls to NNS_McsWriteStream will be

blocked until writing of the specified amount of data has completed.

Multiple Channel Stream Library

 2004-2007 Nintendo 15 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

Code 2-8 Writing Data

u8 sendBuf[32];
u32 nLength;

…

// Get the writable size of data
if (NNS_McsGetStreamWritableLength(&nLength))
{

// Write if can write without blocking
if (sizeof(sendBuf) <= nLength)
{

// Write
if (! NNS_McsWriteStream(

MCS_CHANNEL_ID,
sendBuf,
sizeof(sendBuf)))

{
// Write succeeds

}
else
{

// Write fails
}

}
}

2.1.8 When the Opened Device is IS-NITRO-UIC

When the opened device is IS-NITRO-UIC and the NNS_McsWriteStream function is called while the

mcs server is not connected to IS-NITRO-UIC, control will not return to this function until the mcs

server connects to the device. If this is going to be a problem, call the NNS_McsIsServerConnect

function to check if the mcs server is connected. If the server is connected to IS-NITRO-UIC,

NNS_McsIsServerConnect will return TRUE.

The communications state of the mcs server is checked by using the mcs communications functionality.

Therefore, there may be a slight time lag before the actual connection state of the mcs server gets

reflected.

Code 2-9 Waiting for mcs Server Connection

NNSMcsDeviceCaps deviceCaps;

…

if (NNS_McsOpen(&deviceCaps))
{

// Wait for connection from mcs server
while (! NNS_McsIsServerConnect())
{

SVC_WaitVBlankIntr();
}

}

Multiple Channel Stream Library

NTR-06-0312-001-C 16  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

2.2 Procedures on the Windows Side

2.2.1 Read DLL and Get Function Address

The library for Windows is provided in the form of the dynamic link library nnsmcs.dll. This file can

be found in the tools¥win¥mcsserver directory, under the directory where NITRO-System was

installed.

The NNS_McsOpenStream and NNS_McsOpenStreamEx functions exported with this library are used

for opening the stream. Get the addresses for these functions as needed.

Code 2-10 Reading DLL and Getting Function Address

#include <nnsys/mcs.h>

_TCHAR modulePath[MAX_PATH];
DWORD writtenChars;
HMODULE hModule;
NNSMcsPFOpenStream pfOpenStream;

// Obtain the absolute path for nnsmcs.dll
writtenChars = ExpandEnvironmentStrings(

_T("%NITROSYSTEM_ROOT%¥¥tools¥¥win¥¥mcsserver¥¥nnsmcs.dll"),
modulePath,
MAX_PATH);

if (writtenChars > MAX_PATH)
{

// Path is too long
return 1;

}

hModule = LoadLibrary(modulePath);
if (NULL == hModule)
{

// Reading of module fails
return 1;

}

// Get address of function
pfOpenStream = (NNSMcsPFOpenStream)GetProcAddress(

hModule,
NNS_MCS_API_OPENSTREAM);

Multiple Channel Stream Library

 2004-2007 Nintendo 17 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

2.2.2 Open the Stream

On the Windows side, a stream gets opened for every channel. Open the stream using the

NNS_McsOpenStream or NNS_McsOpenStreamEx functions. NNS_McsOpenStreamEx has the

same features as NNS_McsOpenStream, plus the ability to get information about the connected device.

A stream is actually a Win32 System named pipe. The NNS_McsOpenStream(Ex) function opens the

named pipe as a message type and registers the specified channel to the mcs server.

Code 2-11 Opening a Stream

HANDLE hStream;

// Open the stream
hStream = pfOpenStream(

MCS_CHANNEL_ID, // Channel value
0); // Flag

if (hStream == INVALID_HANDLE_VALUE)
{

// Open fails
return 1;

}

Multiple Channel Stream Library

NTR-06-0312-001-C 18  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

2.2.3 Read from the Stream

To read the stream, use the Win32 ReadFile or ReadFileEx functions. To get the readable size,

use PeekNamedPipe.

