NITRO-SDK
Using the Pattern Recognition Library

Version 1.0.2

The contents in this document are highly
confidential and should be handled accordingly.

© 2004-2006 Nintendo NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0134-002-A2 2 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

Table of Contents

1 Overview of the Pattern RECOGNITIONiiiiiiiiiie ettt ettt esn e nene s 5
(PR B [01 1o Yo [UT i o o O OO U ST P U PR OPPRPRPRRPT 5
1.2 The Library FUNCHONAIILY..........ueiiiiiii ettt ettt e e et e e s e e s sene e e e abreeenaes 5
1.3 What the Library Can and Cannot DO...........oooiiiiiiiiiiie ettt e e e e e e et e e e e e s s nreeeaeeeeennsaeeaaaeean 6

1.3.1 Applications that Are Possible With the APL.............oooi e e 6
1.3.2 Applications that Are Currently Possible Using Workarounds..............ccooueiiiniiieiiiiiee e 6
1.3.3 Applications that Are Not Currently POSSIDIEooiiiiiiiiiiiie e 7
2 LIDrary USAQE BaSICSccouuiiiiiiiii itttk e e et e e e e R e e e e b e n e e e s 8
2.1 DA SITUCIUIES ...ttt ettt s ettt et e e bt e et e e s b et et e e e bt e et e e sane e e beenane e e neenneean 8
Dt I B = 7= T (ol B - = T Y o1 O PRRRP PP 8
P I o (0 (014 oYY IS 1Y/ o1 J U 8
2.1.3 Prototype Database ENtrY TYPEccciuiiiiiiii ettt e e e e e e et e e e e e e e b a b e eeaeeseasntreeeaeeeeannnrrenees 9
P B S (o] (=l D= = T Y/ o 1= S O O PRSP PP PPPRR I 10
2.1.5 Recognition Algorithm-Dependent Data TYPESccceiiiiiiiiiee ettt e e e et a e e s e e sanreeeas 11
2.2 LIDrary USage EXAmMPIES s 12

Y £ 1 (o T LIS Yo uil g o I =t 4 =TSP UPRUPTN 16

3.1 ReSaMPIING PArameELEISuviiiiiiiiiiiiiie ettt e e e e ettt e e e e e e e e e e e e e e e et b —aeeaaeeeaaabrrreaaeeeaanararaaaaaaan 16
3.1.1 PRC_RESAMPLE_METHOD _NONEottt ettt sttt e bbb nene e 16
3.1.2 PRC_RESAMPLE_METHOD_DISTANGCEooiiiiiiiiiiit ettt ettt ettt bt e be e sbeesneeen 16
3.1.3 PRC_RESAMPLE_METHOD _ANGLEcotiiiiiii ittt 16
3.1.4 PRC_RESAMPLE_METHOD_RECURSIVEcoiiiiiiiiiieit ettt ettt 17

3.2 Recognition AIGOMIMS ...t e e e e e e e e e e e e e e e e et b —— e e e e e e e aa b rraeaaeeeaaanraraeaaaaan 18
3.2.1 The "Light" AIGOTItM ..ttt ettt et eae e bt et e eetennee 19
3.2.2 The "Standard” AlGOITIMooi e e et e e e e st e st e 20
3.2.3 The "FiNe" AlGOIITNIM ... s 20
3.2.4 The "Superfine” AlGOITNIMot e et nn e e et e e saane e e e 21

L 4 T¢1 =T oo I o F T TSP PPRPPPUPRR 23
o B L= L0 o (o A=Y 11 oo L PSPPSR 23
R o O TSSO OUPTRN 23

F Y o] 1T g o b OO PP OP PO PPPR PP 25
LV B B 1=11 1 To L T T P PO T T T TSSOSO U TR P R PUPPOPPPN 25

A1l CharacCterRECOGNITIONTT iiiiiiieiiiiiiieitie e e e e st e e e e e e e setbeeeeeaeeesaasaeaeeeaeeaeassssraeeaaaseaasssbaeeeaesessnssssaseaeeessanses 25
A1.2 CharacCterRECOGNITIONT2 ¢ttt ittt e e ettt e e e e e ettt et eaaeeaaaaaeeeeeaaaaaaannseeeeaaaeaaannsaeeeaaaeaeaansasneaaaeaaaanne 25
© 2004-2005 Nintendo 3 NTR-06-0134-002-A2

CONFIDENTIAL Released: February 6, 2006

NITRO-SDK

Using the Pattern Recognition API

Revision History

Version

Revision Date

Description

1.0.2

2/18/2005

Created cover and Revision History page.

NTR-06-0134-002-A2

Released: February 6, 2006

© 2004-2006 Nintendo
CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

1 Overview of the Pattern Recognition

1.1

Introduction

1.2

NitroSDK includes a pattern recognition library (PRC*) that provides rudimentary pattern recognition
functionality. In this document, we will cover the basic usage of the pattern recognition library, the
characteristics of the various recognition algorithms, and guidelines for tuning your application.

The pattern recognition library was designed to facilitate the use of the touch panel as an input device.
If you need full-blown character recognition, including kaniji, you should consider purchasing a third-
party character-recognition middleware product.

The Library Functionality

The functionality that is provided by the pattern recognition library is fairly elementary.

You must first prepare a list of pattern prototypes. Each entry in the prototype list contains a code
number, a stroke count, and the coordinates of the vertices in the segments that make up each stroke.

The application program first creates the prototype database from the prototype (or prototype pattern)
list. Then, it creates an array of input coordinates based on the touch panel input. When the application
program begins the recognition process, it passes the input stroke data and the prototype database to
the pattern recognition library.

The pattern recognition library performs matching and returns the prototype database entry that has
the closest match. Finally, the application program reads the code number of the entry and uses it as

Application \ / Pad User \

Prototype Input stroke data <
! Touch pad input
pattern list s T
pattern
database
A A ﬂl

the recognition result.

