NITRO-SDK
Wireless Communication Tutorial

Version 1.1.0

The contents in this document are highly

confidential and should be handled accordingly.

© 2004-2006 Nintendo NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0251-002-A2 2 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

Contents
1 Overview of the Wireless Manager.........oooo oo 5
1.1 Role of the WirelesSs Manager..........oo it e ee e 5
1.2 MP Communication ProtOCOL............cooiiiiiiiiiiie e e a e 5
LS T B -1 = TR 2 = 4 oo 6
2 Operating the Wireless Manager ... 7
2.1 Organization of the Wireless Manager ...t 7
2.2 Transitioning Between Internal States.........cocuviiiiiiii e 8
3 Implementing the dataShare-Model ... 9
R Tt N [01 F= 11 4 o o SR 10
B 0 @70) | 1= o1] o SR 12
3.2.1 Connecting iN Par€nt MOGE........ccoiiiiiiiiiee et e e e e e e e e e et e e e e e e e s saatbeeeeaeeeesnntbaneeaaeesannses 14
3.2.2 Connecting in Child MOGEcoiiiiiiiiiiiee et e e e e e e e e et e e e e e e e e satbeeeeaeeeesnsbaareaaeeeaannes 14
3.3 Processing SYNCAIrONOUSIY ...ttt e e e e e e e e eneee 16
3.4 Disconnecting and Terminating ProCeSSINgccuuiiiiiiiiiiiiie e 19
4 LAY I o =T S 20
4.1 Function Reference (Initialization, Termination, RESet)ccoocoiiieiiiiiiiiiiie e 20
411 WH_INItIAliZe FUNCHON ... et e e e ettt e e e e e e et e e et e e e e eanneseeeaaaeaeannseeeeas 20
4.1.2 WH_FINAHZE FUNCHONoeiiiiiiie ettt e e e e e et e e e e e e s et ea e e e e e e e esaasseeeeaesaennnsrenes 20
4.1.3 WH_RESEE FUNCHONttt e et e e e e e e et e e e e e e e et eseeeeeeeeaaasseeeeaeeeennnsrnnes 21
4.2 Function Reference (CONNECHION)cciciiiiiiiiiiie e e e s enree e e nnaae e e 21
4.21 WH_ParentConneCt FUNCHON..........o ettt e e e ettt e e e e e e nnt e e e e e e e e e ennseeeeas 21
4.2.2 WH_ChildCoNNECt FUNCHON ...ttt e e e e e ettt e e e e e e e nae e e e e e e e e e annseeeeas 22
4.3 Function Reference (MP CommuNICatioN).........cooiiuiiiiiiiiiii e 23
4.3.1 WH_SetRECEIVEr FUNCHON ...t e e e e e e e s et a e e e e e e e e aae e eeeaeseenansreees 23
4.3.2 WH_SendData FUNCHONcoiiiiiiiie ettt e et e e e e e e st e e e e e e s setbeseeeaeeeeanasseeeeaeseennnsranes 23
4.4 Function Reference (Data Sharing)cceeeeiiiiiieiiiiee e se e e e e e s ennrae e e e snnaeee e 24
441 WH_SEEPDS FUNCLON ...ttt ettt e et e e s e e e s b e e e s enn e e e 24
442 WH_GetSharedDataAdr FUNCHON ... et e e ettt e e e e e et e e e e e e e anneeeeeas 24
4.5 Function Reference: Key Sharing ... 24
451 WH_GEtKEYSEt FUNCHONoiiiiiiiiei ittt e e e e e et e e e e e e et e s e e e e e e s eeaasseeeeaeseennnsrenes 24
4.6 Function Reference: Get State.........coiiiiiiiii e 25
4.6.1 WH_GetAllowedChannel FUNCHON.........co ittt e e e e e e e e e e e e e anneeeeeas 25
4.6.2 WH_GetConnectMOode FUNCHONoooiiiiiiiiie et 25
4.6.3 WH_GetBitmap FUNCLION ...ttt e ettt e e e e e ettt e e e e e e e e nnsbeeeaaaeaeannseneeas 25
4.6.4 WH_GetSystemState FUNCHON..........ooii i e e e e e e e s e e e e e e s e e sansrenes 25
4.6.5 WH_GetLastError FUNCHON ...ttt e e e et e e e e e e e a e e e e e e s esaasreeeeaesaenansreeeas 26
5 Y o] o= o o [1 G EEERRPN 27
5.1 WH_StatelnXXXX and WH_State OutXXXX FUNCHONScuueiiiiiiiiiiiiiee e 27
5.1.1 Parent/Child Shared Functions in WH and WM ... 27
5.1.2 Parent FUNctions in WH @nd WIMottt e et e et e e st e e s s 28
5.1.3 Child FUNctions in WH @nd WM ...ttt e et e s s e e e nnneee s 29
© 2004-2006 Nintendo 3 NTR-06-0251-002-A2

CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

Revision History

Version Revision Date Description

1.1.0 11/21/2005 |3 Updated to reflect current datashare-Model

4.1 Corrected text to reflect changes to WH specifications.

1.0.1 4/18/2005 |3 Corrected description (Added description of wh_config.h and sample source code.)
3.1 Corrected description (Added section about setting wh_config.h

Deleted description about internal dynamic memory allocation)

1.0.0 11/24/2004 | Initial version.

