Profiler

Profiler
Version 0.2.0 8/04/04

Table of Contents

1 Profiler MeChaniSM..........ooi e e e e e e e eeeees 2
1.1 Profile FEAUrEoi e s 3
1.2 Specifying DUring @ COMPIIEuuiiiiiiie e e r e e e e e e 5
1.3 SWItChiNg With Dragma ... 6

1.3.1 Where to Place PragMa..........ueiiiiiiiiiiiiee ittt sttt et et e e e e e s e e s neneee s 6

2 NItrO-SDK PrOfilEr ... e e e e e e e e eeeens 7
20t B o o Tox 1o o =1 I I = Vo - 7
2.2 FUunction COSt MEASUIEMENTuuiiieiiiiiie et e et s e e e e e s ennte e e s snnee e e e enneeas 7

3 FUNCHON Call TrACE ..ottt e e e e e e e e e e e e eeeneees 8
3.1 Mechanism of Trace RECOIINGccoiuiiiiiiiiiiii et 8
B TOZZNS - V=Y N [o T4 o 4= 110) o PSS 9
3.3 Two Modes of FUNCHON Call TraCe........coviiiiiiiee ettt 10
3.4 Implementing in the Program ... e e 11
3.5 Display Example With DUMPouviiiiiiii e e e 14

351 INSEACK MOGE ...t e et e s 14
3.5.2 INLOGMOGE ...ttt eas 15
3.6 Specification When LINKING ..o 16
T A @ o 71 = 11 o a 1 TN I 1= Y= Lo 1SS 16
S R O 1 SRR 16

4 Function Cost Measurementiiiiiiiiiie e 17
4.1 Cost Measurement MeChaniSm ..o e 17
4.2 Saved INfOrMEALIoNeiii e 18
4.3 Conversion to Statistics BUFfer ... 19
4.4 Implementing in the Programcooo i e 20
4.5 Display Example With DUMP ... 23
4.6 Specification When LinKiNgoooiiiiiiiie et 23
A © 7= - 11 To] o 1o o N I8 1= Y=o R 23
T O 01 SRS RR 23

5 Other Profilers (Non-Nitro-SDK)...........ooumiiiiei e 24
5.1 Specification When LINKiNgGcceooiiiiiii e e 24

© 2004-2006 Nintendo 1 NTR-06-0123-002-A1

CONFIDENTIAL Released: February 2, 2006

Profiler

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0123-002-A1 2 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Profiler

1 Profiler Mechanism

1.1 Profile Feature

mwccarm. exe, the C compiler from Metrowerks, is set up to support the profile feature. This feature automatically
inserts the code for a specific function call in the entry and exit of the function. By taking records and statistics about
the call from within the function, you can acquire profile information; which is especially useful for things like
debugging.

The profile feature can be enabled by adding the option -profile in mwccarm.exe and compiling.

The profiler typically created lines of code like the following example.

u32 test(u32 a)
{

return a + 3;

}

If this function is compiled, usually an object with the following code is output.

test:
add r0, r0, #3 // Add 3
bx 1r

3 is simply added to the argument r0. (Return value is also stored in r0.)

Next, the case in which compiling with the profile feature ON is shown. ~ PROFILE ENTRY and PROFILE EXIT

are called during entry and exit respectively. The following is an example of code created by this feature for a stack

operation.
test:
stmfd sp!,{r0,1r}
1ldr r0, [pc, #321 // Assign the pointer to the character string
“test” to r0
bl __PROFILE ENTRY // _ PROFILE ENTRY Call
ldmfd sp!,{r0,1r}
add r0,r0, #3 // Add 3
sub sp, sp, #4
stmfd sp!,{1lr}
bl __ PROFILE EXIT // _ PROFILE EXIT Call
ldmfd sp!, {1r}
add sp, sp, #4
bx 1r
ded XX XX // pointer to the character string “test”
xxxx: 74 65 73 74 00 // character string “test”
© 2004-2006 Nintendo 3 NTR-06-0123-002-A1

CONFIDENTIAL Released: February 2, 2006

Profiler

_PROFILE ENTRY and PROFILE EXIT have only the code for calling functions, and the entity of the function must

be created in the application. For NITRO-SDK, they are defined in os_callTrace.c and os_functionCost.c S0

that you can link them into your code if necessary.

