NITRO-SDK
Single-Card Play User Guide

Version 1.0.4

The contents in this document are highly

confidential and should be handled accordingly.

© 2004-2006 Nintendo NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0226-002-C 2 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

Table of Contents

1 T 1o o [o o T o SR 7
R O 0 1Y =Y o R 7
1.2 Single-Card Play Startup ProCeAUIE...........coceeiiiiiie ettt e e e e e e e e e eanneees 7
1.3 Attaching an Authentication COdE............oiiiiiiiiiii e 8
1.4 Using the System Call Library and ROM Headerouiiiiiiiiiiiiieeee ettt 8
1.5 Transferable Binary COUE SiZEuuuiiiiiiiiiiiiiiiee et e e e e e e s e e r e e e e e e e e ennneees 9
1.6 Accessing the Backup Regions in Game Cards and Game Paks...........coooiiiiiiiiiiiiiiiiiiieeee e 9

2 Single-Card Play OPerationsS............uueiiiiiiiiiiiieiee e et e e e e e e e e e e e e et e e e e e e e e s sseatareeeeeaeessnsrsreeeaens 10
21 Process FIow on the Parent Sideooiiiiiiiiiii e 10

211 Preparations by the Parent...........oooiiiiii e 10
2.1.2 Sending Data and Starting Children ..o 12
2.2 Reconnecting With the Parent.......... ... e eeenenennesnnnsnnnnnnnnnes 14
D T © 11 U=l o =T o= 11 1] 1SS 15
2.3.1 Applications with Multiple Communication MOdESccccimiiiiieiiiiiiieeee e 15
2.3.2 AbOUL the IRQ SEACK......cei ittt e e e e et e e e e e e e e e e e e e e e e e e nnneeee 15
2.3.3 About the Single-Card Play Child Device Program OVerlayccccccouviiieieeiiiiiiiiieeee e 16
2.3.4 About Single-Card Play BUGS........coouiiiiiiii e 16

3 The Clone BOOt FEATUIEeiiiiieiie ettt e e e ettt e e e e e e e e nte e e e eneeeeeeneee 19
K Tt B Y o Yo 101 07 T 1= = o Yo | U 19
3.2 ClONE BOOt PrOCEAUIEeeiiiiiiiiee ettt e e ettt e e e eat et e e e sste e e e s anbe e e e e anteeeesanbeeeeeanneeaeans 20

3.2.1 Placing Data in ROMcoi ittt e e e e e 20
3.2.2 Authentication Code AttaChMENT..........ooiiiiiii e e 20
3.2.3 Clone Boot Binary RegiStrationocuuiiiiiiiiiiii e 22

4 The Sample Program (MUIIDOOt-MOAEI)c..euiiiiiiie e e e 23

4.1 Single-Card Play Parento 23
4.1.1 Preparing for the Single-Card Play FEAtUrecccuuviiiiii i 24
4.1.2 The Single-Card Play FEatUre..........oouiiiiiiiii e 25
4.1.3 Starting the Parent AppliCatioNcooii oo e e e e e e 46
R e =T A0S €= | (= SRR 49

4.2 Single-Card Play Children ...t e e e e e e e e e e e s e sareae e e e e e e e e annnrees 49
4.2.1 Single-Card Play Child Determination.............coouiiiiiiiiiiiieee e 50
4.2.2 Getting Connection Information During Single-Card Play.............cccceeeiiiiiiiiiieee e 50
4.2.3 Starting the Child AppliCatioN...........ooiii i e e e e s e e e e e e 50

5 The cloneboot SamMPIE Program ... 53
51 Changes to the Program StHUCIUIEeiiiiiii e e e ee s 54

5.1.1 Unification of the Program Source Dir€CtOriesccooiiiiiiiiei i 54
5.1.2 Changes to the ROM Specification Fileooiiiiiiiiii e 54
5.1.3 Changes to the MaKEFlE............ooiiiiiii e 55
5.1.4 Changes t0 the Program SOUICE...........ueiiiiiiiiiiiiiiiee ettt e e e e e e e e e e et aeeeae s 57
© 2004-2006 Nintendo 3 NTR-06-0226-002-C

CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

List of Tables

LE o (R I =T T AR = (=Y R 49

List of Figures

Figure 1-1 Single-Card Play SChemMatiCooiiiiiiiiiiiiie et e et e e e e e s st e e e e e e s ensreaeeeens 7
Figure 2-1 Data Reception State Transitions and Parent Requests Used with Single-Card Play Children.................. 13
o [oI I @1 o g T-N = o o | F PP RS PRPP 19
Figure 3-2 Clone Boot Binary Authentication ProCedure ... 21

List of Code Examples

Figure 1-1 Single-Card Play SChemMatiCooiiiiiiiiiiiiee e e et e e e e e s st e e e e e e s eesreareeens 7
Figure 2-1 Data Reception State Transitions and Parent Requests Used with Single-Card Play Children.................. 13
FIGQUIE 3-1 ClONE BOOLttt e e e e e et e et ee e e e e st beeeeaeeeasstbsseeaaeesansbnaeeeaeessansnnneeaeas 19
Figure 3-2 Clone Boot Binary Authentication ProCedure ... 21
Code 3-1 Clone Boot Binary Registration EXamPIe...........cccuiiiiiiiiiiiiiiiii ettt e e e ea s 22
Code 4-1 Search for Communication Channel.......... ..o e e e e e as 24
Code 4-2 INItIAliZe the Parentc.uiiiiiiiieiiee ettt et e e st e e e s e e e et e e nne e e e nnneeeean 26
Code 4-3 Set the Parent User Information and Initialize the MB Librarycccocoooeiii e 26
Code 4-4 Start Parent OPEratiONnSeciiiiiiiiiiiie e eece e e e e e st e e e e e e e e e e e e e e e s saeaaereeeaeeesassssbaeeaaeseasssbaneeaaeeans 27
Code 4-5 Start Single-Card Play Parent and Register File ... 28
Code 4-6 Load Program in Memory and Register Program Informationccceeiiiiiiiici e 28
Code 4-7 How to Register File: Open the Fileccoiiiiiiiiiie et a e 29
Code 4-8 How to Register File: Get Segment Size and MemOry........cc.eviiiiiiiiiiiiic e 30
Code 4-9 How to Register File: Read and Register Segment Information, Close File............ccccovevieiiiiicciiineneee. 31
Code 4-10 Parent Receives Child Notification—Update Connection Informationc.cccceeiniiiiiiic e 33
Code 4-11 Process ConNECON REQUEST..........c..uiiiiiie ittt e e et e e e e e e et e e e e e e s e e sasbaneeaeeeaas 34
Code 4-12 Accept or Kick Child CONNECHION........coiiiiiiiiei e 35
Code 4-13 Determine Child State, Begin Program Downloadcccooiiiiiiiiiiie it 36
Code 4-14 Begin Download Delivery or Cancel Single-Card Play...........ccovuiiiiiiiiie it 37
Code 4-15 Disable Interrupts, Begin DOWNIOAG..........ccooiuiiiiiiie ettt e e et e e e e e e e satbaneeaaeeaas 38
Code 4-16 Verify Child States, Begin DOWNIOAA...........cocuiiiiiiiiiiiiii et 39
Code 4-17 Notify when Download Begins and ENASooiiiiiiiiiiiiiie et e e e e e e 40
Code 4-18 Check Whether Children Are BoOtabIeooiiiiiiiiiiii e 41
Code 4-19 Reboot Children when Download IS COMPIELEcoociiiiiiiiiii e 42
Code 4-20 Change Parent State, Continue Booting Children..............ooiiiiiiiiiiic e 43
Code 4-21 Verify that Download Is Complete, Disconnect Children ..o 44
Code 4-22 End Single-Card Play, Change Parent State, Clear BUffer...............oooeeiiiiiiiiiiiie e 45
Code 4-23 End Reboot, Reconnect Wireless CommMUNICAtIONS...........cuuuuiiiiiiiiiiicee e 46
Code 4-24 Initialize Data Sharing, the WM Library, and Wireless Communications................cccccveevieeieiicivieieeeeen. 47
Code 4-25 Process Connection REQUESES..........ooiiiiiiiiiei ettt e e e e s 47
Code 4-26 Process Connection Request—DetailS............c..uuiiiiiiiiiiiiie e 47
Code 4-27 Change State and Share Data..........ccoooiiiiiiiii e 48
NTR-06-0226-002-C 4 © 2004-2006 Nintendo

Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

L Lo L I = =T gL S = 1 (- PRSP PPR 49
Code 4-28 Check Whether Child Booted by Single-Card Playccooiiiiiiiiiiiieece e 50
Code 4-29 Obtain Connection Information—Parent and Child Must Matchcccccoiiiiiii 50
Code 4-30 Initialize Data Sharing, the WM Library, and Wireless Communications..............ccccceeviiiiiiiiieee e, 50
Code 4-31 Connect Child to Parent, Change State, and Share Data..........c..cccoecuiiiiiiiiiicc e 51
Code 4-32 Child Connection DEtails...............iiiiiiiiie ettt e e e e e e e e e e e e e nnr e e e e e e e e e neeeeeas 52
Fig. 5-1 Unifying the SOUMCE AIFECIOMESciii it e e e et e e e e e e st b e e e e e e e e seatbaeeeaaeesannes 54
© 2004-2006 Nintendo 5 NTR-06-0226-002-C

CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

Revision History

Version | Revision Date Description
1.04 5/16/2006 * Revised descriptions of sample code.
1.0.3 3/6/2006 » Corrected text in section 2.3.3 (Deleted parts about the NITRO_COMPRESS switch

specification.

¢ Added section 2.3.4 (Talked about the symptoms and fixes for Single-Card Play bugs.

1.0.2 8/8/2005 » Updated changes to numbering for code reference (4.1.1). Moved number 4 to
following line and moved comment to next line.

¢ No change needed in 2.1.1.1—terminology was already correct.

1.0.1 3/11/2005 » Unified format for describing NITRO-SDK install destination (1)
* Deleted text overlaps with following item (1.3)
¢ Changed item names (because of use with 1ibsyscall.a) (1.4)
Corrected text (Supplement related to previous item)
* Corrected text (clearly indicated that startup is same as from Card) (1.5)
¢ Corrected terminology (AID) (2)
* Corrected MB_StartParentFromIdand MB EndToIdle function names (2.1)
¢ Corrected GGID and TGID terminology (2.1.1.2)
* Revised description of the maximum number of connected children (2.1.1.3)
¢ Corrected item format (2.1.1.4)
Revised text (Supplemented with part about relationship between maximum number of
connected children and number of players)
Corrected text relating to names for libraries and sample modules
Deleted text (old restrictions relating to segment data)
¢ Added text (Supplemented with part about distinguishing multiple communication
modes) (2.3.1)
¢ Added text (Supplemented with part relating to build switches) (2.3.3)
* Corrected figure and supplemented text about parent-only region (3.1)
¢ Corrected text (Supplemented with reason for data placement) (3.2.1)
* Corrected text (Corrected mb_parent.h to be mbp) (4)
Corrected text (To reflect the latest selection of sample code)
* Added text (Supplemented with part about changes to procedure when using
MB StartParentFromIdle function (4.1)

¢ Added the section for the c1loneboot sample program (5)

1.0.0 10/29/2004 Initial version.

NTR-06-0226-002-C 6 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

1 Introduction

The NITRO-SDK includes a series of APIs for use with the Single-Card Play feature. This document
describes how to use the basic Single-Card Play features. (In this document, $NitroSDK represents
the directory in which NITRO-SDK has been installed.)