NTR-06-0251-002-A2 4 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

1 Overview of the Wireless Manager

1.1 Role of the Wireless Manager

The wireless manager (WM) is situated between the wireless communication hardware and
applications. It receives information and shares that information directly with the hardware. The
wireless manager is a library providing relatively low-level parts.

The wireless manager library is mainly an implementation of a game-specific wireless communication
method. The wireless manager library provides a unique protocol called the MP communication
protocol. Frameworks are also included, such as a data sharing function that operates on that protocol.

This document explains the fundamentals needed to use the wireless manager. This document also
includes explanations, taking sample programs as examples and implementing them in real
applications.

1.2 MP Communication Protocol

As with the programming manual, there are three separate ways to use the DS wireless features
depending on your purposes. The three modes are:

o Infrastructure
o DS Wireless Play
o Single-Card Play
This tutorial addresses only the DS Wireless Play mode.

In DS Wireless Play mode, communication occurs wirelessly while each connected device has a game
card inserted. In Single-Card Play mode, a game card is inserted in one machine, and the other
machines operate by downloading the program from that machine. In Infrastructure mode,
communication occurs using the Internet.

When communicating wirelessly after a program downloaded in Single-Card Play mode has started,
communication occurs in either the DS Wireless Play or Infrastructure mode.

The protocol normally used in DS Wireless Play mode is called the MP (Multi Poll) Communication
protocol. This protocol provides the functionality called sending and receiving data in real-time with
multiple machines, which is necessary in many communication game applications.

Using the MP communication protocol, communication occurs in the following steps as one cycle:
1. The parent delivers (broadcasts) data to all children.
2. All children return a response to the parent.

3. The parent notifies (broadcasts) that the communication cycle is finished.

© 2004-2006 Nintendo 5 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

Note that each child communicates directly with only the parent and does not communicate directly
with other children. Also, the real-time aspect is a priority. As such, another feature is that instead of
being able to perform communication of one to several cycles in one picture frame (1/60th of a second),
the amount of sendable/receivable data in one cycle is comparatively small.

1.3 Data Sharing

Data sharing is a communication method for realizing on the MP communication protocol a technique
called sharing data in real-time with all communicating devices, used frequently by game applications.
This technique is realized in such a way that the parent collects data from each child, lumps it together,
and then delivers it to all children as shared data.

Pulling this together (as in the steps mentioned in section 1.2), the steps are:
1. The parent distributes shared data to all children.
2. Each child responds with its own specific information to the parent.
3. The parent collects returned information as shared data for the next send.

Note that the shared data received by each child is the data the parent collected from each child in the
previous cycle.

Key sharing treats each device’s key data as shared data.

Data sharing is one sample application of the MP communication protocol. Key sharing is one example
of how to use data sharing. These three terms should not be spoken of on the same level but,
depending on the circumstances, they may be described in parallel in the manual or sample programs.
Do not confuse these terms. This manual primarily covers data sharing.

NTR-06-0251-002-A2 6 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

2 Operating the Wireless Manager

2.1 Organization of the Wireless Manager

In the Nintendo DS, the wireless communication unit is connected to the ARM7 bus (see the hardware
block diagram in the "NITRO Programming Manual"). In other words, the wireless communication unit
is under the control of the subprocessor (ARM?7).

Therefore, to control the communication features from the main processor (ARM9) in a normal game, it
is necessary to go through the subprocessor (ARM7). Many WM-related APIs have been implemented
as asynchronous functions for streaming requests to the ARM7 in FIFO. Because the result of the
request is also sent via FIFO, it is received by the main processor, causing the callback stored by the
user to be invoked. This allows you to obtain the result.

In the sample programs covered in this tutorial, this issue request and receive results with callback
operation is treated as one set. Serial processing is basically realized as follows (A and A’, and B and
B’ are sets).

1.

Call function A to send a request to ARM7. (Make the callback set at this time A’.)