Functions that call PROFILE ENTRY and PROFILE EXIT and functions thatdo notcall PROFILE ENTRY

and _ PROFILE EXIT can exist in the link object. Since the compiler enters profiling calls function by function, there

are no function that calls only PROFILE ENTRY or PROFILE EXIT unless such function is created deliberately.

test1()

XXXX

XXXX

XXXX

main()

__PROFILE_ENTRY()

__PROFILE_EXIT()

XXXX

XXXX

XXXX

test2()

XXXX

XXXX

XXXX

test3()

__PROFILE_ENTRY()
XXXX

XXXX

XXXX
__PROFILE_EXIT()

—_PROFILE_ENTRY()

XXXX

XXXX

XXXX

__PROFILE_EXIT()

XXXX

XXXX

XXXX

The object that has the PROFILE function and the object that do not have the PROFILE function

can be mixed. (The PROFILE function itself does not have the calls to the PROFILE function.)

NTR-06-0123-002-A1
Released: February 2, 2006

© 2004-2006 Nintendo
CONFIDENTIAL

Profiler

1.2 Specifying During a Compile

If NITRO_PROFILE is defined in NitroSDK the ~profile option is added during the C source compile.
For the function in the source compiled with -profile added, the calls for PROFILE ENTRY and
___PROFILE EXIT are entered at the beginning and the end of the function of the object.

If a simple make is

executed

function()
mwccarm --- test.c

XXXX
XXXX
XXXX

If make NITRO_PROFILE=TRUE is executed
function()

mwccarm —profile -** test.c

__PROFILE_ENTRY()
XXXX

XXXX

XXXX
__PROFILE_EXIT()

It is okay to write this in the Makefile.

Makefile

NITRO_PROFILE = TRUE

© 2004-2006 Nintendo 5 NTR-06-0123-002-A1
CONFIDENTIAL Released: February 2, 2006

Profiler

1.3 Switching with pragma

When temporarily switching the profile feature in the C source use #pragma.

#pragma profile on turns it ON.

#pragma profile off turns it OFF.

#pragma profile reset returns it to the original status before switching to ON or OFF.

(Example)

void testl(void)
{

}

void test2(void)
{

}

#pragma profile off
void test3(void)
{

}

#pragma profile reset

void testd (void)
{

}

If this source is compiled with —-profile, the profile feature for test1 (), test2 (), and test4 () are ON. (without

-profile, the profile feature will be OFF with all functions.)

1.3.1 Where to Place Pragma

If the function is turned ON before it ends, the profiler feature will be turned ON for that function. If the function is OFF
at the moment it ends, the profile feature will be turned OFF. Normally it should be set outside the function so that it is

easier to follow.

(Example)

#pragma profile off
void test1(void) .
profile off
XXXXX();
XXXXX();
XXXXX(); A
#pragma profile on

This function is profile on

void test2(void) profile on

X0XX(); This function is profile off
XXXXX(); \/

XXXXX();
#pragma profile off
} profile off

v

NTR-06-0123-002-A1 6 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Profiler

2 Nitro-SDK profiler

By setting up PROFILE functions for objects with calls for PROFILE ENTRY () and PROFILE EXIT (), the

following mechanisms for debugging with Nitro-SDK are available:
Function Call Trace (0S_CallTrace)
Function Cost Measurement (OS_FunctionCost)

These features are built separately from the OS library. More specifically, the OS library is 1ibos.a (or
libos.thumb.a). The function call trace library is 1ibos.CALLTRACE.a (or 1ibos.CALLTRACE. thumb.a), and
the function cost measurement is 1ibos.FUNCTIONCOST.a (Or 1ibos.FUNCTIONCOST. thumb.a).

2.1 Function Call Trace

There are two modes for the mechanism that records the results of a PROFILE function to a specified memory

location.

One is a stack mode that records the call of the function with PROFILE ENTRY () and deletes the record with
___PROFILE EXIT (). By checking the record at a certain point you can find out what function wrote to the record at

that point (what type of call was used).

The other is a log mode that records the call of the function with PROFILE ENTRY () and does nothing with
___PROFILE EXIT (). The buffer for recording is used repeatedly so the most recent record is always maintained.

This allows display of the function that was called (was being called when the record was written).

To enable this profile feature, you must specify NITRO PROFILE TYPE=CALLTRACE in the make option. (It can be

specified in the Makefile also.)