Developer

Recognition
result Input pattern

Pattern » Input pattern i
recognition API initialization API

Prototype pattern
> database
initialization API

\ / \ NitroSDK

N

|

© 2004-2005 Nintendo 5 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

1.3 What the Library Can and Cannot Do

Below are some examples of what the pattern recognition library can and cannot do.

1.3.1 Applications that Are Possible with the API

« A player writes a magic symbol on the touch panel screen during a battle, which causes a spell
to take effect in the turn after he or she finishes writing the symbol.
This is a fairly easy to implement, as it is limited to a single stroke and it is clear that the recognition
process should begin after the pen is lifted from the screen. The library returns both the recognition
result and the degree of similarity. The application can be configured so that it will permit the spell to
take effect only if there is a close match.

« A name is entered one letter at a time in a designated input area of the touch panel.
The pattern recognition library can recognize alphabetic characters. It can also handle patterns that
have multiple strokes.

« When the player writes a map symbol on a map that is displayed on the touch panel, a building
appears in the location where the symbol was written.
If a bounding box is defined before the touch panel coordinate data is passed to the pattern recognition
library, the recognition results can be displayed in the input location.

1.3.2 Applications that Are Currently Possible Using Workarounds

* Recognizing patterns from multiple, continuous stroke input
The recognition algorithms that are currently implemented require that the player write each line in the
correct order. In other words, the library must know precisely the stroke that initiates recognition and
the stroke that completes it. If extraneous strokes are input at any point in the process, recognition
becomes impossible. If strokes at the beginning or the end are omitted, the pattern recognition library
will return the entry that most closely matches the input. You can design your application to handle this
result accordingly. However, if you design you application to avoid recalculation of preprocess, the
restrictions will be applied to the recognition algorithm that can be used. (In particular, you must either
fix the input size or use "Light," which does not require normalization of the size.)

* Performing a calculation based on a formula written on the screen
If the recognition of a series of drawn patterns is attempted simultaneously, the library may have
trouble determining where each pattern begins and ends. This is essentially the problem that is
described in the paragraph above. If you limit your application to horizontally written formulas, the
library may be able to discern individual symbols by determining where their bounding boxes overlap,
but this will require a certain amount of creative coding.
In trying to recognize a horizontal string of hiragana characters, the library may have trouble
distinguishing “iZ” from “1 Z”. However, this type of application could be implemented by using a
combination of dynamic programming-based optimal splitting calculations and heuristics. We have not
made any decisions regarding the implementation of series pattern recognition in future versions of the
SDK.

NTR-06-0134-002-A2 6 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

« Reading commands from specific stroke input, similar to the way that mouse gestures can be
used for PC input
You can create an interface that interprets a stroke toward the left as a request to return to the previous
screen and a stroke toward the right as a request to advance to the next screen. A hook-shaped
pattern of pen movement (upward and to the left) might indicate that the screen should be closed. You
can use the pattern recognition library to implement this, but if you need only recognition of up/down
and left/right strokes, it may be simpler to code this yourself, or use only the resampling functionality of
the library to remove noise from pen strokes. (See PRC_ResampleStrokes_*.) The choice will
depend on the complexity of your application.

« Moving an army based on the rotation angle of a symbol written on a map
All of the recognition algorithms that are currently implemented are sensitive to a pattern’s orientation.
The recognition algorithms will recognize a pattern that is written at a slight angle, but they cannot
discern patterns that are written sideways or upside down. One way of permitting the rotation of a
pattern is to rotate the pattern in sixteen different directions and attempt a match for each pattern
orientation. The rotated pattern that best matches the pattern in the database is selected. Note that this
process will increase the recognition calculation time by sixteen times since sixteen match attempts are
performed rather than a single match attempt which would be the case in a simple one-to-one pattern
match attempt. This process is best implemented on the application side.

1.3.3 Applications that Are Not Currently Possible

« Asking the player to draw a Pokémon character and recognizing which one it is
All of the currently implemented recognition algorithms use stroke information to find a match. (This
method is called “online character recognition.”) They can only recognize patterns that are written in
the correct stroke order. To improve the recognition of normal characters, you can store characters that
are written with commonly made stroke order mistakes in the database of prototype patterns. However,
the library cannot match line drawings that have no constraints on stroke order.
It is possible to solve this problem by using a recognition algorithm that is based on bitmap images.
(This is known as “offline character recognition.”) But the degree of matching accuracy will suffer. We
have made no decision regarding the implementation of this algorithm in the SDK.

« Recognition of cursive writing
The recognition algorithms that are currently implemented rely on clear breaks between strokes. The
recognition algorithms cannot recognize characters that are written without breaks, or have strokes that
are not solid. If there are not many entries in the prototype database, in the case of cursive characters,
you can store all likely combinations of characters as separate patterns in the prototype database, but
this approach may cause the number of entries to grow beyond a manageable level. Thus, an
algorithm-based recognition approach is more practical.
We have made no decision regarding the implementation of a recognition algorithm that can handle
joined characters and broken strokes in the SDK.

© 2004-2005 Nintendo 7 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

2 Library Usage Basics

2.1 Data Structures

First, we will examine the data structures that are used with the pattern recognition library.

2.1.1 Basic Data Types

#include <nitro/prc/types.h>

typedef struct PRCPoint
{

sl6 B
sl6 V4
} PRCPoint;

typedef struct PRCBoundingBox
{
s16 x1, yl; // Upper-left coordinate of bounding box
s16 %2, y2; // Lower-right coordinate of bounding box
} PRCBoundingBox;

PRCPoint is a structure that expresses screen coordinates and PRCBoundingBox is a structure that
defines the bounding box. Note that the origin (0,0) is at the upper left and the Y-axis runs downward.

2.1.2 Prototype List Type

typedef struct PRCPrototypelist

{
const PRCPrototypeEntry *entries;

int entrySize;
const PRCPoint *pointArray;
int pointArraySize;
int normalizeSize;

} PRCPrototypelist;

This data type is used for the list of prototype patterns.

