Sound Driver

Version 1.2.0

The contents in this document are highly

confidential and should be handled accordingly.

© 2006 Nintendo NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0362-001-A2 2 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

Contents
1 [1o [8 o3 1] o I RS UUPUUERRN 6
1.1 L@ Y 1= PR 6
1.2 SETUCLUIE OF SOUNGA DIIVET ...ttt e e ettt et e e e e e ekttt e e e e e e e e s aeeeeeeaaeaaannsbeeeeaaeaaansbnneaaaeaeaannes 6
1.3 INITRO-COMPOSETeteeiieee ettt e e ettt e e e e e e ettt e e e e eesatbeeeeaeeeasasbeaeeaaeeesaasssaeeaaeessasssseeeaeesaansssbaneaaeseannnssnnes 6
DA | TN T 10 g o o F= 1 17T TSP UPPPRN 7
21 Overview Of the SOUNA CIrCUITTYciiiiiie e e et e st e e e st e e e et e e e eneeeeeanneee s 7
2.2 107 0= T =Y U UPRRR 8
221 ADPCM/PCM ...ttt ettt ettt e e ettt e e 1a et e e aa bttt e e n et e e e ea bt e e e an b et e e e ne et e e anbe e e e ettt e e e nteeeeanneee s 8
222 PSG RECIANGUIAI WAVES.......oeeiiiiiiiieeie ettt e et e e e e e e e e e e e e e e e absa e e e aeeseensnsseeaaaeeeennnsaeneas 8
223 [N\ o1 SRR 8
2.3 Lo 10 a1 I O2=T o] (1] (YR O P UPPPRN 8
3 The ARMT7 COMMEANG PrOCESS ... i iiiiiiiite e ettt e e ettt et e e e e e ettt eaa e e e e abeeeeeaaesaasseeeeeaaeeaannseeeeaeaeeaannssneeaaaeaaannsaeeeas 9
3.1 The CommMaNd ProCESS FIOWcouiiiiiiiiie ettt ettt e ettt e e sttt e e et e e e enbe e e e aneeeeeannees 9
3.2 Sound FUNCtionNs and COMMEANGAS ..ot e ettt e e e e e e e e ebe e e e e e e e e s ntbeeeaaaeeaaannneneeaaaaeaannes 10
3.3 The COmMMANG PACKELS........coiiiiiieiiiiie ittt ettt et e e ettt e e e ane e e e e sane e e e ettt e e eaneeeeesnneeeeaneeeeaan 11
3.4 FIUSNING COMMIENGA ... ittt et e e r et e e et e e e et e e na et e e e b r e e e nnnn e e e neneee s 12
3.5 Receiving CommaNnd RESPONSE.........c..uuiiiiiei e iciteee ettt e e e e et e e e e e e et b e e e eeeeeessasaeeeaeeesasasaeeeeeeeeesnssnees 13
3.6 (0701001 4F=TaTo I F=To 1 OO PRSP PP PPPPP 13
3.7 When There is a Shortage of Free Command PacKetS...........cccuviiiiiiiiiiiiiiiiie et 14
3.8 S To 10 oo I o =10 T PRSP UURRPE 14
L s F= 1Y To TS 11U g T [PP OPRP P PP EPPRPUPRR 15
4.1 Playing Sequences and Controlling ChanNEIScooiiiiiiiiii i e e e 15
4.2 COoNtrOllING CRANNEIS....... ettt ettt e e e st e e s bt e e e e e e e e sr e e e e annee e e nanees 15
421 [Tot14] o [o T @] 0 F=T0 T o Y O UPPRROR 15
422 SettiNG UP CRANNEIS ...ttt e e e e et e e e st e e e s s et e e anreeenaes 15
423 Starting and StOPPING the TIMET ... e e e e e e e st e e e e e e e snsbeaeeaaeeeananes 16
424 Channel Parametersooo ittt e e e oottt et e e e e e e et be et e e e e e e e ntbeeeaeaeeeaannneneeaaeaaaanna 16
I o 10 g o I OF= o1 (0] (YN PRSP PPRPRPPRN 17
51 Overview Of SOUNA CAPIUEoouiiiiiiiie ettt e et e e et e e s e e e e s r e e e s asnee e e nanes 17
5.2 HOW t0 USE SOUNA CAPIUIEoveiiiiiiiiiiieeee ettt e ettt e e e e e e et e e e e e e e eesaaaeeaeeeeeensasbeeeeeeeeesnnssneeas 17
5.3 Problems wWith SOUNA CAPIUIEccoiiiiiiii et e et e e e e e s 17
(SIS To TV 1 o I =y o PSSP 18
6.1 OVEIVIEW Of SOUNT AIBITINS ...ttt ettt e et e e st e e e ettt e e s st e e e ea bt e e e ambeeeesnneeeeeanbeeeeanneeeennnees 18
6.2 HOW 0 USE SOUNA AIGIMS ...ttt ettt e e e e e ettt e e e e e e e s aeeeeeaeeeeannseeeeaaaeaaannseeeeaaaeaaannsnnneas 18
7 Getting DrVEr INfOIMEALIONoeiiii it e e e et e e e e s e e e e e e e e e s esaaeaeeeaeeseaassssaeeaaeeeeansaeneeaaeesannses 19
71 OVBIVIEW ...ttt ettt e oottt e e oo oottt ettt e e e e e e aae et et eeeeaanaeeeeeaaaeaannseeeeeaeeaaannsbeeeeaaeeaannsbeneeeeeeeaanssnneaaaeasaannns 19
7.2 Getting the INformMation SITUCKUIE ..o e e e e e et e e e e e s e tbeaeeaaeeeananes 19
7.3 Getting Other INfOrMEtIoN.oi et e e st e e 20
© 2006 Nintendo 3 NTR-06-0362-001-A2

CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

8 Precautions About Use With NITRO-COMPOSETc.uiiiiiiiiiiiiiiee ittt ettt e et s e e sne e e e anreeennee 21
8.1 UL g To o ==Y PR PSP 21
8.2 L0 LS To T O] =1 o 1= PP RSO 21
8.3 UL g Te IS T 10] [o B OF= T o) LU S PRSP 21
8.4 USING SOUNA ALBIMNIS ...ttt ettt e et e ettt e et e e e ek bt e e e ettt e e et e e e s e e e eanbn e e e sneneesseneeeean 21

Code

Code 3-1 The Command Flush and Command ReSPONSE PrOCESSESccoviuviiiieieeiiiiiiieieee e e eeeiee e e e e e 13

Code 7-1 Getting the Driver INformation StrUCTUIEooiiiii e 19

Tables

Table 2-1 The Channel Numbers and Their FEAtUIESoii i 8
Table 5-1 Capture Feature COMPONENESooiiiiiiiii et e et e s ee s 17
Table 7-1 Other FUNCHONS.otk e e et e et e e et e e e nte e e e sn bt e e e anteeeeeneeeeesnneeeaan 20
Figures
Figure 2-1 Schematic of the SOUNA CIrCUITIYooiiiiiiii et 7
Figure 3-1 The Command ProCeSS FIOWuiiiiiiiii ittt e e e e e e e e st a e e e e e e s eeansaeeeaeeseansnnees 10
Figure 3-4 ComMMANG PACKELcciiiiiiiiie ettt e e e ettt e e e e e e et b e e e eee e e e st b aaeeeaeeesasssseeeaeesaansssseeeaaeseansnnees 11
Figure 3-3 Command Packet State TransSitioNSooo it 12
NTR-06-0362-001-A2 4 © 2006 Nintendo

Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

Revision History

Version Revision Date Description

1.2.0 7/4/2005 + Revised explanation of commands
Added the term "command packet" and unified other terminology
« Added a section about the problem with Sound Capture.

* Fixed errors in code 7-1

1.1.1 5/10/2005 + Corrected the description of command states
» Corrected the explanation of command tags

¢ Fixed writing errors

1.1.0 4/26/2005 + Fixed Sound Capture writing errors
* Made revisions in line with addition to sound functions

» Corrected the explanation of commands

1.0.0 4/13/2005 Initial version

© 2006 Nintendo 5 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

1

1.1

Introduction

Overview

1.2

Sound Driver (SND) is a library that gives applications some relatively low-level control over the
Nintendo DS sound hardware. The Nintendo DS sound features can be used with this library
implemented on the ARM?7.

This document describes the mechanism of Sound Driver operation and explains its essential group of
functions. For detailed explanations about specific functions, see the Function Reference.

Structure of Sound Driver

1.3

The sound driver can be broadly divided into three library parts:

1. ARMZ9 library that provides the library's interface.
2. The core part of the library on the ARM7.
3. The command library in charge of data exchanges between the ARM9 and the ARM?7.