1.1 Overview

The Nintendo DS (DS) has Single-Card Play capability that allows binary code to be transferred from a
Single-Card Play parent device to a Single-Card Play child device and enables the child device to boot
up without a Game Card.

Single-Card Play is also referred to as "Wireless Multiboot" in developer documentation and SDK
source code files. This feature can be used to download up to 2.5 MB of binary code from a parent
device to the main memory of a child device so that the child device can be booted.

Figure 1-1 Single-Card Play Schematic

The game program is
downloaded to the main memory

of the child device via the L
wireless connection l
Parent Device
(with Card) I > Child Device

1.2 Single-Card Play Startup Procedure

To start a game using the Single-Card Play feature, the players should start execution according to the
following procedure.

1. Start the Single-Card Play parent device.
2. Select Single-Card Play from the start menu on the child device and select the parent program
to be downloaded.

However, in order to prevent the execution of illegal code by the IPL, binary code without an attached
authentication code will not execute. To start a child device from Single-Card Play, authentication code
must be attached to the binary code being transmitted. To promote efficient development, the NITRO-
SDK includes mb_child to permit the running of binary code without an authentication code. Use
mb_child.srl included with the NITRO-SDK and follow the procedure below. Use mb_child in the
same way even when executing under a debugging environment.

1. The following is a list of three pre-built programs that are stored in the NITRO-SDK. Write any
one of these programs into the NITRO Flash Card. (If using the debugger, load the binary code

formb child.srl into the debugger.)

SNitroSDK/bin/ARM9-TS/Rom/mb child.srl
SNitroSDK/bin/ARMI-TS/Rom/mb_child simple.srl
SNitroSDK/bin/ARM9-TS/Release/mb child simple.srl

© 2004-2006 Nintendo 7 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

To read about mb child.srl and mb child simple.srl, see the section titled “Pre-Built
Programs" in the Function Reference Manual.

2. Start the Single-Card Play parent device.
3. Startmb child as the Single-Card Play child device and select the parent program to be
downloaded.

To actually start the game device, an authentication code must be attached to the binary sent to the
child. See section 1.3 for more information.

1.3 Attaching an Authentication Code

Under the DS system, an authentication code must be attached to binary code that starts on the child.

This convention prevents the execution of invalid binary code transmitted wirelessly.

Note: The game device will stop midway through booting (around the time that the Nintendo logo
fades from the screen) if an attempt is made to execute binary code that does not have an
authentication code.

The following procedure can be used to attach an authentication code to binary code to be transmitted:

1. First, create the binary code to send to the child.

2. Send this binary code to the Nintendo authentication server at Nintendo and obtain an
authentication code.

3. Attach the authentication code to the original binary code using
SNitroSDK/tools/bin/attachsign.exe.

4. Use the Single-Card Play parent device to link the binary code obtained in Step 3 and transmit it
to the child device.

This procedure can be used to send code that runs on the parent game device to children. For details

on how to obtain an authentication code, please contact support@noa.com.

1.4 Using the System Call Library and ROM Header

When creating the production version of a ROM, use the System Call library (1ibsyscall.a)and the

ROM headers (rom header ****_ template.sbin) provided by Nintendo. However, the binary file

for child devices differs from that for parent devices, so in this case it is necessary to use the System

Call library and ROM headers that are included in the NITRO-SDK.

NTR-06-0226-002-C 8 © 2004-2006 Nintendo

Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

1.5 Transferable Binary Code Size

The same size restriction that applies to startup from a card applies to binary code for Single-Card Play.
The maximum transferable size for resident code is 2.5 MB for the ARM9 and 256 KB for the ARM7. As
with startup from a card, if data has been compressed with the compstatic tool, the size restriction
applies to the compressed data, not the uncompressed data.

To send binary code that exceeds this size restriction, start the child in Single-Card Play mode and
then download the necessary additional binary code from the parent. However, be sure to follow the
guidelines being given as there are security reasons for restricting the transfer of executable code.

1.6 Accessing the Backup Regions in Game Cards and Game Paks

Technically, the backup region of a Game Card or Game Pak plugged into the parent device can be
accessed from a child device started with Single-Card Play. However, there are some restrictions in
place when doing so. Follow the "Nintendo DS Programming Guidelines" when it comes to actual
operations.

© 2004-2006 Nintendo 9 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

2 Single-Card Play Operations

This section describes the procedures and connection sequence necessary to create a Single-Card
Play parent.

The Single-Card Play processes can be implemented using the Single-Card Play (MB) library stored in
the NITRO-SDK. The MB library functions by using the Wireless Manager (WM) library internally, but
other WM features cannot be used at the same time under current conditions.

2.1 Process Flow on the Parent Side

This section describes the preparations made on the parent side before Single-Card Play begins. The
parent prepares to send the binary code according to the following procedure:

Select a communication channel

Set the parent's parameters

Start the parent device communication process
Register the child binary information

Receive a request from the child

Send the binary and boot the child.

I

Once the child's binary information is registered in Step 4, the parent begins disseminating information
automatically and enters a child-receptive state.

2.1.1 Preparations by the Parent

21.1.1 Selecting a Wireless Communication Channel

The recommended method for deciding which wireless communications channel to use is to get the
usable channels with the WM GetAllowedChannel function, check the signal traffic level on each
channel with the WM MeasureChannel function, and then select the channel with the most available
bandwidth.

However, at the present time, you cannot use the WM MeasureChannel function after starting the MB
library because the MB_StartParent function automatically moves the MB library module from the
READY state to the PARENT state when using the MB library, but the WM MeasureChannel function
can only execute when the WM library is in the IDLE state. It is therefore necessary to put the WM
library module into the IDLE state using the wM Initialize function before checking the signal traffic
level of channels.

After the communication channel has been selected, there are two methods to start Single-Card Play:

o Terminate the WM library with the wM End function and then start Single-Card Play.
o Enter the IDLE state using the MB_StartParentFromIdle function and then start Single-
Card Play.

NTR-06-0226-002-C 10 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

When using the MB_StartParentFromIdle function, the work buffer size passed to the MB_ Init
function may be set as small as WM _SYSTEM BUF SIZE bytes aslong asthe WM Initialize
function is called separately. Be sure to call the MB_StartParentFromIdle and MB EndToIdle
functions as well as the MB_StartParent and MB_End functions in pairs.

21.1.2 Setting the Parent's Parameters

When starting the Single-Card Play parent device, the GGID and TGID must be set up just as with a
normal wireless communication. The following player information on the parent device, such as the
nickname to be displayed on IPL child screen during Single-Card Play, must also be set.

* Player Nickname
A maximum of 10 characters of UTF16-LE. The same format is used as with nicknames
obtained with the 0S_GetOwnerInfo function.

» Favorite Color
This is the color-set number representing the player's favorite colors. This makes use of the
same color set as favoriteColor obtained with the 0S_GetOwnerInfo function. For
details, see the reference for the 0S_GetFavoriteColorTable function.

« Player Number
The player number for the parent is always 0.

2.1.1.3 Configuring the Maximum Number of Children

The MB library drives wireless communications using the WM library under the assumption that the
default maximum number of devices is 16 (1 parent and 15 children). As a result, if a distributed
program is configured for play by less than 16 devices, it may not be possible to achieve the transfer
efficiency usually available and a situation may develop in which the number of connection requests
from children exceeds the maximum number of players.

If you already know the number of programs distributed from the parent and the maximum number of
players allowed by them, then you can use the MB SetParentCommParam function to set the
number of child devices that will be allowed to make connections. The maximum AID value for children
to be connected is set using the maxChildren argument of this function. The sendSize argument
can be used in conjunction with the maxChildren argument to freely set the send buffer size to use
for wireless communication within a predetermined time. The size of this buffer ranges between a
minimum of MB_ COMM_PARENT SEND MIN and a maximum of MB_COMM PARENT SEND MAX.

2.1.1.4 Registering the Child Binary Information

The following information needs to be set when registering the binary that will be sent to the child.

» Pointer to the Distribution Binary Code Data
When a child starts, only binary code allocated as an ARM9 resident module or as an ARM7
resident module in the ROM specification file is transferred. Code necessary to start the child
can be extracted from the binary code using the MB_ ReadSegment function. For details on
how to configure resident modules (hereafter referred to as Static segments), see the separate
reference document for makerom.

© 2004-2006 Nintendo 11 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

All other binary data must be transferred after booting from the parent to the children using
wireless communications. The WBT library is provided in the SDK as a data transfer protocol, and
it can be used as needed by applications. A sample program in which a child rebuilds its own file
system via wireless communications using the WBT library has been prepared as a module in the
directory $NitroSDK/build/demos/wireless shared/wfs.

*+ Game Name
A maximum of 48 characters of UTF16-LE. The string must fit on one line having a length of
185 dots during the IPL display.

e Game Description
A maximum of 96 characters of UTF16-LE. The string must fit on two lines having a length of
199 dots during the IPL display.

» Palette and Image Data for Icons Used to Display Downloaded Games on the IPL.
This is 16-color palette data and 32 dot x 32 dot image data.

« GGID
This is the Game Group ID for notifying children after bootup. The GGID set here is reflected in
the ggid member of the structure that the child can obtain from the
MB GetMultiBootParentBssDesc function after it boots. The GGID can be used for
reconnecting after bootup.

* Maximum Number of Players
This specifies the maximum number of players (including the parent) displayed on the child's
IPL screen. The total number of players including the parent is not the same as the maximum
number of children, so be careful not to mistake this with the maxChildren argument of the
MB_ SetParentCommParam function. (If both functions are called with the same setting for the
number of players, the maximum number of players is equal to maxChildren + 1.)
Also note that this value is only meant for display on the child's IPL screen. The actual number
of children that connect may be less than the value set in the maxChildren argument of the
MB_ SetParentCommParam function.

Note that it is necessary when using the MB library to register the child binary using the
MB RegisterFile function after starting the parent process using the MB StartParent function.

Up to 16 different child binaries can be registered by a single parent when using the MB library. The
Single-Card Play menu screen of the child shows the various games being delivered.

2.1.2 Sending Data and Starting Children

Once preparations for delivering binary code are complete, the parent waits for a request from a child.
For each child it performs processes in the order: Entry — Download — Boot.

In addition to natification of the child device state via the callback function set with the
MB CommSetParentStateCallback function, the child device state can also be obtained with the
MB CommGetParentState (child AID) function.

NTR-06-0226-002-C 12 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

Figure 2-1 Data Reception State Transitions and Parent Requests Used with Single-Card Play

Children
Status Notification Callback
|
MB Child Message Notification Function MB Parent
Scan
MB_COMM_PSTATE_CONNECTED
>
Connecting MB_COMM_PSTATE_REQUESTED
P
MB_CommResponseRequest(MB_COMM_RESPONSE_REQUEST_ACCHPT)
Entry or MB_CommResponseRequest(MB_COMM_RESPONSE_REQUEST_KICK)
Request <
MB_COMM_PSTATE_ACCEPTED
or MB_COMM_PSTATE_KICKED
P
Entry
Completion MB_COMM_PSTATE_WAIT_TO_SEND >
Wait for < MB_CommStartSending()
download
MB_COMM_PSTATE_SEND_PROCEEDED
P
Download
MB_COMM_PSTATE_SEND_COMPLETE
P
Download e MB_CommBootRequest()
completed
Wait for boot MB_COMM_PSTATE_BOOT_REQUEST
P
Preg’:;f to MB_COMM_PSTATE_BOOT_STARTABLE
P
Boot MB_COMM_PSTATE_DISCONNECTED
g
User

. 1
! 1
! i
! Program |
; !
i ;
! i

Figure 2-1 depicts the states of the child and the flow of requests from the parent. A callback is
generated on the parent side every time the child changes states. Be sure to issue the appropriate
command for each state from the parent side based on the state change notification made by this
callback or the state obtained by the MB CommGetParentState function.

