
Threads

 2003-2006 Nintendo 1 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

Threads
Version 0.1.4 9/27/2005

Table of Contents

Revision History ... 2

1 The Location Where Thread Information Is Stored.. 2

2 OSThreadInfo Thread System Information .. 6

3 The OSThread Thread Structure ... 6

Threads

 2003-2006 Nintendo 2 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

Threads

 2003-2006 Nintendo 3 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

Revision History
9/27/2005 Added alarmForSleep to OSThread structure descriptions.

Threads

 2003-2006 Nintendo 4 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

1 The Location Where Thread Information Is Stored
Thread information (OSThreadInfo) is allocated in the main memory. The region storing the address
region where this information is stored is in the System Work Area, which is part of main memory—it
can be accessed by both ARM9/7. The System Work Area start address is:

HW_MAIN_MEM_SYSTEM = HW_MAIN_MEM + 0x7FFC80 = 0x27FFC80

This address can be acquired from within user programs using OS_GetSystemWork().

In the case of ARM9, the pointer is stored to:
HW_THREADINFO_MAIN = HW_MAIN_MEM + 0x007FFFA0 = 0x27FFFA0

You can acquire the store address of this pointer as OS_GetSystemWork()->threadinfo_mainp.

In the case of ARM7, the pointer is stored to:
HW_THREADINFO_SUB = HW_MAIN_MEM + 0x007FFFA4 = 0x27FFFA4.

You can acquire the store address of this pointer as OS_GetSystemWork()->threadinfo_subp.

If the pointer is NULL, the processor is not using the thread system.

Threads

 2003-2006 N
CONFIDENTIAL

Can acquire w

ARM9

ARM7
HW_THREADINFO_SUB Poin
intendo 5

00000000

HW_MAIN_MEM_SYSTEM

HW_THREADINFO_MAIN

ith OS_GetSystemWork().

thread system information.

thread system information

02000000
System Work Region
ter to ARM7 thread information
Pointer to ARM9 thread information
If the pointer is NULL the processor is

not using the thread system
OSThreadInfo
OSThreadInfo
NTR-06-0071-002-A2
Released: February 2, 2006

Threads

 2003-2006 Nintendo 6 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

2 OSThreadInfo Thread System Information

// ---------------- Thread & context packed structure
typedef struct OSThreadInfo
{

u16 isNeedRescheduling;
u16 irqDepth;
OSThread* current;
OSThread* list;
void* switchCallback;

} OSThreadInfo;

Following is a description of each member of the OSThreadInfo structure.

• isNeedRescheduling is a flag for remembering whether it is necessary to reschedule when a thread
switch request is generated at the time of an IRQ interrupt., and the IRQ interrupt is terminated. This flag
has two values: TRUE and FALSE. Since this value is used by the OS, do not touch it.

• irqDepth stores the IRQ interrupt level. Since this variable is accessed by multiple interrupts and is
used internally by the OS, making manual changes is strongly discouraged.

• current is a pointer to the thread information of the current thread.

• list is a pointer to the thread list. Threads are connected in order from the one having the highest
priority, using the next member in OSThread. At the end, next = NULL. If no threads are registered, the
list will be NULL.

• switchCallback stores the callback value during thread switching; NULL if no callback has been set.

3 The OSThread Thread Structure

// ----------------- Thread structure
typedef struct _OSThread OSThread;
struct _OSThread
{

OSContext context;
OSThreadState state;
OSThread* next;
u32 id;
u32 priority;
void* profiler;
OSThreadQueue* queue;
OSThreadLink link

Threads

 2003-2006 Nintendo 7 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

OSMutex* mutex;
OSMutexQueue mutexQueue;

u32 stackTop; // for stack overflow
u32 stackBottom; // for stack underflow
u32 stackWarningOffset;
OSThreadQueue joinQueue;
void* specific[OS_THREAD_SPECIFIC_MAX];
OSAlarm* alarmForSleep;
OSThreadDestructor destructor;
void* userParameter;
int systemError;

};

Following is a description of each member of the OSThread structure.

• context is the location at which context is stored during the time that threads are being switched.

• state indicates thread status:
• OS_THREAD_STATE_WAITING (=0) indicates that a thread is stopped.
• OS_THREAD_STATE_READY (=1) indicates that the thread is ready to run.

For a thread that has ended, state is OS_THREAD_STATE_TERMINATED.

• next is a pointer to the next thread when constructing a thread list. It will be NULL at the end.

• id indicates thread id. Its values are 0 – 0x7fffffff. The value is increased each time a thread is
created.

• priority indicates the priority level of a thread. Values are 0–31. 0 indicates the thread that has the
highest priority. The thread list is ordered by this thread priority. The idle thread created by
OS_InitThread() is assigned a priority value of 32. The priority of the idle thread cannot be altered.

• profile is a pointer used by the profile function routines (e.g. function call tracing and function cost
measurement) to store thread information. When the profile function is not used, it does nothing.

• queue and link are areas for the thread queue. queue stores a pointer to the thread queue specified
when a thread is sleeping; link is link information for linking sleeping threads to the same thread queue.

• ｍutex and mutexQueue are parameters used for the automatic execution of the mutex de-allocation
when the thread ends. Since the OS uses these values internally, please do not touch them.

• stackTop, stackBottom, stackWarningOffset are parameters used in the stack leak check.
Since the OS uses these values internally, please do not touch them. They may be referenced.

• JoinQueue, a queue that is used to resume threads that have been sleeping when the current thread
stops.

• specific is used internally by the system.

• alarmForSleep is a pointer to the alarm used when a thread sleeps.

Threads

 2003-2006 Nintendo
CONFIDENTIAL

• destructor is a thread destructor. It specifies the function called when the thread ends.

• userParameter is the user parameter. The user can use this area freely. It is neither changed nor
referenced by the system.

• systemError is the system error value. It is used internally by the system.

Thread information example

Threads t1, t2, and t3 are present in the following example, t2 being the current thread.

next=&t3

next=&t1

next=NULL

list = &t2

NU

priority=3

priority=10

priority=32

OSThread t2

OSThread t3

context

context

OSThreadInfo

id=30

id=200

current = &t2

:

isNeedReschedul

id depends on the location where
it is stored in entry[] in
OSThreadInfo. The thread stored
in entry[n] has an id of n.

For A
the l
OST
os_

OSThread t1
LL
8 NTR-06-0071-002-A2
 Released: February 2, 2006

context

id=1

RM9, the thread that is idle (priority of 32) should be
ast in the list. (Although t3 is used here, the
hread structure is OSi_IdleThread in
thread.c.) ARM7 does not have idle threads.

Threads

 2003-2006 Nintendo 9 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

Thread example

In the following example, threads t1, t2, and t4 are linked to thread queue tq.

queue = &tq

link.prev = NULL
link.next = &t2

head = &t1
tail = &t4

queue = &tq

link.prev = &t1
link.next = &t4

queue = NULL

link.prev = NULL
link.next = NULL

queue = &tq

link.prev = &t2
link.next = NULL

	Revision History
	1 The Location Where Thread Information Is Stored
	2 OSThreadInfo Thread System Information
	3 The OSThread Thread Structure

