NITRO-Composer
Sound Programmer Guide

Version 1.2.4

The contents in this document are highly

confidential and should be handled accordingly.

© 2004-2006 Nintendo NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0079-001-B 2 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

Table of Contents

1 [} (o To [0 e (1o] o [P PO PRSP PUPRR 7
2 Sound Program Development ENVIFONMENT............uuiiiiiiiiiiii et e et e e e e s e e st e e e e e e e s sntbaaeeaaeeeannes 8
21 NITRO System Build ENVIFONMENTooiiiiiiieiiie ettt e st e e s e e rane e e e anreeenaes 8
2.2 1L @] o F=1 o1 = o] o [P PRSP 8
P20 B W o - Y 1= PR 8
2.2.2 HEAAET File.. ..o e 8
2.2.3 SOUNA DALA ...t e et e s e e e et e e s s 8
2.2.4 ARMT COMPONENT.....eiiiiiiiiitieet e e e e e ettt ee e e e e ee e et eeeesa e aeaeeeeaeeaaaasbeeeeeaeeasassssaeeaaeessansssseeaeessaassssaneaeessansnsrenees 8

3 Basic Implementation EXAMIPIEooo it e e 9
3.1 Development ENVIFONMENT ... 9
BT MBKETIE ...ttt h et e 9
3.1.2 ROM SEOrage fil€ ...ttt et e e et e e e st e e s e e e e b e e e et e 10
3.1.3 OPerational PrOCEAUIEuiiiiiiiiiieeee ettt ettt b ettt ae e et et e bt e e b e e e bt e et e e ne e e nbeesneeans 10

3.2 The NItFOMaIN FUNCHON ...t e et e et e e e e s e e e e e aare e e e s 10
3.3 BaSIC SBIUD ..ttt ettt r e et e e e e e nnre e e s 12
3.3.1 Initializing the OS and Other PrOCESSES..........c.uuviiiieiiiicieeee et e e e e e e e e s e et e e e e s e e snnreees 12
3.3.2 Initializing the SOUN LIDIarycooo it e e e e e e e e e e e et e e e e s e e sansreees 12
3.3.3 Creating the SOUNA HEAPooiiiiiie ettt e e nb e st e e 12
3.3.4 Initializing the SOUNA AICRIVE ..o e e e e e e e e e e et e e e e e s e e snsreeeas 12
3.3.5 SettiNG UP the PIAYET ..ottt et et e e nar e e e e b e nante e 13
3.3.6 Stream library iNitialiZatiON............cooiiuiriiiii e e e r e e e e e e aes 13
3.3.7 SoUNd Frame PrOCESSINGutiiitiiieiiiiie ittt et e ettt et e e e e e e ek et e s st et e e s e e e e e b b e e e saate e e e nanees 13

3.4 [IoT=To T o o RS To10 o o [B - | c- TSP PPRRR RO 13

B g B 0T To [0 To [1 (01U oL PSP SPP 14

3.5 SEAUENCE OPEIALION.eeiiiii ettt e e ettt e e s et e e sa et e e ettt e e at et e e eane e e e e b e e e e e e e e 14
3.5.1 SOUNA HANAIES..... .ottt h et e e st e e et e e ek e e e e st et e e s e e e e et e e e naane e e e nanees 14
3.5.1.1 USING SOUNA HANAIES ..ot e ettt e e e e e et e e e e e s eessasaeeeeaeeessnsbeaeeaeeesannnes 14
3.5.1.2 What is @ SOUNA HANAIE?cooiiii e 14
3.51.3 DisSCONNECHNG the SEQUENCEuviiiiiie it e e e e e e e e e et e e e e e e s sntbeeeeaeeesannnes 14
3.5.14 Tips for Creating SOUNd HANAIESoiiiiiiie e 15

3.5.2 SEQUENCE PlAYDACK.ottt e e et e e e e e e e a e e e e e e eeta——eeaaeeeea b ——— et aaeeaaantreeeaaeseannnreees 15
3.5.3 Sequence Archive PIayDacK...........cooiiiii e 15
3.5.4 StOPPING the SEQUENCEouiiiiii et e ettt e e e e e e e e e e e e e ee st b e e e eaeseessnsbeeeaaeseesnnsrenes 15

3.6 (01 g1l BT 1 1 [o T PO T PO P PP PRSP PPPRR 16
20 B =1 1 1= o OO PP PP PP PPPRRI 16
3.8.2 SHTBAIM-2 ...ttt h e E et h et bt be e b et e b et et e e ne et e sre e 16

R RC TE ~11 { == X T OO PRSP PP RPPPPPPR P 16
3.6.4 MOVEVOIUIMIE ...ttt ettt bt h ekt et ekt e b et ekt e bt e et et e be e e ke e e bt e e beeeaneeenbeeeneeans 16

© 2004-2006 Nintendo 3 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer

Sound Programmer Guide

3.6.5 ONMEMOTY ...oiiiiiiiieiteee et
3.6.6 reverD ..o
3.6.7 effeCh. e
3.6.8 OUIPULERECEeviiiieiiiee e
3.6.9 SAMPIING ..ot
3.6.10 WAVEOUL ..ottt e e
3.6.11 MICTAIOUGN.....oeiiiiiii e
3.6.12 Ariverinfo. ... o e

4 Heap OPerationNSoeeiiii i e e e e e e
41 OVEIVIBW. ...ttt ettt e e e e et e e e e e e nneeeaaaeeeaan

4.2 Memory Management Basicscccoceeiiiiiiiiiieeieiieee e
421 The Sound Heap and the Player Heap...........ccccccceevvvveieneeenn.
4.2.2 Appropriate Usage of the Two Heaps...........cccceeiviieiiiiiincns