2. Send notification that A’ was called and processing is complete. A’ calls function B to send the
next request.
3. B'’is called, which was set when calling B, and B’ calls C.
4. (The same pattern repeats.)
© 2004-2006 Nintendo 7 NTR-06-0251-002-A2

CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

2.2 Transitioning Between Internal States

The ARMY that controls wireless communication is a machine that goes back and forth between
several internal states. The following figure shows the main internal states.

Figure 2-1 Transitions Between Wireless Communication Internal States

7

| MP_PARENT | | MP_CHILD |

Only the states needed for this explanation appear in this diagram. There is a more detailed figure
showing transitions between internal states in the "NITRO SDK Function Reference Manual."

Each of the transitions shown above with arrows has a corresponding function. You can advance the
processing by calling them in order. With few exceptions, you can transition from a state only to a
neighboring state connected by arrows. For example, you cannot transition in a single bound from
IDLE to MP_CHILD.

NTR-06-0251-002-A2 8 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

3 Implementing the dataShare-Model

This completes the discussion of the fundamentals necessary for understanding the SDK sample
program (dataShare-Model). Additional considerations of the sample program follow.

The sample program implements data sharing using the WH library wrapper libraries, wh . h,

wh config.h, and wh.c (hereafter referred to as the WH library). The functions needed to implement
normal wireless communication programs are gathered in the WH library. (The sample source code for
the WH library is stored below the $NitroSDK/build/demos/wireless shared/wh directory.)

This section explains how to use the WH library for sample program tasks, such as:
o Initializing
o Connecting
o Processing Synchronously

o Disconnecting and Terminating Processing

© 2004-2006 Nintendo 9 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK

Wireless Communication Tutorial

3.1 Initializing

This section describes the procedure to implement data sharing using the WH library.

The various wireless settings listed in wh_config.h should be adjusted to match the specifications of
the application. Wireless communication establishes virtual communication channels called “ports,” and

if the application uses MP communication in addition to data sharing, the port numbers for each must
not conflict.

The maximum send/receive size for data sharing is limited by the number of children connected. To

use data sharing for large volumes of data, these values must be adjusted accordingly.

The DMA channels used by the WM library are also set here. Change the values so that there is no

conflict with the DMA channels used by the application for other processes, such as the FS library and

GX library.
// DMA number used by wireless
#define WH DMA NO 2
// Max. number of children (Not including parents)
#define WH CHILD MAX 15
// Max. size of shareable data
#define WH DS DATA SIZE 12
// Max size of data that can be sent in one communication
// If using normal communication in addition to data sharing, increase
// this value as needed. Be sure to add the size of the additional
// headers/footers resulting from sending multiple packets.
// For details, see docs/TechnicalNotes/WirelessManager.doc.
// GUIDELINE: Guideline Standard Points (6.3.2)
// We recommend the keeping the time required for a single MP communication
// as calculated by the reference’s wireless manager (WM)—Tables/information—
// wireless communication time calculation sheet
// under 5,600 microseconds.
#define WH PARENT MAX SIZE (WH DS DATA SIZE * (1 + WH CHILD MAX) + 4)
#define WH CHILD MAX SIZE (WH DS DATA SIZE)
// Port used for normal MP communication
#define WH DATA PORT 14
// Priority used for normal MP communication
#define WH DATA PRIO WM PRIORITY NORMAL
// Port used for data sharing
#define WH DS PORT 13

Next, define the type of data to share. When the maximum number of connected children is 15, a
maximum of 12 bytes can be shared using data sharing. (The sharable data size varies with the
maximum number of connected children.) The data size must not exceed 12 bytes.

NTR-06-0251-002-A2 10 © 2004-2006 Nintendo
Released: February 2, 2006

CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

typedef struct ShareData {

u8 macadr[4]; // MAC address

u32 count; // frame count

ulé level; // signal reception strength

slé data; // graph display information
}ShareData;

Next, confirm the shared data region for send/receive in the program. For the receive buffer, the region
(in bytes) must be at least (shared data size x (maximum number of connected children + 1)).

static u8 sSendBuf [256] ATTRIBUTE ALIGN(32);
static u8 sRecvBuf [256] ATTRIBUTE ALIGN(32);

Next, set the V-Blank interrupt. The V-Blank interrupt is needed in section "3.3 Processing

Synchronously."

// interrupt setting

0S SetIrgFunction(OS IE V BLANK , VBlankIntr);
(void) 0S EnablelIrgMask(OS IE V BLANK);
(void) GX VBlankIntr(TRUE);
(void)OS_EnablelIrqg();

(void) 0OS EnablelInterrupts();

© 2004-2006 Nintendo 11 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

The necessary preparations in the program are completed, so use WH_Initialize to initialize
wireless communications.

The WH_Initialize function allocates the send/receive data buffer necessary for wireless
communication and performs all processing necessary to initialize the wireless hardware. We
recommend using the WH_Initialize function unless you want to perform detailed settings in the
program.

