NitroROM File System Specifications

NitroROM File System Specifications

NITRO-SDK

10/19/04
SPD Environment Design Group, Nintendo Co., Ltd.

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

© 2003-2006 Nintendo 1 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

0 Introduction

This document introduces a simple file system in the NitroSDK that functions as a method to shorten,
as much as possible, the time to update the data within ROM that frequently occurs during
development.

This document also describes how the program files and data files that are generated during the
application creation with Nitro are made into a ROM file.

You do not need to be concerned about this format from applications because ROM can be accessed
through a file system-related API.

There is also a possibility that changes may occur in the final product version concerning details such
as registration addresses of data that are mentioned in this document.

The changes made since 08/04/2004 are shown in red.

1 NitroROM Format

A Nitro ROM file consists of the following programs:

(a) ROM header Management data for the entire ROM

(o) Static module (MainP/SubP) Module that is read and executed at startup

(c) File name table Corresponding information between file names and file
numbers

(d) Overlay header table Corresponding information between overlay ID and file
numbers

(e) File allocation table Location information of each file within the ROM

(correspondence between file numbers and locations)

() File image File entity
(9) Banner Banner file. Stores icons and game names
© 2003-2006 Nintendo 2 NTR-06-0037-002-A1

CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

offset=0

Nitro ROM Header

a) ROM Header (16KB)

MainProc Static Module
b) Static Modules

SubProc Static Module

c) File Name Table | File Name Table |

MainP Overlay Header

d) Overlay Header

Table SubP Overlay Header
e) File Allocation File Allocation Table
Table
Paddings
g) Banner | Banner |

File #0 AAA.dat

File #1 BBB.ovl

f) File Images

File #2 CCC.mid

File #X XXX.wav

If the alignment between each block and the start addresses of sections within blocks is required,
padding will be inserted. The developer can specify unit length settings and whether or not to align for
each block.

In the illustration above, addresses are allocated in order of a) - €), g, f). This illustration, however, is
only for the purpose of easily understanding the organization. With the exception of a), block positions
will not be the same order. The ROM header is fixed at a top offset within the ROM. Other blocks are
linked from the ROM header by pointers (offset values from the top of the ROM) directly or indirectly.
Because of this, you can freely change the arrangement of blocks, except for the ROM header, by
changing the order of links. The following illustration is a conceptual link diagram. This is for reducing
the costs that are related to emulations of ROM images.

© 2003-2006 Nintendo 3 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

offset=0

a) ROM Header

b) Static Modules

c) File Name Table

\ 4

d) Overlay Header

Table

e) File Allocation

Table

g) Banner

) File Images

\

The C source is used to show the organization of each NitroROM block.

(@) ROM Header
typedef struct

{

//

// 0x000
//

u8

//

// 0x020
//

//

void*
void*
void*
u32

//

void*
void*
void*

u32

Reserved region for system use

reserved A[32];

//

Reserved for system A (not explained in this text)

b) Parameter for static module

ARM9
main rom offset;
main _entry address;
main_ram address;
main_size;

ARM7

sub_rom offset;
sub_entry address;
sub_ram address;

sub size;

//
//
//
//

//
//
//
//

Source ROM offset
Execution start address
Destination RAM address

Size

Source ROM offset
Execution start address
Destination RAM address

Size

(not implemented)

(not implemented)

© 2003-2006 Nintendo

CONFIDENTIAL

NTR-06-0037-002-A1
Released: February 2, 2006

NitroROM File System Specifications

//

// 0x040 c) Parameter for file name table

//

ROM FNTDir* fnt offset; // Top ROM offset

u32 fnt_size; // Table size

//

// 0x048 e) Parameter for file allocation table

//

ROM FAT* fat offset; // Top ROM offset

u32 fat size; // Table size

//

// 0x0050 d) Parameter for overlay header table

//

// ARM9

ROM OVT* main ovt offset; // Top ROM offset

u32 main ovt size; // Table size

// ARM7

ROM_OVT* sub_ovt offset; // Top ROM offset

u32 sub_ovt size; // Table size

//

// 0x0060 - 0x0067 Reserved region for system use

//

u8 reserved B1[8]; // Reserved for system Bl (not explained in this text)
//

// 0x0068 g) Banner file offset

//

u32 banner offset; // Top ROM offset

//

// 0x006c - 0x006f Reserved for system

//

us8 reserved B2[4]; // Reserved for system B2 (not explained in this text)
//

// 0x0070 Static module parameter 2 (for debugger)