Prototype list comprises an array of PRCPrototypeEntry (which is explained in the next paragraph),
its size, an array of PRCPoint (used to store the vertex data in PRCPrototypeEntry), and its size.

The member normalizeSize defines the acceptable range of vertex coordinates. In the prototype list,
all vertex coordinates must be within the bounding box that is defined by (0, 0) and (normalizeSize -
1, normalizeSize -1). Before it is used for actual recognition, this data is converted into a form that
can be used by the prototype database.

NTR-06-0134-002-A2 8 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

2.1.3 Prototype Database Entry Type

typedef struct PRCPrototypeEntry
{

BOOL enabled;
u32 kind;

ul6 code;

fx16 correction;
void* data;

int pointIndex;
ulo6 pointCount;
ulo6 strokeCount;

} PRCPrototypeEntry;

This is the data type that is used for entries in the prototype database. Of its members, code and data
can be freely used by the application as values that are linked to the entry. The member code is of
type ul6 and can have a value of up to 65,535.

The members enabled and kind are referenced when the recognition function searches the
prototype database for matches. Entries that have enabled setto FALSE are not considered for
matching. The member kind uses a bit field to specify the type of pattern.

Example 1.

kind = 1 — Numeral

kind = 2 — Alphabetic character
kind = 4 — Half-size symbol
kind = 8 — Hiragana

Example 2.

kind = 1 — Level 1 spell
kind = 2 — Level 2 spell
kind = 4 — Level 3 spell

For example, if kindMask is set to 3 when the recognition function is called, matching will be limited to
English letters/numerals or Level 1 and 2 spells.

The correction value is used in the calculation of similarity between the input pattern and the entry.
Itis of type £x16 and a value of 4,096 corresponds to 1.0. If set to 0, there is no correction. A negative
value results in a low level of correction and a positive value results in a high level. If the correction
value is set to 4,096, the post-correction similarity will always be 1.0 (the maximum). The following
formula is used. (score is of type £x32.)

score = FX32 Mul (originalScore, FX32 ONE - correction) + correction
After processing occurs, a score that is below 0.0 becomes 0.0 and a score that is above 1.0 becomes

1.0. This figure is the final measure of similarity.

The members pointIndex, pointCount, and strokeCount specify the actual pattern that is
defined by this entry. pointIndex is a subscript that specifies the location of this pattern in the pattern
list's PRCPrototypelist.pointArray.

An example of a prototype list data structure is shown on the next page.

© 2004-2005 Nintendo 9 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

PRCPrototypeList. PRCPrototypeList.
(0,0) pointArray entries
! H (12,12) —
e o (52,12) 01(12,12) _entries[0]
(28, 0) 1/(52,12) pointIndex 0
(32,60) 2l(-1,-1) w—__| pointCount 14
| (40,24) 328, 0) strokeCount 3
e II*(24,63) 32. 60
] (8,52) 432, 60)
(40,32) 5|(=1,-1)
(44,32) 6/(40,24)
] (56,44) 724, 63) entries[1]
| ‘ (48,63) 8l 8,52) | pointIndex 14
(63,63) 9(40,32) | pointCount 6
I 10((44,32) strokeCount 2
[11/(56,44)
12|(48,63)

- 13(=1,-1) |

Elgéég 14[(0,12)

- g |
(63,48) £

17/(52,16)

18|(63,48)

19/(=1,-1)

In this example, PRCPrototypelList. normalizeSize is 64.

The information that is contained in members pointCount and strokeCount of
PRCPrototypeEntry is redundant, but you should include both members in your prototype database
to speed up preprocessing.

2.1.4 Stroke Data Type

typedef struct PRCStrokes
{

PRCPoint *points;
int size;
u32 capacity;

} PRCStrokes;

This structure is used mainly to manage the raw input coordinate data from the touch panel. capacity
is the maximum number of points that can be stored and size is the current number.

The following operations are defined in the library.

NTR-06-0134-002-A2 10 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

PRCStrokes strokes;
PRCPoint points[1024];

// Initializes the strokes structure

PRC InitStrokes (&strokes, points, 1024);

// Adds a set of input coordinates (x, y) from the touch panel
PRC AppendPoint (&strokes, x, vy);

// Records the fact that the pen has been lifted from the screen
PRC AppendPenUpMarker (&strokes) ;

// Checks if the structure has reached its capacity

PRC IsFull (&strokes);

// Clears the structure

PRC Clear (&strokes);

// Checks if the structure is empty

PRC IsEmpty (&strokes);

PRCStrokes anotherStrokes;
PRCPoint anotherPoints[2048];
PRC InitStrokes (&anotherStrokes, anotherPoints, 2048);

// Makes a deep copy
PRC CopyStrokes (&strokes, &anotherStrokes);

int 1i;
for (i1i=0; i<strokes.size; i++)
{
if (!PRC IsPenUpMarker (&strokes.points[i]))
{
// Ordinary processing
}
else
{
// The pen was lifted at this point
}
}

2.1.5 Recognition Algorithm-Dependent Data Types

¢ PRCPrototypeDB
PRCPrototypeList stores only the bare minimum of prototype data. To speed up the recognition
process, you must preprocess the vertex data in the prototype list. Use PRC_ InitPrototypeDB to
preprocess the PRCPrototypelList (the prototype list) and produce PRCPrototypeDB, which is the
actual prototype database that holds the data that is passed to the recognition functions.
Its internal structure depends on the recognition algorithm that is used, but all of the recognition
algorithms that are currently implemented use a common data structure. The items that are added to
the initial data are: indices to the starting point of each stroke, the length of each line segment, the
length of each stroke, the total length of the pattern, the ratio of line segment to stroke length for each
line segment, the ratio of stroke to pattern length for each stroke, the angle of each line segment, the
bounding box for each stroke, and the bounding box for the entire pattern.