3.2 Connecting

In the sample program, the process enters the main loop after the WH Initialize function ends and
then branches by referencing the wireless communications state returned by the

WH GetSystemState function and the state variable sSysMode, which is changed using a menu
selection.

This is the relevant portion of the sample program:

NTR-06-0251-002-A2 12 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

switch (whstate)

{

case WH SYSSTATE ERROR:
// WH state has priority when error occurs
changeSysMode (SYSMODE ERROR) ;
break;

case WH SYSSTATE MEASURECHANNEL:
{

ul6 channel = WH GetMeasureChannel () ;

sTgid++;

(void) WH ParentConnect (WH CONNECTMODE DS PARENT, sTgid, channel);
}

break;

default:
break;

PR ClearScreen (&sInfoScreen) ;

// Load test.
forceSpinWait () ;

switch (sSysMode)

{

case SYSMODE SELECT ROLE:
// Role (Parent & Child) selection screen
ModeSelectRole () ;
break;

case SYSMODE SELECT CHANNEL:
// Channel selection screen.
ModeSelectChannel () ;
break;

case SYSMODE LOBBY:
// Lobby screen.
ModeLobby () ;
break;

If initialization is successful, the state becomes WH SYSSTATE IDLE (the idle state) immediately after
the wH Initialize function ends. The initial value of sSysMode is SYSMODE SELECT ROLE.

The first routine to get called is ModeSelectRole. If Start (Parent mode) has been selected in
ModeSelectRole, the parent-mode connection process is performed. If Start (Child mode) has been
selected, the child-mode connection process is performed.

© 2004-2006 Nintendo 13 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

3.21 Connecting in Parent Mode

The parent must select a channel to use before communications can begin. In the sample program, the
channel is decided in one of two ways: manual selection and automatic selection.

Manual selection is performed by the ModeSelectChannel routine, which is called when Select
channel is chosen from the menu screen. The WH_GetAllowedChannel function is used to get a list
of usable communications channels from which to the selection can be made.

For automatic selection, the WH StartMeasureChannel function is first used to measure the radio-
wave usage condition, and after this is completed the WH_GetMeasureChannel function is called to
get the most open channel. You can determine whether the WH_StartMeasureChannel function has
completed measurement of radio wave usage by checking whether it has returned

WH SYSSTATE MEASURECHANNEL.

After that, to start connection of data sharing in parent mode, the WH_ParentConnect function gets
called with the first argument set to WH_CONNECTMODE DS PARENT and the third argument set to the
selected channel.

switch (sRoleMenuWindow.selected)
{
case 0:
if (sForcedChannel == 0)
{
// Based on radio wave usage rate, get optimal channel and connect.
(void)WH StartMeasureChannel () ;

}

else

{
sTgid++;

// Update userGameInfo in accept-entry state
updateGameInfo (TRUE) ;

// Delete cached parent information
MI CpuClear8 (sBssDesc, sizeof (sBssDesc))

// Start connection using manulally selected channel.

(void) WH ParentConnect (WH CONNECTMODE DS PARENT, sTgid, sForcedChannel) ;
}
changeSysMode (SYSMODE LOBBY) ;
break;

3.2.2 Connecting in Child Mode

To begin a connection in the child mode of data sharing requires first scanning to find parents and then
deciding which parent to make a connection with.

NTR-06-0251-002-A2 14 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

In the sample program, the ModeSelectRole routine begins scanning for parents by calling the
WH_StartsScan function.

case 1:
{
// Start searching for parents.
static const u8 ANY PARENT[6] = { OxFF, OxFF, OxFF, OxFF, OxFF, OXFF };
enum
{ ALL CHANNEL = 0 };

initWindow (&sSelectParentWindow) ;
setupWindow (&sSelectParentWindow, 16, 16, WIN FLAG SELECTABLE, 8*2, 8, 16);
(void)WH StartScan (scanCallback, ANY PARENT, ALL CHANNEL) ;
changeSysMode (SYSMODE SCAN PARENT) ;

}

break;

The callback specified in the first argument of the WH_StartScan function gets called each time a
parent is discovered during scanning. The scanCallback routine actually specified for this argument
in the sample program performs a process that registers discovered parents in a list. A bitmap of valid
channels is specified for the third argument, but it is not necessary to check ahead of time whether the
specified channels are valid.

The ModeSelectParent routine, which is called during scanning, displays the parents found by
scanning, and waits for the user to select one.

To start the connection in the child mode of data sharing, first end the scan with the WH_EndScan
function and check that the WH_GetSystemState function returns WH_SYSSTATE IDLE, and set
WH_CONNECTMODE DS _CHILD to the first argument and call the wH_ChildConnect function.