Sound Driver is used via the group of functions on the ARM9, but you should still understand the flow
of operations from the time the functions are called to the time the sounds are actually processed on
the ARMY. Of particular importance is an understanding of the exchange of commands between the
ARM9 and the ARM7. This is covered in detail in Chapter 3, The ARM7 Command Process.

NITRO-Composer

The NITRO-System package comes with a sound library called NITRO-Composer that can be used for
the playback of sequences and streaming, and for the management of sound data. NITRO-Composer
allows it to be used with Sound Driver's group of low-level functions, but certain precautions should be
considered; These precautions are explained in Chapter 8, Precautions About Use with NITRO-
Composer. Since NITRO-Composer and Sound Driver share the same formats for sequence or bank
data, the documentation for NITRO-Composer should also be reviewed.

NTR-06-0362-001-A2 6 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

2 The Sound Hardware

2.1 Overview of the Sound Circuitry

The Nintendo DS sound hardware consists of 16 sets of sound circuitry that independently control 16
channels, a mixer to blend the sounds from the separate circuits, and a sound capture component that
writes the sound output to memory.

Figure 2-1 Schematic of the Sound Circuitry

Sound Capture I‘—

Channel 0 (ADPCM/PCM)
Channel 1 (ADPCM/PCM)
Channel 2 (ADPCM/PCM)
Channel 3 (ADPCM/PCM)
)
)
)

Channel 4 (ADPCM/PCM

Channel 5 (ADPCM/PCM

Channel 6 (ADPCM/PCM

Channel 7 (ADPCM/PCM)

Channel 8 (ADPCM/PCM/PSG rectangular wave)
Channel 9 (ADPCM/PCM/PSG rectangular wave)
Channel 10 (ADPCM/PCM/PSG rectangular wave)
Channel 11 (ADPCM/PCM/PSG rectangular wave)
Channel 12 (ADPCM/PCM/PSG rectangular wave)
Channel 13 (ADPCM/PCM/PSG rectangular wave)
Channel 14 (ADPCM/PCM/noise)

Channel 15 (ADPCM/PCM/noise)

L-R)

Speaker Output

Mixer

© 2006 Nintendo 7 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

2.2 Channels

Each sound circuit is called a channel. Each channel can generate one sound. Therefore, the 16
channels can play up to 16 sounds. The channels are numbered channel 0 to channel 15. As shown in
Table 2-1, each channel number has different capabilities.

Table 2-1 The Channel Numbers and Their Features

Channel Numbers Features

0,2 These channels can play ADPCM/PCM. In addition, the output from these channels can

serve as the input for sound capture.

1,3 These channels can play ADPCM/PCM. Sound Capture shares timers with these
channels, so when sound capture is being used these channels can only be used as the

output channels for sound capture.

4to7 These channels can play ADPCM/PCM.
81013 These channels can play ADPCM/PCM as well as PSG rectangular waves.
14, 15 These channels can play ADPCM/PCM as well as white noise.

2.21 ADPCM/PCM

Channels that play ADPCM/PCM can play 16-bit PCM, 8-bit PCM, and IMA-ADPCM.

2.2.2 PSG Rectangular Waves

Channels that play PSG rectangular waves can play rectangular waves for which the duty ratio can be
set.

2.2.3 Noise

Channels that play noise can play white noise. There are no configuration settings for white noise.

2.3 Sound Capture

The Nintendo DS has two built-in sound capture components for writing output waveform data to
memory. Figure 2.1 depicts the capture of the left output and the right output from the mixer. Channel 0
and 2 can be used to capture sound also.

Resolution of the captured waveform can be set to either 8-bit or 16-bit.

NTR-06-0362-001-A2 8 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

3 The ARM7 Command Process

3.1 The Command Process Flow

When SND functions are called, processes do not necessarily begin immediately. SND functions are
first added to the ARM9 reserved command list, After the SND FlushCommand is called, the ARM7
begins to process the commands in the ARM9 reserved command list.