2.2 Function Cost Measurement

This mechanism measures the time in the ENTRY and EXIT areas of the PROFILE function and checks the duration

of the function based on the difference between the two.

If you are using a thread system, the time while the thread is switched and another thread is running is subtracted
from the duration. This allows you to compare the cost of a particular function. In addition, the number of calls is

recorded so it is useful for measuring the frequency of calls.

To enable this profile feature, you must specify NITRO PROFILE TYPE=FUNCTIONCOST in the make option. (It can

be specified in the Makefile also.)

© 2004-2006 Nintendo 7 NTR-06-0123-002-A1
CONFIDENTIAL Released: February 2, 2006

Profiler

3 Function Call Trace

3.1 Mechanism of Trace Recording

The function call trace works in the following way.

Function Call Trace Buffer

__PROFILE_ENTRY

> Record for

function() /

__PROFILE_ENTRY()

XXXX
PROFILE_EXIT

XXXX / -
XXXX / /

__PROFILE_EXIT()

function()

__PROFILE_ENTRY()

Records that “function was called” in the function call trace buffer. Specifically,
the pointer to the function name character string, return address from the

function, and argument (options) are recorded together.

__PROFILE_EXIT()

(Stack Mode) — Deletes the record that states the “function was called” most

recently written to the function call trace buffer.

(Log Mode) — Performs no processes.

© 2004-2006 Nintendo
CONFIDENTIAL

NTR-06-0123-002-A1 8
Released: February 2, 2006

Profiler

3.2 Saved Information

The following information is saved with the function call trace:

Pointer to the function name character string

Value of 1r Register at the point from which the function was called

Value of r0 Register at the point from which the function was called (optional)
Value of r1 Register at the point from which the function was called (optional)
Value of r2 Register at the point from which the function was called (optional)

Value of r3 Register at the point from which the function was called (optional)

The memory address from which the function was called is stored in the 1r register. In other words, if the value of the

1r register is known, you can use that value to determine the address from which the function was called.

The r0 — r3 registers are used for the passing of the values of argument for the function that has arguments. This
allows you to see what type of argument was specified when the function is called. However, the values of registers
not used in passing arguments do not have much meaning. Saving the values of r0 — r3 is optional. These require a

dedicated 4-byte area for each register. Keep these memory requirements in mind when allocating your buffer.
The buffer is used in the following manner.

Function Call Trace Buffer

I Control Area

S
0x02010040 | 0x02010080 [0x00000040 | 0x00000060 | 0x00000703 |0x80001FFF
0x0212C764 | 0x02120184 | 0x00000001 | 0x00000001 | 0x00000001 | 0x00000002
+| 0x02035678 |0x0201D174 | 0x00000003 | 0x00000003 | 0x00000023 | 0x00000023 S Trace
: 0000 000O0OGOOGIOGIOSGIOSNOIOSNOSNOIOS 00 00000 0O00OCOGOEOINOGOONONONOOSNOGOEOIONOEONONOIOINOIOIPONOINOSINONEONONOIONODPS 1’ |nf0rmat|0n
0x020211F8 | 0x02009F10 | 0x00008000 | 0x00004000 | 0x00000018 | 0x0000090C
Pointer to 1r r0 rl r2 r3
Function Name
Information for one Call
© 2004-2006 Nintendo 9 NTR-06-0123-002-A1

CONFIDENTIAL Released: February 2, 2006

Profiler

In the preceding diagram, r0 — r3 are saved so a 24-byte information region is required for one call. If r0 — r3 do not

need to be saved, the buffer size required for one call is 8 bytes.

Information such as the area of the buffer currently in use and the location of the upper limit is stored in the Control

Area.

3.3 Two Modes of Function Call Trace

There are two modes for the function call trace, stack mode and log mode. In stack mode, information is saved by
__ PROFILE ENTRY () and deletedby PROFILE EXIT().Inlog mode, PROFILE () does notdelete the
information. Also, the same region is used for saving information and the old information is deleted.

The buffer stores the following information:

Stack Mode

Function Call Trace Buffer

main ()

ks main ()

. function ()
function ()
subroutine ()
subroutine ()

If you check the function call trace buffer, you can view the information about a
function call at a particular point. In the diagram above, you can see that

main () called function (), and function () called subroutine ().