// Has user closed the parent-search screen?
if ((sSelectParentWindow.state == WIN STATE CLOSED))
{
if (WH GetSystemState() == WH SYSSTATE SCANNING)
{
// If scanning for parents, end the scan process
(void)WH EndScan () ;
return;

if (WH GetSystemState() == WH SYSSTATE IDLE)

if (sSelectParentWindow.selected < 0)
{

WH Finalize () ;

changeSysMode (SYSMODE SELECT ROLE) ;

return;
}
// If not scanning and user has selected a parent, commence data sharing
(void)WH ChildConnect (WH CONNECTMODE DS CHILD,

& (sBssDesc[sSelectParentWindow.selected])) ;

changeSysMode (SYSMODE LOBBYWAIT) ;

© 2004-2006 Nintendo 15 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

3.3 Processing Synchronously

When the connection completes normally in the parent or child mode of data sharing, the state
obtained with the WH GetSysState function transitions to WH SYSSTATE DATASHARING (data
sharing).

For stable wireless communication, you must call the synchronous processing function WH StepDS
before starting the MP communication cycle of that frame. For the V-count where the WM library
prepares MP communication, the parent is 260 and the child is 240 by default. It is designed to be as
efficient as possible when called with the V-Blank interrupt (V-count is 192). With this in mind, the
sample program calls the WH StepDS function inside the updateShareData routine immediately
after the start of the V-Blank interrupt (i.e., immediately after the 0S_WaitVvBlankIntr function).

NTR-06-0251-002-A2 16 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial

NITRO-SDK

static void updateShareData (void)
{
if (WH GetSystemState () == WH SYSSTATE DATASHARING)
{
if (WH StepDS (sSendBuf))
{
ule i;
for (i = 0; i < WM NUM MAX CHILD + 1; ++i)
{
u8 *adr;
ShareData *sd;

{

sRecvFlag[i] = TRUE;

}

else

{
sd->level = 0;
sd->data = 0;
sRecvFlag([i]

= FALSE;

sNeedWait = FALSE;

}
else
{
ule 1i;
for (i = 0; i < WM NUM MAX CHILD + 1; ++i)
{
sRecvFlag[i] = FALSE;

sNeedWait = TRUE;

}
else
{
ule 1i;
for (i = 0; i < WM NUM MAX CHILD + 1; ++i)
{
sRecvFlag[i] = FALSE;

sNeedWait = FALSE;

adr = (u8 *)WH GetSharedDataAdr (i) ;
sd = (ShareData *) & (sRecvBuf[i * sizeof (ShareData)]):;
if (adr != NULL)

MI CpuCopy8 (adr, sd, sizeof (ShareData))

For data shared by synchronous processing, obtain the top address using the

WH GetSharedDataAdr function and copy it to the receive data region allocated in the program.

In the main loop, use the WH GetConnectMode function to determine the connection mode. If in the

© 2004-2006 Nintendo 17
CONFIDENTIAL

NTR-06-0251-002-A2
Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

parent mode, call the ModeParent routine. If in the child mode, call the ModeChi 1d routine. The
send/receive results are displayed in each routine.

The link strength icon is also displayed, which graphically shows the strength of the communication link
while sharing data.

NTR-06-0251-002-A2 18 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

3.4 Disconnecting and Terminating Processing

When you want to disconnect a specific child from its parent with a user operation, use the
WM_Disconnect function. When you want to disconnect multiple or all children at once, use the
WM DisconnectChildren function.

Using the WH library, when you want to terminate wireless communication by calling the

WH Finalize function, you can perform the appropriate end processing by evaluating the connection
mode and the current WH library state. With the WH_Finalize function, wireless communication
transitions to the IDLE state. From there, by sequentially calling the WM PowerOff, WM Disable, and
WM_Finish functions (or the WM _End function to perform all three), you can completely finish,
including disconnecting the wireless communication hardware.

© 2004-2006 Nintendo 19 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

4 WH Library

The WH library is a collection of functions needed to implement normal wireless communication
programs. This section explains the functions collected in the WH library (including functions not used
in the sample programs).

4.1 Function Reference (Initialization, Termination, Reset)

This section discusses the functions that initialize, terminate, and reset

4.1.1 WH_lInitialize Function

C Specification: int WH Initialize (void);
Arguments: None
Return Values: TRUE Success

FALSE Failure

Normally, WwH Initialize automatically allocates the communication send/receive data buffer
necessary for wireless communication and initializes wireless communication hardware. The wireless
communication state transitions to IDLE. When TRUE is returned, the wM Init function succeeded,
and the WM_Enable function was called successfully. Initialization processing is complete when the
return value of the WH_GetSystemState function becomes WH_SYSSTATE IDLE.