4.3 Sound Heap Operationscccoveiiiiiiiiiee i
431 Clearingthe HEapcccvveiiiiiiiicee e

4.3.2 Restoring the Heap to the Previous State

4.3.3 Multiple Sound HEapscceoviiiiiiiieeiiiiiiieee e

4.4 Player Heap Operationsooocuiiiiiiaiiiiiieieee e
441 Deleting the Player Heap..........coooiiiiiiiiiiiiiiiee e

5 Stream Playbackcccoooiiiiiiiiiiii e
5.1 Initializing the stream library ...
5.1.1 Stream thread...........coceiiiiiiiiiii e
5.1.2 Stream buffer.........coooiiiiiii
5.2 Stream OpPerationsccoovviiiiiiiieei
521 Thestreamhandle ...
5.2.2 Stream playbackK.........ccueevieiiiiiiiiiee e
5.2.3 Stopping @ Streamcccoviiiiiieiiiee e
5.2.4 Pausing @ Streamc.coevieiiiiiiiiiiiie e
5.3 Avoid Interrupting Streamsoocceiiiiiiei e
5.3.1 Stream Thread..........coceiiiiiiiii e
5.3.1.1 Disabling INterrupts..........cooociiieiieiiicee e
5.3.1.2 DIMA s
5.3.1.3 Interrupt Handler Process..........ccccceeeieeeeeeee,
5.3.1.4 Higher Priority Threads.........ccccooeeiiiiiiii e
5.3.2 Accessing the Card / Backup Media...........cccoceeviriecinciiicnnen.
5.3.3 Stream BUffer ..o
5.3.4 Simultaneous Playbackcccooiiiiiiiiiii,

(ST 07101 i (o] o IS

6.1 Sound Processes in Sleep Mode..........cccoccviiiiieieiiiieceec e,

6.1.1 Sequence playbackcoooiiiiiiiiiiii e

NTR-06-0079-001-B
Released: September 6, 2006

© 2004-2006 Nintendo
CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

6.1.2 SErE@M PIAYDACK.......ci ittt e e e s 25
[0 I TS Yo 10 [g To [o= o) (U [= RSP UPR PSPPI 25
7 LIDrary OrganiZationooooiiiiiie ettt bt e e e et e n e e s 26
71 o] = 1 VA @ o T=Ta 1 4= o) [O UPPRRSR PP 26
7.2 PlaYEr LIDIArY ..o 26
7.3 SoUN AFChIVE Player LIDIAIYeviiiiiiiii ettt e e e e ettt e e e e e et e e e eeeesesaatbaeeeaaeessnsbsaeaaaeeeannnes 27
7.4 Sound Archive SIream LiDraryooooi it e e e e e e e e e st e e e e e e e e s ntbeaeeaaeeeananes 28
7.5 SEEAM LIDIAIY ...t e e ettt et e e e et e e e bt et e e e e e n e et e 28
7.6 SOUNA AFCIIVE LIDFAIY ...ttt e e et e e et e s s et e e e b e e e senn e e e nanees 29
7.7 S To 10 oo I 1= T oI 1 o] =1 o VSRR UPUUPRRPE 29
7.8 (0= o1 (0] (=3 I o] =] PO OO PSP PP ST PUPRPP 29
7.9 Waveform Playback LIDIAry..........oooiuiiiiiei et e ettt e e e e e e et e e e e e e e sesb e e e e e e e e s seannaeeeaaeaan 30
Code
Code 3-1 =S SRR 9
Code 3-2 The NItroMain FUNCHONeiiiiiie ettt e e et e e s amte e e e eane e e e e bt e e e s anneeeeennees 10
Code 3-3 Initializing the SOUNA LIDIary..........cooiii ettt e e e e e et e e e e e e e e nnne e e e e e e e e e anneeeeeas 12
Code 3-4 SoUNA HEAP CrEaAtiONeiiie ittt e et e e e e e et e e e e e e ee bbb e e e aaeseassnsbaeeeaeseennnsseees 12
Tables
Table 7-1 Player Library FUNCHONSooiiiiie e Error! Bookmark not defined.
Table 7-2 Sound Archive Player Library FUNCHONS...........cccooiiiiiiiiieiieiciieeee e Error! Bookmark not defined.
Table 7-3 Sound Archive Stream Library FUNCHONS...........oooiiiiiiiiiii e 28
Table 7-4 Stream Library FUNCHONS..........coociiiiiiei e Error! Bookmark not defined.
Table 7-5 Sound Archive Library FUNCHONSccooiiiiiiiiiiiiciee e Error! Bookmark not defined.
Table 7-6 Sound Heap Library FUNCLONSccooiiiiiiiii e Error! Bookmark not defined.
Table 7-7 Capture Library FUNCLONScccciiiiiieii e Error! Bookmark not defined.
Table 7-8 Waveform Playback Library Functionsccccooiiiiiiiiee Error! Bookmark not defined.
Figures
Figure 4-1 Restoring the Previous State.............uviiiiiiiii et e e e e e e e e s stbra e e e e e e e aanes 19
Figure 7-1 Library Organization DIagramcoouiiiiiiiiiiiee ettt e et e s ete e s snn e e e snneeeeae 26
© 2004-2006 Nintendo 5 NTR-06-0079-001-B

CONFIDENTIAL Released: September 6, 2006

NITRO-Composer

Sound Programmer Guide

Revision History

Version | Revision Date Description
1.24 05/29/2006 |- Corrected the explanation of the Sound process in Sleep Mode
» Fixed errors
1.2.3 03/28/2005 |« Added a description of the driverInfo demo
1.2.2 01/31/2005 |+ Added a description of the micThrough demo
« Supplement to the description of the waveform playback library
¢ Changed “NITRO” to “Nintendo DS”
1.2.1 12/06/2004 |« Added the description of stream-2 and stream-3 demos
1.2.0 10/12/2004 |+ Added description of changing to Sleep Mode
« Added description to avoid interrupting streams
« Added description of sampling demo and outputEffect demo
1.1.2 09/16/2004 |« Unified the name of . sadl files as “sound label files”
1.1.1 09/02/2004 |- Revised due to the change in the sample source code
1.1.0 08/10/2004 |« Added a description of stream playback
¢ Added a description of stream library
1.0.0 07/20/2004 |- Revised text to reflect the addition of the Waveform Playback Library
* Revised text to reflect the addition of effect functionality
« Changed the file extension from .binto .srl
¢ Revised the description of the ARM7 component
0.4.0 06/01/2004 |- Revised text to reflect file system support
« Revised text to reflect the ability for a player to play multiple sequences
« Added description of heap operations
« Changed the library organization
0.3.0 04/01/2004 |- A complete organizational change was done.
« Added a description of the library organization
« Added an overview of the sample demo
0.2.0 03/18/2004 |- Fixed the makefile of the SoundPlayer
* Added cautions for 0S_EnableIrgMask ()
« Added a tempo change function
0.1.0 03/01/2004 |« Initial version