Log Mode

main () Function Call Trace Buffer

function () in()
main

subroutine () function ()

function () subroutine ()

) function ()
V¥ subroutine ()

subroutine ()

If you check the function call trace buffer, you can view the information for
functions called up to that point. In the diagram above, you can see that
main (), function (), subroutine (), function (), and subroutine ()

were called.

NTR-06-0123-002-A1 10 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Profiler

3.4 Implementing in the Program

The call trace begins with the initialization of the call trace buffer at the beginning of the program. In stack mode, the
functions carrying out initialization must be at the highest level (not called from within other functions). This

consideration is not particularly necessary in log mode.

// Function call trace initialization
void OS InitCallTrace(void* buf, u32 size, 0SCallTraceMode mode) ;

buf Function call trace buffer
size Buffer size
mode stack mode or log mode

As described previously, the function call trace buffer stores the information necessary for controlling the buffer and
the actual trace information. The mode is specified by 0SCallTraceMode with a value of either
OS_CALLTRACE STACK (stack mode) or 0S_CALLTRACE_LOG (log mode).

If you know the size of a CallTrace buffer and want to know how many lines it can store, use the following function.

// Calculate the number of trace information sets based on the size of the buffer.
int OS CalcCallTracelLines(u32 size)

size Buffer size
Return Value Number of lines that can be secured (number of trace information sets)

Use the following function to determine the minimum size required for your buffer based on the number of lines you

want it to contain.

// Calculate the buffer size based on the number of
// trace information sets that can be stored.
u32 0S CalcCallTraceBufferSize(int lines);

lines Number lines in the buffer (number of trace information sets)
Return Value required size of your buffer

The following function is used for displaying the contents of a trace buffer. The displayed content is described later in
this document.

// Function call trace display
u32 O0S DumpCallTraceBufferSize(void);

© 2004-2006 Nintendo 11 NTR-06-0123-002-A1
CONFIDENTIAL Released: February 2, 2006

Profiler

You can temporarily stop recording information or restore the setting by using the following functions. Recording of
information remains disabled even if PROFILE ENTRY () or PROFILE EXIT () are called. If you are using stack
mode, the information inside the buffer may be invalid or corrupt depending on when the PROFILE function is
stopped.

// Function call trace enable/disable/restore
BOOL OS EnableCallTrace(void);

BOOL OS DisableCallTrace(void);
BOOL OS RestoreCallTrace(BOOL enable);

enable Enable (TRUE) or Disable (FALSE)
Return Value Status prior to this function call. Enable (TRUE)/ Disable (FALSE)

To clear the contents of the buffer in log mode, use the following function. (You can also use this function in stack
mode. However, it is strongly recommended that you develop a full understanding of the way in which this function
operates before using it in stack mode.)

// Function call trace buffer clear
void OS ClearCallTraceBuffer (void);

The following are actual in-program examples.
In stack mode:

#define TRACEBUFSIZE 0x300
u32 traceBuffer[TRACEBUFSIZE / sizeof (u32)];

void NitroMain(void)
{
OS Init();

//-—-—-— 1nit callTrace (STACK mode)
OS InitCallTrace(&traceBuffer, TRACEBUFSIZE, OS CALLTRACE STACK);

}

void function ()
{

//---- display callTrace

0S DumpCallTrace(); // Displays status of function call at this point
}

NTR-06-0123-002-A1 12 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Profiler

In log mode:

#define TRACEBUFSIZE 0x300
u32 traceBuffer[TRACEBUFSIZE / sizeof (u32) 1;

void NitroMain (void)
{
0S Init();

//---— init callTrace (LOG mode)
OS InitCallTrace(&traceBuffer, TRACEBUFSIZE, OS CALLTRACE LOG);

// Location to be logged

//---- display callTrace
OS DumpCallTrace () ;

© 2004-2006 Nintendo 13 NTR-06-0123-002-A1
CONFIDENTIAL Released: February 2, 2006

Profiler

3.5 Display Example with Dump

3.5.1 In Stack Mode

The following is an example of the output from a 0S_DumpCallTrace () function call.

OS DumpCallTrace: 1r=0200434c

test3: 1r=02004390, r0=00000103, r1=00000080, r2=00000080, r3=2000001f
test2: 1r=020043c4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f
testl: 1r=02004254, r0=00000100, r1=00000080, r2=00000080, r3=2000001f

In this example, the 1r= value shows that 0S_DumpCallTrace () was called immediately before 0x0200434c. You
can also see that test1 () calls test2 () and test2 () calls test3 (). The position returning from test3 () is
before 0x2004390.