Code 2-12 Reading from the Stream

static BYTE buf[1024];
DWORD totalBytesAvail;
BOOL fSuccess;

fSuccess = PeekNamedPipe(
hStream, // Stream's handle
NULL,
0,
NULL,
&totalBytesAvail, // Number of bytes available
NULL);

if (! fSuccess)
{

// Peek fails
return 1;

}

// When there is readable data:
if (totalBytesAvail > 0)
{

DWORD readBytes;

fSuccess = ReadFile(
hStream, // Stream's handle
buf, // Pointer to Reading buffer
sizeof(buf), // Number of bytes to read
&readBytes, // Number of bytes actually read
NULL);

if (! fSuccess)
{

// Read fails
return 1;

}
}

2.2.4 Write to Stream

To write to the stream, use the Win32 WriteFile or WriteFileEx functions.

Multiple Channel Stream Library

 2004-2007 Nintendo 19 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

Code 2-13 Writing to the Stream

static BYTE buf[1024];
BOOL fSuccess;
DWORD writtenBytes;

fSuccess = WriteFile(
hStream, // Stream's handle
buf, // Pointer to Writing buffer
sizeof(buf), // Number of bytes to write
&writtenBytes, // Number of bytes actually written
NULL);

if (! fSuccess)
{

// Write fails
return 1;

}

2.2.5 Close the Stream

To close the stream, use the Win32 CloseHandle function.

Code 2-14 Closing the Stream

// Close the stream
CloseHandle(hStream);

Multiple Channel Stream Library

NTR-06-0312-001-C 20  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

3 File Search and File Read/Write

The mcs library has features for reading and writing to PC files from the Nintendo DS program, and for

searching for files on the PC from the Nintendo DS program. The following diagram illustrates the

concept.

Figure 3-1 Searching Files and Reading/Writing to Files

There is no Windows library for these features. They become available when the mcs server is

connected to a Nintendo DS system.

The following sections explain the procedures for file searching and for file reading/writing.

3.1 Initialize the mcs File Input/Output Library

To use the features for file searching and file reading/writing, call the NNS_McsInit function to

initialize the mcs library, then call and initialize the NNS_McsInitFileIO function.

NNS_McsInit(); // Initialize the mcs library
…
NNS_McsInitFileIO(); // Initialize the file I/O features

Multiple Channel Stream Library

 2004-2007 Nintendo 21 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

3.2 File Reading and Writing

3.2.1 Open the File

To open a file on the PC, call the NNS_McsOpenFile function. For the arguments of this function,

specify the pointer to the previously secured NNSMcsFile type variable, the name of the file to open,

and the read/write flag. If the file is opened successfully, the function returns 0 and the information

pertaining to the opened file gets placed in the NNSMcsFile type variable. If the process fails, the

function returns a non-zero value.

Code 3-1 Opening a File

NNSMcsFile infoRead;
NNSMcsFile infoWrite;
u32 errCode;

// Open file for reading
errCode = NNS_McsOpenFile(

&infoRead,
"c:¥¥testApp¥¥test.txt", // File name
NNS_MCS_FILEIO_FLAG_READ); // Reading mode

if (errCode != 0)
{

// File fails to open
return 1;

}

// Open file for writing
errCode = NNS_McsOpenFile(

&infoWrite,
"c:¥¥testApp¥¥outTest.txt",
NNS_MCS_FILEIO_FLAG_WRITE);

if (errCode != 0)
{

// File fails to open
return 1;

}

Multiple Channel Stream Library

NTR-06-0312-001-C 22  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

3.2.2 Read from File

To read the file, use the NNS_McsReadFile function. To get the size of the file, use the

NNS_McsGetFileSize function.

Code 3-2 Reading from a File

static u8 buf[1024];
u32 errCode;
u32 fileSize;
u32 readSize;

// Get the size of the file
fileSize = NNS_McsGetFileSize(&infoRead);

if (fileSize <= sizeof(buf))
{

// Read entire file at once
errCode = NNS_McsReadFile(

&infoRead,
buf, // Pointer to the Reading buffer
fileSize, // Number of bytes to read
&readSize); // Number of bytes actually read

if (errCode != 0)
{

// Reading from file fails
return 1;

}
}

3.2.3 Write to File

To write to the file, use the NNS_McsWriteFile function.

Code 3-3 Writing to a File

static u8 buf[1024];
u32 errCode;
u32 fileSize;
u32 readSize;

// Write everything in buf
errCode = NNS_McsWriteFile(

&infoWrite,
buf, // Pointer to the Writing buffer
sizeof(buf)); // Number of bytes to write

if (errCode != 0)
{

// Writing to file fails
return 1;

}

Multiple Channel Stream Library

 2004-2007 Nintendo 23 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

3.2.4 Close the File

To close the file, use the NNS_McsCloseFile function.