NTR-06-0079-001-B
Released: September 6, 2006

6 © 2004-2006 Nintendo

CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

1 Introduction

This document provides programmers with fundamental information about developing sound programs
on the Nintendo DS (DS).

The setup for the NITRO-Composer environment is explained. This is followed by an example that
shows how to implement a sound program. The last section explains the structure of the sound library,

and lists the type of provided functions.

For a detailed explanation of each function, refer to the function reference.

© 2004-2006 Nintendo 7 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

2

Sound Program Development Environment

21 NITRO System Build Environment
NITRO-Composer is part of the NITRO-System. By setting up the NITRO-System build environment,
you will be able to use NITRO-Composer.
Refer to the NITRO-System documentation for details.
2.2 File Organization
2.21 Library File
The NITRO-SDK and NITRO-System library files listed below must be linked..
libsnd.a
libnnssnd.a
2.2.2 Header File
Header files that include definitions for created functions must be placed in an include statement using
the following statement format:
#include <nnsys/snd.h>
By listing an include statement for the sound label file (* . sadl) created by the sound designer as
shown below, the sound data can be specified using the label defined by the sound designer instead of
the number.
#include "../data/sound data.sadl"
2.2.3 Sound Data
All sound data sets are stored in a single sound archive file that has the *. sdat file extension. Set the
configuration to ensure that this sound archive file is stored in ROM. An example of how to store this
file in ROM is shown in Chapter 3..
2.2.4 ARM7 Component
The ARM7 component is stored in the NitroSDK. The sound functionality must be implemented in the
ARM?7 component. If the ARM7 component is not specified explicitly, the component that implements
the sound functionality will be used.
NTR-06-0079-001-B 8 © 2004-2006 Nintendo

Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

3 Basic Implementation Example

This chapter demonstrates a basic implementation using Nitro-Composer for a project called simple.
The simple project can be found in $SNitroSystem/build/demos/snd/simple.

3.1 Development Environment

This section explains how to set up the development environment.

3.1.1 Makefile

The following is an example makefile. Some of the comments have been omitted.

Code 3-1 Makefile

#! make -f
b
SRCS = main.c

TARGET NEF

main.nef

TARGET BIN main.srl

MAKEROM_ROMROOT = ../data
MAKEROM ROMFILES = sound data.sdat

include $ (NITROSYSTEM ROOT) /build/buildtools/commondefs

do-build: $(TARGETS)

include $ (NITROSYSTEM ROOT) /build/buildtools/modulerules

The basic elements of a makefile are not discussed in this section. Refer to the NITRO-SDK and
NITRO-System manuals for makefile information. Setting the two MAKEROM . * variables is crucial.

© 2004-2006 Nintendo 9 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

3.1.2 ROM storage file

MAKEROM ROMROOT defines the root directory in ROM. MAKEROM ROMFILES defines the files to be
stored in the root directory. In other words, the files that have the path . . /data/sound data.sdat
are stored in ROM using the path directory and filename.

3.1.3 Operational Procedure

If the makefile in 3.1.1 is used, the program builds in the following sequence.

e Themain.c file registered in SRCS compiles.

e The compiled file is linked to the library, which creates the ARM9 component main.

e The ARM9 component main combines with the ARM7 component and sound archive which
creates main.srl

e Themain.srl file becomes the executable file.

3.2 The NitroMain Function

First, examine the NitroMain function in src/main.c. Some of the comments have been omitted.

Code 3-2 The NitroMain Function

void NitroMain ()
{
0S_Init();
GX Init();

// VBlank settings

0S SetIrgFunction(0S IE V BLANK, VBlankIntr);
(void)0S EnableIrgMask(OS IE V BLANK);
(void)OS EnableIrq();

(void) GX VBlankIntr (TRUE) ;

FS Init(MI_DMA MAX NUM);

// Initialize sound

NNS SndInit();

heap = NNS SndHeapCreate(& sndHeap, sizeof(sndHeap));
NNS SndArcInit(&arc, "/sound data.sdat", heap, FALSE);
(void)NNS SndArcPlayerSetup(heap);

NNS SndArcStrmInit(STREAM THREAD PRIO, heap);

// Load sound data
(void)NNS SndArcLoadSeq(SEQ MARIOKART64 TITLE, heap);
(void)NNS SndArcLoadSeqgArc(SEQ SE, heap);

NTR-06-0079-001-B 10 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

(void)NNS SndArcLoadBank (BANK SE, heap);

//

Initialize sound handles

NNS SndHandleInit (&bgmHandle);

NNS SndHandleInit (&seHandle);

//

dummy pad read

Cont = PAD Read();

//

//

//

——————————————— Main Loop

ul6 ReadData;

SVC WaitVBlankIntr();

ReadData = PAD Read();
Trg = (ul6) (ReadData & (ReadData ~ Cont));

Cont = ReadData;

if (Trg & PAD BUTTON A) {
start BGM
(void)NNS SndArcPlayerStartSeq(&bgmHandle, SEQ MARIOKART64 TITLE);
}
if (Trg & PAD BUTTON B) {
stop BGM
(void)NNS SndPlayerStopSeq(&bgmHandle, 1);

if (Trg & PAD KEY UP) {
start SE
(void)NNS SndArcPlayerStartSeqgArc(&seHandle, SEQ SE, SE COIN);

//-—--- framework

NNS SndMain () ;

The key points are described in subsequent sections.