¢ PRCInputPattern
The input coordinate data from the touch panel that is stored in PRCStrokes must also be
preprocessed before it is passed to the recognition functions. Touch panel input is often sampled once
per frame, which results in too many points for the recognition algorithm to use. You must resample the

© 2004-2005 Nintendo 1 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

input pattern to extract the points that best define its features. To create the PRCInputPattern
structure, the PRC_InitInputPattern function resamples the raw input stroke data and performs
additional calculations that are similar to those calculations that are performed by

PRC_ InitPrototypeDB.

2.2 Library Usage Examples

The following pseudocode excerpts are examples of library usage.

#include <nitro/prc.h>

#define RAW POINT MAX 1024 // How many raw input points to save
#define POINT MAX 40 // Maximum number of points to accept after resampling
#define STROKE MAX 4 // Maximum number of input strokes to accept

You cannot call nitro.h from the PRC* header file. To use the pattern recognition library, you must
explicitly place nitro/prc.h in an include statement. Here, instead of placing nitro/prc.h in an include
statement, we can select the default pattern recognition algorithm by specifying
nitro/prc/algo_*.h. For details, see the sections on the various recognition algorithms below.

To use the pattern recognition library, a number of parameters must be defined as macro constants.

The value that is specified by RAW _POINT MAX is the maximum number of input points that can be
accepted by the touch panel. Because the pattern recognition library processes an array of an entire
series of points as a single target, the application must be able to store all of the input points. If the
touch panel accepts 60 points each second, and a single character requires at most 10 seconds to
input, the application will need to store an array of 600 points.

During preprocessing, the raw input data that is handed off by the application is stripped down to its
characteristic points. This is called resampling or characteristic point extraction. POINT MAX and
STROKE MAX define the maximum number of points and strokes that are permitted after
preprocessing occurs. If POINT MAX is set to a value that is too low, a long and complex set of input
data for a single character can be truncated in the middle. The proper setting for this constant will
depend on the complexity of the input pattern that you require and on the number of points you want to
preserve after preprocessing (PRC_InitInputPattern*).

extern PRCPrototypelist Prototypelist;

// Allocates a work region for extracting the prototype database
PRCPrototypeDB protoDB;
void* dictWork;
dictWork =
0S Alloc (PRC GetPrototypeDBBufferSize (&Prototypelist)) ;
PRC InitPrototypeDB (&protoDB, dictWork, &Prototypelist);

Think of PrototypeList as the prototype list data that is defined in a separate file.

Use PRC InitPrototypeDB to create PRCPrototypeDB (the prototype database) from
PRCPrototypeList (the prototype list). You must allocate sufficient memory for PRCPrototypeDB
based on the size of the prototype database. Allocate a region of memory based on the size that is
obtained by PRC GetPrototypeDBBufferSize and pass it during initialization.

PRC_InitPrototypeDB will count the total number of points and strokes in the prototype set, and
then perform calculations that will speed up recognition processing.

NTR-06-0134-002-A2 12 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

These calculations include the creation of an index of all strokes that determines the length and angle
of each segment and other data that are required by the recognition algorithms. This information is
stored in PRCPrototypeDB.

PRC_InitPrototypeDB has a sibling function called PRC InitPrototypeDBEx, Which allows you
to specify which prototypes to use based on a bit field. When using PRC_InitPrototypeDBEx, be
sure to calculate the size of the work area by providing PRC_GetPrototypeDBBufferSizeEx With
the same arguments that are used in PRC_InitPrototypeDBEx.

// Allocate a work area for other processing
void* inputWork;
inputWork =
0OS Alloc (PRC GetInputPatternBufferSize (POINT MAX, STROKE MAX)) ;
void* recogWork;
recogWork = OS Alloc (
PRC GetRecognitionBufferSize (POINT MAX, STROKE MAX, &protoDB)
)7
The code above allocates the work area that is needed for the recognition process. To pool multiple
input patterns in parallel, you need to allocate one work area for extracting input pattern and another
work area for comparison processing. You do not need to allocate new memory for each recognition

process if you specify the largest values that you will need at the outset.

// Initialize the input stroke data

PRCPoint points[RAW POINT MAX];

PRCStrokes strokes;

PRC InitStrokes (&strokes, points, RAW POINT MAX) ;

The code above initializes the structure that holds the raw data input from the touch panel.

while (1)
{
This loop is entered each frame.

int x, y;
if (!PRC IsFull (&strokes))

{
if (there is (x,y) input from the touch panel)

{
// Append point (x,y) to the stroke
PRC AppendPoint (&strokes, x, y);

}

else if (there was input in the previous frame)

{
// Insert a “pen up” marker
PRC AppendPenUpMarker (&strokes) ;

}
The code above adds the input from the touch panel to the Prcstrokes structure. If the pen is lifted

from the touch panel, you must call PRC_AppendPenUpMarker once (but no more than once) to
append a “pen up” marker.

© 2004-2005 Nintendo 13 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

if (there is a request for recognition)

{
// Start recognition using the current contents of strokes
// First, set the resampling process parameters
PRCInputPatternParam inputParam;
inputParam.normalizeSize = protoDB.normalizeSize;
inputParam.resampleMethod = PRC RESAMPLE METHOD RECURSIVE;
inputParam.resampleThreshold = 3;

Here, we set the parameters that are required for the conversion of the raw stroke data to the
PRCInputPattern type data thatis used for the recognition process. If normalizeSize is settoa
non-zero value, the bounding box of the input stroke will be normalized (expanded or contracted) to
match the specified size. All of the recognition algorithms, except the Light algorithm, assume that the
prototype database and the input pattern are the same size. Be sure to use normalization so that the
input size will match the prototype database size.

resampleMethod and resampleThreshold are used to set both the algorithm and the parameters
that are used to extract the characteristic points from the raw input data. For details, see the section
below on resampling algorithms.

// Use resampling on the raw input points to reduce the number of

datapoints;

// Perform preprocessing to determine additional

// information such as length and create inputPattern

PRCInputPattern inputPattern;

PRC InitInputPatternEx (&inputPattern, inputWork, &strokes,
POINT MAX, STROKE MAX, &inputParam);

Using the work area that was allocated previously, process the raw input points and create a
PRCInputPattern type input pattern data.