Code 3-4 Closing a File

u32 errCode;

errCode = NNS_McsCloseFile(&infoRead);
if (errCode)
{

// Closing of file fails
return 1;

}

3.2.5 Moving the File Pointer

Use the NNS_McsSeekFile function to move the current file pointer. Passing a u32 type variable

pointer allows the position of the moved file pointer to be obtained.

Code 3-5 Moving the File Pointer

u32 errorcode;
u32 filePointer // variable for storing the file pointer position

// Move to the 100th byte from the start of the file
errCode = NNS_McsSeekFile(&infoRead, 100, NNS_MCS_FILEIO_SEEK_BEGIN, NULL);
…
// Move 200 bytes from the current file pointer position
// Get the position of the moved file pointer
errCode = NNS_McsSeekFile(&infoRead, 200, NNS_MCS_FILEIO_SEEK_CURRENT,
&filePointer);
…
// Get the current file pointer position
// Do not move the file pointer
errCode = NNS_McsSeekFile(&infoRead, 0, NNS_MCS_FILEIO_SEEK_CURRENT,
&filePointer);

Multiple Channel Stream Library

NTR-06-0312-001-C 24  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

3.3 File Searching

3.3.1 Start File Search

To conduct a file search, first call the NNS_McsFindFirstFile function. For its arguments, use the

pointer to the previously secured NNSMcsFile type variable, the pointer to the previously secured

NNSMcsFileFindData type variable, and the pattern character string for which you want to search

files.

If the function finds a matching file, it returns 0 and sets the information related to the search in the NNSMcsFile

type variable, and the information related to the found file in the NNSMcsFileFindData type variable. If the file

that matches the pattern is not found, NNS_MCS_FILEIO_ERROR_NOMOREFILES is returned.

Code 3-6 Starting File Search

NNSMcsFile info;
NNSMcsFileFindData findData;
u32 errCode;

errCode = NNS_McsFindFirstFile(
&info,
&findData,
"c:¥¥testApp¥¥*.txt");

// File with matching pattern was not found
if (errCode == NNS_MCS_FILEIO_ERROR_NOMOREFILES)
{

OS_Printf("no match *.txt .¥n");
return 0;

}

if (errCode != 0)
{

// File search fails
return 1;

}

Multiple Channel Stream Library

 2004-2007 Nintendo 25 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

3.3.2 Continue File Search

To search for the next matching pattern, call the NNS_McsFindNextFile function. For its arguments,

use the pointer to the NNSMcsFile type variable that was specified when NNS_McsFindFirstFile

was called, and the pointer to the previously secured NNSMcsFileFindData type variable. If the

function finds a matching file, it returns 0 and sets the information related to the search in the

NNSMcsFile type variable and the information related to the found file in the NNSMcsFileFindData

type variable, just as the NNS_McsFindFirstFile function does. If the function cannot find a file that

matches the pattern, it returns NNS_MCS_FILEIO_ERROR_NOMOREFILES.

Code 3-7 Continuing File Search

do
{

// Display the file name
OS_Printf("find filename %s¥n", findData.name);

// Search for the next file with a matching pattern
errCode = NNS_McsFindNextFile(&info, &findData);

}while (errCode == 0);

if (errCode != NNS_MCS_FILEIO_ERROR_NOMOREFILES)
{

// File search fails
}

3.3.3 End File Search

To end the file search, call the NNS_McsCloseFind function.

Code 3-8 Ending File Search

errCode = NNS_McsCloseFind(&info);
if (errCode != 0)
{

// Failed to end file search
return 1;

}

Multiple Channel Stream Library

NTR-06-0312-001-C 26  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

4 Outputting Character Strings to the Console

The mcs library provides features for outputting strings to the mcs server's console. There are two

ways to output these character strings: by using the NITRO-SDK function OS_Printf, or by using one

of the mcs library's string output functions. Both of these methods have advantages and disadvantages,

so use them according to the situation.

4.1 Output with OS_Printf Function

If you output using the OS_Printf function, the string will only display on the mcs console if the mcs

server is connected to IS-NITRO-EMULATOR. The string will not display on the console if the

connected device is IS-NITRO-UIC or ensata.