//

void* main autoload done; // BARM9 AUTOLOAD complete CALLBACK
void* sub_autoload done; // ARM7 AUTOLOAD complete CALLBACK
//

// 0x0078 - 0x03fff Reserved for system

© 2003-2006 Nintendo 5 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

//
u8 reserved C[4*1024-0x78]; // Reserved for system C
u8 reserved D[12*1024]; // Reserved for system D
} ROM Header; // 16KB

(b) Static module (MainP/SubP)

This module is output as a binary file at the same time as elf files during link processing. This binary file
is inserted in ROM as is.

There are two processors: the main processor ARM9 and the sub processor ARM7. The top ROM
address of each processor must be aligned at 512 bytes.

(c) File name table

This table acquires file IDs from file names. It supports directories. The table consists of a directory
table and an entry name table.

The directory table has the following structure array.

A number referred to as a directory ID is assigned to each table. The directory ID is incremented in the
order of the stored data. To distinguish it from the directory ID, file IDs start from 0xF000. The
maximum value is OxFFFF. From these specifications, the maximum number of directories is 4,096
and the maximum number of files is 61,440.

The number of elements in the array coincides with the number of directories; the subscript of the array
coincides with the value of OxFO0O subtracted from the directory ID.

Data that has a directory ID of 0xFOOO represents a root directory. For a root directory, the number of
directory entries is stored in the members of the parent directory ID.
typedef struct

{

u32 entry start; // Search location of entry name
ulé entry file id; // File ID of top entry
ulé parent id; // ID of parent directory

} ROM_FNTDir;

entry start (search location of entry name) is an offset value from the top location of a file name
table.

© 2003-2006 Nintendo 6 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

A file name table is a collection of the following two types of variable length data. Use the data
structures correctly depending on whether the entries are files or directories. Since there is a need for
processing these data structures in units of bytes, you must be careful of restrictions on byte access
when analyzing this data in main memory.

typedef struct

{

u8 entry type I // 0 when file entry
u8 entry name_length:7; // Length of file name (0 - 127)
char entry name[length]; // File name (omit terminal \0)

} ROM_FNTStrFile;
typedef struct
{

u8 entry type :1; // 1 when directory entry

u8 entry name length:7; // Length of directory name (0 - 127)
char entry name[length]; // Directory name (omit terminal \O0)
us8 dir_id L; // Directory ID Low 8-bit

u8 dir id H; // Directory ID High 8-bit

} ROM_FNTStrDir;

Entries that are included in identical directories are arranged in successive regions. With the exception
of “files” that are subdirectories contained in the directories, “ files” are assigned successive file IDs.
File entries (\0”) that have an entry name length of 0 are placed after the final entry within a directory.

Entry names have the following characteristics:
e A maximum of 127 characters (in terms of 1-byte character).

e Distinguish between uppercase and lowercase characters with the specification of file names in
order to speed up the search process.

e The registration of multiple entries with identical names within the same directory is prohibited.
Taking into consideration that work will be performed in Windows, uppercase and lowercase
characters are not distinguished when judging whether or not there are identical entry names being
registered.

® You can use characters for the entry names except for code that cannot be used with Windows
within the range of ASCII 0x20 - 0x7e (\ / : ; * 2 " < > |). The internationalization of file
names is not supported because of support cost considerations.