The example also shows that when test3 () is called, r0is 0x103, r1is 0x80, r2 is 0x80, and r3 is 0x2000001£.
Therefore, if test3 () is a function that uses an argument, you can apply these values and figure out the arguments

when the functions are called. The same analysis is possible with other functions.

(Note) In the example above, descriptions like “test1 () called test2 ()” are based on the premise that this
executable file has the profile feature enabled for all the objects and is compiled. So, if test1 () calls test4 () when
test4 () does not have an enabled profile feature. Then, test4 () calls test2 () which does have an enabled
profile feature. The result will be what you see in the example—test2 () above testl () with no test4 ()

displayed at all.

The display above was output from the program below.

int testl(int a){ return test2(a + 1); }
int test2(int a){ return test3(a + 2); }
int test3(int a){ OS DumpCallTrace(); return a + 4; }

void NitroMain(void)

{
0S Init();

OS InitCallTrace(&buffer, BUFFERSIZE, OS CALLTRACE STACK);
(void) testl(0x100);

NTR-06-0123-002-A1 14 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Profiler

3.5.2 InLog Mode

The following is an example of the output from a 0S_DumpCallTrace () function call.

test3: 1r=020043a0, r0=00000103, rl=00000080, r2=00000080, r3=2000001f
test2: 1r=020043d4, r0=00000101, r1=00000080, r2=00000080, r3=2000001f
testl: 1r=0200423c, r0=00000100, r1=00000080, r2=00000080, r3=2000001f
test3: 1r=020043a0, r0=00000203, rl=00000080, r2=00000080, r3=2000001f
test2: 1r=020043d4, r0=00000201, r1=00000080, r2=00000080, r3=2000001f
testl: 1r=02004244, r0=00000200, rl=00000080, r2=00000080, r3=2000001f

Since the newest information is displayed first, you can see that for the functions that have an active profile feature,
the calling order is test1l, test2, test3, testl, test2, and test3. Return address, argument and other

information can be determined from the 1r register or r0 — r3 registers at that point.

Looking at the display of test1, test2, and test3 you can see that test2 and test3 are indented. This happens
because test2 was called before the PROFILE EXIT () of testl, and test3 was called before the
___PROFILE EXIT () of test2.

The display above was output from the program below.

int testl(int a){ return test2(a
int test2(int a){ return test3(a
int test3(int a){ return a + 4; }

void NitroMain(void)
{
0S Init();

OS InitCallTrace(&buffer, BUFFERSIZE, OS CALLTRACE LOG) ;
(void) testl(100);
(void) testl(100);
OS DumpCallTrace () ;
}

© 2004-2006 Nintendo 15 NTR-06-0123-002-A1
CONFIDENTIAL Released: February 2, 2006

Profiler

3.6 Specification When Linking

To enable the function call trace feature, NITRO PROFILE TYPE=CALLTRACE must be specified for the make option.
Due to this requirement, 1ibos.CALLTRACE.a (or 1ibos.CALLTRACE. thumb.a) is included when linking. This

can also be described in the Makefile.

3.7 Operation on Thread

If a thread system is being used, the function call trace information runs independently for each thread. Therefore,
initialization of a particular buffer declared with OS_InitCallTrace() only records information from the thread in which it

was generated. Status settings for functions like 0S_EnableCallTrace () are also independent for each thread.

Avoid declaring the same buffer with a different thread using 0S_InitCallTrace ().

3.8 Cost

Because the function calls are saved in the buffer, function calls cost more than the normal operation. Since every
function must include the PROFILE ENTRY/EXIT calls, the optimization during compile is not as much as expected,
compared to a situation where there is no restrictions. Further, to save the pointer to the function name in the buffer,

the function name string is placed on the memory, which causes additional memory usage.

The operational cost varies based on factors such as: whether there is a thread or not, the information saved, and the
mode. With PROFILE ENTRY () extra 60 — 70 instructions are passed, and with PROFILE EXIT () an extra 20

— 40 instructions.

NTR-06-0123-002-A1 16 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

4 Function Cost Measurement

41

Cost Measurement Mechanism

Profiler

Two buffers are used with function cost measurement. As shown below, they are the “Function Cost

Measurement Buffer” and “Function Cost Statistics Buffer”.