The connection sequence flow between parent and child devices is shown below.

1. Connect
When the IPL Single-Card Play child program connects to the parent, the state changes to
MB COMM PSTATE CONNECTED. The child’s MAC address can be obtained with this callback.

© 2004-2006 Nintendo 13 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

2. Entry
When there is an entry request from a child to the parent device, notification of the
MB COMM PSTATE REQUESTED state is sent. The child device then waits for either an
MB COMM RESPONSE REQUEST ACCEPT or MB COMM RESPONSE REQUEST KICK message
to arrive from the parent device. If MB_ COMM RESPONSE REQUEST ACCEPT is sent, entry
processing is performed and preparations for downloading data are made.

3. Download
When the child completes preparations for downloading data, the parent is notified that the state
has changed to MB_ COMM PSTATE WAIT TO SEND. Once the child is in this state, the parent
can begin sending data for the first time. Be careful not to start transmitting data when the state
isMB COMM PSTATE ACCEPTED. When data transmissions end, the child sends notification that
the state is MB_COMM PSTATE SEND COMPLETE and waits in this state until there is a boot
request.

4. Boot
If the child is in the MB_COMM PSTATE SEND COMPLETE state, it enters the boot process when
the parent issues the MB_ CommBootRequest command. Once the parent is notified that the
state is MB_ BOOT STARTABLE, communications between child and parent are completely
severed.

2.2 Reconnecting with the Parent

Since the child’s communication with the parent is severed once the child boots for Single-Card Play,
the connection must be reestablished from the beginning.

Note the following when reestablishing a connection:

* The child’s boot timing
Because MB communication cannot occur at the same time as other WM communication
under the current MB library, the parent device must terminate communication using the
MB_End function after the child device boots up. (The MB _EndToIdle function is used to
return to the IDLE state if the MB StartParentFromIdle function was used for starting.) In
order to reconnect and start communication between the parent device and child devices after
booting for Single-Card Play, measures such as adjusting the timing of boot requests sent from
the parent to the child are necessary.

» The connection process using parent information
The child can obtain parent information before booting by using the
ReadMultiBootParentBssDesc function. Direct connection to the parent is possible based
on the WMBssDesc obtained this way, but the connection cannot be made if the parent's GGID
and TGID differ from the GGID and TGID expected by the child device. Furthermore,
communications may not be stable after the connection is established if the maximum size or
the Ks and cs flags differ, so be sure to prepare the application side ahead of time. You can
prevent differences in the communication settings between parent and child by specifying the
MAC address (bssid) found in WMBssDesc and rescanning for the parent.

NTR-06-0226-002-C 14 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

e Handling TGIDs
We recommend changing the parent device TGID when restarting the parent’'s wireless
function to prevent a child device from mistakenly attempting to re-connect to a parent device
before that parent’s wireless function has been restarted and connecting from an unrelated IPL
child device after the parent’s wireless function is restarted.
However, because the TGIDs between parent and child must be synchronized when
connecting without rescanning by the child, be sure to set the TGID for the parent and child
using a method such as incrementing the shared TGID by a fixed value.

e Parent multiboot flag
Multiboot flag information is included in the parent information passed as an argument of the
WM_SetParentParameter function, but do not set this flag under normal circumstances. The
multiboot flag does not need to be set even when restarting the parent’s wireless function and
reconnecting after booting for Single-Card Play

2.3 Other Precautions

2.3.1 Applications with Multiple Communication Modes

If an application has multiple communication modes for both Multi-Card and Single-Card Play (such as
a versus mode for Multi-Card Play and a Single-Card Play mode when using one card), trouble may
occur because the parent can be viewed from different communication modes.

In cases where the child detects multiple communications modes, include ID information in
userGamelnfo set by the parent and have the child reference this ID during scanning. Note, however,
that userGameInfo cannot be used with the MB library, so be sure to reference the

WM _ATTR FLAG MB flag of WMBssDesc.gameInfo.gameNameCount attribute to check whether
or not the MB library is being used.

Another method of handling this is to obtain multiple GGIDs and distinguish different communication
modes based on the GGID.

2.3.2 About the IRQ Stack

Please note that all callback functions operate in IRQ mode during wireless communication. When
processing internal to a callback consumes a large amount of stack, the safe thing to do is set the IRQ
stack size slightly larger in the 1cf file.

The 0S_Printf function used during debugging particularly consumes a large amount of stack, so be
sure to use the OS_TPrintf lite version of the function inside callbacks whenever possible.

© 2004-2006 Nintendo 15 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

2.3.3 About the Single-Card Play Child Device Program Overlay

When a program running on a Single-Card Play child device uses the overlay feature, the overlay table
and overlay segments to be included in the child's binary must be received separately from the parent
device. The following points must be observed at this time to ensure the integrity of the received data.

» Specifying the NITRO DIGEST build switch

The build switch NITRO DIGEST must be specified in the build of the Single-Card Play child
program. This is required so the NITRO-SDK can accurately confirm that the overlay table and
individual overlay segments correctly match the child's own. If the overlay feature is used without
specifying these build switches, the program will be forced to halt on execution.

Specifying this build switch is equivalent to calling the compstatic.exe tool with the —-a option.
Note that this build switch is only necessary for applications and is ignored in SDK builds.
» Using the FS library functions

In addition to the above build switch specifications, you must also use the FS library functions given
below for overlay operations to guarantee that the NITRO-SDK has correctly checked the integrity

of data.

. Function always used:
*FS_AttachOverlayTable

. Function only used when loading is performed synchronously:
*FS LoadOverlay

. Functions only used when loading is performed asynchronously:

*FS LoadOverlayInfo
*FS LoadOverlayImage Or FS LoadOverlayImageAsync
*FS StartOverlay

2.3.4 About Single-Card Play Bugs

There are a number of bugs with the Single-Card Play features on the IPL. Below is a collection of
symptoms and, where possible, workarounds.

2.3.41 Single-Card Play bug #1

Symptom
If Single-Card Play child "B" begins downloading while Single-Card Play child "A" is still booting after
completing its downloading, child "B" may freeze. (Frequency of occurrence: low.)

Workaround

You can reduce the frequency of this happening by performing the following process in the game
application. (There is no way to completely fix this problem.)

NTR-06-0226-002-C 16 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

1. Install NITRO-SDK2.0RC2 or a later version of the SDK.

2. When a child is kicked because it has sent a download request at a time when downloading is
not permitted, use the MB DisconnectChild function to cancel the connection from the child
side

This workaround is implemented in the demo program $NitroSDK/build/demos/mb/multiboot-
Model.

2.3.4.2 Single-Card Play bug #2

Symptom
If the Single-Card Play child has completed downloading but its connection is cancelled while the
parent is sending the boot process, the child may freeze. (Frequency of occurrence: low.)

Workaround
There is no effective workaround for the game application to this problem.

2.3.4.3 Single-Card Play bug #3

Symptom

When the game banners for parent "A" and parent "B" are both displayed in the Download List of the
Single-Card Play child, the game from the unselected parent gets downloaded when the series of
events shown below occurs. (Frequency of occurrence: every time.)

Child selects parent "A."
Child advances to the screen that prompts for confirmation to download the software.
Parent "A" gets turned off.
Download starts after more than a minute has passed.
5. Parent "B" game gets downloaded.
Workaround

oD~

There is no effective workaround for the game application to this problem.

Information on the child's screen is not updated once the state has advanced to the final confirmation
state, but the Parent List is updated internally so the selected parent displayed on the screen and the
parent that has been actually selected are no longer the same. The parent information remains in the
list for around a minute even after the parent's power has been turned off, so this bug does not occur if
downloading commences during that time (although the download will fail, of course, since the parent
no longer actually exists).

2.3.44 Single-Card Play bug #4

Symptom

If, after the game banners for parent "A" and parent "B" are both displayed in the Download List of the
Single-Card Play child, there is a timeout so that both banners are reset at the same time, the cursor
may no longer appear when the list is refreshed. If a banner is selected at such a time, the icon for the
game title information will become garbled and the download will fail. (Frequency of occurrence: low.)

Workaround

© 2004-2006 Nintendo 17 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

There is no effective workaround for the game application to this problem.

2.3.4.5 Single-Card Play bug #5

Symptom

Between the time when the final confirmation screen displays on the Single-Card Play child to confirm
software download and the time when actual downloading takes place, there is no updating of the
display for the number of communications members and their names. (Frequency of occurrence: every
time.)

Workaround
There is no effective workaround for the game application to this problem.

Consider the specifications of the DS startup menu.

2.3.4.6 Single-Card Play bug #6

Symptom

If the parent performs the following series of steps while the Single-Card Play child is selecting a game,
the unselected game will get downloaded. (Frequency of occurrence: every time.)

1. Child selects parent A

2. Child advances to the screen that prompts for confirmation to download the software

3. Parent A quits Single-Card Play and once again joins, using the same GGID as before but
delivering a different game.

4. The child commences downloading around 3-4 seconds later.

5. The child ends up downloading the new game that Parent A is delivering, and not the game that
had been selected.

Workaround

You can avoid this problem by setting a different GGID in the MBGameRegistry structure for each
game that is registered by the MB RegisterFile function in the game application.

The cause of this problem is very similar to the cause of bug #3. The game information list is
automatically updated by an internal process up until the time the Single-Card Play child has decided
to download a game. The process uses the GGID and MAC address to determine whether the
reception beacon has the same game information as that on the list. If the game information is the
same but the TGID has been updated, the child will retrieve the information again. Unfortunately, the
information in the list will be changed if the identical parent is delivering a game with the same GGID.

This problem will not occur if the GGIDs are different, since each GGID will be treated as a separate
game and added to the list.

NTR-06-0226-002-C 18 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

3 The Clone Boot Feature

A clone boot feature that sends the Static segment of the parent device without modification to the child
device and then boots the child for Single-Card Play is provided in the SDK. This section describes the
clone boot procedure.

3.1 About Clone Boot

When clone boot is used, Static segments that are the same as the parent’s are distributed to children.
The parent and the booted children determine whether or not they are a Single-Card Play child device
using the MB IsMultiBootChild function. The process then branches. Data that is not included in
the Static segment must be obtained by reconnecting to the parent after booting and then using the
WBT library.

Note: As described in section 3.2, part of the Static segment is for the dedicated use of the parent.
Figure 3-1 Clone Boot
* Normal DS Download Distribution

Parent Device (with Card)

Parent Static Region
Child Device

Parent Overlay Region The Child binary Static segment is
distributed during DS Download Play Child Static Region

Child Static Region | >
Child Overlay Region

The necessary data is transferred as
required using the WBT library

Data File ' >

* Clone Boot
The Parent/Child-shared Static
Parent Device (with Card) segment is distributed during DS Child Device
Download Play

Parent/Child Static Region

> Parent/Child Static Region

Parent/Child Overlay
Region The necessary data is transferred as
required using the WBT library

| >

Data File

© 2004-2006 Nintendo 19 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

3.2 Clone Boot Procedure

The procedure for clone boot is described below.

3.2.1 Placing Data in ROM

Programs that support the clone boot feature can boot a Single-Card Play child in the same way they
are booted from a card. The Multiboot library therefore provides security measures that are meant to
avoid the complete reproduction of a game from the delivered data.