The following illustration shows an example when the three following file names are stored in this
format.

/Nitro.ROM

/BQ.DAT

/image/APPLE.JPG

© 2003-2006 Nintendo 7 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

Top of File Name Table

(d) Overlay header table

"|Directory Table Entry Name Table
»ENTRY_START — »| TYPE FILE
FILE_ID 0 LENGTH 8
NUM_DIRS 2 NAME "IRIS.ROM"
»ENTRY_START — TYPE FILE
FILE_ID 2 LENGTH 6
PARENT_DIR 0xFO00 NAME "BQ.DAT"
TYPE DIR
LENGTH 5
NAME "image"
DIR_ID 0xF001
TYPE FILE
LENGTH O
» TYPE FILE
LENGTH 9
NAME "APPLE.JPG"
TYPE FILE
LENGTH O

This is a file that contains load information of overlay files. It is created as a binary file at the same time

with nef files and overlay modules during link processing.

When a linker outputs, the “overlay file ID” is set to a temporary value. The “overlay file ID” is then
rewritten with an actual value by the makerom command.

The following is an array of the structure data. The size of the array coincides with the number of
overlay files, and the subscript of the array coincides with the overlay ID.

typedef struct

{

void*
u32
u32
void*
void*
u32
u32
u32

u32

} ROM OVT;

id;

ram address;
ram size;
bss size;

sinit init;

sinit init end;

file id;
reserved;
compressed:24;

flag 185

//
//
//
//
//
//
//
//

Overlay ID

Load top location

Load size

bss region size

static initializer initial address
static initializer end address
Overlay file ID

Reserved (0 is set)

// Overlay size after compressed

// Overlay information flag

© 2003-2006 Nintendo

CONFIDENTIAL

8 NTR-06-0037-002-A1
Released: February 2, 2006

NitroROM File System Specifications

Note) Regarding the bit field of compressed and flag, address +0 is set to the area for flag, and address +1 to
+3 is set to the area for compressed.

To support the compression of overlay files, the overlay information flag was newly added. The OR values
with the following values are set according to the overlay state. This value is evaluated by the library when the
overlay is loaded.

Compressed 0x01
Authentication code included 0x02

09/17/04 flag region was moved. Compressed was added.
09/04/04 flag region was added.

03/29/04 The ROM_OVT overlay file size value has been scrapped. It is now reserved.
(e) File allocation table

A file allocation table has an array of the structure data shown below. A number, called a file ID, is
assigned to each table. The file ID is incremented in the order of storage from 0x0000. The maximum
value is OXEFFF. The size of the array coincides with the number of files and the subscript of the array
that coincides with the file ID.

typedef struct

{

void* head; // Top ROM address of file
void* tail; // Bottom ROM address of file
} ROM_FAT; // 0x08

In the specification of after 02/17/04, reservation of the 0 value for the upper 4 bits of ROM FilePtr
was canceled.

When the file ID is specified at intervals, { 0, 0 } is used for the file allocation table region that
corresponds to an unused file ID.

(f) File image

Each file corresponds to each entry of the file allocation table. The file is placed in a region that is
specified by an address between the file top and the file bottom.

© 2003-2006 Nintendo 9 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

a) RomHeader

e) File Allocation
Table

8 Byte / File

f) Filelmages

g) Banner File

offset=0

file_alloc_table_address

file_alloc_table_size

A

File #0: top

bottom
File #1: top
bottom

File #X: top
bottom

File #0
AAA .dat } <«

File #1
CCC.dat

File #2
BBB.dat

File #X
XXX.dat

The banner file stores the images and messages displayed on the selection screen immediately after

the game starts. The starting ROM address must be 512-byte aligned.

typedef struct

{

// Header
u8 version; // The current version is 0x01
u8 reserved A;
ul6 crclée vl; // CRC for checking
u8 reserved B[28];

} BannerHeader; // 32B

typedef struct

© 2003-2006 Nintendo 10 NTR-06-0037-002-A1

CONFIDENTIAL

Released: February 2, 2006

NitroROM File System Specifications

// Icon data H32xW32x16colors
u8 image[32*32/2]; // 32 * 32 * 4bit
us pltt[l6*2]; // 1l6color * lébit
// Game name data Encoding:UTF16-LE (without BOM)
ulé gameName [6] [128]; // 6langs * 128chars
} BannerFileVl; // 2080B
typedef struct
{
BannerHeader h;
BannerFileVl vl;
} BannerFile; // 2112B

09/29/04 The banner file format explanation was added.

