Threads

Threads

Version 0.1.4 9/27/2005

Table of Contents

REVISION HISTOTYeiiiiie e e et e e e et e e e e e eaa e e e e e eanneeeeennns 2
1 The Location Where Thread Information Is Stored..........ooooieoeo e, 2
2 OSThreadInfo Thread System Informationcccooeiiiiiiiicii e 6
3 The OSThread Thread StrUCLUIEoeeee e 6
© 2003-2006 Nintendo 1 NTR-06-0071-002-A2

CONFIDENTIAL Released: February 2, 2006

Threads

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

© 2003-2006 Nintendo 2 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

Threads

Revision History

9/27/2005 Added alarmForSleep to 0SThread structure descriptions.

© 2003-2006 Nintendo 3 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

Threads

1 The Location Where Thread Information Is Stored

Thread information (0SThreadInfo) is allocated in the main memory. The region storing the address
region where this information is stored is in the System Work Area, which is part of main memory—it
can be accessed by both ARM9/7. The System Work Area start address is:

HW MAIN MEM SYSTEM = HW MAIN MEM + Ox7FFC80 = 0x27FFC80

This address can be acquired from within user programs using 0S_GetSystemWork ().

In the case of ARM9, the pointer is stored to:
HW THREADINFO MAIN = HW MAIN MEM + Ox007FFFAQO = 0x27FFFAQ

You can acquire the store address of this pointer as 0S_GetSystemWork () ->threadinfo mainp.

In the case of ARM7, the pointer is stored to:
HW THREADINFO SUB = HW MAIN MEM + 0x007FFFA4 = Ox27FFFRA4.

You can acquire the store address of this pointer as 0S_GetSystemWork () ->threadinfo subp.

If the pointer is NULL, the processor is not using the thread system.

© 2003-2006 Nintendo 4 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

HW_THREADINFO_ SUB

HW THREADINFO MAIN

HW MAIN MEM SYSTEM

;

Can acquire with 0S_GetSystemWork ().

ARMY thread system information

ARM9 thread system information.
02000000

00000000

Pointer to ARM7 thread information

Pointer to ARM9 thread information

OSThreadlInfo

OSThreadlInfo /

Threads

System Work Region

If the pointer is NULL the processor is

not using the thread system

© 2003-2006 Nintendo
CONFIDENTIAL

NTR-06-0071-002-A2
Released: February 2, 2006

Threads

2 OSThreadInfo Thread System Information

J) =====c========== Thread & context packed structure
typedef struct OSThreadInfo
{

ul6 isNeedRescheduling;
ulé irgDepth;

OSThread* current;

OSThread* list;

voidx* switchCallback;

} OSThreadInfo;

Following is a description of each member of the 0SThreadInfo structure.

e isNeedRescheduling is a flag for remembering whether it is necessary to reschedule when a thread
switch request is generated at the time of an IRQ interrupt., and the IRQ interrupt is terminated. This flag
has two values: TRUE and FALSE. Since this value is used by the OS, do not touch it.

» irgDepth stores the IRQ interrupt level. Since this variable is accessed by multiple interrupts and is
used internally by the OS, making manual changes is strongly discouraged.

* current is a pointer to the thread information of the current thread.

e list is a pointer to the thread list. Threads are connected in order from the one having the highest
priority, using the next member in 0SThread. At the end, next = NULL. If no threads are registered, the
list will be NULL.

* switchCallback stores the callback value during thread switching; NULL if no callback has been set.

3 The OSThread Thread Structure

[s=—=cmsssmssom=o= Thread structure
typedef struct OSThread OSThread;
struct OSThread

{

OSContext context;
OSThreadState state;
OSThread* next;
u32 id;
u32 priority;
void* profiler;
OSThreadQueue* queue;
OSThreadLink link
© 2003-2006 Nintendo 6 NTR-06-0071-002-A2

CONFIDENTIAL Released: February 2, 2006

Threads

OSMutex* mutex;

OSMutexQueue mutexQueue;

u32 stackTop; // for stack overflow
u32 stackBottom; // for stack underflow
u32 stackWarningOffset;

OSThreadQueue joinQueue;

void* specific[0S_THREAD SPECIFIC MAX];
OSAlarm* alarmForSleep;

OSThreadDestructor destructor;

void* userParameter;

int systemError;
7

Following is a description of each member of the 0SThread structure.

context is the location at which context is stored during the time that threads are being switched.

state indicates thread status:

* O0S THREAD STATE WAITING (=0) indicates that a thread is stopped.

* O0S_THREAD STATE READY (=1) indicates that the thread is ready to run.
For a thread that has ended, state is 0OS_ THREAD STATE TERMINATED.

next is a pointer to the next thread when constructing a thread list. It will be NULL at the end.

id indicates thread id. Its values are 0 — Ox7f££££££. The value is increased each time a thread is
created.

priority indicates the priority level of a thread. Values are 0—31. 0 indicates the thread that has the
highest priority. The thread list is ordered by this thread priority. The idle thread created by
OS InitThread() is assigned a priority value of 32. The priority of the idle thread cannot be altered.

profile is a pointer used by the profile function routines (e.g. function call tracing and function cost
measurement) to store thread information. When the profile function is not used, it does nothing.

queue and link are areas for the thread queue. queue stores a pointer to the thread queue specified
when a thread is sleeping; link is link information for linking sleeping threads to the same thread queue.

mutex and mutexQueue are parameters used for the automatic execution of the mutex de-allocation
when the thread ends. Since the OS uses these values internally, please do not touch them.

stackTop, stackBottom, stackWarningOffset are parameters used in the stack leak check.
Since the OS uses these values internally, please do not touch them. They may be referenced.

JoinQueue, a queue that is used to resume threads that have been sleeping when the current thread
stops.

specific is used internally by the system.

alarmForSleep is a pointer to the alarm used when a thread sleeps.

© 2003-2006 Nintendo 7 NTR-06-0071-002-A2
CONFIDENTIAL Released: February 2, 2006

Threads

» destructor is a thread destructor. It specifies the function called when the thread ends.

e userParameter is the user parameter. The user can use this area freely. It is neither changed nor

referenced by the system.

* systemError is the system error value. It is used internally by the system.

Thread information example

Threads t1, £2, and t3 are present in the following example, t2 being the current thread.

OSThreadInfo

isNeedReschedul

current = &t2

list = &t2

NULL

L— next=&t3

priority=10
id=30

context

next=&tl

-

id=200 &4~~~

priority=3 _.--

context

e next=NULL

priority=32
id=1

context

id depends on the location where
it is stored in entry[] in
OSThreadInfo. The thread stored
inentry[n] has an id of n.

For ARM9, the thread that is idle (priority of 32) should be
the last in the list. (Although t 3 is used here, the

OSThread structure is 0S1_IdleThreadin

os_thread.c.) ARM7 does not have idle threads.

© 2003-2006 Nintendo
CONFIDENTIAL

NTR-06-0071-002-A2
Released: February 2, 2006

Thread example

In the following example, threads t1, t2, and t4 are linked to thread queue tq.

o head = &tl
L tail = &t4
queue = &tg
link.prev = NULL
link.next = &t2
/

queue = &tg
link.prev = &tl
link.next = &t4

link.prev
link.next

queue = NULL

NULL
NULL

link.prev
link.next

queue = &tg

d

&t2
NULL

Threads

© 2003-2006 Nintendo
CONFIDENTIAL

NTR-06-0071-002-A2
Released: February 2, 2006

	Revision History
	1 The Location Where Thread Information Is Stored
	2 OSThreadInfo Thread System Information
	3 The OSThread Thread Structure