Based on the parameters from PRCInputPatternParam, PRC_ InitInputPattern performs
normalization and resampling to extract the characteristic points. It then calculates segment lengths
and angles from these points and stores this information in the PRCInputPattern structure.

// Perform recognition by comparing inputPattern with entries

// in protoDB

PRCPrototypeEntry* result;

fx32 score;

score = PRC GetRecognizedEntry (&result, recogWork,
&inputPattern, &protoDB) ;

This method completes the preparation for the recognition process. Next, we need to compare the
input pattern data (PRCInputPattern) with the prototype database (PRCPrototypeDB) and find
the database entry that most closely matches the input pattern data. The level of similarity is a type
f£x32 with a range from 0 to 1. (If converted to an int, it would range from 0 to 4,096.)

The processing could take several tens of milliseconds or more, depending on the algorithm you select
and the size of the prototype database. Therefore, we recommend using a separate thread for this
processing. For an implementation example, see the demo (prc/characterRecognition-1).

The sibling function PRC GetRecognizedEntryEx allows you to use a bit field to specify the types of
patterns to recognize. PRC_GetRecognizedEntries returns the N entries that are the best matches.
See the reference manual for details.

NTR-06-0134-002-A2 14 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

// Output the result
0S_Printf ("code: %d\n", PRC GetEntryCode (result));

As a recognition result, the function returns a pointer to a PRCPrototypeEntry in
PRCPrototypeList. You can use PRC_GetEntryCode and PRC_GetEntryData to obtain the code
and user data of the entry.

}

Processes that wait for V-Sync

}

© 2004-2005 Nintendo 15 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

3 Various Setting Entries

3.1 Resampling Parameters

You can choose which of several algorithms to use for the resampling process that is conducted by
PRC InitInputPattern.

3.11 PRC_RESAMPLE_METHOD_NONE

No resampling is performed. This method removes only points that duplicate the immediately
preceding coordinates. This method can be used when it is necessary to reprocess stroke data that
has already been resampled.

3.1.2 PRC_RESAMPLE_METHOD_DISTANCE

This method resamples based on the distance traveled.

This method captures the starting and ending points of each stroke, and captures a point each time a
stroke travels more than a predefined cumulative distance from the starting point. The distance that is
measured is not the Euclidean distance, but the change in the X position plus the change in the Y
position, or the “city block” or “Manhattan” distance. This distance calculation is less precise than with
Euclidean distance, but is faster to process.

The resampleThreshold specifies the cumulative distance that the stroke has to travel before
capturing the next point.

This is the fastest method to process, but strokes that are drawn slowly with a shaky pen may cause
the threshold to be reached quickly, resulting in too many points being captured. Also, this method
tends not to capture the best characteristic points.

3.1.3 PRC_RESAMPLE_METHOD_ANGLE

This method performs sampling based on the curvature of each stroke.

First, the starting and ending points of each stroke are captured. Then, the angle of the segment that is
connected to the starting point is stored. The connecting segments are followed in succession until the
angle difference reaches the threshold angle. The point immediately before the point where the
threshold is exceeded is captured as the second point in the series. The angle of the segment that
connects the two immediately preceding points is compared to the angle of the segment that connects
the preceding point with the current point. If the difference is greater than the threshold angle, then the
current point is captured. This process is repeated.

FX Atan2Idx, which uses an internal table lookup, performs the angle calculations and this speeds
up the process. FX_ Atan2Idx is not highly accurate, but it is sufficient for this purpose.

NTR-06-0134-002-A2 16 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

The resampleThreshold specifies the threshold angle. The range of values is from 0 to 65,535, with
1.0 representing 1/65,535 of a full circle.

Each point that is captured must have a city block distance from the previous point that is greater than
that specified by PRC RESAMPLE ANGLE LENGTH THRESHOLD. This is because valid angles cannot
be measured at very short distances. Currently, PRC_RESAMPLE ANGLE LENGTH THRESHOLD is
fixed at 6. The distance calculations use the raw, non—normalized coordinates.

Even if you set the threshold high to reduce the number of resampled points, this method can still
accurately capture points in small loops and extract good characteristic points. Conversely, if the

threshold is set too low, slight stroke bends will be picked up. The calculation time is linear to the

number of input points.

3.1.4 PRC_RESAMPLE_METHOD_RECURSIVE

The method processes the input recursively and captures the most characteristic points.

First, the starting and ending points are captured and defined as points A and B. All points between
points A and B are tested and the point that is the farthest on a straight line that is drawn between
points A and B is defined as point C. If the distance is more than the resampleThreshold, Cis
captured. Otherwise, the line from point A to point B is retained. If C is captured, the process is
reiterated for points A and C and points C and B.

Ultimately, this process will completely capture all the original raw input stroke data in the region that is
bounded by the resampleThreshold distance on both sides of the resulting line segments. However,
this method will not capture all the points if the number of resampling points reaches the upper limit
during the process.

I = EEEEE
v T T a7 T
v N T N 7
< '6 *5I__ |
1| _— —
T T .n
2o k
- 4 T »H
T 1 ’_
N N 7 a1 I 1]
\' 17
1 am. I i H
S '.'PH#E" &lh

The original data is contained in the
region bounded by the
resamplingThreshold on both sides of
the resulting line sesments.

Raw input data Resampl ing

By setting the resampleThreshold to a value that is smaller than the smallest loop you expect in the
input pattern, you should be able to generate a relatively compact set of resampling data without
missing any loops. If your resampling results are compact, the recognition process will be faster.

The calculation time for the resampling process itself is, in the worst case, proportional to the product
of the number of input points and the number of resulting resampling points. With typical input data,
such as hiragana characters, this method will take slightly longer than
PRC_RESAMPLE METHOD ANGLE. This is based on the assumption that the parameters have been set
to have both methods generate the same number of resampled points.