NitroROM Creation Path

ROM files are generated in paths as shown below.

512B

32B

1536B

The application called makerom have important functions during ROM file creation. makerom performs

the following processes:

e Phase 1

e Determines the files to be placed within the ROM, determines the offset location of each file
within the f) File image block (previously described), and then outputs that information as a file.

e A complete form of “c) File name table” and a model of “a) ROM header” are created
simultaneously with the processes described in the first bullet.

e Adds more information to “d) Overlay header table” to make a complete form.

e Phase?2

e Generates “e) File Allocation Table” and “f) File Image Block” based on the information file that

is output in phase 1.

e Adds information to “a) ROM header” to make a complete form.

e Links all of a) to f) and makes this a ROM file.

© 2003-2006 Nintendo 11
CONFIDENTIAL

NTR-06-0037-002-A1
Released: February 2, 2006

NitroROM File System Specifications

Application on the
Main Processor

/F—’rocedure for the Commarm
Line Version

Specifies which object files
are included in each overlay

main.o

N

using the Isf file.

Specify with GUI in CW IDE.

LD: mwldarm

Vi

r File group output with LD

-
Il B The subprocessor outputs
main.elf main.sbin in the same way.
main_table main_defs main
.sbin .sbin overlay
1.sbin
. J

© 2003-2006 Nintendo 12 NTR-06-0037-002-A1

CONFIDENTIAL

Released: February 2, 2006

NitroROM File System Specifications

NitroROM definition files

r N list files to be accessed
from NITRO

Application File on the
Main Processor

AN

(b) main.elf
main.sbin (for debug)

Z

main_files
- game.rsf

.shin

sub_files
.sbin

(d)
main_table
.sbin

Read ROM definition file
and determine files to
place in ROM

(f)
main

overlay
1.sbin

Investigate &

L) Partial rewrite
Application File on the

SubProcessor
B NitroROM list file
(b) sub.elf Something I.ike a
sub.sbin (for debug) ROM blueprint

(a) (c) game
main_head | |main_table nif ’
@ AN f) .shin .sbin
sub_table sub_ <
.sbin over.lay
1.sbin Concatenate files and
create ROM image
Data File >
makerom
phase 2

()
data-1.dat
. J
game.bin

makeronm uses the following setting files.

(a) NitroROM spec file extension .rsf
(b) NitroROM list file extension .nlf
© 2003-2006 Nintendo 13 NTR-06-0037-002-A1

CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

These files are described here.

(a) NitroROM spec file .rsf

This is an example of a definition file. For details on the format, see the makerom tool reference

manual.

Describe the binary file portion (. sbin) output by the linker to Arm9/Arm7 section and then adds the
files you want to add within the ROM file to the RomSpec section. Also, describe other information in
the Property section.

In the following example, a file with a . jpg extension within the data/graphics directory of a
development PC is added under the /data directory of the ROM file. Then, in the next region a file
with a .wav extension under data/ARM7/sound is added under the /sound directory.