© 2006 Nintendo 9 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

Figure 3-1 The Command Process Flow

ARM9 ARM7
g
| Call to sound function |—> o
@ > Sound frame
o 2
| Call to sound function l—’ g g Previous frame's channel parameters
c IS .)
s o are reflected in register
&) o ¢
o
(0] T
g ' Process commands in queue
Q ===
Q
; !
| Sequencer process |
Call to
—» @ -—————----- 4
SND_FlushCommand 8 | Update channel parameters |
2 | \C %
o
g v
[
]
IS
g Sound frame
O
| Call to sound function l—’ - Previous frame's channel parameters
(]
= are reflected in register
ko]
C
5 v
E T
| Call to sound function I—V g ! Process commands in queue
%) ===
o
)
< v
o)
n >
& o | Sequencer process |
. o
Call to sound function l—V 5
[
g | Update channel parameters |
£ | \O %
o
O
Process flow E— l

Command flow ------- >

3.2 Sound Functions and Commands

Most of the SND library functions are commands for performing processes on the ARM7. Commands
are stored in ARM9 and sent to ARM7 for process when SND_FlushCommand is explicitly executed.

Some of the functions that do not require processing on the ARM7 are executed when they are called.

NTR-06-0362-001-A2 10 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK

Sound Driver

The following functions are processed on the ARM7:

Sequence Commands

SND StartSeq

SND StartPreparedSeq

SND PauseSeq

SND SetPlayerVolume
SND_SetPlayerLocalVariable

SND SetTrackMute

SND SetTrackPitch

SND SetTrackModDepth

SND SetTrackAllocatableChannel

Channel Commands

SND LockChannel

SND StopUnlockedChannel
SND_ SetupChannelPsg

SND SetChannelVolume
SND SetChannelPan

Capture Commands
SND SetupCapture

Alarm Commands
SND SetupAlarm

Timer Commands
SND StartTimer

Global Settings Commands

SND SetMasterVolume
SND ResetMasterPan

Data Invalidation Commands

SND InvalidateSegData
SND InvalidateWaveData

SND PrepareSeq

SND StopSeq

SND SetPlayerTempoRatio

SND SetPlayerChannelPriority
SND_SetPlayerGlobalVariable
SND SetTrackVolume

SND SetTrackPan

SND SetTrackModSpeed

SND UnlockChannel

SND SetupChannelPcm
SND_SetupChannelNoise
SND_SetChannelTimer

SND StopTimer

SND SetMasterPan
SND SetOutputSelector

SND InvalidateBankData

3.3 The Command Packets
Command packets have been prepared for the mechanism that sends commands to ARM7. Each
command packet contains a single command. These command packets are bundled into in a
command packet list that sends the commands to the ARM7.
Figure 3-2 Command packet
[_commana] {_commana]
Command Command Command Command Command e
Packet List Packet Packet Packet Packet
© 2006 Nintendo 11 NTR-06-0362-001-A2

CONFIDENTIAL

Released: February 2, 2006

NITRO-SDK Sound Driver

Each command packet can be in any of the following states:

1. The "free" state—the command can be newly registered.
2. The "reserved" state—the command has been registered and is waiting to be flushed.
3. The "wait" state—-the command waits for the process to complete in the ARM7.

For a command in the reserved state to execute, the reserved command packet list must be flushed.
This operation is called a command flush. If a command packet is waiting for processes to end, the
command packet cannot return to the free state until a command response confirms that the process
has completed.

You are limited to a maximum of 256 command packets. Because of this limit on command packets,
you need to periodically flush commands, receive command responses, and secure free command
packets.

You can use the following functions that return the number of command packets in each of the three
states: SND CountFreeCommand, SND_CountReservedCommand, and
SND CountWaitingCommand.

Figure 3-2 Command Packet State Transitions

Receive command response | | Call the sound function

packet waiting Reserved

for processing command

to complete packet

| Flush the command |

3.4 Flushing Command

SND_FlushCommand can be used when necessary. If the call needs to be synchronous with ARM7
processes, you can combine SND FlushCommand with a command tag (see 3.6). Commands will not
be processed if they are not flushed. If you do not periodically flush the reserved command packet list,
the list will grow and you will have a shortage of free command packets. Calling SND FlushCommand
once every frame is recommended.

NTR-06-0362-001-A2 12 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

3.5

Receiving Command Response

3.6

A command packet that is waiting for processes to complete is not free until a response is received that
indicates the process of the flushed command has ended. By calling SND RecvCommandReply, you
can take the oldest processed and completed command to the free packet list and make the command
packet list free and get that list.

As with receiving command response, if you do not periodically call SND RecvCommandReply, you
will have a shortage of free command packets. To ensure enough free command packets, you should
periodically call SND RecvCommandReply.