Function Cost Measurement

Buffer

__PROFILE_ENTRY

function()

/

__PROFILE_ENTRY()

XXXX

__PROFILE_EXIT /

XXXX /v
XXXX /

__PROFILE_EXIT()

/

__PROFILE_ENTRY()

iy function()

Current Time 0030
Current Time 0045

This records the pointer to the function name character string and the current

time to the cost measurement buffer the user specified.

__PROFILE_EXIT()

This records the tag written by PROFILE_EXIT () and the current time.

Function Cost Measurement Buffer

Function Cost Statistics Buffer

function() Current Time 0030
------------ Current Time 0045
function() Current Time 0070
test() Current Time 0080
------------ Current Time 0090
............ Current Time 0120

Summarize

_— >

test()

function() 2 times Time Duration 55
1 time Time Duration 10

NTR-06-0123-002-A1

© 2004-2006 Nintendo
CONFIDENTIAL

17

Released: February 2, 2006

Profiler

4.2 Saved Information

The following information is recorded with the function cost measurement.

With PROFILE ENTRY:

Pointer to function name character string
Current time, value of 0S_GetTickLo ()
With PROFILE EXIT:
Special value for area where pointer was saved with PROFILE ENTRY (called the EXIT tag value.).
Current time, value of 0S_GetTickLo ()

Interval due to thread switch if required (optional)

The current time is a value that can be obtained with 0S_GetTickLo (). The Tick feature of the OS has a 64-bit
value, but it is sufficient to only check the lower half when calling a function so it is managed as a 32-bit value.

The special value (called the EXIT tag) for distinguishing the pointer to the character string of PROFILE ENTRY
with PROFILE EXIT is secured in the pointer to the function name character string.

The amount of time it takes to change threads (including the time spent in any other thread) is deducted from the total
time elapsed from PROFILE ENTRY to PROFILE EXIT.

Function Cost Measurement Buffer

I Control Area

a

0x02010040 0x00008000 0

OXFFFFFFFF 0x02120184 300
ego0c00000000000000000000000h00000000000 000, Measurement
* | 0x02035678 0x0201D174 o | Information
. .

OXFFFFFFFF 0x02009FCO 0

) 7 i\ '
/ / |

Pointer to function Time Interval due to thread switch
name
Information for one set of PROFILE ENTRY and PROFILE EXIT
EXIT Tag — — — _
NTR-06-0123-002-A1 18 © 2004-2006 Nintendo

Released: February 2, 2006 CONFIDENTIAL

Profiler

Types of information stored in the “Control Area” include: the part of the buffer currently being used, location of the

upper limit of the buffer, the counter value for the duration of a thread switch, etc.

4.3 Conversion to Statistics Buffer

It is difficult to obtain cost information only with the function cost measurement data since the measurement data

needs to be summarized as statistics buffer data.

The summary relates the call information of the function and the EXIT tag, then totals the number of calls and the time
spent in the function. When the control is transferred to a separate thread due to a switch in threads, the amount of
time until it returns to the original thread is recorded as an interval line of the EXIT tag. Calculations are carried out to

take this into consideration.

Summarizations must be carried out explicitly. When summarized, the contents of the function cost measurement
buffer are cleared. Repeatedly storing these results in the summarization buffer (before the function cost
measurement buffer overflows) helps to ensure accurate measurement for long processes. Since the same
summarization buffer can be shared with multiple threads, avoid summarizing a separate thread while summarizing

on another thread.

Thread 1 Function Cost

Measurement Buffer

function() Current Time 0030

function() Current Time 0070
test() Current Time 0080

............ Current Time 0120

------------ Current Time 0045 interval 7

------------ Current Time 0090 interval 5

Thread 3 Function Cost

Measurement Buffer

function() Current Time 0083
------------ Current Time 0088
function() Current Time 0135
------------ Current Time 0145

Thread 2 Function Cost
Measurement Buffer

xxxx() Current Time 0035
------------ Current Time 0042
function() Current Time 0130

------------ Current Time 0150 interval 10

Function Cost Statistics Buffer

function() 5 times Time Duration 70

Summarize test() 1 time Time Duration 5

_— > xxxx() 1 time Time Duration 7

The results of multiple measurements can be written to the

statistics buffer

© 2004-2006 Nintendo 19 NTR-06-0123-002-A1
CONFIDENTIAL Released: February 2, 2006

Profiler

4.4 Implementing in the Program

Cost measurement begins recording to the buffer as soon as a function is initialized.
The Tick system of the OS is used for cost measurement so you must call 0S_InitTick () before initializing any

cost measurement buffers.