The advantage of this method is that the same procedure can be used to output strings to other

applications that support OS_Printf, such as IS-NITRO-DEBUGGER.

4.2 Output with mcs String Output Functions

When the mcs library is used to output character strings, the strings can be output no matter what

connected device is used, as long as mcs communications have been established. However, the

output can only go to the console of the mcs server.

The following is an explanation of how to use the mcs library functions to output character strings.

4.2.1 Initialize the Character String Output Library

To use the features for outputting character strings, you must first call the NNS_McsInit function to

initialize the mcs library. Next, initialize the features by calling the NNS_McsInitPrint function.

Code 4-1 Initilzaing the Character String Output Library

NNS_McsInit(); // Initialize the mcs library
…
NNS_McsInitPrint (); // Initialize the string output feature

4.2.2 Output Character String

To output a plain character string, use the NNS_McsPutString function. To output a formatted string,

use the NNS_McsPrintf function.

Code 4-2 Outputting a Character String

u32 val = 16;

NNS_McsPutString(“print string¥n”);
NNS_McsPrintf(“val = %d¥n”, val);

Multiple Channel Stream Library

 2004-2007 Nintendo 27 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

5 About the mcs Server

The mcs server is a program that provides a communications bridge enabling simultaneous

communications between Nintendo DS applications and multiple Windows applications on a PC. The

mcs server also provides features that allow Nintendo DS applications to access files on the PC and to

output character strings to the console of the mcs server.

5.1 General Operations Flow

5.1.1 Connect

Before communications can proceed between Windows applications and a Nintendo DS application,

and before a Nintendo DS application can access PC files or output character strings to the mcs server

console, the mcs server must connect to a hardware device that is running a Nintendo DS application.

If an IS-NITRO-EMULATOR device and an IS-NITRO-UIC device are both connected on the PC, the

mcs server will connect to the IS-NITRO-UIC device. If two or more devices of the same kind exist, the

mcs server will connect to the first device that it discovers.

5.1.2 Load ROM File (if the Device is IS-NITRO-EMULATOR)

If the mcs server is connected to an IS-NITRO-EMULATOR device, load the ROM file after the

connection is established. Select Open from the File menu. In the File dialog, select the file you want

to read. After the file has been loaded, the Nintendo DS application will start.

If the mcs server is connected to an IS-NITRO-UIC device, you cannot load a ROM file.

5.1.3 Disconnect

To end communications, select Disconnect from the Device menu.

5.1.4 Reset (if the Device is IS-NITRO-EMULATOR)

If the connected device is an IS-NITRO-EMULATOR, you can reset the system by selecting Reset

from the Device menu.

If the mcs server is connected to an IS-NITRO-UIC device, you cannot perform a reset.

Multiple Channel Stream Library

NTR-06-0312-001-C 28  2004-2007 Nintendo
Released: May 7, 2007 CONFIDENTIAL

5.2 Special Situations

5.2.1 Connecting with ensata

To connect the mcs server to ensata, select ensata from the Devices menu and place a check mark

next to “ensata”. Next, select Connect from the Devices menu. This starts ensata. Loading a ROM

file after this enables communications with a Nintendo DS application running on ensata.

5.2.2 Shared Mode and Dedicated Mode

The mcs server has two modes: shared and dedicated. When Share Mode in the Resource menu is

checked, the server is in the shared mode. Otherwise it is in the dedicated mode.

When the mcs server is in the dedicated mode, the Nintendo DS application can only communicate

with one Windows application at a time. In this state, when the channel value is seen in hexadecimal,

the upper 12 bits are taken as the group value. Connections are allowed only to channels with the same

group value as that of the first connected channel. Connections to channels in other groups are denied.

In share mode, there are no such restrictions.

5.2.3 Command Line Options

You can use command line options to set parameters when starting the mcs server. The entries are not

case sensitive.

Code 5-1 Command Line Options

mcsserv [/U] [/E] [/D] [/A] [ROM filename]

/U Connect to device after startup. Invalid
if ROM file has been specified.

/E Connect to ensata.
/D Turn on power to IS-NITRO-EMULATOR DS Game Card slot.