© 2004-2006 Nintendo
CONFIDENTIAL

11 NTR-06-0079-001-B
Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

3.3 Basic setup

This section explains fundamental functions--for example, library initialization.

3.3.1 Initializing the OS and Other Processes

First initialize the OS and other basic processes.

0S Init();
GX_Tnit();

// VBlank settings

0S SetIrgFunction(OS IE V BLANK, VBlankIntr);
(void) OS EnablelIrgMask(OS IE V BLANK);
(void)0S EnablelIrq();

(void) GX VBlankIntr (TRUE) ;

FS Init(MI_DMA MAX NUM);

3.3.2 Initializing the Sound Library

The sound library must be initialized before any NNS_snd functions are called.

Code 3-3 Initializing the Sound Library

NNS_SndInit();

3.3.3 Creating the Sound Heap

Create the heap that is usedto store sound data.

Code 3-4 Sound Heap Creation

heap = NNS SndHeapCreate(&sndHeap, sizeof(sndHeap));

The first argument is the starting address in memory that is used for the sound heap. The second
argument is the size of the sound heap.

The return value is the heap handle. The heap handle is used to allocate memory from the sound heap.

3.3.4 Initializing the Sound Archive

Initialize the sound archive. The sound archive structure must be allocated statically.

NNS SndArcInit(&arc, "/sound data.sdat", heap, FALSE);

The first argument is the sound archive structure. The second argument is the path to the sound
archive on the ROM file system.

NTR-06-0079-001-B 12 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

3.4

The third argument is the heap needed to allocate memory for initialization of sound archives, and the
sound heap handle that was just created is used. Note that if the allocated memory is released, the
sound archive will no longer be usable.

The fourth argument is a flag that controls the loading of symbol data in the sound archive. If the
argument is set to True, symbol data is used for debugging. Set the argument to FALSE for standard
initialization.

3.3.5 Setting Up the Player

Set up the player.

NNS SndArcPlayerSetup(heap);

The player settings in the sound archive determine the setup.

Because the player setup requires memory, enter the heap handle as an argument.

3.3.6 Stream library initialization

To do stream playback, the stream library must be initialized.

NNSisndArcStrmInit(STREAM THREAD PRIO, heap);

For details on streams, see Chapter 5.

3.3.7 Sound Frame Processing

Perform sound library frame processing. This function should be called once for each frame. The
location of the function call is not important.

NNS SndMain () ;

Loading Sound Data

Before playing a sound sequence, the sound data must be loaded.

(void)NNS SndArcLoadSeq(SEQ MARIOKART64 TITLE, heap);
(void) NNS SndArcLoadSegArc(SEQ SE, heap);
(void)NNS SndArcLoadBank(BANK SE, heap);

NNS SndArcLoadSeq loads the data that is required to play the sequence
SEQ MARIOKARTG64 TITLE. This function concurrently loads the bank and waveform data in addition
to the sequence data.

NNS_ SndArcLoadSegArc loads the SE sequence archive. Because sequence archives are
associated with multiple banks, bank and waveform data are not loaded automatically. The following

© 2004-2006 Nintendo 13 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

3.5

function, NNS_SndArcLoadBank, loads the bank data for SE. With this function, both the bank and
waveform data are loaded. Therefore, it is unnecessary to load waveform data separately.

3.41 Loading Groups

Sound data is not normally loaded alone, unlike the example. If the sound designer defines a group,
the group can be loaded as shown in the following example.

(void)NNS SndArcLoadGroup (GROUP STATIC, heap);

The group defines which data sets to load. By calling NNS_SndArcLoadGroup, all the data sets are
loaded at once. By loading groups, the data can be loaded without changing the code in the program.

Sequence Operation

3.5.1 Sound Handles

3.51.1 Using Sound Handles
A sound handle is required to work with a sequence:

NNSSndHandle bgmHandle;
NNSSndHandle seHandle;

Temporarily allocate a sound handle statically. Before using a sound handle, initialize it with the
following function.

void NNS SndHandleInit (NNSSndHandle* handle);

3.5.1.2 What is a Sound Handle?

A sound handle is an object that controls the sequence after playback. A sound handle can control one
sequence. If a sequence playback is successful, that sequence will be linked to a sound handle. From
that point and until that link is disconnected, operations for that sound handle will operate the
sequence.

3.5.1.3 Disconnecting the Sequence

Sometimes a sequence is manually or automatically disconnected. A sequence can be automatically
disconnected if a second sequence attempts to start when a player can play only one sequence., The
played back sequence is forcibly stopped. Under these circumstances, the sound handle is
involuntarily disconnected from the sequence and disabled. Even if operations are performed on a
disabled sound handle, no processing will occur.

This means that the programmer does not need to check if the sequence they played back is still
playing. Even if the same process is executed while the sequence is being played or the sequence is
stopped, there will be no problems, such as a separate sequence being operated by error.

NTR-06-0079-001-B 14 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

3.51.4 Tips for Creating Sound Handles

When sound is played back without any pauses, as with one-shot sound effects, the same sound handle
can be used to play repeated sounds. All sounds can be played simultaneously as long as the number
does not exceed the maximum number of simultaneous sequences that are allowed. Each parameter
can be changed separately immediately after the playback occurs.

Because continuous sounds such as background music or engine noises must be stopped, each of
these sound effects requires a separate sound handle.

3.5.2 Sequence Playback

The following function plays back a sequence:

BOOL NNS SndArcPlayerStartSeqg(NNSSndHandle* handle, int segNo);
seqgNo is the sequence number, and the sounds are ordered as they appear in the sound archive.

If the function executes, the sequence links to a sound handle that is passed in as an argument. From
this point, this sound handle can be used to carry out processes (e.g., stopping the sequence).