© 2004-2005 Nintendo 17 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

3.2

Recognition Algorithms

Currently, four pattern recognition algorithms have been implemented.

The first header file placed in an include statement is selected for the recognition algorithm.

#include <nitro/prc/algo light.h> — recognition algorithm "Light"
#include <nitro/prc/algo standard.h> — recognition algorithm "Standard"
#include <nitro/prc/algo fine.h> — recognition algorithm "Fine"
#include <nitro/prc/algo superfine.h>— recognition algorithm "Superfine"

If you describe #include <nitro/prc.h>, all four of the above header files will be loaded. Because
algo_standard.h is loaded first, "Standard" is the default recognition algorithm.

The following library functions and types vary depending on the recognition algorithm.

PRCPrototypeDB
PRCInputPattern
PRCPrototypeDBParam
PRCInputPatternParam
PRCRecognizeParam

PRC Init

PRC GetPrototypeDBBufferSize*
PRC InitPrototypeDB*

PRC GetInputPatternBufferSize
PRC InitInputPattern*

PRC GetInputPatternStrokes
PRC GetRecognitionBufferSize*
PRC GetRecognizedEntry*

Each recognition algorithm uses the identifiers above with the name of the algorithm appended to it as
a suffix. The above identifiers will be treated as aliases of those in the first header file that is loaded. To
use the recognition algorithms that were placed in an include statement after the first header, you must
explicitly use types and function names with the suffix <algorithm name>. (For example,
PRCRecognizeParam Light, PRC InitPrototypeDBEx Fine.)

However, of these functions and types in the current implementation, the following library functions are
common to all the recognition algorithms.

PRCPrototypeDB
PRCInputPattern
PRCPrototypeDBParam
PRCInputPatternParam

PRC Tnit

PRC GetPrototypeDBBufferSize*
PRC InitPrototypeDB*

PRC GetInputPatternBufferSize
PRC InitInputPattern*

PRC GetInputPatternStrokes

These functions and types use the suffix Common, which is referenced by all the algorithms. (For
example: PRCPrototypeDB Common.)

NTR-06-0134-002-A2 18 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

Apart from algorithms that are related to PRC_GetRecognizedEntry*, which performs the actual
recognition, currently; all other algorithms use the same libraries. The

prc/characterRecognition-2 demo exploits this feature to access a shared prototype database
and shared input pattern data by using all of the recognition algorithms simultaneously. Refer to the
demo as an example of how to use multiple recognition algorithms simultaneously.

Below is an overview of each algorithm.

In the following discussion, we often use vague terms because the accuracy and calculation time for
each algorithm depends greatly on a number of factors. Statements about processing speed are for

reference purposes only. Select your recognition algorithm and set your parameters only after thorough
testing with the data that is used with your application.

3.21 The "Light" Algorithm

The "Light" algorithm is the most lightweight recognition algorithm. It is ideal for situations where the

patterns in the prototype database are distinct (making recognition errors unlikely) or when you want to
recognize patterns that consist of only a single stroke.

The Light algorithm compares only angles. The strokes of the input pattern and prototype are
expanded or contracted so that the total length of each is one. Then, the integral of the difference in
angles is taken, and the degree of similarity is computed and returned. The values are adjusted so that

a similarity of 0.0 is returned if all angles differ by 180° and a similarity of 1.0 is returned if all angles
that match perfectly.

P -~ The total area of the
N grey region is the

B
y difference between J
) ‘\‘ the two patterns

\ e The angle difference is
) \ T adjusted so that it has an
/ | RN absolute value of less than pi.
[/ g ~
\v‘ // N / lI;’
® ® . > ° ° *—0 / ®
V 1@ ® ® < g ® ® ® _)
) e Because the Y axis faces
: ____________ - down, the angle is calculated

from the positive side of the X
axis in a clockwise direction
The input pattern is shown on the upper left and the
sample pattern is shown on the lower left. The graph above
shows the segments of both patterns straightened out and

set to a length of 1. The angles for each segment are
plotted in the vertical axis.

~

N

The preceding graph shows the angle difference in a graphic form.

© 2004-2005 Nintendo 19
CONFIDENTIAL

NTR-06-0134-002-A2
Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

When comparing patterns with multiple strokes, the Light algorithm performs the same calculations on
each stroke, and then computes the weighted average of all the similarity scores, weighting each
stroke in the prototype based on its length relative to the entire pattern. However, the Light algorithm
does not examine the relative positions of each stroke and thus it has the inherent drawback of not
being able to distinguish "T" from "+". This algorithm was designed mainly to recognize single stroke
patterns at the fastest speed possible.

The calculation time will be proportional to the product of the number of points in the input pattern and
the number of entries in the prototype database.

3.2.2 The "Standard" Algorithm

The Standard Algorithm was designed as a standard recognition algorithm. It is ideal for situations that
require the player to enter a pattern, such as a magic symbol, correctly.

The Standard algorithm compares both angles and positions. Like the Light algorithm, it adjusts the
length of the input pattern and the prototype so that they are both 1, and takes the integral value of the
angle differences multiplied by the position differences. Distances are measured with the “city block”
method, and approximated to the closest sampling point coordinates, rather than taking the difference
between the exact points. Like the Light algorithm, the Standard algorithm adjusts the similarity values
so that 0.0 indicates a lack of similarity and 1.0 indicates a perfect match, and returns it as a score.

Because the Standard algorithm looks at positioning, it can easily recognize patterns with multiple
strokes. In determining the similarity score, after performing the above calculations on each stroke, the
Standard algorithm computes the weighted average of similarity scores, giving each stroke in both the
database entry and the input pattern a weight that is proportional to its length relative to the entire
pattern.

The calculation time for the Standard algorithm is two or three times longer than the calculation time
that is required for the Light algorithm. Even if you set up a recognition thread that runs when the main
thread is idle, the result should come back in an acceptable period of time.

3.2.3 The "Fine" Algorithm

The "Fine" algorithm was designed as an algorithm that can handle even distorted characters. It would
be useful in situations where the application needs to salvage the character input data such as the
distorted input from the user.