The following code shows a process where the sound function SoundMain is called in every frame.
The flushing command and receiving command response is called in every frame.

Code 3-1 The Command Flush and Command Response Processes

void SoundMain (void)

{
// Receive ARM7 response
while (SND RecvCommandReply(SND COMMAND NOBLOCK) != NULL) {}

// Issue command to ARM7
SND FlushCommand(SND COMMAND NOBLOCK) ;
}

SND FlushCommand and SND RecvCommandReply each have a parameter that can be used to
specify whether to block inside the function until the process succeeds. In the example above, the
parameter for SND RecvCommandReply is set to SND COMMAND NOBLOCK so that no block is
performed inside the function. You should specify SND COMMAND BLOCK in these functions if you need
to be certain that the flushing of commands and the reception of command responses has completed
successfully.

Command Tags

Command tags can be used to determine whether or not the processing of commands has finished,
and also to synchronize the command processing in the ARM7 with the application in the ARM9.

Call the SND GetCurrentCommandTag function to get a command tag and check whether the
commands prior to the acquisition of the tag have finished executing. Use

SND IsFinishedCommandTag to check whether commands prior to the tag specified in the argument
have finished executing. The function SND WaitForCommandProc asks the ARM7 to quickly execute
any commands prior to the acquisition of the tags that have not finished executing; processing waits
inside this function until execution has been completed.

A flush command must be performed before processing is complete, so be careful when using
command tags to check if a process has finished.

© 2006 Nintendo 13 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

3.7

When There is a Shortage of Free Command Packets

3.8

If there is a shortage of free command packets, new commands cannot be added unless something is
done about the situation. If a sound function is called as part of a new command process when there is
a shortage of free command packets, the following procedure is performed in order to secure enough
free command packets:

1. If acommand is in the wait state, act to receive a command response.
2. If (1) does not solve the shortage, flush the command, request immediate execution by ARM7,
and wait until there is a command response.

Because this procedure includes both a command flush and a wait for a command response, in some
cases it may take some time before the sound function is called. Furthermore, if the flush is done while
they are executing, the command flush might separate processes that should be executing
simultaneously. To prevent processes from being separated, there is the SND WaitForFreeCommand
function, which waits until a specified number of free commands have been secured. To avoid the
problem of insufficient free command packets, you should periodically perform the processes to flush
commands and receive command responses.

Sound Frames

The ARM7 sound frame interval is approximately 5.2 ms. Depending on the circumstances, it can take
as long as the sound-frame interval for the process to execute after the command that has been
flushed. The exception is when the argument SND COMMAND IMMEDIATE is specified when the
command is flushed. When this exception occurs, the process can begin immediately in ARM7 without
waiting for the next sound frame.

NTR-06-0362-001-A2 14 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

4

4.1

Playing Sounds

Playing Sequences and Controlling Channels

4.2

Sound Driver uses two methods to generate sounds. One involves the playback of performance
sequences based on a special format of sequence data. The other involves the direct control of
channels to make sounds.

Since NITRO-Composer offers more advanced processes for the performance of sequence data, here
we will concentrate on an explanation of the direct control of channels to make sounds.

Controlling Channels

Generating sounds by directly controlling channels involves the following procedure:

1. Lock the channel
2. Set up the channel in accordance with the chosen playback method
3. Start the timer

4.21 Locking Channels

In order for the ARM7-implemented sequencer to automatically play sounds, channels are first
reserved and later released after the sounds have finished playing. For this reason, when the
programmer intends to directly control channels, the channels need to be locked by calling

SND LockChannel so the actions do not collide with those of the sequencer. Operations that are
performed on channels are designed on the assumption that the channels have been locked.

Alocked channel cannot be used by the sequencer, so when a locked channel is no longer needed, be
sure to call SND_UnlockChannel and unlock the channel so it becomes available to the sequencer
again.

4.2.2 Setting up Channels

Once channels have been locked, call the setup function that fits your purpose:
SND_SetupChannelPcm for PCM playback, SND SetupChannelPsg for PGS rectangular wave
playback, and SND SetupChannelNoise for white noise. In the case of PGS rectangular waves and
white noise, only those channel numbers that can play those types of data can be set up.