If the sound handle is already linked to a sequence, the connection to the original sequence is
disconnected and the sound handle connects to the new sequence. Because the sequence that
disconnects from the sound handle can no longer be controlled directly, be careful; however, when
there is no need to control the sequence in the future— for example, when a one-shot sound effect is
played— no special requirements are needed.

if (Trg & PAD BUTTON A) {
(void)NNS SndArcPlayerStartSeq(&bgmHandle, SEQ MARIOKART64 TITLE);
}

3.5.3 Sequence Archive Playback

The following function plays back the sequence from the sequence archive:

BOOL NNS SndArcPlayerStartSegArc(
NNSSndHandle* handle, int segArcNo, int index);

segArcNo is the sequence archive number, which is the order of the sequences in the sound archive.
index is the index number of the sequence in the sequence archive. The rest is the same as the
playback of the sequence.

if (Trg & PAD KEY UP) {
(void)NNS SndArcPlayerStartSegArc(&seHandle, SEQ SE, SE COIN);
}

3.5.4 Stopping the Sequence

The following function stops the sequence:

void NNS SndPlayerStopSeq(NNSSndHandle* handle, int fadeFrame);

© 2004-2006 Nintendo 15 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

3.6

Enter the sound handle passed into NNSSndHand1le when played back to handle. fadeFrame is the
fadeout frame. The volume level gradually decreases over the specified number of frames.

if (Trg & PAD BUTTON B) {
(void)NNS SndPlayerStopSeq(&bgmHandle, 1);
}

Other Demos

No descriptions for the functions that are used with the simple demo are described. This section
contains an overview of other demos. The demo programs for NITRO-Composer are all stored under
S$SNitroSystem/build/demos/snd.

3.6.1 stream

Plays back streams. Stream playback is explained in Chapter 5.

3.6.2 stream-2

Combines multiple stream data in real time and plays back. It registers the callback function that
performs the combining process by using the NNS SndArcStrmStartEx2 function.

3.6.3 stream-3

Applies effects to the stream and plays back. It registers the callback function that processes effects by
using the NNS_SndArcStrmStartEx2 function.

3.6.4 moveVolume

Changes the volume of a sequence over a period of time.. This demo uses the
NNS_SndPlayerMoveVolume ()function to change the volume. It includes code for a fade-in
playback.

3.6.5 onMemory

The entire sound archives that are loaded into memory. For that purpose, the sound archives are
initialized with NNS_SndArcInitOnMemory () function.

3.6.6 reverb

Areverb demo that uses the capture feature. This demo uses NNS_SndCaptureStartReverb and
NNS SndCaptureStopReverb.

3.6.7 effect

An effects demo that uses the sound capture feature. It passes the output through a simple low-pass

NTR-06-0079-001-B 16 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

filter (moving average).

This demo uses NNS SndCaptureStartEffect and NNS_SndCaptureStopEffect.

3.6.8 outputEffect

Effects demo that uses the sound capture feature. Switches between the surround mode and the
headphones mode for output.

It uses the NNS SndCaptureStartOutputEffect and NNS_SndCaptureChangeOutputEffect
functions.

3.6.9 sampling

Sampling demo that uses the sound capture feature. Calculates output levels using sampling data for
the display.

It uses NNS_SndCaptureStartSampling and other functions.

3.6.10 waveout

Plays waveform data directly instead of using sequence playback. It plays back sounds recorded with a
microphone. Uses NNS_SndWaveOutStart for the playback of waveform data.

3.6.11 micThrough

Uses the low-level stream library NNS SndStrm. Plays back real-time input from the microphone and
applies effects to output sounds.

This demo uses NNS_SndStrmSetup and NNS_SndStrmStart.

3.6.12 driverinfo

Displays on-screen sound driver information.

The sound driver information is updated with NNS SndUpdateDriverInfo, and the player
information in the sound driver can be obtained with NNS SndPlayerReadDriverPlayerInfo.

© 2004-2006 Nintendo 17 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

4

Heap Operations

41 Overview
In the simple demo, memory management functions are not used. In the simple demo, only the sound
heap is created using NNS_SndheapCreate during initialization, and data is loaded into the memory.
The heap operations are explained in subsequent sections.
4.2 Memory Management Basics
For information about the basics of memory management, see the Sound System Manual. The
following is a brief explanation about memory management.
4.21 The Sound Heap and the Player Heap
There are two heaps: the sound and player heap.
The sound heap is a stack-based heap that programmers use for loading and deleting data.
The player heap is used for loading data automatically during the sequence playback. Programmers do
not need to work directly with the player heap.
4.2.2 Appropriate Usage of the Two Heaps
The sound heap loads relatively large blocks of data at system startup and during scene changes. The
player heap loads relatively small blocks of data (e.g., BGM data) during sequence playback.
Even though sound and player heap are generally used in this way everything can be managed in the
sound heap to improve the load efficiency.
4.3 Sound Heap Operations
Because the sound heap is stack-based, memory is allocated from the top to the bottom and is
released from the bottom to the top. Memory is allocated automatically from the heap when sound data
loads. To delete unwanted sound data, the memory regions must be released. There are two ways to
release memory regions:
e Clearing the heap.
e Restoring the heap to the previous state.
4.3.1 Clearing the Heap
All of the sound data can be cleared from the heap. This process is very simple, but when the used
NTR-06-0079-001-B 18 © 2004-2006 Nintendo

Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

function is executed, all playing sounds will stop. If the memory region that is used for the initialization
of the sound archive is released, the sound archive will no longer be available.

To clear all sound data from the heap, call the NNS SndHeapClear function.

4.3.2 Restoring the Heap to the Previous State

Restoring the heap to the previous state is used more frequently than clearing the heap..

NNS_ SndHeapSaveState saves the current state. After saving, the return value is the hierarchy level
of the heap. The hierarchy level indicates the value for the state that was saved. The hierarchy level
value can be used to restore the sound heap to the saved state.

After loading several blocks of sound data, calling NNS SndHeapLoadState by passing the hierarchy
level value will return the heap to the state that it was in immediately after the call was made to

NNS SndHeapSaveState. In other words, all data that was loaded after the call to

NNS SndHeapSaveState is deleted.