Programs that support the clone boot feature treat the data placed in the card's secure region
(0x5000-0x6FFF) as data for the dedicated use of the parent and do not include it in the data delivered
for Single-Card Play. As a security measure to prevent the reproduction and duplication of commercial
programs, please use this region to store data that will definitely be used by the parent but not by any
children. For details on configuring this parent-only region and storing data here, see the description of
the cloneboot sample program in Chapter 5.

For details about the secure region found on cards, see the Programming Manual.

3.2.2 Authentication Code Attachment

Normal Single-Card Play operations on a DS require that the binary for the child device has an
authentication code attached. Clone boot also requires an attached authentication code.

In order to perform clone boot authentication, you must first obtain 1ibsyscall.a used on the
commercial version of the parent device and then the binary file (called 1ibsyscall c.bin below)
corresponding to 1ibsyscall for the clone child.

Executing $NitroSDK/tools/bin/emuchild.exe on the srl file created in the build extracts only
the static segment necessary for Single Card Play and adds 1ibsyscall c.bin for children to
create a binary file for signatures. (This binary file is henceforth referred to as sr1.) Perform the same
signature procedure on this file as used for normal Single-Card Play authentication, and attach the
authentication code obtained to the original sr1 file.

Since the signature is inserted in the proper location with attachsign when padding is performed
using RomFootPadding during ROM creation, the size of the sr1 file will not increase as long as
there is enough space to insert the signature.

NTR-06-0226-002-C 20 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

NITRO-SDK

Single-Card Play User Guide

Figure 3-2 Clone Boot Binary Authentication Procedure

libsyscall_c.bin
for cloned Child

libsyscall.a
for Parent

srl file for cloned
Child

srl File g emuchild

Authenication
Code

.] — Authentication
attachsign
Server

Final ROM
srl

NTR-06-0226-002-C
Released: November 6, 2006

© 2004-2006 Nintendo 21

CONFIDENTIAL

NITRO-SDK Single-Card Play User Guide

3.2.3 Clone Boot Binary Registration

Clone boot is activated by passing NULL as the child device binary file pointer when using the
MB GetSegmentLength and MB ReadSegment functions in the MB library. Other processing is
exactly the same as normal Single-Card Play.

Code 3-1 Clone Boot Binary Registration Example

// Obtain clone boot data segment size
bufferSize = MB GetSegmentLength (NULL);
if (bufferSize == 0)
{
return FALSE;
}
// Secure Memory
sFilebuf = 0S Alloc(bufferSize);
if (sFilebuf == NULL)
{
return FALSE;

// Extract segment information
if (! MB ReadSegment (NULL, sFilebuf, bufferSize))

0S_Free(sFilebuf);
return FALSE;

// Register download program
if (! MB RegisterFile(gamelInfo, sFilebuf))

0S_Free(sFilebuf);
return FALSE;

NTR-06-0226-002-C 22 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

4 The Sample Program (Multiboot-Model)

multiboot-Model is a sample program in which a parent sends a program to a child using the
Single Card Play feature, and then data sharing communications between the parent and the child are
performed by the sent program.

This chapter describes the following topics regarding the parent:

Preparing for the Single-Card Play feature
Initializing the parent

Starting parent operations

Waiting for connection from a child
Sending the program to the child
Restarting the child

Starting the parent application

States of the parent

® N o gk wDdh-=

This chapter then describes the following topics regarding the child:

1. Detecting Single-Card Play children
2. Getting connection information during Single-Card Play
3. Starting the child application

In the sample program, the series of MB library-related processes necessary to the parent for Single-
Card Play are collected together in module format under

$NitroSDK/build/demos/wireless shared/mbp. Please use this module when actually
creating programs that utilize the Single-Card Play feature. Note that you will also need to use wh.h,
the Wireless Manager's wrapper module, when you use this module. For details about wh . h, see the
"Wireless Communications Tutorial."

4.1 Single-Card Play Parent

This section describes the processing required of a parent using the Single-Card Play feature by
tracing the control flow of the sample program.

© 2004-2006 Nintendo 23 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

4.1.1 Preparing for the Single-Card Play Feature

As mentioned in section 2.1.1.1, an open communication channel must be found before initializing the
MB library to use the Single-Card Play feature.

The program code shown below searches for a communication channel. (Comments in the sample
program that are unrelated to this description are omitted here.)

Code 4-1 Search for Communication Channel

static void GetChannelMain (void)

{
(void)WH Initialize(); 1

while (TRUE)

{
switch (WH GetSystemState())

// Initialization complete

case WH SYSSTATE IDLE: 2
(void) WH StartMeasureChannel () ;
break;

// Channel search complete
case WH SYSSTATE MEASURECHANNEL: 3
{

sChannel = WH GetMeasureChannel () ;
(void)WH End();

break;

// End WM

case WH SYSSTATE STOP: 4
/* Go to Multiboot once WM End is completed */

return;

// Busy
case WH_SYSSTATE BUSY:
break;

// Error generation
case WH_ SYSSTATE ERROR:
(void) WH Reset () ;

break;

default:
OS_Panic("Illegal State\n");

}
0S_WaitVBlankIntr(); // Wait for V-Blank interrupt

1}
The process begins at 1 using the WH Initialize function to initialize the wireless communication
feature. Once the send and receive buffers necessary for wireless communication are secured and
initialized and the wireless communications hardware is initialized, the WH Initialize function

NTR-06-0226-002-C 24 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

changes the WM library state to IDLE.

Once the WM library state becomes IDLE (the state at 2), the WM MeasureChannel function can be
used to check the signal traffic level on each channel. In the sample program, the
WH StartMeasureChannel function is called to search for the channel with the lowest traffic level.

Once the search for a channel ends (the state at 3), the result of the search is obtained using the

WH GetMeasureChannel function. Since the search is complete and the communication channel is
secured, end processing for the WM library is performed by calling the WH_End function. The WM
library must be quit at this point because the MB library and the WM library cannot be used
simultaneously.

Once the WM library is closed (the state at 4), code stops searching for a communication channel and
moves on to Single-Card Play processing.

For the rest of the procedure, you can simply move to the IDLE state if the
MB StartParentFromIdle function is being used. The program code is changed as shown below,
exiting the process at the state at 3.

// Channel search complete

case WH_SYSSTATE MEASURECHANNEL: 3
/* Move to MultiBoot process while maintaining IDLE state */
return;

// Quit WM

4.1.2 The Single-Card Play Feature

Using the wireless channel that was just obtained, the Single-Card Play feature is initialized and other
processes are carried out to accept children, deliver the download, and restart the children.

4.1.2.1 Initializing the Parent

The information delivered in the download, icon information, Single-Card Play game registration
information registered for the GGID, the communication channel obtained in the search process, and
the TGID are all used to initialize the parent.

To prevent connections from unexpected child devices, we recommend that a different TGID value be
assigned each time the parent device is started.

The following program fragment initializes the parent. (Comments in the sample program unrelated to
this description are omitted.)

© 2004-2006 Nintendo 25 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

Code 4-2 Initialize the Parent

static BOOL ConnectMain(ul6 tgid)

{
MBP Init(mbGameList.ggid, tgid);

while (TRUE)

{
--- Omitted ---

}

In the sample program, the MBP_Init function initializes the parent and sets the necessary
information (in step 1 above). The MBP Init function sets the parent player information to be
displayed on the screens of the children and initializes the MB library.

Code 4-3 Set the Parent User Information and Initialize the MB Library

void MBP Init(u32 ggid, ulé6 tgid)
{

/* Set parent information to appear on screens of children */
MBUserInfo myUser;

OSOwnerInfo info;

0S GetOwnerInfo(&info); 2
myUser.favoriteColor = info.favoriteColor;
myUser.namelLength = (u8)info.nickNameLength;

MI CpuCopy8(&myUser.name, info.nickName, OS OWNERINFO NICKNAME MAX * 2);
myUser.playerNo = 0; // Parent is number O 3

// Initialize the status information
mbpState = (const MBPState) { MBP STATE sTOP, O, O, O, 0, O, O };

/* Begin MB parent control. */
// Secure MB work region.
sCWork = 0S Alloc(MB_SYSTEM BUF SIZE); 4

if (MB Init(sCWork, &myUser, ggid, tgid, MBP DMA NO)
!= MB SUCCESS)

OS Panic("ERROR in MB Init\n");
}
MB CommSetParentStateCallback(ParentStateCallback); 5

MBP ChangeState(MBP_ STATE IDLE);
}
Using the MBP Init, function, you can set the parent’s player information regarding the player’s
nickname and favorite colors as obtained from the IPL owner information. For more information, see
section 2.1.1.2 "Setting the Parent's Parameters."

In step (4), a work region is allocated for use by the MB library and then the MB_Init function is used
to initialize the MB library.

In step (5), a callback function is set for changing the parent state as notified by the MB library.
Processing for the notified parent state is performed inside this callback function.

NTR-06-0226-002-C 26 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

As for the rest of the procedure, because the IDLE state is maintained when using the

MB StartParentFromIdle function as described above in section 4.1.1, the amount of memory
allocated can be reduced by changing the previously described program as shown below. (However,
there are no particular problems with having a buffer that is too big.)

// Secure MB work region.
sCWork = 0S Alloc(MB_SYSTEM BUF_SIZE - WM _SYSTEM BUF SIZE); 4

4.1.2.2 “The Start of Operations by the Parent

After the MB library is initialized by the MB_Init function, the next step is to start a DS device as the
Single-Card Play parent and register the file to use for wireless downloads.

The following program code starts the operations of the parent. (Comments in the sample program
unrelated to this description have been omitted.)

Code 4-4 Start Parent Operations

static BOOL ConnectMain(ul6 tgid)
{ 1
-—- Omitted ---

while (TRUE)

{
switch (MBP_ GetState())

// IDLE state
case MBP_STATE IDLE :

{
MBP Start(&mbGameList, sChannel);

}
break;

--— Omitted ---

}

© 2004-2006 Nintendo 27 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

After processing by the MBP Init is complete (the state in step 1), the MBP Start function starts the
Single-Card Play feature and registers the information for the program that will be wirelessly
downloaded after the parent has accepted connections from children.

Code 4-5 Start Single-Card Play Parent and Register File

void MBP_ Start(const MBGameRegistry *gameInfo, ulé channel)

{
SDK_ASSERT (MBP GetState() == MBP STATE IDLE);

MBP ChangeState(MBP_STATE ENTRY);
if (MB StartParent(channel) != MB SUCCESS) 3
{

MBP Printf ("MB StartParent fail\n");

MBP ChangeState (MBP_STATE ERROR) ;

return;
}
/* ___ *
* Initialized when MB StartParent () is called.
* You must register MB RegisterFile() after MB StartParent().
S */
/* Register download-program file information. */ 4
if (! MBP _RegistFile(gameInfo))

{
OS_Panic("Illegal Single-Card Play gameInfo\n");

}
In step 3, the MB_StartParent function is called with the communication channel specified as an

argument to start operations as the Single-Card Play parent.

Because the download program information is initialized when the MB_StartParent function is called,
you must call the MB_ RegisterFile function to register the download program information after the
MB StartParent function has been called.

In step 4 of the sample program, the MBP RegistFile function is called to load the binary code to be
sent for Single-Card Play into main memory and register download program information.

The download program information used in the sample program is configured as shown below:

Code 4-6 Load Program in Memory and Register Program Information

/* This is the program information the demo downloads */
const MBGameRegistry mbGamelList =

{

"/child.srl", // Child binary code
(ul6*)L"DataShareDemo", // Game name

(ul6*)L"DataSharing demo", // Description of the game contents
"/data/icon.char", // Icon character data
"/data/icon.plt", // Icon palette data

WH_GGID, // GGID

MBP_ CHILD MAX + 1, // Maximum number of players

}i
If the MB StartParentFromIdle function is being used, the code at 3 is changed as shown below

to handle those changes described in sections 4.1.1. and 4.1.2.