Valid when mcs server connected to IS-NITRO-EMULATOR.
/A Turn on power to IS-NITRO-EMULATOR GBA Game Pak slot.

Valid when connected to IS-NITRO-EMULATOR.

ROM filename After startup, connect and load specified file. Valid
when mcs server connected to IS-NITRO-EMULATOR.

Multiple Channel Stream Library

 2004-2007 Nintendo 29 NTR-06-0312-001-C
CONFIDENTIAL Released: May 7, 2007

5.2.4 Powering ON the IS-NITRO-EMULATOR DS Game Card Slot and GBA
Game Pak Slot

When the command line option "/D" is specified, power will be turned on to the DS Game Card slot

when the mcs server connects to the IS-NITRO-EMULATOR device. This enables simultaneous use of

the hardware that supports the DS Game Card slot.

When the command line option “/A” is specified, power will be turned on to the GBA Game Pak slot

when the mcs server connects to the IS-NITRO-EMULATOR device. This enables simultaneous use of

the hardware that supports the GBA Game Pak slot.

Do not insert or remove a game device while the power is ON, as this could damage the

device.

5.2.5 About the Interval for Obtaining Data from the Nintendo DS

While the mcs server is connected to the hardware that is run by an application for the Nintendo DS,

for a fixed time interval the server will be checking whether any data need to be sent from the Nintendo

DS to the Windows application. This time interval can be changed in the Options dialog box. For

example, if the operations of the application for the Nintendo DS start to slow down when a large

amount of data are sent to the Windows application, shortening this time interval will improve the

operations in some cases. However, if the time interval is shortened, the processing load on the

equivalent Windows-side processes will increase.

Multiple Channel Stream Library

NTR-06  2004-2007 Nintendo
Releas CONFIDENTIAL

Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation in the U.S. and other countries.

All other company names and product names mentioned in this document are the registered trademarks or trademarks of those other

companies.

© 2005-2007 Nintendo

The contents of this document cannot be

du

dis

the
-0312-001-C 30
ed: May 7, 2007

plicated, copied, reprinted, transferred,

tributed or loaned in whole or in part without

prior approval of Nintendo Co. Ltd.

	1 Introduction
	2 Communications Between Nintendo DS Programs and Windows Applications
	2.1 Procedures on the Nintendo DS
	2.1.1 Initialize the mcs Library
	2.1.2 Configure the Way to Receive Data
	2.1.2.1 Register a Callback Function
	2.1.2.2 Register a Buffer

	2.1.3 Open the Device
	2.1.4 Configure Interrupts
	2.1.5 Polling
	2.1.6 Reading Data
	2.1.6.1 When a Callback Function has been Registered
	2.1.6.2 When a Receiving Buffer has been Registered

	2.1.7 Writing Data
	2.1.8 When the Opened Device is IS-NITRO-UIC

	2.2 Procedures on the Windows Side
	2.2.1 Read DLL and Get Function Address
	2.2.2 Open the Stream
	2.2.3 Read from the Stream
	2.2.4 Write to Stream
	2.2.5 Close the Stream

	3 File Search and File Read/Write
	3.1 Initialize the mcs File Input/Output Library
	3.2 File Reading and Writing
	3.2.1 Open the File
	3.2.2 Read from File
	3.2.3 Write to File
	3.2.4 Close the File
	3.2.5 Moving the File Pointer

	3.3 File Searching
	3.3.1 Start File Search
	3.3.2 Continue File Search
	3.3.3 End File Search

	4 Outputting Character Strings to the Console
	4.1 Output with OS_Printf Function
	4.2 Output with mcs String Output Functions
	4.2.1 Initialize the Character String Output Library
	4.2.2 Output Character String

	5 About the mcs Server
	5.1 General Operations Flow
	5.1.1 Connect
	5.1.2 Load ROM File (if the Device is IS-NITRO-EMULATOR)
	5.1.3 Disconnect
	5.1.4 Reset (if the Device is IS-NITRO-EMULATOR)

	5.2 Special Situations
	5.2.1 Connecting with ensata
	5.2.2 Shared Mode and Dedicated Mode
	5.2.3 Command Line Options
	5.2.4 Powering ON the IS-NITRO-EMULATOR DS Game Card Slot and GBA Game Pak Slot
	5.2.5 About the Interval for Obtaining Data from the Nintendo DS