Figure 4-1 Restoring the Previous State

NNS_SndHeapSaveState Load Sound Data NNS_SndHeapLoadState
Loaded Loaded Loaded Loaded
Sound Data Sound Data Sound Data Sound Data
: : Newly Loaded :
Sound Data
Level 0 Level 1 Level 1 Level 1

When the data is deleted, already loaded sounds will not be stopped.

Also, NNS_SndHeapSaveState can be called repeatedly, and the value of the hierarchy level will
increase each time the function is called.

4.3.3 Multiple Sound Heaps

Usually a single sound heap is used to restore the heap, but multiple sound heaps can be also used to
restore different heap states. If there are several sound heaps, each sound heap can save and restore
an individual state.

© 2004-2006 Nintendo 19 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

To use multiple sound heaps, you only need to create multiple heaps using NNS_SndHeapCreate.
When allocating memory for a sound heap, the heap handle must always be specified. To allocate the
memory, specify the sound heap by passing the heap handle return value as the argument of the
function.

4.4 Player Heap Operations

Normally, the programmer does not have to manage the player heap. The player heap is created using
the following function.

BOOL NNS SndArcPlayerSetup(NNSSndHeapHandle heap);

The sound designer sets the size of the heap needed by the player. The amount of memory is
allocated from the sound heap and is passed as an argument in the function to create the player heap.

4.41 Deleting the Player Heap

The player heap allocates memory from the sound heap. When the memory region that is allocated to
the player heap is released, the player heap is automatically deleted.

NTR-06-0079-001-B 20 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

5 Stream Playback

This chapter explains stream playback, which was not included in the simple demo.

5.1 Initializing the stream library

To play a stream, the stream library must be initialized.

NNSisndArcStrmInit(STREAM THREAD PRIO, heap);

The first argument is the stream thread priority. The second argument is the sound heap handle, which
is used to allocate the stream buffer.

5.1.1 Stream thread

The stream thread is a thread that loads the data from ROM when necessary.

Data is loaded while stream playback is played; the sound stops if the data is not loaded in time.
Therefore, the data must be loaded quickly. When a stream thread needs to load data, a stream thread
can interrupt other processes running on the main loop of the game and load the data.

If you want the stream thread to interrupt the main processing loop and load data, the stream thread
must be assigned a higher thread priority. The main loop (main thread) has a default value of 16
Therefore, specify a value that is less than 16.

5.1.2 Stream buffer

To play a stream, a buffer is required to load data. To play a single stream, the buffer needs
approximately 2 to 4 KB of memory. This buffer uses part of the sound heap and is passed as the
second argument in the function.

Note that once the stream buffer is released, the stream cannot be played.

© 2004-2006 Nintendo 21 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

5.2 Stream operations
5.21 The stream handle
Just as a sound handle is necessary to play a sequence, a stream handle is required to play a stream.

NNSSndStrmHandle strmHandle;

The stream handle should be allocated statically for now. Before using the stream handle, initialize a
stream function with the following function.

void NNS SndStrmHandleInit (NNSSndStrmHandle* handle);

In other respects, a stream handle is identical to a sound handle.
5.2.2 Stream playback
To play back a stream, call the following function.

BOOL NNS SndArcStrmStart (NNSSndStrmHandle* handle, int strmNo, u32 offset);
strmNo is the stream number that specifies which stream to play. of £set specifies in milliseconds
when to start playing back in the stream data. Playback generally starts at the beginning of the stream,
so set this parameter to zero.

Similar to a when using a sequence, the stream handle is bound to the stream if playback is successful.
5.2.3 Stopping a Stream
To stop a stream, call the following function.

void NNS SndArcStrmStop(NNSSndStrmHandle* handle, int fadeFrames);
fadeFrames specifies the number of frames over which the volume should be gradually lowered
before the stream stops. If fadeFrames is set to a value of zero, the stream stops immediately.

5.2.4 Pausing a Stream
There is no function to pause a stream. However, a process similar to pausing a stream is possible.
The following procedure allows you to create the effect of pausing.
1. When you want to pause the stream, use the following function to obtain the current position of
playback.
u32 NNS_ SndArcStrmGetCurrentPlayingPos (NNSSndStrmHandle* handle);
NTR-06-0079-001-B 22 © 2004-2006 Nintendo

Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

5.3

2. UseNNS SndArcStrmStop to stop the stream.

3. Restart the stream playback by passing the playback location as the of fset argument of
NNS SndArcStrmStart and start the stream playback. The playback will start from where
the stream stopped.

The stream will not restart at the precise position in the stream.

Avoid Interrupting Streams

With stream playback, data is loaded in real-time; therefore, if the sound is not loaded in time, the
sound will be interrupted. Here are some tips to avoid interrupting streams.

5.3.1 Stream Thread

Stream data is loaded with the stream thread. The basic rule is to maintain stream thread processes
without delay.

Here are some circumstances that cause delays in the stream thread processes.

5.3.1.1 Disabling Interrupts
Stream threads cannot run while interrupts are disabled. Interrupts should be disabled only for short
periods of time.

5.3.1.2 DMA
Stream threads cannot run while DMA is running. By dividing a large DMA into chunks, the delay in
stream thread processes can be reduced.

5.31.3 Interrupt Handler Process
Stream threads cannot run while an interrupt handler is being processed. Interrupt handler processes
should last only for short periods of time.

5.31.4 Higher Priority Threads
Stream threads cannot run while higher priority threads are being processed. Higher priority thread
processes need to last only for short periods of time or the priority of stream threads needs to be raised.

5.3.2 Accessing the Card / Backup Media

Stream data cannot be loaded while the card or backup media is accessed. Therefore, divide the
bandwidth between the card and stream data.