NTR-06-0226-002-C 28 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

MBP ChangeState(MBP_ STATE ENTRY);
if (MB StartParentFromIdle(channel) != MB SUCCESS) 1
{

Next, a description is given regarding the registration of download program information by tracing the
process flow in the MBP RegistFile function.

In step 5, the File System is used to open the download file to be registered so it can be loaded.

The MBP RegistFile function also supports the clone boot feature (described below). If the file path
name received is NULL, software will behave as if a clone boot has been specified.

Code 4-7 How to Register File: Open the File

static BOOL MBP RegistFile(const MBGameRegistry* gameInfo)
{

FSFile file, *p file;

u32 bufferSize;

BOOL ret = FALSE;

/*
* In accordance with the specification for this function, if
* romFilePathp is NULL, it operates as a clone boot. Otherwise,
* the specified file is treated as the child program.
*/
if gameInfo->romFilePathp
{
p_file = NULL;
}

else
{
/*
* The program file must be read by FS ReadFile() .
* Normally, the program is saved as a file in CARD-ROM, so
* this is not a problem. However, if you anticipate there being,
* a special MultiBoot file system, deal with the situation by
* using FSArchive to construct an independent archive.
*/
FS InitFile(&file);
if (! FS OpenFile(&file, gameInfo->romFilePathp)) 5

{
/* File cannot be opened */
0S Warning ("Cannot Register file\n");
return FALSE;

p file = s&file;
}
--- Omitted ---

}

Next, the MB_GetSegmentLength function obtains the size of the segment information in step 6 and
then memory is allocated for loading the segment information in step 7.

Since only one file is maintained for the segment information in the sample program, you must switch
to processing that maintains multiple sets of segment information if you plan to register multiple
download files.

© 2004-2006 Nintendo 29 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

Code 4-8 How to Register File: Get Segment Size and Memory

static BOOL MBP RegistFile(const MBGameRegistry* gameInfo)
{

FSFile file, *p file;

u32 bufferSize;

BOOL ret = FALSE;

--- Omitted ---

/*
* Get the size of the segment information.
* If download program is not legal, 0 is
* returned for the size.
*/
bufferSize = MB GetSegmentLength(&file); 6
if (bufferSize ==)
{
OS_Warning("specified file may be invalid format.\"%$s\"\n",
gameInfo->romFilePathp);

else

{
/*
* Secure memory for loading the download program's segment
* information. If file has been registered successfully,
* this region will be used until MB End() is called.
* If the memory size is plenty large enough, it can be
* prepared statically.
*/
sFilebuf = (u8*)0S Alloc(bufferSize); 7
if (sFilebuf == NULL)

{

/* Failure to secure buffer for storing segment information */
0S Warning("can't allocate Segment buffer size.\n");
else }

--—- Omitted ---

}

The segment information is read from the file using the MB ReadSegment function in step 8 and
registered using the MB_RegisterFile function in step 9. Once the download file is registered, the
open download file is closed in step 10 because it is no longer needed.

NTR-06-0226-002-C 30 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

Code 4-9 How to Register File: Read and Register Segment Information, Close File

static BOOL MBP RegistFile(const MBGameRegistry* gameInfo)
{

--- Omitted ---

/*
* Extract segment information from file.

This extracted information must remain resident in
* main memory while the download program is being delivered.

*/
if (! MB ReadSegment (&file, sFilebuf, bufferSize)) 8
{

/*
* Segment extraction from illegal file will fail.
* If size is obtained successfully but the extraction
* process fails anyway, it may be because some change has
*

been made to the file handle. (File closed,
* location seek, etc.)
*/
OS Warning (" Can't Read Segment\n");
}
else
{
/*
* Register Download program with extracted segment
* information and MBGameRegistry.
*/
if (! MB RegisterFile(gameInfo, sFilebuf)) 9
{
/* Registration fails due to illegal program information */
0S Warning (" Illegal program info\n");
}
else
{
/* Process has ended correctly */
ret = TRUE;

}
if (!ret)
0S_Free (sFilebuf);

/* Close file if not a clone boot */
if (p_file == &file)

/
Segment extraction from illegal file will fail.
If the extraction process fails even though the
size has been obtained successfully, it may be
because some change has been made to the file handle.
(File close, location seek, ...)
/
0S Warning (" Can't Read Segment\n") ;
(void) FS CloseFile(&file);
0S Free(sFilebuf);
return FALSE;

P

© 2004-2006 Nintendo 31 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

/*
* Register download program with extracted
* segment information and MBGameRegistry.
*/
if (! MB RegisterFile(gameInfo, sFilebuf)) 9
{
/* Registration fails due to illegal program information */
0S Warning (" Illegal program info\n");
(void) FS CloseFile(&file);
0S Free(sFilebuf);
return FALSE;
}

// Close the file
(void) FS_CloseFile(&file); 10
return TRUEret;
}
At this point, the game device begins operating as a Single-Card Play parent and the registered

download file is distributed to children via download.

4.1.2.3 Waiting for a Connection from the Child

Once the game device begins operating as a Single-Card Play parent, it processes connection
requests from children.

The callback function set with MB CommSetParentStateCallback is notified of connection
requests from children as given in the code described in section 4.1.2.1. Since a variety of notifications
in addition to connection requests from children are posted to this callback function, processing
appropriate for each type of natification is required.

In the sample program, the state in which the parent waits for and accepts connection requests from
children is defined as “MBP STATE ENTRY (accepting connection requests).”

Connection requests from children are denied if the value returned by the MBP GetState function
(used to get the parent state) is other than MBP_STATE ENTRY.

There are two states in which children make connection requests:

e MB COMM PSTATE CONNECTED, which indicates that the child is connected to the parent
e MB COMM PSTATE REQUESTED, which indicates an entry request as a Single-Card Play child

In the sample program, information for managing a child’s connection
(mbpState.connectChildBmp) is updated when the parent receives notification of
MB COMM PSTATE CONNECTED from the child in question.

NTR-06-0226-002-C 32 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

Code 4-10 Parent Receives Child Notification—Update Connection Information

static void ParentStateCallback(ulé child aid, u32 status, void* arg)
{

switch (status)

// Instant notification of child connection
case MB COMM PSTATE CONNECTED:
{
// Parent does not accept connection except in entry reception state
if (MBP GetState() != MBP_ STATE ENTRY)
{

break;

MBP AddBitmap (&mbpState.connectChildBmp, child aid);
// Store child's MacAddress
WM CopyBssid(((WMStartParentCallback*)arg)->macAddress,
childInfo[child aid - 1].macAddress);
childInfo[child aid - 1].playerNo = child aid;
}

break;

© 2004-2006 Nintendo 33 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

When notification of MB_ COMM PSTATE REQUESTED is posted in a callback function, a decision is
made to either accept (2) or deny (1) the entry request.

In the sample program, except in cases where the entry request is denied due to the state of the parent,
all entry requests are accepted using the MBP_AcceptChild function and the information for
managing child entry requests is updated (mbpState. requestChildBm). The player information of
children is obtained using the MB_CommGetChildUser function.

Code 4-11 Process Connection Request

static void ParentStateCallback(ulé child aid, u32 status, void* arg)
{

switch (status)

// Instant notification of entry request from child
case MB COMM PSTATE REQUESTED:
{

const MBUserInfo* userInfo;

// If the parent is not in an entry-accept state, the child
// requesting entry is kicked out without being checked.

if «(MBP GetState () I= MBP STATE ENTRY)

{
MBP KickChild(child aid); 1
break;

}

// Accept child's entry
mbpState.requestChildBmp |= 1 << child aid;

MBP AcceptChild(child aid); 2

// The timing of MB_COMM PSTATE CONNECTED is such that UserInfo
// is not set, so MB_CommGetChildUser has no meaning unless it
// 1is called after state is REQUESTED.
userInfo = MB CommGetChildUser (child aid);
if (userInfo != NULL)
{
MI CpuCopy8 (userInfo, &childInfo[child aid - 1].user, sizeof (MBUserInfo));
}
MBP Printf ("playerNo = %d\n", userInfo->playerNo);
}

break;

}

If the connection request from a child is accepted, the MB_CommResponseRequest function notifies
the child by posting MB_COMM RESPONSE REQUEST ACCEPT. If the connection request is denied, the
function notifies the child by posting MB_ COMM RESPONSE REQUEST KICK.

NTR-06-0226-002-C 34 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

In the sample program, the information for managing child connections is updated when the notification
is posted to the child.

Code 4-12 Accept or Kick Child Connection

void MBP AcceptChild(ul6é child aid) 1
{
if (! MB CommResponseRequest(child aid, MB COMM RESPONSE REQUEST ACCEPT))
{
// If a request fails, disconnect that child.
MBP DisconnectChild(child aid);
return;
}
MBP Printf ("accept child %d\n", child aid);
}
void MBP KickChild(ul6 child aid) 2
{
if (! MB CommResponseRequest(child aid, MB COMM RESPONSE REQUEST KICK))

{
// If a request fails, disconnect that child.

MBP DisconnectChild(child aid);
return;

OSIntrMode enabled = OS DisableInterrupts();

mbpState.requestChildBmp &= ~(1 << child aid);
mbpState.connectChildBmp &= ~(1 << child aid);

(void) OS_Restorelnterrupts(enabled);

}
Children who receive MB_COMM RESPONSE REQUEST KICK from a parent are disconnected from that
parent. A callback function posts MB_COMM PSTATE KICKED to notify the parent that the child
received the connection-denied response.

When the parent posts MB_ COMM_RESPONSE REQUEST ACCEPT to a child, the child transits to a state
where it can accept download delivery.

First, a callback function posts MB_COMM PSTATE REQ ACCEPTED to notify the parent that the child
received the connection-accepted response. Then a callback function posts

MB COMM PSTATE WAIT TO SEND to notify the parent that the child entered a state that accepts
download delivery. Data transfer to the child will not execute properly if it begins before the parent
receives this notification.

© 2004-2006 Nintendo 35 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

In the sample program, nothing happens when MB COMM PSTATE KICKED and

MB COMM PSTATE ACCEPTED are posted, but when MB_COMM PSTATE WAIT TO_ SEND is posted, the
information for managing child connections is updated and, depending on the state of the parent, download
delivery to that child begins. (For more details on the MBP_StartDownload function, see section 4.1.2.4.)

Code 4-13 Determine Child State, Begin Program Download

static void ParentStateCallback(ulé child aid, u32 status, void* arg)
{

switch (status)

// Post ACK to child for ACCEPT

case MB_COMM PSTATE REQ ACCEPTED:
// No special process at this point.
break;

// Notification to child when kicked.
case MB_COMM PSTATE KICKED:
// No particular process is required.
break;

// Notification when download request received from child.
case MB_COMM PSTATE WAIT TO_ SEND:
{
// Child's state changes from entry to download-wait.
// BAn interrupted process, so changed without
// prohibiting interrupts.
mbpState.requestChildBmp &= ~(1 << child aid);
mbpState.entryChildBmp |= 1 << child aid;

// Calling MBP StartDownload() from main routine starts data
// transmission. If already in the data-transmission state,
// data transfer also begins to that child.
if (MBPiGetState() == MBP STATE DATASENDING)
{

MBP StartDownload(child aid);

NTR-06-0226-002-C 36 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

In the wait portion of the connection process (1), download delivery to a child can begin (4) if there is a
child in a state that can accept download delivery (3). Conversely, the Single-Card Play feature can be
cancelled (2).