In addition to comparing both angles and positions, the Fine algorithm performs elastic matching. It
does not match the input and prototypes by changing their size, but rather it expands and contracts the
individual strokes and looks for matches that result in a high evaluation score.

NTR-06-0134-002-A2 20 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

-————
-

——— — — —

7t
1l
|
\
\
¥
\
\
\
\
V4

{
L'
7;
NI/

—_—

The preceding is an example of elastic matching. Vertices in the input pattern (left side) are compared
with vertices in the prototype database entry (right side). You can see that more than once vertices are
sometimes mapped to a single vertex. By searching for the combinations that produce the highest
score while permitting more than one points to be mapped to a single point, the Fine algorithm can
easily handle distortions, such as those that are shown in the figure, and generate a high score for a
“3” drawn so that the upper and lower sections are not the same size as the prototype. Elastic
matching is good at correctly interpreting distorted input.

To compute the score, the following formula is used on each matching vertex.

(normalized size X 2 - the city block distance) X (T - the difference

between the angles of the segments entering the vertex)

Then, an average of the vertices is taken and the result is distributed over the range of 0.0-1.0. The
vertices are matched in various ways to find the vertex that generates the highest score.

Elastic matching is performed using an algorithm that is based on Dynamic Programming (DP
Matching). It does not implement a beam search. Accordingly, the calculation time is proportional to the
number of points in the input pattern times the number of points in the prototype. In a typical
application, the Fine algorithm usually takes several times longer than the Standard algorithm.

3.24 The "Superfine" Algorithm

The "Superfine" algorithm is the recognition algorithm that requires the longest processing time among
the algorithms that are currently implemented. However, it is not always more accurate than the Fine
algorithm. Use the Superfine algorithm when you find that the Fine algorithm is not accurate enough.

Like the Fine algorithm, the Superfine algorithm uses elastic matching. The Fine algorithm takes the
evaluation values that are used by elastic matching and returns the values as the score, but Superfine
uses elastic matching to obtain information on which points should map to which. Elastic matching
determines the most likely vertex matches, and those vertices without a certain match are matched
with hypothetical points on the other pattern based on the lengths of the segments before and after the
vertex in question. The Superfine algorithm then computes a final score in the same manner as the
Fine algorithm.

Unlike the Fine algorithm, the Superfine algorithm uses the following formula for each point to compute
the final score.

© 2004-2005 Nintendo 21 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

(normalized size X 2 - the city block distance) X (cos of the difference
between the angles of the segments entering the vertex)

The Superfine algorithm then computes a weighted average of all the points based on the lengths of
the segments that are connected to each point relative to the entire pattern.

When finding vertex pairs using DP matching, the Superfine algorithm does not treat segment lengths
in the same way as the Fine algorithm. The angle score is computed using a cosine function.

~ =~ L/ \5‘

N
D

e
- -

In the graph above, the red points are hypothetical points that result from interpolation. In addition to
performing the operations that are used by the Fine algorithm, the Superfine algorithm must perform
frequent division to generate the interpolated points. The calculation time that is required by the
Superfine algorithm to generate the interpolated points is often several times longer than the
calculation time that is required by the Fine algorithm.

NTR-06-0134-002-A2 22

© 2004-2006 Nintendo
Released: February 6, 2006

CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

4 Tricks and Tips

4.1

Parameter Settings

4.2

The easiest way to learn about parameter adjustments is to change the parameters in the demo
(prc/characterRecognition-2) and watch the effect on memory usage, calculation time, and accuracy.
Because performance will vary greatly depending on the nature of the prototype database, you need to
make your parameter adjustments using data that is as close as possible to the prototype database
that you will use in your actual application. The instructions for the characterRecognition-2 demo
are in the Appendix at the end of this document.

If certain patterns are recognized too frequently, you can adjust their correction values in the database
to prevent this. However, you can easily end up making a large number of unnecessary minor
adjustments. You can use the same code value for several database entries. If you have patterns that
are not being recognized, it might be easier to add new prototypes to the database until you begin to
have matches for those patterns.

FAQ

Q. You can specify kindMask with both PRC InitPrototypeDB* and
PRC_GetRecognizedEntry*. Which should | use to select a certain type of pattern?

A. This depends on how often you want to change your selection criteria. Specifying with
PRC_InitPrototypeDB will reduce the memory that is required for extracting the prototype database,
but you will not be able to easily change the set of patterns you want to target.

Q. I want a lightweight algorithm that will recognize patterns with multiple strokes. Can the Light
algorithm be used for this purpose? | don’t need a high level of recognition accuracy, but the inability to
distinguish "p" from "b" is going to be a problem.

A. There is a way to use the Light algorithm for the recognition of patterns that have multiple strokes.
This is accomplished by not using PenUpMarker. Normally, when the pen is lifted, a
PRC_AppendPenUpMarker is used to show the stroke was completed, but if you omit this operation,
the pattern recognition library will treat a series of strokes as a single connected stroke. By populating
your prototype database with patterns that have a single unbroken stroke, the Light algorithm will be
able to perform recognition that reflects the positional relationships of multiple strokes.

This technique is also useful for handling joined characters and lines that fade out part way.
Nonetheless, the possibility of unintentional matches will naturally increase. Select your patterns
accordingly to avoid this.

© 2004-2005 Nintendo 23 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

Q. | want to use the resampling results for processing outside of the game. Is that possible?

A. For PRCInputPattern, use PRC_GetInputPatternStrokes. This creates a pointer that
points directly to the data that is contained in PRCInputPattern, so there is no need to initialize the
first parameter with PRC_InitStrokes. If you want to change the contents, you can copy the
structure with PRC CopyStrokes before using the contents.

If you only want to perform resampling, you can use PRC_ResampleStrokes*. The results of this
function will be returned as an index array. Use the application to convert the results to the
PRCStrokes type.