5.3.3 Stream Buffer

If the buffer size for stream playback is large, the sound will not be interrupted even if the stream
thread process speed is reduced. However, when the buffer size is larger, the process for one stream

© 2004-2006 Nintendo 23 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

thread requires more bandwidth, and a negative effect on the lower priority threads may occur.

5.3.4 Simultaneous Playback

When multiple streams are played simultaneously, the stream thread processes increase and require
more bandwidth. The sound may be interrupted even with a short delay in the processes. Exercise
caution when playing back multiple streams simultaneously.

NTR-06-0079-001-B 24 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

Cautions

6.1 Sound Processes in Sleep Mode
When entering Sleep Mode, the library automatically performs the processes to stop the sound
features. In other words, the programmer simply calls the PM_GoSleepMode function to enter Sleep
Mode and the necessary processes are carried out by the library.
Similarly, the library carries out all the processes needed to restart sound features when returning from
Sleep Mode. However, pay attention to the following.
6.1.1 Sequence playback
The sequence process resumes from the place where it was before entering Sleep Mode, but the
channel that was playing sounds in the sequence restarts from the very beginning of its waveform data.
If this is a problem, the programmer must pause the playback before Sleep Mode and cancel the
pause after Sleep Mode. However, the channel that was playing sounds in the sequence will not play
upon returning from Sleep Mode.
6.1.2 Stream playback
There is a process that stops steam playback before entering Sleep Mode and resumes play when
returning from Sleep Mode. At this time, any data left in the Stream buffer will be destroyed and sounds
will partially skip.
There is no effective work-around to this problem.
6.1.3 Sound capture
A process is performed that stops capture before entering Sleep Mode and resumes capture upon
returning. At that time, any data left in the Capture buffer will be destroyed, so there will be no capture
data when returning from Sleep Mode.
There is no effective work-around to this problem.

© 2004-2006 Nintendo 25 NTR-06-0079-001-B

CONFIDENTIAL Released: September 6, 2006

NITRO-Composer

Sound Programmer Guide

7 Library Organization

This chapter describes the organization of the NITRO-Composer library.

7.1 Library Organization

The NITRO-Composer library composes several libraries as shown below:

Figure 7-1 Library Organization Diagram
Sound Archive Sound Archive
Player Stream
NNS_SndArcPlayer NNS_SndArcStrm

Sound Archive
NNS_SndArc

\

-
Player Stream Waveform Playback
NNS_SndPlayer L NNS_SndStrm NNS_SndWaveOut

I

Capture
NNS_SndCapture

)

Sound Heap
NNS_SndHeap

[i Sound Driver Interface (ARM9)

I

[: Sound Driver (ARM7)

The libraries with NNS_Snd prefixes are the sound libraries included in NitroSystem. Usually, the
programmer uses these library functions. The libraries are described in the following sections.

7.2 Player Library

The Player Library is the most basic library for playing back sequences. The function prefix set is

NNS SndPlayer.

This library is used to change parameters for sequences and stopping sequences. However, the sound
archive player functions from the upper library are used for only playback. The sequence playback

functions in the player library are used to simply run sequences. For actual sequence playback,
complex processing (e.g, data loading) is required. Therefore, sequence playback is processed with

the sound archive player.

NTR-06-0079-001-B 26
Released: September 6, 2006

© 2004-2006 Nintendo
CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

The player library also includes some functions that operate the sound handles. The function set prefix
is NNS_SndHandle. The sound handle and player are closely related. Refer to section 3.5.1 Sound
Handle for an overview of the sound handle.

The main functions of the Player Library are shown in Table 7-1.

Table 7-1 Player Library Functions

Function Name Description
NNS_SndPlayerStopSeq Stops the sequence.
NNS SndPlayerPause Pauses or restarts the sequence.
NNS_SndPlayerSetTempoRatio Changes the tempo of the sequence.
NNS SndPlayerSetVolume Changes the volume of the sequence.
NNS_ SndPlayerSetTrackVolume Changes the volume of the sequence track.
NNS_SndPlayerSetTrackPitch Changes the pitch of the sequence track.
NNS_SndPlayerSetTrackPan Changes the pan (location) of the sequence track.

7.3 Sound Archive Player Library

The Sound Archive Player Library plays back the sequence using the sound archive. The function set
prefix is NNS_SndArcPlayer.

The Sound Archive Player Library is located in the upper-level libraries of the player library and the
sound archive library. Sequences can be easily played back using these functionalities.

The main functions of the Sound Archive Player Library are shown in Table 7-2.

Table 7-2 Sound Archive Player Library Functions

Function Name Description
NNS SndArcPlayerSetup Sets.up the player using the settings in the sound
- archive.
NNS SndArcPlayerStartSeq Plays back the sequence.
NNS SndArcPlayerStartSegArc Plays back the sequence archive.
© 2004-2006 Nintendo 27 NTR-06-0079-001-B

CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

7.4 Sound Archive Stream Library

Sound Archive Stream Library is used to play stream data in a sound archive. The function names
begin with NNS SndArcStrm.

This library is a upper-level library of the stream library and the sound archive library. The Sound
Archive Stream Library uses the functionality of the stream library and the sound archive library to
make playing streams simple.

The main functions of the Sound Archive Stream Library are shown in Table 7-3.

Table 7-3 Sound Archive Stream Library Functions

Function Name Description
NNS_SndArcStrmInit Initializes the sound archive stream library.
NNS_SndArcStrmStart Plays a stream.

NNS_SndArcStrmStop Stops a stream.

7.5 Stream Library

The Stream Library is a low-level library for the playback of streams. The function names begin with
NNS SndStrm.

This library is used to play data that is received through communications in real time and for stream
playback of waveform data in unique stream data format.

The main functions of the Stream Library are shown in Table 7-4.

Table 7-4 Stream Library Functions

Function Name Description
NNS_ SndStrmInit Initializes a stream.
NNS SndStrmAllocChannel Allocates a channel for stream playback.
NNS_SndStrmFreeChannel Frees a stream playback channel.
NNS_SndStrmSetup Prepares for stream playback.
NNS SndStrmStart Plays a stream.
NNS_SndStrmStop Stops a stream.
NTR-06-0079-001-B 28 © 2004-2006 Nintendo

Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

7.6 Sound Archive Library

The Sound Archive Library loads sound data in the sound archives and retrieves parameters. The
function set prefix is NNS_SndArc.