You must create a heap in the main memory for the internally-called 0S_211oc function.

4.1.2 WH_Finalize Function

C Specification: int WH Finalize (void);
Arguments: None
Return Values: TRUE Success

FALSE Failure

WH Finalize calls the appropriate end process determined from the WH library state and the
connection mode. The wireless communication state transitions to IDLE after processing completes.
When TRUE is returned, the function call for end processing succeeded. The processing ends when
the return value of the WH_GetSystemState function becomes WH_SYSSTATE IDLE.

To completely terminate wireless communication, you must call the WM_PowerOff, WM Disable, and
WM_Finish functions, or just the WM End function.

NTR-06-0251-002-A2 20 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

4.1.3 WH_Reset Function

C Specification: int WH Reset (void);
Arguments: None
Return Values: TRUE Success

FALSE Failure

WH_Reset transitions the wireless communication state to IDLE regardless of the current state (such
as connection mode). When TRUE is returned, the WH_Reset call succeeded. The process completes
when the return value of WH_GetSystemState becomes WH SYSSTATE IDLE.

4.2 Function Reference (Connection)

This section discusses the two connection functions, WH ForceChannel and WH Connect.

4.2.1 WH_ParentConnect Function

C Specification: BOOL WH ParentConnect (int mode, ul6é tgid, ulé channel);
Arguments: mode Connection mode

tgid Parent communication tgid

channel Parent communication channel
Return Values: TRUE Success

FALSE Failure

Connection mode definitions:

enum {
WH_CONNECTMODE_MP_PARENT, // Parent MP connection mode
WH_CONNECTMODE MP CHILD, // Child MP connection mode
WH_CONNECTMODE_KS_ PARENT, // Parent key-sharing connection mode
WH CONNECTMODE KS CHILD, // Child key-sharing connection mode
WH CONNECTMODE DS PARENT, // Parent data-sharing connection mode
WH CONNECTMODE DS CHILD, // Child data-sharing connection mode
WH_CONNECTMODE NUM

i

This function starts the wireless communication connection in parent mode. It automatically transitions
to data sharing and key sharing. When TRUE is returned, the function call for connection processing
succeeded. Whether for a parent or child, the process completes when the WH GetSystemState
function returns the following return values: MP connection is WH_SYSSTATE CONNECTED, data
sharing is WH_SYSSTATE DATASHARING, and key sharing is WH_SYSSTATE KEYSHARING.

© 2004-2006 Nintendo 21 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK

Wireless Communication Tutorial

4.2.2 WH_ChildConnect Function

C Specification: BOOL WH ChildConnect (int mode, WMBssDesc *bssDesc) ;
Arguments: mode Connection mode

bssDesc bssDesc of parent connecting to
Return Values: TRUE Success

FALSE Failure

Conneciton mode definitions:

enum {
WH CONNECTMODE MP PARENT, // Parent MP connection mode
WH CONNECTMODE MP CHILD, // Child MP connection mode
WH CONNECTMODE KS PARENT, // Parent key-sharing connection mode
WH CONNECTMODE KS CHILD, // Child key-sharing connection mode
WH CONNECTMODE DS PARENT, // Parent data-sharing connection mode
WH CONNECTMODE DS CHILD, // Child data-sharing connection mode
WH CONNECTMODE NUM

i

This function starts the wireless communication connection in child mode.

NTR-06-0251-002-A2 22 © 2004-2006 Nintendo
Released: February 2, 2006

CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

4.3 Function Reference (MP Communication)

4.3.1 WH_SetReceiver Function

C Specification: void WH SetReceiver (WHReceiver proc);
Arguments: proc WHReceiver type callback function
Return Values: None

WHReceiver type definitions:
typedef void (*WHReceiver) (ul6 aid, ulé6* data, ul6 size);

WH_SetReceiver sets the MP communication data receive callback function. There is no need to set
this when data sharing or key sharing.

The send source aid, received data, and receive data size are passed to the callback function.

4.3.2 WH_SendData Function

C Specification: int WH SendData (
void *data, ul6é datasize, WHSendCallbackFunc callback);
Arguments: data top address of send data
datasize size of send data
callback WHSendCallbackFunc type callback function
Return Values: TRUE Success
FALSE Failure

WHSendCallbackFunc type definitions:
typedef void (*WHSendCallbackFunc) (BOOL result);

WH_ SendData starts an MP communication data send. You do not need to call this when data sharing
or key sharing. When TRUE is returned, the WM SetMPDataToPortEx function call succeeded. The
process completes when the callback function is called.

The send results are passed to the callback function. You must not change the contents of the send
data buffer until the callback function is called.