NTR-06-0134-002-A2 24 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

Appendix A

A.1 Demos

The pattern recognition library demos are stored in the $SNITROSDK ROOT/build/demos/prc/
directory of the NitroSDK.

A.1.1 characterRecognition-1

Several problems can occur when using the pattern recognition library. The calculation time can
sometimes exceed a single frame and can vary greatly depending on the complexity of the input
pattern. Therefore, set up a pattern recognition thread that is separate from the main thread. Ideally,
the application should perform pattern recognition during the idle period after main thread processing is
finished and before the V-Blank interrupt is generated. The characterRecognition-1 demo is an
example of an application that uses a separate thread.

Perform recognition with the A Button and clear the screen with the B Button.

The prototype database has 161 entries that can be used for testing. The prototype database contains
Arabic numerals, lowercase alphabets, hiragana characters, and some symbols. Because there are
multiple patterns for each of the numerals, the total number of characters that can be recognized is 117.
This prototype database is used only for demonstration purposes. For your own application, you should
build a new prototype database using sampling points and standard patterns that meet your
requirements for speed and accuracy.

A.1.2 characterRecognition-2

This demo application is designed to compare the various pattern recognition algorithms. It allows you
to use a prototype database on the production unit to see the effect of changing maxPointCount (the
largest number of sampling points accepted) on the size of the work area and understand how the
adjustment of resampling parameters can affect recognition time and results.

There are eight threshold combinations (from low to high) that have been tuned to generate a similar
number of sampling points using the three sampling algorithms. These settings can be changed during
runtime.

This demo uses the prototype database that is used in the characterRecognition-1 demo. By
repopulating the database with your actual application data, you can use this demo application to help
determine the optimal parameter settings.

© 2004-2005 Nintendo 25 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

Start the application and draw a pattern on the touch panel. When you press the A Button, four patterns
will appear on the screen. The three patterns on the left are the sampling results. The three respective
patterns are: PRC_RESAMPLE METHOD DISTANCE, ANGLE, and RECURSIVE. The rightmost pattern is
the recognition result prototype data. The Debug Output window displays detailed recognition results
for each algorithm.

Display the previous entry in the current Display the next entry in the current
prototype database on the upper right prototype database on the upper right

Change the maximum @ Perform recognition
number of resampled points without clearing screen
Select one of eight resampling
settings (low-high)

characterRecognition-2 allows :]

you see the recognition results
of four recognition algorithms
In the debug output window

Show current input and resampled
data in Debug Output

v Perform recognition and
clear input
< Clear screen and input data

This demo can also be used as a basic pattern creation tool.

<LO>|

Set the sampling parameters using the +Control Pad (Left/Right) and draw a pattern with the pen.
Press the Y Button and the resampling result pattern data for each of the three resampling algorithms
will appear in text form in the Debug Output. You can cut and paste the text data one line at a time for
various patterns into a text file and run the following demo sample to obtain a C source code listing for
that prototype list that can be read by the pattern recognition library.

$ perl SNITROSDK ROOT/tools/bin/pdic2c.pl <normalized size for output>
<prototype database text data>

Use the source code to check the operation of the pattern recognition library.

For details on the input format used by pdic2c.pl, see the reference manual.

NTR-06-0134-002-A2 26 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

Using the Pattern Recognition API NITRO-SDK

Windows is a registered trademark or trademark of Microsoft Corporation (USA) in the U.S. and other countries.

Maya is a registered trademark or trademark of Alias Systems Corp.
Photoshop and Adobe are registered trademarks or trademarks of Adobe Systems Incorporated.

All other company names and product names are the trademark or registered trademark of the respective companies.

© 2004-2005 Nintendo 27 NTR-06-0134-002-A2
CONFIDENTIAL Released: February 6, 2006

NITRO-SDK Using the Pattern Recognition API

© 2004-2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo Co. Ltd.

NTR-06-0134-002-A2 28 © 2004-2006 Nintendo
Released: February 6, 2006 CONFIDENTIAL

	1 Overview of the Pattern Recognition
	1.1 Introduction
	1.2 The Library Functionality
	1.3 What the Library Can and Cannot Do
	1.3.1 Applications that Are Possible with the API
	 A player writes a magic symbol on the touch panel screen during a battle, which causes a spell to take effect in the turn after he or she finishes writing the symbol.
	 A name is entered one letter at a time in a designated input area of the touch panel.
	 When the player writes a map symbol on a map that is displayed on the touch panel, a building appears in the location where the symbol was written.

	1.3.2 Applications that Are Currently Possible Using Workarounds
	 Recognizing patterns from multiple, continuous stroke input
	 Performing a calculation based on a formula written on the screen
	 Reading commands from specific stroke input, similar to the way that mouse gestures can be used for PC input
	 Moving an army based on the rotation angle of a symbol written on a map

	1.3.3 Applications that Are Not Currently Possible
	 Asking the player to draw a Pokémon character and recognizing which one it is
	 Recognition of cursive writing

	2 Library Usage Basics
	2.1 Data Structures
	2.1.1 Basic Data Types
	2.1.2 Prototype List Type
	2.1.3 Prototype Database Entry Type
	2.1.4 Stroke Data Type
	2.1.5 Recognition Algorithm-Dependent Data Types

	2.2 Library Usage Examples

	3 Various Setting Entries
	3.1 Resampling Parameters
	3.1.1 PRC_RESAMPLE_METHOD_NONE
	3.1.2 PRC_RESAMPLE_METHOD_DISTANCE
	3.1.3 PRC_RESAMPLE_METHOD_ANGLE
	3.1.4 PRC_RESAMPLE_METHOD_RECURSIVE

	3.2 Recognition Algorithms
	3.2.1 The "Light" Algorithm
	3.2.2 The "Standard" Algorithm
	3.2.3 The "Fine" Algorithm
	3.2.4 The "Superfine" Algorithm

	4 Tricks and Tips
	4.1 Parameter Settings
	4.2 FAQ

	Appendix A
	A.1 Demos