The main functions of the Sound Archive Library are shown in Table 7-5.

Table 7-5 Sound Archive Library Functions

Function Name Description
NNS SndArcInit Initializes a sound archive.
NNS SndArcLoadGroup Loads sound data in units of the group.

7.7 Sound Heap library

The Sound Heap Library manages the sound heap. The function set prefix is NNS SndHeap.

The main functions of the Sound Heap Library are shown in Table 7-6.

Table 7-6 Sound Heap Library Functions

Function Name Description
NNS SndHeapCreate Creates the sound heap.
NNS_SndHeapClear Clears all heap memory.
NNS_SndHeapSaveState Saves the heap state.
NNS_SndHeapLoadState Restores the heap state.

7.8 Capture Library

Nintendo DS has the sound capture feature. The Capture Library is used for generating effects using
the capture feature (e.g., reverb). The function set prefix is NNS SndCapture.

The main functions of the Capture Library are shown in Table 7-7.

Table 7-7 Capture Library Functions

Function Names Description
NNS_SndCaptureStartReverb Starts the reverb.
NNS_SndCaptureStopReverb Stops the reverb.
NNS SndCaptureStartEffect Starts the effect.
NNS SndCaptureStopEffect Stops the effect.
© 2004-2006 Nintendo 29 NTR-06-0079-001-B

CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

7.9 Waveform Playback Library

The Waveform Playback Library provides functionality to play waveform data without using sequence
playback. The function set prefix is NNS_SndWaveOut.

The Waveform Playback Library is used for playing sampled data captured with a microphone. Use this
stream library to play back waveform data that is generated in real time.

The main functions of the Waveform Playback Library are shown in Table 7-8.

Table 7-8 Waveform Playback Library Functions

Function Names Description
NNS_SndWaveOutAllocChannel Allocates a channel for playing waveform.
NNS_SndWaveOutStart Starts waveform playback.
NNS SndWaveOutStop Stops waveform playback.
NTR-06-0079-001-B 30 © 2004-2006 Nintendo

Released: September 6, 2006 CONFIDENTIAL

Sound Programmer Guide NITRO-Composer

© 2004-2006 Nintendo 31 NTR-06-0079-001-B
CONFIDENTIAL Released: September 6, 2006

NITRO-Composer Sound Programmer Guide

© 2004-2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

NTR-06-0079-001-B 32 © 2004-2006 Nintendo
Released: September 6, 2006 CONFIDENTIAL

	1 Introduction
	2 Sound Program Development Environment
	2.1 NITRO System Build Environment
	2.2 File Organization
	2.2.1 Library File
	2.2.2 Header File
	2.2.3 Sound Data
	2.2.4 ARM7 Component

	3 Basic Implementation Example
	3.1 Development Environment
	3.1.1 Makefile
	3.1.2 ROM storage file
	3.1.3 Operational Procedure

	3.2 The NitroMain Function
	3.3 Basic setup
	3.3.1 Initializing the OS and Other Processes
	3.3.2 Initializing the Sound Library
	3.3.3 Creating the Sound Heap
	3.3.4 Initializing the Sound Archive
	3.3.5 Setting Up the Player
	3.3.6 Stream library initialization
	3.3.7 Sound Frame Processing

	3.4 Loading Sound Data
	3.4.1 Loading Groups

	3.5 Sequence Operation
	3.5.1 Sound Handles
	3.5.1.1 Using Sound Handles
	3.5.1.2 What is a Sound Handle?
	3.5.1.3 Disconnecting the Sequence
	3.5.1.4 Tips for Creating Sound Handles

	3.5.2 Sequence Playback
	3.5.3 Sequence Archive Playback
	3.5.4 Stopping the Sequence

	3.6 Other Demos
	3.6.1 stream
	3.6.2 stream-2
	3.6.3 stream-3
	3.6.4 moveVolume
	3.6.5 onMemory
	3.6.6 reverb
	3.6.7 effect
	3.6.8 outputEffect
	3.6.9 sampling
	3.6.10 waveout
	3.6.11 micThrough
	3.6.12 driverInfo

	4 Heap Operations
	4.1 Overview
	4.2 Memory Management Basics
	4.2.1 The Sound Heap and the Player Heap
	4.2.2 Appropriate Usage of the Two Heaps

	4.3 Sound Heap Operations
	4.3.1 Clearing the Heap
	4.3.2 Restoring the Heap to the Previous State
	4.3.3 Multiple Sound Heaps

	4.4 Player Heap Operations
	4.4.1 Deleting the Player Heap

	5 Stream Playback
	5.1 Initializing the stream library
	5.1.1 Stream thread
	5.1.2 Stream buffer

	5.2 Stream operations
	5.2.1 The stream handle
	5.2.2 Stream playback
	5.2.3 Stopping a Stream
	5.2.4 Pausing a Stream

	5.3 Avoid Interrupting Streams
	5.3.1 Stream Thread
	5.3.1.1 Disabling Interrupts
	5.3.1.2 DMA
	5.3.1.3 Interrupt Handler Process
	5.3.1.4 Higher Priority Threads

	5.3.2 Accessing the Card / Backup Media
	5.3.3 Stream Buffer
	5.3.4 Simultaneous Playback

	6 Cautions
	6.1 Sound Processes in Sleep Mode
	6.1.1 Sequence playback
	6.1.2 Stream playback
	6.1.3 Sound capture

	7 Library Organization
	7.1 Library Organization
	7.2 Player Library
	7.3 Sound Archive Player Library
	7.4 Sound Archive Stream Library
	7.5 Stream Library
	7.6 Sound Archive Library
	7.7 Sound Heap library
	7.8 Capture Library
	7.9 Waveform Playback Library