© 2004-2006 Nintendo 23 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

4.4 Function Reference (Data Sharing)

441 WH_StepDS Function

C Specification: int WH StepDS(void *data);
Arguments: data top address of send data
Return Values: TRUE Success

FALSE Failure

WH_ StepDS proceeds to the next step in the synchronous processes for data sharing. When TRUE is
returned, the process is complete. To get shared data, use the WH_GetSharedDataAdr function.

For stable wireless communication, you must call this function before starting the MP communication
cycle of that frame. We recommend calling it immediately after starting the V-Blank interrupt.

4.4.2 WH_GetSharedDataAdr Function

C Specification: ul6 *WH GetSharedDataAdr (ulé6 aid);

Arguments aid aid of child you want to get shared data for

Return Values: top address of shared data of specified child
NULL is returned when it fails.

Call wH_GetsSharedDataAdr when you want to get data sharing shared data by specifying the child.

4.5 Function Reference: Key Sharing

4.51 WH_GetKeySet Function

C Specification: int WH GetKeySet (WMKeySet *keyset);
Arguments: keyset pointer to buffer that stores shared key data
Return Values: TRUE Success

FALSE Failure

WH GetKeySet stores key data shared with key sharing in the buffer. The process is complete when
TRUE is returned.

For stable wireless communication, the WH_GetKeySet function must be called before starting MP
communication cycle of that frame. We recommend calling immediately after starting the V-Blank
interrupt.

NTR-06-0251-002-A2 24 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

4.6 Function Reference: Get State

4.6.1 WH_GetAllowedChannel Function

C Specification: ul6 WH GetAllowedChannel (void) ;
Arguments: None
Return Values: bit pattern of communication channels permitted for use

Internally, WH GetAllowedChannel calls the WM GetAllowedChannel function.

4.6.2 WH_GetConnectMode Function

C Specification: int WH GetConnectMode (void) ;
Arguments: None
Return Values: the set connection mode

WH_GetConnectMode returns the connection mode set as an argument with the WH_ChildConnect
function. The return values are undetermined until WH_ChildConnect is called. Until the next time
WH ChildConnect is called, the previously-set connection mode is returned.

4.6.3 WH_GetBitmap Function

C Specification: ul6é WH GetBitmap (void);
Arguments: None
Return Values: bit pattern showing connected terminal

The bit corresponding to the connected terminal is set to 1. The lowest bit corresponds to the parent
(aid=0), and the highest bit corresponds to the 15th child (aid=15).

4.6.4 WH_GetSystemState Function

C Specification: int WH GetSystemState (void);
Arguments: None
Return Values: Internal state of WH library

Definitions of WH library internal states:

enum {

WH SYSSTATE_ STOP, // initial state

WH SYSSTATE IDLE, // standing by

WH_SYSSTATE SCANNING, // scanning

WH SYSSTATE BUSY, // connecting

WH_SYSSTATE CONNECTED, // connection complete (communication is possible in
this state)

WH_SYSSTATE_ DATASHARING, // connected with data-sharing enabled
WH_SYSSTATE_KEYSHARING, // connected with key-sharing enabled
WH_SYSSTATE ERROR, // error has occurred
WH SYSSTATE NUM

b

WH GetSystemState obtains the current internal state of the WH library.

© 2004-2006 Nintendo 25 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

4.6.5 WH_GetLastError Function

C Specification: int WH GetLastError (void);
Arguments: None
Return Values: error code

Definitions of error codes:
enum {
// your own error codes
WH ERRCODE DISCONNECTED = WM ERRCODE MAX, // disconnected from parent

WH_ERRCODE_PARENT NOT_ FOUND, // no parent
WH_ERRCODE NO RADIO, // wireless use not possible
WH_ERRCODE_LOST_ PARENT, // parent not found

WH_ERRCODE_MAX
}i

WH GetLastError obtains the details of the error that just occurred.

NTR-06-0251-002-A2 26 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Wireless Communication Tutorial NITRO-SDK

5 Appendix

5.1 WH_StateInXXXX and WH_StateOutXXXX Functions

As stated in "2.1 Organization of the Wireless Manager," the Wireless Manager API| performs wireless
communication with a combination of the request send function (call function) and the callback function
that receives notification.

For internal functions in the WH library, the request send function is WH_StateInXXXX and the
callback function is WH_StateOutXXXX.

