NITRO-SDK

A Description of the
Wireless Communications Library

Version 1.1.6

The contents in this document are highly
confidential and should be handled accordingly.

© 2004-2006 Nintendo NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0172-002-A7 2 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

Contents
1 Wireless Communication Library OVervieW ... 7
It O [01 Yo 0o T o T 7
1.2 Basic Specifications of the Wireless Communication Hardwarecccccooiiiiiiiiiiiiiiiieen 7
1.3 Configuration of the Wireless Communications Library............cccccceviieiiiice e 7
2 GIOSSAIY ...ttt s nen 9
3 DS WIrEIESS PlAY ...ttt e e e e e e e e e e e e e e e e aeanaes 13
T I @ Y= Y 1o YRR 13
3.1.1 Connection CONfIGUIALION..........ooiuiiiiie et et e e s nene s 13
3.1.2 DS Wireless Play CharaCteriStiCs...........eiiiiiiiiiiiiiiiei ettt e e e e et e e e e e e e snbbaaeeaaeeeennes 13
3.1.3 The Library Internal STate..........cociiiiiii e 14
G TRy O S T ¥ o g 0o o - 15
3.1.5 Asynchronous Function Callback and Asynchronous Notificationscccccciiniiiiiiiiii 16
3.2 Initializing the Wireless Communications Library..............cccccoiiiiii e, 17
3.2.1 Differences between Each of the Initialization and Shutdown Functions..............ccooovviieeiiiiiiiiciee e, 17
3.2.2 The DS Wireless Communications ON Stateccceeeiiiiiiiiiiiiiieiiiiecieeecceceee e 17
3.2.3 The Buffer for the Wireless Communications Libraryccoceiiiiiiiiiiii e 17
3.3 Connectinga Parentand @ Childooooiiiiiiii e 18
3.3.1 The CONNECON PrOCESS......ccoiieitiee e et e e e e et e e e e e e et ee e e e e e e e e ee st e e e e e e eessaaeeeeeeeessanaseeereennean 18
3.3.2 Select @ ChaNNEl t0 USEuuueiiiieeeeeee e nnnnnnnnnnnn 18
3.3.3 BeaCON INfOIMALIONuunii e nnnnnnnnnn 19
3.3.4 CoNNECHON OPErAtIONScciiiiiiieiiiiie ettt e e et e et e e e e e e e b e e e e aab et e e sne e e e e e e s 19
3.3.5 Precautions for ENding COMMUNICAtIONSuuiiiiiiiiiiiiiiie e e e e e e e e e e e strae e e e e e e e enees 20
3.4 MP Protocol SpeCIfiCatioNS.............uueiiiiiiiiiiee e 20
3.4.1 CoOMMUNICALIONS OVEIVIEWuuueiniiiiiieeieeeee e e e e et e e nnnnnnnnsnnnsnnnnnnnnnnnnnnn 20
3.4.2 MP CommunicatioNs OPEratiONS.ciiiiiiiiiiiiiiie et e e ettt e e e e e e e et et e e e e e e s anebeeeeaaeesaansaneeeeaaaaaannes 21
3.4.3 Operations When Communications Fail...............ooiiiiiiiiiiiiie e e e e et e e e e e 23
3.4.4 TranSMISSION CAPACITYcouuiiiiiiie e e ettt e e e oottt e e e e e e e aaeeeeeaaeeaa s ntbaeeaaaeaa e nnbeeeeaaeeaaansaaneeaaeeeaannns 23
3.4.5 Send and Receive Buffers for MP CommUNICAtIONS...........oiiiiiiiiiiiiiiiccccccecccce e 24
3.4.6 V-BIank SYNCHIONIZAtIONooiiiiiiiiii ettt s 25
3.4.7 Frame Synchronous Communications Mode and Continuous Communications Mode................cccc.cceennee. 26
3.4.8 Restrictions on the Number of MP Communications Per Picture Frame..............ccooooviieiiiiiiiiiiiieeeeeeeeee, 26
G e T 1 =Y (12 1= 27
3.5 POrt COMMUNICAIONS ...ttt e e e e e et e e e e e e s e e ee b e e e eeeseeesbbaa e eeeeseeenns 28
3.5.1 About Port COMMUNICAtIONSuuiiiiieiiiiie et et e et e e e e e e e e e e e e e e e esaeeeeeeeeessaaeeeeeeennean 28
3.5.2 POt RECEIVE CallDACK....... . nnnnnnnnnnnnnnnnnnnn 28
3.5.3 Raw Communications and Sequential CommMUNICAtIONS............oiiuiiiiiiii e 28
3.5.4 Priority and the SENA QUEUEc.uuiiiiiee ettt e e e e e et e e e e e e eestb e e e eaeeeesntbaneeaaeeeannnes 29
© 2004-2006 Nintendo 3 NTR-06-0172-002-A7

Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.5.5 Packet Headers and FOOTEIS.uoiiiiiiii e 29
3.5.6 Packing MUIIPIE PACKELSooiiiiiiiiiiii et 30