// Function cost measurement initialization
void OS InitFunctionCost(void* buf, u32 size);

buf Function cost measurement buffer
size Buffer size (byte)

As described previously, the information for controlling the buffer and the actual time information are stored.

If you know the size of a buffer and want to know how many lines it can store, use the following function.

// Calculate the number of information sets based on the size of the buffer.
int OS CalcFunctionCostLines(u32 size)

size Buffer size (bytes)
Return Value Number of lines that can be secured (number of information sets for cost measurement)

Use the following function to determine the minimum size required for your buffer based on the number of lines you

want it to contain.

// Calculate the buffer size based on the number of
// measurement information that can be stored.

u32 OS CalcFunctionCostBufferSize(int lines);

lines Number of lines in the buffer
Return Value required size of you buffer (in bytes)

Initialize the cost statistics buffer with the following function.

// Function cost statistics buffer initialization
void OS InitStatistics(void* statBuf, u32 size);

statBuf Buffer
size Buffer size (bytes)

The following function stores the value of the cost statistics buffer.

// Summarize function cost
0OS CalcStatistics (void* statBuf);

statBuf Statistics buffer

The current contents of the function cost measurement buffer are cleared when 0S_CalcStatistics () is called.

NTR-06-0123-002-A1 20 © 2004-2006 Nintendo
Released: February 2, 2006 CONFIDENTIAL

Profiler

The following function displays the summarization results. The output of this function is described later in this

document.

// Function cost summarization display
OS DispStatistics(void* statBuf);

statBuf Statistics buffer

You can temporarily stop recording profiling data or restore the setting by using the following functions. Recording of

information remains disabled even if PROFILE ENTRY () or PROFILE EXIT () are called. If a thread switch

takes place so that only the information recorded with ~ PROFILE_ENTRY () or the information recorded with

___PROFILE EXIT () is written to the buffer, the cost measurement data may be invalid. It is strongly suggested that

you pay particular attention when using these functions.

// Function cost measurement enable/disable/restore
BOOL OS EnableFunctionCost (void);

BOOL OS DisableFunctionCost (void) ;

BOOL OS RestoreFunctionCost (BOOL enable);

enable Enable (TRUE), Disable (FALSE)
Return Value Status prior to function call. Enable (TRUE)/disable (FALSE)

If you want to explicitly clear the contents of the function cost measurement buffer, call the following function.

// Function cost measurement buffer clear
void OS ClearFunctionCostBuffer (void);

21 NTR-06-0123-002-A1

© 2004-2006 Nintendo
Released: February 2, 2006

CONFIDENTIAL

The following is an in-program example.

#define COSTSIZE 0x3000
#define STATSIZE 0x300

u32 CostBuffer[COSTSIZE / sizeof (u32)]
u32 StatBuffer[STATSIZE / sizeof (u32)];

void NitroMain (void)

{
0S Init();
0OS InitTick();

//---- init functionCost

OS InitFunctionCost(&CostBuffer, COSTSIZE

OS InitsStatistics(&StatBuffer, STATSIZE);

done after measurement

// This is the location to be measured

//-—--— calculate cost

OS Calcstatistics(&StatBuffer);

//---- display functionCost
OS DumpStatistics(&StatBuffer);

Profiler

// This initialization can be

OS_ InitFunctionCost()

Measurement Buffer Initialization

OS_InitStatistics()

Statistics Buffer Initialization

OS_CalcStatistics()

Summarize the contents of

measurement buffer to statistics buffer

OS_DumpsStatistics()
Statistics Buffer Display

NTR-06-0123-002-A1
Released: February 2, 2006

22

© 2004-2006 Nintendo

CONFIDENTIAL

Profiler

4.5 Display Example with Dump

A following is an example of the output of an 0S_DumpStatistics () function call.

testl: count 1, cost 25
test2: count 3, cost 185
test3: count 4, cost 130

In the example, there was one call for test1 () with an elapsed time (duration) of 25. (The units of this value are the

same as those used in the Tick system of the OS.)

There were three calls for test2 () with a total duration of 185. For test3 (), there were four calls with a total
duration 130.