#

NitroROM Spec File

#

Arm9

Static
OverlayDefs
OverlayTable

Nef

Arm7

Static
OverlayDefs
OverlayTable
Nef

}

Property

{
RomHeader
FileName
BannerFile

}

RomSpec

{

main.sbin
main defs.sbin
main table.sbin

main.nef

sub.sbin
sub_defs.sbin
sub table.sbin

sub.nef

main head.sbin
main files.sbin

bannerfile.sbin

Offset 0x00000000

Segment ALL

© 2003-2006 Nintendo
CONFIDENTIAL

14

NTR-06-0037-002-A1
Released: February 2, 2006

NitroROM File System Specifications

Align 512

Padding Oxff

HostRoot data/graphics
Root /data
File *.Jpg
HostRoot data/ARM7/sound
Root /sound

File *.wav

(b) NitroROM list file .nIf

This is a CSV format file that includes an information set that is used to build ROM images. This file
determines the ambiguous parts of rsf files. An example is shown below.

#NLF —--- NitroROM List File

v,1.1

T,"C:/NitroSDK/build/tests/file/file-1"

H,"rom header.bin","rom files.bin",15

9,"main.nef", "main.bin", "main ovt.bin", "main ovn.bin","."

7,"sub.nef","sub.bin", "sub_ovt.bin","sub ovn.sbin","."

File Image Block

F,00000000,000201fc,00,001c, f£££f, "ROMROOT/Nitro.ROM","/Nitro.ROM",3ffbf36e,512,0
P,000201£c,00000200,00

Line feed code is \r\n.

Each line consists of a command that consists of one ASCII character as the first parameter, and
parameters after that command.

Commands are divided into two types; A header command that indicates overhead information and a
body command that specifies the actual contents of the ROM. A body command should not be
positioned in front of a header command.

Header Command
Version: [V]
V, [version number of file]
This is the version number of the format of a ROM file. Changed to 1.1 because the information for
the relative path from the overlay binary top directory has been added to arm9files/arm7files.

© 2003-2006 Nintendo 15 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

Topdir: [T
T, [Top directory name]
This is a reference directory in the indirect path designation expression of a file. The current
directory is set when an NLF file is created. If the top directory is designated with a relative path,
the position of the top directory is interpreted using the directory where the NLF file is located as
reference.

Headers: [H]

H, [ROM header file], [File name table file], [Number of files with file IDs]

Specify the file names of ROM header files and file name tables.
These files are created by makerom. The file names are enclosed by double quotes.

A value of 8 times the [Number of files with file IDs] becomes the size of the file
allocation table.

arm9files: [9]
9, [nef file], [Static module bin file],

[Overlay table file],

[Overlay name file], [relative path from overlay binary top directoryl

Note: We have put this on separate lines to make it easier to see. However, it is actually one
line.

Specifies the file name of the application file that is used for the Main Processor.

Each file name is enclosed by double quotes.

You can obtain the access path to binaries in the overlay name table by connecting
[top directory] and [relative path from overlay binary top directory].

If the overlay table file is not needed, set ™" as a file name. At this time
*isalsosetto [relative path from overlay binary top directory].
arm7files: [7]
7, [nef file], [Static module bin file],

[Overlay table file],
[Overlay name file], [relative path from overlay binary top directory]

Note: We have put this on separate lines to make it easier to see. However, it is actually one
line.

Specifies the file name of the application file that is used for the Sub Processor.

Each file name is enclosed by double quotes.

If the overlay table file is not needed, set "*" as a file name. At this time
*isalsosetto [relative path from overlay binary top directory].

© 2003-2006 Nintendo 16 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

Body Command
File: [F]
F, [Start offset], [End offset], [Padding code],
[File ID], [ROM header offset],
[File name in development machine], [ROM file name], [Time stamp of file],

[Alignment value], [Movement prohibit flag 0: Move permitted 1: Prohibit]

Note: Line feeds are entered for clarity; the command should be on one line.

Adds files to file image blocks as ROM files.

ROM address space where target files are placed is the range of addresses shown below:
Start offset < address < End offset

When a file is smaller than the specified address space and the range that is specified by the start
offset and end offset cannot be filled, the remaining region will be filled with padding code. In contrast,
when the file is larger than the address space, an error will occur.