5.1.1 Parent/Child Shared Functions in WH and WM

Table 5-1 Corresponding WM Functions (Parent/Child Shared Functions)

WH Library Function Names Corresponding Wireless Manager Function
WH StateInInitialize WM Init
WH StateInEnable WM Enable

WH_StateOutEnable

WH_StateInPowerOn WM PowerOn
WH_StateOutPowerOn

WH_StateInReset WM Reset

WH_ StateOutReset

WH_StateInSetMPData WM SetMPDataToPortEx

WH StateOutSetMPData

WH StateInPowerOff WM PowerOff
WH_StateOutPowerOff

WH StateInDisable WM Disable

WH StateOutDisable

© 2004-2006 Nintendo 27 NTR-06-0251-002-A2
CONFIDENTIAL Released: February 2, 2006

NITRO-SDK

Wireless Communication Tutorial

5.1.2 Parent Functions in WH and WM

Table 5-2 Corresponding WM Functions (Parent Functions)

WH Library Function Names

Corresponding Wireless Manager Function

WH StateInMeasureChannel
WH_ NextMeasureChannel

WH StateOutMeasureChannel

WM GetAllowedChannel

WM MeasureChannel

WH_StatelInSetParentParam

WH StateOutSetParentParam

WM SetParentParameter

WH StateInStartParent
WH_StateOutStartParent

WM StartParent

WH StateInStartParentMP
WH_ StateOutStartParentMP

WM StartMP

WM_StartDataSharing is also called when in data sharing mode.

WH StateInStartParentKeyShare
WH StateOutStartParentKeyShare

WM StartKeySharing

WH_ StateInEndParentKeyShare

WH StateOutEndParentKeyShare

WM EndKeySharing

WH StateInEndParentMP

WH StateOutEndParentMP

WM_EndMP

WH_StateInEndParent

WH StateOutEndParent

WM _EndParent

WH StateInDisconnectChildren

WH_ StateOutDisconnectChildren

WM DisconnectChildren

NTR-06-0251-002-A2
Released: February 2, 2006

28 © 2004-2006 Nintendo

CONFIDENTIAL

Wireless Communication Tutorial

NITRO-SDK

5.1.3 Child Functions in WH and WM

Table 5-3 Corresponding WM Functions (Child Functions)

WH Library Function Names

Corresponding Wireless Manager Function

WH_StateInStartScan
WH_ NextScan
WH_StateOutStartScan

WM GetAllowedChannel
WM StartScan

WH StateInEndScan
WH_StateOutEndScan

WM EndScan

WH StateInStartChild
WH StateOutStartChild

WM StartConnect

WH StateInStartChildMP
WH StateOutStartChildMP

WM_StartMP

WM StartDataSharing is also called when in data sharing mode.

WH StateInStartChildKeyShare
WH StateOutStartChildKeyShare

WM StartKeySharing

WH StateInEndChildKeyShare
WH StateOutEndChildKeyShare

WM EndKeySharing

WH StateInEndChildMP
WH_ StateOutEndChildMP

WM _EndMP

WH StateInEndChild

WH_ StateOutEndChild

WM Disconnect

© 2004-2006 Nintendo
CONFIDENTIAL

29 NTR-06-0251-002-A2
Released: February 2, 2006

NITRO-SDK Wireless Communication Tutorial

© 2004-2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

NTR-06-0251-002-A2 30 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

	1 Overview of the Wireless Manager
	1.1 Role of the Wireless Manager
	1.2 MP Communication Protocol
	1.3 Data Sharing

	2 Operating the Wireless Manager
	2.1 Organization of the Wireless Manager
	2.2 Transitioning Between Internal States

	3 Implementing the dataShare-Model
	3.1 Initializing
	3.2 Connecting
	3.2.1 Connecting in Parent Mode
	3.2.2 Connecting in Child Mode

	3.3 Processing Synchronously
	3.4 Disconnecting and Terminating Processing

	4 WH Library
	4.1 Function Reference (Initialization, Termination, Reset)
	4.1.1 WH_Initialize Function
	4.1.2 WH_Finalize Function
	4.1.3 WH_Reset Function

	4.2 Function Reference (Connection)
	4.2.1 WH_ParentConnect Function
	4.2.2 WH_ChildConnect Function

	4.3 Function Reference (MP Communication)
	4.3.1 WH_SetReceiver Function
	4.3.2 WH_SendData Function

	4.4 Function Reference (Data Sharing)
	4.4.1 WH_StepDS Function
	4.4.2 WH_GetSharedDataAdr Function

	4.5 Function Reference: Key Sharing
	4.5.1 WH_GetKeySet Function

	4.6 Function Reference: Get State
	4.6.1 WH_GetAllowedChannel Function
	4.6.2 WH_GetConnectMode Function
	4.6.3 WH_GetBitmap Function
	4.6.4 WH_GetSystemState Function
	4.6.5 WH_GetLastError Function

	5 Appendix
	5.1 WH_StateInXXXX and WH_StateOutXXXX Functions
	5.1.1 Parent/Child Shared Functions in WH and WM
	5.1.2 Parent Functions in WH and WM
	5.1.3 Child Functions in WH and WM