Code 4-14 Begin Download Delivery or Cancel Single-Card Play

static BOOL ConnectMain(ulé tgid)
{
while (TRUE)
{
switch (MBP_ GetState())

// Waiting for entry from child
case MBP STATE ENTRY : 1
{
BgSetMessage (PLTT WHITE, " Now Accepting ")

if (IS PAD TRIGGER(PAD BUTTON B))
{
// B Button cancels Single-Card Play
MBP Cancel () ;
break;

// Can start if there is at least one child in entry
if (MBP GetChildBmp(MBP BMPTYPE ENTRY)) ||
MBP GetChildBmp (MBP BMPTYPE DOWNLOADING) ||
MBP GetChildBmp (MBP BMPTYPE BOOTABLE)) 3

BgSetMessage (PLTT WHITE, " Push START Button to start "y
if «(IS PAD TRIGGER(PAD BUTTON START))
{

// Start download
MBP StartDownloadAll(); 4

4.1.2.4 Sending the Program to the Child

Once MB_COMM PSTATE WAIT TO SEND is posted, the parent can begin download delivery to the
child that posted the notification. Download delivery is started using either the

MB CommStartSending or MB_ CommStartSendingAll function. To use the

MB CommStartSendingall function, first check that all connected children can accept download
delivery. Calling the function once may not begin download delivery to all the children.

Because download delivery cannot begin for children that are not in the

MB COMM PSTATE WAIT TO_ SEND state, be sure to start download delivery separately for each child
ifaMB COMM PSTATE WAIT TO SEND notification is received after the MB CommStartSendingall
function has executed.

© 2004-2006 Nintendo 37 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

In the sample program, the MB_ CommStartSending function is used inside the MBP StartDownload
function and the connection state is updated for all children for which download delivery has started.

Code 4-15 Disable Interrupts, Begin Download

void MBP_ StartDownload(ul6 child aid)

{
if (! MB CommStartSending(child aid))

{
// If a request fails, disconnect that child.

MBP DisconnectChild(child aid);
return;

OSIntrMode enabled = OS DisableInterrupts();

mbpState.entryChildBmp &= ~ (1 << child aid);
mbpState.downloadChildBmp |= 1 << child aid;

(void) OS_Restorelnterrupts(enabled);

NTR-06-0226-002-C 38 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

When using the MBP StartDownloadAll function, after the connection request is accepted and the
parent enters the download-delivering state represented by MBP STATE DATASENDING (1), the
connect state of the children is checked and the MBP StartDownload function begins download
delivery to those children that can accept the download (4). If the parent accepts a connection request
from a child, but the child is not in a state to accept delivery, the download begins later when the child
enters the receptive state (2). Children in other states are disconnected.

Code 4-16 Verify Child States, Begin Download

void MBP_ StartDownloadAll(void)

{
ulé i;

// Entry acceptance completed
MBP_ChangeState (MBP_STATE DATASENDING) ; 1

for (1 =1; 1 < 16; i++)
{

if (! (mbpState.connectChildBmp & (1 << i)))
{
continue;
}
if (mbpState.requestChildBmp & (1 << 1)) 2

// Perform this process when currently entered children are ready
// and the MB COMM PSTATE WAIT TO SEND notification is received.
continue;

// Disconnect children that are not entered

if (! (mbpState.entryChildBmp & (1 << i))) 3

{
MBP DisconnectChild(i);
continue;

}

// Start download for entered children

MBP_StartDownload(i); 4

}
}
© 2004-2006 Nintendo 39 NTR-06-0226-002-C

CONFIDENTIAL Released: November 6, 2006

NITRO-SDK

Single-Card Play User Guide

Inside the MB_CommStartSending function, MB_COMM RESPONSE REQUEST DOWNLOAD (start
delivery response) is posted to children. The child receives this post and confirms that download
delivery has started by posting MB_COMM_PSTATE SEND PROCEED in a callback function. When
download delivery to the child is complete, MB_ COMM PSTATE SEND COMPLETE is posted in a callback

function.

In the sample program, nothing happens when MB_COMM PSTATE SEND PROCEED is posted, but
information for managing child connections is updated when MB_ COMM PSTATE SEND COMPLETE is

posted.

Code 4-17 Notify when Download Begins and Ends

static void ParentStateCallback(ulé child aid, u32 status, void* arg)

{

switch (status)

// Notify when binary transmission to child begins
case MB_COMM PSTATE SEND PROCEED:

// None.

break;

// Notify when binary transmission to child ends
case MB COMM PSTATE SEND COMPLETE:
{
// BAn interrupted process, so changed without
// prohibiting interrupts.

mbpState.downloadChildBmp &= ~(1 << child aid);
mbpState.bootableChildBmp |= 1 << child aid;
}
break;
}
}
NTR-06-0226-002-C 40 © 2004-2006 Nintendo

Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

4.1.2.5 Restarting the Child

The child can be restarted once download delivery to the child is complete. The MB CommIsBootable
function checks whether the child can be rebooted. In the sample program, the MBP IsBootableAll
function checks whether all connected children are in a state that allows rebooting.

Code 4-18 Check Whether Children Are Bootable

BOOL MBP_ IsBootableAll(void)
{
ul6 1i;

if (mbpState.connectChildBmp == 0)

{
return FALSE;

}

for (1 =1; 1 < 16; 1i++)

if (! (mbpState.connectChildBmp & (1 << i)))
{
continue;
}
if (! MB CommIsBootable(i))

return FALSE;
}

}
return TRUE;

© 2004-2006 Nintendo 41 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

If download delivery is complete for all children, a reboot request is sent to the children.

Code 4-19 Reboot Children when Download Is Complete

static BOOL ConnectMain(ulé tgid)
{
-—— Omitted ---

while (TRUE)

// Process for sending program
case MBP STATE DATASENDING :
{

// Can start if all parties have finished downloading.
if (MBP IsBootableAll())
{
// Start boot
MBP StartRebootAll () ;
}
}

break;

--- Omitted ---
}

}

The reboot request sent to children is made using either the MB. CommBootRequest or
MB CommBootRequestAll function. If you use the MB CommBootRequestAll function, first verify

that downloading to all connected children is complete. Calling the function once may not result in a
request for all children to reboot.

NTR-06-0226-002-C 42

© 2004-2006 Nintendo
Released: November 6, 2006

CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

In the sample program, the child reboot request is made using the MBP StartRebootAll function.
The connection state of all children is checked inside the MBP StartRebootAll function and the
reboot request is made using the MB_ CommBootRequest function. The state of the parent is then
changed to MBP STATE REBOOTING (wait for child reboot).

Code 4-20 Change Parent State, Continue Booting Children

void MBP_StartRebootAll(void)
{

ule 1i;

ul6é sentChild = 0;

for (1 =1; 1 < 16; i++)
{

if (! (mbpState.bootableChildBmp & (1 << i)))
{
continue;
}
if (! MB CommBootRequest(i))

// If a request fails, disconnect that child.
MBP DisconnectChild(i);
continue;

}
sentChild = (1 << 1);

}

// Error: exit if connection child is 0
if (sentChild == 0)
{
MBP ChangeState (MBP_STATE ERROR) ;
return;

}

// Change state to child device restart wait state.
MBP ChangeState(MBP_STATE REBOOTING);
}
The MB COMM RESPONSE REQUEST BOOT (reboot request) notification is sent to children from inside
the MB CommBootRequest function. Each child receives the reboot request and posts
MB COMM PSTATE BOOT STARTABLE from inside a callback function when finished rebooting.

Because wireless communications between the parent and the child are disconnected when the child
is done rebooting, MB_COMM PSTATE DISCONNECTED is posted in a callback function.

© 2004-2006 Nintendo 43 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

In the sample program, if MB_COMM PSTATE BOOT STARTABLE has been posted, the information for
managing the connections of children is updated and the Single-Card Play feature is ended using the
MB_End function after all children are done rebooting.

Code 4-21 Verify that Download Is Complete, Disconnect Children

static void ParentStateCallback(ul6é child aid, u32 status, void* arg)
{

switch (status)

// Notification that child boot ended correctly
case MB COMM PSTATE BOOT STARTABLE:
{
// BAn interrupted process, so changed without
// prohibiting interrupts.
mbpState.bootableChildBmp &= ~(1 << child aid);
mbpState.rebootChildBmp |= 1 << child aid;

// If all children are done booting, the parent
// also enters the reconnection process.
if (mbpState.connectChildBmp == mbpState.rebootChildBmp)
{
MBP Printf ("call MB End()\n");
MB End();

// Notification when child is disconnected
case MB COMM PSTATE DISCONNECTED:
{
// Delete entry if child disconnects in situation
// other than rebooting.

if «(MBP_GetChildState(child_aid) = MBP CHILDSTATE REBOOT)
{
MBP DisconnectChildFromBmp (child aid);

break;

}
If changes have been made to this code so that the MB_ StartParentFromIdle function is used,

make the following changes to call the MB_EndToIdle function at the end instead of the MB End

function.

// If all children have finished booting, then the

// parent also enters the reconnection process.

if (mbpState.connectChildBmp == mbpState.rebootChildBmp)

{
MBP Printf ("call MB EndToIdle()\n");
MB EndToIdle();

}

NTR-06-0226-002-C 44 © 2004-2006 Nintendo

Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

When the Single-Card Play feature is ended by the MB End function, the notification

MB COMM PSTATE END is posted by a callback function. In the sample program, the parent is moved
to the process-end state (MBP STATE COMPLETE) and the work area in memory allocated for
download delivery is released.

Code 4-22 End Single-Card Play, Change Parent State, Clear Buffer

static void ParentStateCallback(ulé child aid, u32 status, void* arg)
{

switch (status)

// Notification at end of Single-Card Play
case MB_COMM PSTATE END:
{
if (MBP GetState() == MBP_ STATE REBOOTING)
// An end of reboot process, end MB and
// reconnect with child.
{
MBP ChangeState(MBP_STATE COMPLETE) ;
}
else
// Complete shutdown, return to STOP state
{
MBP ChangeState(MBP_STATE STOP);
}
// Release the buffer used for game delivery.
// The work region is released when MB COMM PSTATE END
// comes in a callback, so OK to free.
if (sFilebuf)
{
0S Free(sFilebuf);
sFilebuf = NULL;

if (sCWork)

0S Free(sCWork);
sCWork = NULL;

// The registration info is cleared at the same time MB End is
// called and work is freed, so MB UnregisterFile can be omitted

break;

© 2004-2006 Nintendo 45 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

In the final step, the code fragment for quitting the Single-Card Play feature (2) is referenced from the
rebooting process (1).

Code 4-23 End Reboot, Reconnect Wireless Communications

static BOOL ConnectMain(ul6 tgid)

{
--- Omitted ---

while (TRUE)
{

// Reboot process
case MBP STATE REBOOTING: 1
{
BgSetMessage (PLTT WHITE, " Rebooting now ")

}

break;

// Reconnection process
case MBP STATE COMPLETE :

{
// If all parties connect without trouble,

// quit Single-Card Play process and restart
// wireless communications as a normal parent.
BgSetMessage (PLTT WHITE, " Reconnecting now ")

0S WaitVBlankIntr();
return TRUE;
}

break;

--- Omitted ---
}

}

4.1.3 Starting the Parent Application

In the multiboot-Model sample program, game software is downloaded to children using the Single-
Card Play feature. After the child reboots the wireless-communications parent shares data with the
program downloaded to the child. Because the wireless communication connection with the child is cut
when the Single-Card Play feature ends, the wireless connection with the child must be reestablished.