Stores information that is related to the offset location of files within ROM in a file allocation table
according to the specified value of [File ID]. The storage location is a location that is [File ID] * 8 from
the top of the file allocation table. Refer to the description of the file allocation table in the preceding
section for details on the storage structure. In addition, the specified value need not be stored when it
is ffff.

In the same way, the file whose [ROM header offset] is not set to ffff stores offset information of files at
specified locations of the ROM header. The storage location is a location that is [ROM header offset] *
4 from the top of the ROM header. Refer to the description of the ROM header for details.

The [File name in development machine] shows the locations of files in a development PC.

The file allocation table is generated when executing makerom. Because of this, the file allocation table
does not exist as a file on the PC. A special file name, *FILEALLOC, is defined to specify the insertion
location of the file allocation table.

Except for ordinary files, file names are not set for data files that are related to file system building such
as an overlay table. An asterisk (*) is specified in the [ROM file name] field of files without names. This
measure is taken to simplify the analysis of command character strings using sscanf.

The [Time stamp of file] is a time_t type value (total number of seconds from 1970 UTC) of a C
library as well as the value of a member st mtime of a stat structure that is acquired by the stat
function. This field is set to O for a file allocation table (*FILEALLOC).

Changing the values of the start offset / end offset is not allowed for files whose [Movement prohibit
flag] is set to a value of “1.”

© 2003-2006 Nintendo 17 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

When this flag is “0”, the offset can be changed. When changing the offset value, be sure to change
each offset using the numeric value units that are specified by the alignment value.

The format of each value is as follows: (sscanf notation)

Command $1lc
Start offset $08x
End offset %$08x
Padding code %$02x
File ID $04x
ROM header offset $04x
File name in development machine "%$1024 [M\"\n]\"
ROM file name \"$1024 [*\"\n]\"
Time stamp of file $08x
Alignment value %d
Movement prohibit flag Oor1l
Padding: [P]

P, [Start offset], [End offset], [Padding code]
Adds padding to the ROM file image block.

The target ROM address space is the following range of addresses:
Start offset < address < End offset

The range that is specified by the start offset and the end offset is filled with padding code.

[Other]
#comment: [#]

[Comment]
None. For comments. Comma-delimited is not necessary for this line.
#NLF

The starting four characters of the file are #NLF in consideration of use as a magic number for a
file.

3 Overlay Process

In order to obtain the overlay parameter at the time of makerom execution, you must create an overlay
name file in the format below when linking.

This file saves startup parameters (16-byte) that are related to the resident module and the executable
binary filenames of each overlay generated during linking.

© 2003-2006 Nintendo 18 NTR-06-0037-002-A1
CONFIDENTIAL Released: February 2, 2006

NitroROM File System Specifications

The overlay executable binary file names are packed in the order of overlay IDs as character strings
terminated with “\ 0”. For example, when file names are a.sbin, b.sbin, and c. sbin, the file name

data is saved in the following format:

a.sbin\0b.sbin\0c.sbin\0

To obtain the file name of overlay with overlay ID of “N”, search for the Nth “\ 0” from the start of the file
name data, and get the character string that starts from the next character as the file name.

//

// OverlayDefs format

//

typedef struct ROM ONTHeader

{

void* static ram address;

void* static entry address;

u32 static_size;

void* static_autoload done,

} ROM _ONTHeader;

typedef struct ROM ONT

{
ROM_ONTHeader

char

} ROM ONT;

header;

file list[];

//
//
//
//

//
//
//
//

static module ram address
entry address
size

static autoload done address (debug purpose)

Variable length STRING data
File names ending in a NULL character are
retained as many as numbers corresponding to the

overlay binary

© 2003-2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

© 2003-2006 Nintendo
CONFIDENTIAL

19 NTR-06-0037-002-A1
Released: February 2, 2006

	0 Introduction
	1 NitroROM Format
	2 NitroROM Creation Path
	3 Overlay Process