4.6 Specification When Linking

To enable the function cost measurement feature, NITRO PROFILE TYPE=FUNCTIONCOST must be specified for the
make option. Due to this setting, 1ibos.FUNCTIONCOST.a (or 1ibos.FUNCTIONCOST. thumb.a) is included when

linking. This can also be described in the makefile.

4.7 Operation on Thread

If a thread system is being used, the function cost measurement information runs independently for each thread.
Therefore, initialization of a particular buffer declared with 0S_InitFunctionCost () only records information from
the thread in which it was generated. Status settings for functions like 0S_EnableFunctionCost () are also

independent for each thread.

Avoid declaring the same measurement buffer with a different thread using 0S_InitFunctionCost ().

48 Cost

Because time information is saved in the buffer every time the function is called, function calls cost more than the
normal operation. Since every function must include the ~ PROFILE ENTRY/EXIT calls, the optimization during
compile is not as much as expected, compared to a situation where there is no restrictions. Further, to save the
pointer to the function name in the buffer, the function name string is placed on the memory, which causes additional

memory usage.

The operational cost changes based on factors such as if there is a thread or not. With PROFILE ENTRY () an
extra 25 — 35 instructions, and with PROFILE EXIT () an extra 20 — 30 instructions are passed. Also, interval
calculation is done when the thread is switched so an extra 30 — 40 instructions are required. The time is obtained by

reading the 32-bit timer value from the 10 register so the cost of obtaining the time is not significant.

© 2004-2006 Nintendo 23 NTR-06-0123-002-A1
CONFIDENTIAL Released: February 2, 2006

Profiler

5 Other Profilers (non-Nitro-SDK)

Preparing PROFILE ENTRY () and PROFILE EXIT () allows you to use a Profiler other than the one provided
in the Nitro-SDK OS.

For example, if you use the Profiler offered as the CodeWarrior Example, PROFILE ENTRY () and
___PROFILE EXIT () are defined within it so the ones provided in the OS should not be defined..

5.1 Specification When Linking

NITRO PROFILE TYPE must be specified for elements other than CALLTRACE or FUNCTIONCOST during an OS
compile (In other words, nothing needs to be specified). Due to this, the profile library such as 1ibos.XXXX.a (XXXX
= either CALLTRACE or FUNCTIONCOST) will not be linked.

Be aware that in order to insert the PROFILE function at the beginning and end of each function
NITRO PROFILE=TRUE must be specified.

User Program

test()

Executable File
__PROFILE_ENTRY()

XXXX

XXXX

__PROFILE_EXIT()

NITRO PROFILE=TRUE (where necessary) ".. _PROFILE_ENTRY()..’

3 ry

because there is a need to insert the
___PROFILE function in each function

.0
*
‘e

0’0
__PRQFILE_BXIT()
o *

L3

__PROFILE_ENTRY()

0‘. “.
* *
0‘ ‘0
"0 4“
CodeWarrior PROFILE Function +* OS __ PROFILE Function *
(In ProfileLibrary ARM LE.a) __ PROFILE_EXIT()
Use the PROFILE function that is not in the
SDK. Therefore, NITRO PROFILE TYPE is
not specified.
Revision History
08/11/2004 Revised the error in 3.4 where “stack mode” was “trace mode”
NTR-06-0123-002-A1 24 © 2004-2006 Nintendo

Released: February 2, 2006 CONFIDENTIAL

*

	1 Profiler Mechanism
	1.1 Profile Feature
	1.2 Specifying During a Compile
	1.3 Switching with pragma
	1.3.1 Where to Place Pragma

	2 Nitro-SDK profiler
	2.1 Function Call Trace
	2.2 Function Cost Measurement

	3 Function Call Trace
	3.1 Mechanism of Trace Recording
	3.2 Saved Information
	3.3 Two Modes of Function Call Trace
	3.4 Implementing in the Program
	3.5 Display Example with Dump
	3.5.1 In Stack Mode
	3.5.2 In Log Mode

	3.6 Specification When Linking
	3.7 Operation on Thread
	3.8 Cost

	4 Function Cost Measurement
	4.1 Cost Measurement Mechanism
	4.2 Saved Information
	4.3 Conversion to Statistics Buffer
	4.4 Implementing in the Program
	4.5 Display Example with Dump
	4.6 Specification When Linking
	4.7 Operation on Thread
	4.8 Cost

	5 Other Profilers (non-Nitro-SDK)
	5.1 Specification When Linking