NTR-06-0226-002-C 46 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

In the sample program, the connection information used by the Single-Card Play feature is used for data
sharing. The first step is to perform the initialization processes required for data sharing. The
GInitDataShare function makes the initial settings for the buffer to be used for data-sharing
communications. The WH_Initialize function initializes the WM library and wireless communications.

If changes have been made in the code in order to use the MB_StartParentFromIdle function, it
does not need to be called at this point because the IDLE state is being maintained and the
WH Initialize function has already been called.

Code 4-24 Initialize Data Sharing, the WM Library, and Wireless Communications

// Configure the buffer for data-sharing communications

GInitDataShare () ;

// If MB StartParent & MB End have been used, then initialize

// wireless communications at this point

(void)WH Initialize();
Once wireless communications start, the parent may receive connection requests from devices other
than the children to which the program has been delivered using the Single-Card Play feature. To
handle this possibility, the WH_SetJudgeAcceptFunc function sets the function to be used in deciding

whether or not to allow the connection.

Code 4-25 Process Connection Requests

// Configure the function for deciding connection to children

WH SetJudgeAcceptFunc (JudgeConnectableChild);
The JudgeConnectableChild function is used to make this determination in the code below. The
connection is permitted if the player number (aid) used during Single-Card Play can be obtained from
the MAC address of the terminal connected in step 1.

Code 4-26 Process Connection Request-Details

static BOOL JudgeConnectableChild(WMStartParentCallback* cb)

{
ul6é playerNo;

/* Search for cb->aid child's multiboot-time aid from MAC address */
playerNo = MBP GetPlayerNo(cb->macAddress); 1

OS TPrintf("MB child(%d) -> DS child (%d)\n", playerNo, cb->aid);

if (playerNo ==)
{
return FALSE;

}
sChildInfo[playerNo] = MBP GetChildInfo(playerNo);
return TRUE;

}

Finally, wireless communications with this unit as the parent are started and data sharing begins.

Because the state is WH_SYSSTATE IDLE (1) when the WH_Initialize function ends, the

WH ParentConnect function is used to start wireless communications. The arguments for the
function include WH_CONNECTMODE DS PARENT (used to indicate data-sharing) and the TGID and
communication channel used by the Single-Card Play feature.

© 2004-2006 Nintendo 47 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

Once wireless communications begin, the state changes to WH SYSSTATE DATASHARING (2) and
data sharing begins.

Code 4-27 Change State and Share Data

/* Main routine */
for (gFrame = 0 ; TRUE ; gFrame++)
{

0S_WaitVBlankIntr();

ReadKey () ;
BgClear () ;

switch (WH GetSystemState())

{
case WH _SYSSTATE IDLE : 1

If you want the child to reconnect to the same parent

without rescanning, then tgid and channel must match.

In this demo, both the parent and the child use the same
channel as that at time of the multiboot, and tgid+l compared
to the tgid at the time of multiboot. For this reason, the
child can reconnect without scanning.

If you are going to specify a MAC address and rescan,

the tgid and channel values do not need to be the same.

K e — */

(void)WH ParentConnect (WH_CONNECTMODE DS PARENT, tgid, sChannel);
break;

L T R

case WH_SYSSTATE CONNECTED:
case WH SYSSTATE KEYSHARING:
case WH SYSSTATE DATASHARING: 2
{
BgPutString(8 , 1 , 0x2 , "Parent mode");
GStepDataShare (gFrame);
GMain () ;
}

break;

NTR-06-0226-002-C 48 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide

NITRO-SDK

4.1.4 Parent States

The MBP GetsState function can obtain the following parent states:

Table 4-1 Parent States

Values Returned by the
MBP_GetState Function

The State of the Parent

MBP_STATE_STOP

The MB_End function was called from the MBP Cancel function and the

Single-Card Play feature was stopped.

MBP_STATE_IDLE

The MBP_Init function finished, the MBP Start function was called, and

the device can begin operating as the parent.

MBP_STATE_ENTRY

The MBP_Start function finished and the parent is waiting for a connection
from a child. This is the only state in which the parent can accept a

connection from a child.

MBP_STATE_DATASENDING

The MBP_StartDownloadAll function was called and download-delivery to

the connected children has begun.

MBP_STATE_REBOOTING

The MBP_StartRebootAll function was called and connected children are

MBP_STATE_COMPLETE

All connected children received reboot requests and the Single-Card Play
feature was ended by the MB_End function.

MBP_STATE_CANCEL

The MBP_Cancel function was just called.

MBP_STATE_ERROR

An error has occurred.

4.2

Single-Card Play Children

The user program for a Single-Card Play child starts after Single-Card Play data is transferred from the
parent device and the child is rebooted. During reboot, the connection with the parent device is

completely terminated.

In this section, the sample program multiboot-Model is used to describe how Single-Card Play children
are determined and how to obtain connection information used during Single-Card Play.

© 2004-2006 Nintendo
CONFIDENTIAL

NTR-06-0226-002-C
Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

4.2.1 Single-Card Play Child Determination

The child uses the MB_ IsMultiBootChild function to determine whether it was started using the
Single-Card Play feature.

Code 4-28 Check Whether Child Booted by Single-Card Play

// Check to see if self is child that started from Single-Card Play.
if (! MB IsMultiBootChild())
{
0S Panic ("not found Multiboot child flag!\n");
}

4.2.2 Getting Connection Information During Single-Card Play

The connection information used during Single-Card Play can be obtained using the

MB ReadMultiBootParentBssDesc function. If direct connection to the parent is to be made using
the WMBssDesc obtained, the key-sharing flag and other settings must be the same as set for the
parent at the time the information was obtained.

Code 4-29 Obtain Connection Information—Parent and Child Must Match

MB ReadMultiBootParentBssDesc(&gMBParentBssDesc,
WH_PARENT MAX SIZE, // Parent max transfer size
WH CHILD MAX SIZE, // Child max transfer size
0, // Key sharing
0) // Continuous transfer mode flag

4.2.3 Starting the Child Application

Data is shared with the parent as a wireless-communication child.

First, perform the initialization processes required for data sharing. These are the same as those
carried out for the parent: Use the GInitDataShare function to configure the initial settings of the
buffer to be used for data-sharing communications, and use the WH_Initialize function to initialize
the WM library and wireless communications.

Code 4-30 Initialize Data Sharing, the WM Library, and Wireless Communications
GInitDataShare () ;

//********************************

// Initialize wireless communications

(void)WH Initialize();
//********************************

NTR-06-0226-002-C 50 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

Next, try connecting to the parent with retries in the main loop (1). Once wireless communications
begin, the state moves to WH SYSSTATE DATASHARING (2) and data sharing begins.

Code 4-31 Connect Child to Parent, Change State, and Share Data

// Main loop
for (gFrame = 0 ; TRUE ; gFrame ++)
{
// Divide process based on communication state
switch(WH GetSystemState())
{
case WH SYSSTATE CONNECT FATIL:
{
// If WM StartConnect () has failed, then the WM internal
// state is illegal, so you need to reset WM to the IDLE
// state using M Reset.
WH Reset () ;
}
break;
case WH SYSSTATE IDLE:
{
static retry = 0;
enum {
MAX RETRY = 5
}i

if (retry < MAX RETRY)
{
ModeConnect () ; 1
retry++;
break;
}
// Display ERROR if cannot connect to parent in MAX RETRY
}
case WH_ SYSSTATE ERROR:
ModeError () ;
break;
case WH_SYSSTATE BUSY:
case WH_SYSSTATE SCANNING:
ModeWorking () ;
break;
case WH _SYSSTATE CONNECTED:
case WH SYSSTATE KEYSHARING:
case WH SYSSTATE DATASHARING: 2
{
BgPutString(8 , 1 , 0x2 , "Child mode");
GStepDataShare (gFrame);
GMain () ;
}

break;

The connection to the parent is made using the WH _ChildConnect function inside the ModeConnect
function. The arguments to this function include WH CONNECTMODE DS CHILD (used to indicate data
sharing) and gMBParentBssDesc (wireless communication connection information used by the
Single-Card Play feature).

© 2004-2006 Nintendo 51 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

When reconnecting after the download, if the application has some special information that needs to be
received from the parent, the parent will notify the child of that need via its game information beacon,
and the child can rescan to get that information. If this is not necessary, then you can perform the
reconnection by simply using gMBParentBssDesc. The ModeConnect function stores the codes for
both parent and child, telling them apart using the USE_ DIRECT CONNECT switch, so select whichever
one of these methods best suits the application at hand. (The default method is a simple reconnection.)

Code 4-32 Child Connection Details

static void ModeConnect (void)
{
#define USE_DIRECT CONNECT

// If directly connecting to parent without scanning again.
#ifdef USE DIRECT CONNECT

//********************************

(void)WH ChildConnect (WH CONNECTMODE DS CHILD, &gMBParentBssDesc, TRUE);
// WH_ChildConnect (WH CONNECTMODE MP CHILD, &gMBParentBssDesc, TRUE);
// WH_ChildConnect (WH CONNECTMODE KS CHILD, &gMBParentBssDesc, TRUE);

//********************************
#else
WH SetGgid (gMBParentBssDesc.gameInfo.ggid);
// If executing a rescan for the parent.
//********************************
(void) WH ChildConnectAuto (WH CONNECTMODE DS CHILD, gMBParentBssDesc.bssid,
gMBParentBssDesc.channel) ;
// WH_ChildConnect (WH_CONNECTMODE MP_CHILD, &gMBParentBssDesc, TRUE);
// WH_ChildConnect (WH_CONNECTMODE KS CHILD, &gMBParentBssDesc, TRUE);

//********************************
#endif

NTR-06-0226-002-C 52 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

5 The cloneboot Sample Program

The cloneboot sample program uses the features described in 3 The Clone Boot Feature to act as a
Single-Card Play parent, delivering copies of its own programs to child devices and data sharing with
download children.

This cloneboot sample program shows the procedure for how to the unify the existing programs for
both the parent and child from the multiboot-Model sample program to create a program that supports
the clone boot feature. For details on the multiboot-Model sample, see 4 The Sample Program
(Multiboot-Model).

This chapter describes the following changes to the program structure:

Unification of the program source directories

Changes to the ROM specification file

Changes to makefile

Additions to the build procedure for attaching authentication codes

o Dd -~

The chapter also describes the following changes made to the program source:

1. Changes to main entry names
2. Addition of new entries
3. Specification of a parent-only region
4. Revision of the binary registration process
© 2004-2006 Nintendo 53 NTR-06-0226-002-C

CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

5.1 Changes to the Program Structure

The following sections describe the changes that must be made to a program in order for it to be able
to support the clone boot feature.

5.1.1 Unification of the Program Source Directories

In the multiboot-Model sample, the child program is first created and then the parent program is
created with that child program included as a separate file, so the overall structure is composed of two
separate build projects. Programs that support clone boot can be unified into a single project because
the parent is determined at the time of execution.

Here, the src and include directories, and all contents, included inside the parent, child, and
common directories are moved to the project's root directory. At this time, the main. c files that exist in
both the parent program and the child program get renamed to parent.c and child.c. (A new
main.c is created in a later procedure.)