© 2006 Nintendo 15 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

4.2.3 Starting and Stopping the Timer

A channel begins to play sounds once SND StartTimer is called and the timer has been started.
Since one call to SND_StartTimer can start the time simultaneously for multiple channels, this is a
way to coordinate the playing of sounds in multiple channels. The same timer-start call can be used to
coordinate Sound Capture and Sound Alarm, both of which are described below.

To stop sounds, call SND_StopTimer to stop the timer. This can be used to simultaneously control
multiple channels, just like the call to start the timer.

4.2.4 Channel Parameters

Volume, timer, and pan values can be set for each channel. The values can be set using the setup
functions, but they can also be set individually by calling the SND SetChannelVolumne,

SND SetChannelTimer, and SND SetChannelPan functions. This provides a way of changing the
values even after the timer has started.

NTR-06-0362-001-A2 16 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

5

5.1

Sound Capture

Overview of Sound Capture

5.2

The Nintendo DS sound capture feature has two components.

Table 5-1 Capture Feature Components

Number Capture target Timer

Capture 0 Captures the output from the mixer's left Shares the channel 1 timer.

channel or from channel 0.

Capture 1 Captures the output from the mixer's right Shares the channel 3 timer.

channel or from channel 2.

Because the channel 1 and channel 3 timers are shared with sound capture, you lose the ability to
freely set the timer values and generate sounds while using the capture feature. However, the captured
data can still be re-output and used for other purposes.

How to Use Sound Capture

5.3

The procedure for using sound capture is similar to the procedure for using channels:

* Lock the channel that uses the timer being shared with the capture feature.
» Call SND_SetupCapture to set up the capture parameters.
+ Call SND_SetChannelTimer to set the frequency of the shared timer,
or call SND_SetupChannelPcm to configure the settings to play the captured data.

o Start the timer.

You can create sound effects by performing arithmetic processes on the captured data and then
outputting the data again. NITRO-Composer makes use of sound capture to implement reverb and
output effects.

Problems with Sound Capture

There is a problem with the Sound Capture hardware that prevents the correct capture of data when
the output is being captured from channel 0 or channel 2.

For details about this problem, see the NITRO Programming Manual.

© 2006 Nintendo 17 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

6

Sound Alarms

6.1 Overview of Sound Alarms
Sound Alarms is an alarm system that uses the ARM7 timer. You can use Sound Alarms to synchronize
such process as the capture of sound data and the generation of sounds in channels. There are eight
sound alarms, numbered 0 to 7, and all eight can be used at the same time.
6.2 How to Use Sound Alarms
The procedure for using Sound Alarms is shown below:
+ Call sSND_SetupAlarm to set up the sound alarms you plan to use.
* Call SND_StartTimer to start the configured sound alarm(s).
SND_StartTimer can start channels, sound capture, and sound alarms all at the same time. Start the
sound alarms together with the channels and the sound captures you want to synchronize.
NTR-06-0362-001-A2 18 © 2006 Nintendo

Released: February 2, 2006 CONFIDENTIAL

NITRO-SDK Sound Driver

7 Getting Driver Information

7.1 Overview

You can learn information about the current driver state by using the group of functions that have been
prepared to get this information. You just need to be careful about synchronizing with ARM9 when you
act to get information that is being processed by ARM7.

7.2 Getting the Information Structure

You can get information about the current status of the channel, player, and track being processed by
the ARM7. To synchronize these actions, use the following procedure:

» Call sND_ReadDriverInfo and get the driver information. This function is a
command-reservation function, so in order to access the obtained information you must flush the
command and wait for the command to finish executing.

« Call the pertinent functions to get the channel, player, and track information
(SND_ReadChannelInfo, SND ReadPlayerInfo, and SND ReadTrackInfo).

The following example is code that gets the structure for the driver information, waits for the command
to complete, and then gets other information.

Code 7-1 Getting the Driver Information Structure

u32 tag;

SNDDriverInfo driverInfo;
SNDChannelInfo channelInfo;
SNDPlayerInfo playerInfo;
SNDTrackInfo trackInfo;

/* Wait for completed obtainment of driver information */
SND ReadDriverInfo(&driverInfo);

tag = SND_GetCurrentCommandTag(),

SND_FluShCOmmand(SND COMMAND BLOCK) ;

SND WaitForCommandProc(tag);

/* Get information about channel 0 */
SND ReadChannelInfo(&driverInfo, 0, &channelInfo);

/* Get information about player 1 */
SND ReadPlayerInfo(&driverInfo, 1, &playerInfo);

/* Get information about track 3 of player 0 */
SND ReadTrackInfo(&driverInfo, 0, 3, &trackInfo);

© 2006 Nintendo 19 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK

Sound Driver

7.3

Getting Other Information

Besides these functions that get structure information, there are also some functions that be used to
get information without the call to SND ReadDriverInfo.