/common/include/common.h /include/common.h
disp.h disp.h
font.h font.h
gmain.h EEEE——— gmain.h

/common/src/common.c /src/common.c

disp.c disp.c
font.c
. font.c
gmain.c
gmain.c

/child/src/main.c > child.c

> parent.c

/parent/src/main.c ,_———””———””’

Fig. 5-1 Unifying the source directories

5.1.2 Changes to the ROM Specification File

The child program included in the file system in the multiboot-Model sample is no longer present in the
program that supports clone boot, so delete the following lines from the main. rsf file:

Delete this specification
HostRoot $ (MAKEROM ROMROOT)
Root /
File $(MAKEROM_ROMFILES)
NTR-06-0226-002-C 54 © 2004-2006 Nintendo

Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

5.1.3 Changes to the Makefile

In order to unify the parent program and the child program and change them into a program that
supports the clone boot feature, a number of changes and additions must be made to the parent
program's makefile. These are described in the sections below. The makefile used in the build for the
child program is no longer necessary.

5.1.31 Correcting Directory and Source Specifications
Steps are taken so the changes to the directory structure that were made in 5.1.1 Unifying the Program
Source Directories are correctly reflected in makefile. Also, the main source for both parent and child
with changed filenames get added to the project.

The child program's build is no longer necessary, so delete the sub-build

specifications.
SUBDIRS = child

Specify references to the new, unified directory.
SRCDIR = ./src
INCDIR ./include

Add the two main.c files with changed filenames (parent.c and child.c) to the
build source.
SRCS = main.c \
common. c \
disp.c \
font.c \
gmain.c

5.1.3.2 Specifying an LCF Template File for Clone Boot
To create a program that supports clone boot, you must secure a parent-only region, as described in

3.2.1 Placing Data in ROM. There is an LCF template file that has ROM placement configured for clone
boot. You need to explicitly specify this template:

$NitroSDK/include/nitro/specfiles/ARM9-TS-cloneboot-C.1lcf.template

Specify the link configuration template for clone boot.
LCFILE TEMPLATE = $(NITRO_SPECDIR)/ARMS-TS-cloneboot-C.lcf.template

© 2004-2006 Nintendo 55 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

5.1.3.3 Additions to Build Procedure to Attach Authentication Code

Programs that support the clone boot feature have a procedure for getting the authentication code that
differs from the usual procedure for Single-Card Play programs described in 3.2.2 Authentication Code
Attachment.

For programs that support the clone boot feature, use the emuchild tool to create a binary for getting
the signature code. The procedure for doing this is as follows:

For retail-version applications, specify the distributed libsyscal.a and the
corresponding libsyscall child.bin

LIBSYSCALL = ./ etc / libsyscall.a

LIBSYSCALL CHILD = ./ etc / libsyscall child.bin

Since already built, this is the procedure for creating the transfer-use
binary with the emuchild tool.

The created bin / sign.srl gets sent to the server that creates the
authentication code.

presign:
$ (EMUCHILD) \
bin / $(NITRO BUILDTYPE) / $(TARGET BIN) \
$ (LIBSYSCALL CHILD) \

bin / sign.srl

The procedure for including the obtained authentication code in the binary is
the same as normal for clone boot.
Here, the binary main with sign.srl is created with the authentication code as

bin / sign.sgn.

postsign:
$ (ATTACHSIGN) \
bin / $(NITRO BUILDTYPE) / $ (TARGET BIN) \

bin / sign.sgn \
main with sign.srl

This notation is added for the sake of convenience of the task. If you enter the notation directly on the
command line, you do not need to add it to the makefile.

NTR-06-0226-002-C 56 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

5.1.4 Changes to the Program Source

A number of corrections must be made to the program source in line with those changes to the overall
program structure made in the last section..

5.1.41 Change Main Entry Names
Since the original pair of main. c files (parent.c and child. c) both include the NitroMain
function, which is a main entry, their names must be changed appropriately.

child.c:

// Change name to be main entry for child.
// void NitroMain(void)

void ChildMain(void)

{

parent.c:

// Change name to be main entry for parent.
// void NitroMain (void)
void ParentMain(void)

{

Also, be sure to add the function prototype declarations to common . h using the changed names.

common.h

// Originally the parent's NitroMain function.
void ParentMain(void);

// Originally the child's NitroMain function.
void ChildMain(void);

© 2004-2006 Nintendo 57 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

5.1.4.2 Add New Main Entries
Add a new NitroMain function for calling the parent main entry and child main entry whose names

have been changed. In programs that support the clone boot feature, the main. c file is created as
outlined below so that processes called for the parent and processes called for the child can be
separated based on the value returned by the MB_IsMultiBootChild function.

main.c

#include <nitro.h>
#include "common.h"

void NitroMain(void)

{
if(! MB IsMultiBootChild())

{

ParentMain () ;

}

else

{
ChildMain () ;

}

/* The process does not reach this point */

In the example used here, the goal is to move from the multiboot-Model as easily as possible.
Processes that are the same for the parent and the child can be shared. However, you always need to
be careful that a card has not been plugged into the child device.

NTR-06-0226-002-C 58 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

51.4.3 Specify a Parent-Only Region

Part of the clone boot program code must be included in the parent-only ROM region, described in
section 3.2.1 Placing Data in ROM.

Since the parent-only part of the card is a secure region, like a ROM header, etc., it cannot be read
again from the parent after booting. For this reason, be careful not to reinitialize changeable data that
has been placed in this region (such as .bss section and . daya section data) when performing a
software reset using the OS_ResetSystem function.

When using the 0S_ResetSystem function, only the following C language items can be used as data
in the parent-only region:

Constants.
Functions that do not have any internal static variables.

Global variables accompanied by an explicit dynamic initialization process. (In C++ , an
object accompanied by a constructor.)

In addition, content to be included in the parent-only region should not only be "essential to the parent"
but must also "not be used at all by the child.”

There is no simple standard that can be applied at this point because the ability to judge these two
criteria depends on the overall design of the application regarding how one identifies the main version
of the software versus versions distributed for Single-Card Play. However, as a general rule, it is both
easy and effective to include state transitions to states where only the main part of the program can be
played in this parent-only region.

In the cloneboot sample, all functions that are included in parent . c are specified for placement in
the parent-only region. This region is specified using the NITRO-SDK include files parent begin.h
and parent end.h, as described below.

parent.c

/[==
// ~Function definitions

/| ==

// The parent-only region .parent section definitions start from here.

// Only functions that do not include static variables exist below this point.
#include <nitro/parent begin.h>

void ParentMain(void)

{

}

// The parent-only region .parent section definitions end here.
#include <nitro/parent_end.h>

// End of file.

© 2004-2006 Nintendo 59 NTR-06-0226-002-C
CONFIDENTIAL Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

Here, parent.c includes all Single-Card Play parent processes. The conditions for placement in the
parent-only region are satisfied: the content is essential to the parent and never used by the child.

Two representative examples of the many types of content that should not be specified for the parent-
only region are given below for your reference.

Since changing code so these functions are not called invalidates them, there is no reason to place
functions which do not need to be called in the parent-only region from a security standpoint.

/* Function gets placed in parent-only region (for debug output only) */
void no_use(void)
{
OS _Printf("called!\n");
}

void NitroMain(void)

{

/* If parent, this gets called. (No trouble if it is not called) */
if(!MB IsMultiBootChild()) no_use();
}

Next, one must absolutely avoid unintentionally placing a function that is used by both the parent and
the child in the parent-only region. Here, the distinction between the "main part of the program" and a
"delivered program" affects the quality of the game.

/* Function gets placed in parent-only region. (A screen presentation process
that the child is not expected to use) */
void draw special effect 1000(void)
{
/* Screen presentation process */

}

/* Game process shared by parent and child */
void UpdateGameFrame (void)
{
/* Unexpectedly, function gets called by both parent and child under certain
conditions */
if(score >= 1000) draw special effect 1000();
}

NTR-06-0226-002-C 60 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

Single-Card Play User Guide NITRO-SDK

5.1.4.3 Correct the Binary Registration Process

The process that registers binaries for the Multiboot library also needs to be changed in order to allow
cloneboot. This procedure is described in section 3.2.3 Clone Boot Binary Registration.

parent.c

const MBGameRegistry mbGamelList =

{
// If the MBP Start function gives NULL for the path name, the process is
// treated as a clone boot.

// To read details about the function's internal processes,
// SNitroSDK/build/demos/wireless shared/mbp/mbp.c.

NULL,

(ul6*)L"DataShareDemo", // Game name
(ule*)L"DataSharing demo (cloneboot)",

see

// Description of game content

© 2004-2006 Nintendo 61

NTR-06-0226-002-C
CONFIDENTIAL

Released: November 6, 2006

NITRO-SDK Single-Card Play User Guide

© 2004-2006 Nintendo

The contents of this document cannot be duplicated,
copied, reprinted, transferred, distributed or loaned in

whole or in part without the prior approval of Nintendo.

NTR-06-0226-002-C 62 © 2004-2006 Nintendo
Released: November 6, 2006 CONFIDENTIAL

	1 Introduction
	1.1 Overview
	1.2 Single-Card Play Startup Procedure
	1.3 Attaching an Authentication Code
	1.4 Using the System Call Library and ROM Header
	1.5 Transferable Binary Code Size
	1.6 Accessing the Backup Regions in Game Cards and Game Paks

	2 Single-Card Play Operations
	2.1 Process Flow on the Parent Side
	2.1.1 Preparations by the Parent
	2.1.1.1 Selecting a Wireless Communication Channel
	2.1.1.2 Setting the Parent's Parameters
	2.1.1.3 Configuring the Maximum Number of Children
	2.1.1.4 Registering the Child Binary Information

	2.1.2 Sending Data and Starting Children

	2.2 Reconnecting with the Parent
	2.3 Other Precautions
	2.3.1 Applications with Multiple Communication Modes
	2.3.2 About the IRQ Stack
	2.3.3 About the Single-Card Play Child Device Program Overlay
	2.3.4 About Single-Card Play Bugs
	2.3.4.1 Single-Card Play bug #1
	2.3.4.2 Single-Card Play bug #2
	2.3.4.3 Single-Card Play bug #3
	2.3.4.4 Single-Card Play bug #4
	2.3.4.5 Single-Card Play bug #5
	2.3.4.6 Single-Card Play bug #6

	3 The Clone Boot Feature
	3.1 About Clone Boot
	3.2 Clone Boot Procedure
	3.2.1 Placing Data in ROM
	3.2.2 Authentication Code Attachment
	3.2.3 Clone Boot Binary Registration

	4 The Sample Program (Multiboot-Model)
	4.1 Single-Card Play Parent
	4.1.1 Preparing for the Single-Card Play Feature
	4.1.2 The Single-Card Play Feature
	4.1.2.1 Initializing the Parent
	4.1.2.2 `The Start of Operations by the Parent
	4.1.2.3 Waiting for a Connection from the Child
	4.1.2.4 Sending the Program to the Child
	4.1.2.5 Restarting the Child

	4.1.3 Starting the Parent Application
	4.1.4 Parent States

	4.2 Single-Card Play Children
	4.2.1 Single-Card Play Child Determination
	4.2.2 Getting Connection Information During Single-Card Play
	4.2.3 Starting the Child Application

	5 The cloneboot Sample Program
	5.1 Changes to the Program Structure
	5.1.1 Unification of the Program Source Directories
	5.1.2 Changes to the ROM Specification File
	5.1.3 Changes to the Makefile
	5.1.3.1 Correcting Directory and Source Specifications
	5.1.3.2 Specifying an LCF Template File for Clone Boot
	5.1.3.3 Additions to Build Procedure to Attach Authentication Code

	5.1.4 Changes to the Program Source
	5.1.4.1 Change Main Entry Names
	5.1.4.2 Add New Main Entries
	5.1.4.3 Specify a Parent-Only Region
	5.1.4.3 Correct the Binary Registration Process