These functions are executed asynchronously from ARM7 command functions. As a result, you cannot

be certain of the reason when one of the functions returns 0. For example, if after executing
SND_StartTimer you were to call SND_GetPlayerStatus and the function returned 0, you could

not determine whether the channel was not active because a command was not completed or because

playback had ended.

In order to gain synchronization for the acquisition of information, use a command tag and call
SND WaitForCommandProc or devise some other means of checking to see whether the ARM7

command has completed processing.

Table 7-1 Other Functions

Function

Description

SND GetPlayerStatus

Obtains the player status

SND GetChannelStatus

Obtains the channel status

SND GetCaptureStatus

Obtains the Sound Capture status

SND_GetPlayerLocalVariable

Obtains the sequence local variable

SND GetPlayerGlobalVariable

Obtains the sequence global variable

SND GetPlayerTickCounter

Obtains the sequence tick counter

NTR-06-0362-001-A2
Released: February 2, 2006

20

© 2006 Nintendo
CONFIDENTIAL

NITRO-SDK Sound Driver

8

8.1

Precautions About Use with NITRO-Composer

Using Player

8.2

When you use NITRO-Composer to play sequence data, you cannot control the player from Sound
Driver. In other words, you cannot use NITRO-Composer sequence playback and Sound Driver
sequence playback at the same time.

Using Channels

8.3

The Sound Driver functions for locking and unlocking channels (SND LockChannel and

SND UnlockChannel) can only lock channels with regard to Sound Driver sequence playback. If you
want to lock channels when using NITRO-Composer, use the NITRO-Composer functions

NNS SndLockChannel and NNS_ SndUnlockChannel.

Using Sound Capture

8.4

If you want to use the Sound Driver's sound capture feature while using NITRO-Composer, call the
NITRO-Composer function NNS SndLockCapture so NITRO-Composer will not use the capture
feature.

You will also need to call NNS_SndLockChannel at the same time to lock channel 1 and channel 3.

Using Sound Alarms

NITRO-Composer uses sound alarms internally, so if you are using NITRO-Composer and plan to use
sound alarms yourself, call the NITRO-Composer function NNS_SndAllocAlarm to determine which
alarm numbers are available. The numbers obtained by this function represent the alarms that are not
being used internally by NITRO-Composer.

When you are done using an alarm, remember to release it by calling NNS_SndFreeAlarm.

© 2006 Nintendo 21 NTR-06-0362-001-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Sound Driver

© 2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo Co. Ltd.

NTR-06-0362-001-A2 22 © 2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

	1 Introduction
	1.1 Overview
	1.2 Structure of Sound Driver
	1.3 NITRO-Composer

	2 The Sound Hardware
	2.1 Overview of the Sound Circuitry
	2.2 Channels
	2.2.1 ADPCM/PCM
	2.2.2 PSG Rectangular Waves
	2.2.3 Noise

	2.3 Sound Capture

	3 The ARM7 Command Process
	3.1 The Command Process Flow
	3.2 Sound Functions and Commands
	3.3 The Command Packets
	3.4 Flushing Command
	3.5 Receiving Command Response
	3.6 Command Tags
	3.7 When There is a Shortage of Free Command Packets
	3.8 Sound Frames

	4 Playing Sounds
	4.1 Playing Sequences and Controlling Channels
	4.2 Controlling Channels
	4.2.1 Locking Channels
	4.2.2 Setting up Channels
	4.2.3 Starting and Stopping the Timer
	4.2.4 Channel Parameters

	5 Sound Capture
	5.1 Overview of Sound Capture
	5.2 How to Use Sound Capture
	5.3 Problems with Sound Capture

	6 Sound Alarms
	6.1 Overview of Sound Alarms
	6.2 How to Use Sound Alarms

	7 Getting Driver Information
	7.1 Overview
	7.2 Getting the Information Structure
	7.3 Getting Other Information

	8 Precautions About Use with NITRO-Composer
	8.1 Using Player
	8.2 Using Channels
	8.3 Using Sound Capture
	8.4 Using Sound Alarms