R TG I I F- 1 ¢= IR o = [T SRR 31
R G N I B - =] o =Ty T TSRS 31
3.6.2 DirECHONS fOr USE......oiiiiiiiiiieiii ettt ettt b ettt eb e et et e bt et e e b et e e r e e b e e s 32
3.6.3 Single Mode and DoubIe MOGEccooiiiiiiiiie et 33
3.6.4 CommuNICatioNs Data@ SIZEcccuiiiiiiiiiei e e 33
3.6.5 Cautions Related to FUNCHON Call OFAEr..........ccoiiiiiiiiiiie ittt 34
3.6.6 Cautions When Operating at 30fPS OF LESS.....iiiiiiiiiiiiiiee et e e e e e e e e e s eesaraeee s 34
3.6.7 General Information about the Internal Operationscccoiiiiii i 35
3.7 Event Notifications Returned from the Wireless Communications Libraryccccceccernnenne 38
3.8 Error Codes Returned from the Wireless Communications Library............ccccccoiiiiiiiniiinne 42
3.8.1 Return Values of Functions that Return @ WMEITCOde TYPEoveiiiiiiiiiiiieiieee e 42
3.8.2 errcode Values Returned to the Callback FUNCHONcooiiiiiiiiiiii e 44
3.9 Cautions When Using the Wireless Communications Library..........cccccccceevviieiiiiiee e, 46
3.9.1 The Load from using Wireless COMMUNICAtIONSccouiiiiiiiiiiiiicit e 46
IR 2 I 4TI 7= [T Ted ST 46
3.9.3 ThE CACh@ PrOCESS......c..eiiiiieiiieittt ettt ettt ettt bt bttt e bt e et e e b e e sbeeene e et e nnee s 46
3.10 Taking Greater Control over COmmMUNICAtIONSccuueveiiiiiee e 47
3.10.1 Overview of Timing Control Parameter of MP Communicationscccccoeveiiiiiiei e 47
3.10.2 parentVCount, ChildVCOUNLo ettt e e e e ettt e e e e e e s e e e e e e e e ennneeeaans 47
3.10.3 parentinterval, ChildINTErVaLl............oooiiiii e 48
3.10.4 Dynamically Changing the Transmission Capacityeevieiiioiiiiiiiee e 49
3.10.5 Controlling POIIBIIMEADeeieiiiie ettt e s e e et e e e s e e e s san e e e e et e e e nnee 51
3.11 O TSP UPRRRO 52
3.111 INItIAIIZAtION PrOCESS ...eeiiiiiie ettt e e e oottt et e e e e e ettt e e e e e e e e annebeeeeaaeeeansanneaaaeaannn 52
3.11.2 (076] 0] o 1=Te1 o)l o] o o= 11 TS PUPP PP 52
3.11.3 General MP COMMUNICAIONSuiiiiiiiiie ettt e et e e s e s e e anreeennee 55
3.11.4 (D=1 F= IS g T= 1 o T USSP UPPPRN 56
3.11.5 L@ 13T USSR 57
3.12 Important Notes for Recent ReIEASESeiiiiiiiiii e 57
3.121 Changes in MP Frame Send Conditions (NITRO-SDK 2.2 PR and Later).........ccccccvvviiiiiiiiieceiiee e 57
3.12.2 Addition of Notification to WM_SetindCallback Function Callback (NITRO-SDK 3.0PR2 and later) 58
3.12.3 Change in Null Response Condition (NITRO-SDK 3.0PR2 and later)cocoeviiiiiiiiiiiicieeeeieeeee 58
3.12.4 Addition of WM_STATECODE_DISCONNECT_FROM_MYSELF (NITRO-SDK 3.0RC and later)......58
3.12.5 Addition of WM_STATECODE_PORT_INIT (NITRO-SDK 3.0RC and later)ccccceeevreereenennnienen 58
3.12.6 Additional Change to Null Response Generation Conditions (NITRO-SDK 3.0plus and Later).............. 59
NTR-06-0172-002-A7 4 © 2004-2006 Nintendo

Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

Revision History

Version | Revision Date Description
1.1.6 2/8/2006 - Edited notes to reflect changes in features related to NULL responses.
1.1.5 1/13/2006 + Deleted old descriptions and cleaned up vague descriptions in anticipation of
NITRO-SDK 3.0.
1.1.4 12/20/2005 + Clearly stated that the operations relating to when communication are not possible in

"3.3.2 Select a Channel to Use."

+ Added "3.3.5 Precautions to Note When Ending Communications."

+ Added "3.4.5 Send & Receive Buffers for MP Communications."

+ Added "3.10 Taking Greater Control Over Communications" and moved some items
around.

+ In the FAQ, added examples of how to determine communications parameters.

1.1.3 12/06/2005 - Added to text relating to V-Blank synchronization and changed it to a separate
section.

+ Change in terminology: "Maximum number of bytes that can be sent" changed to
"transmission capacity."

+ Moved the section "3.4.4 Transmission Capacity."

- Added "3.4.5 Dynamically Changing the Transmission Capacity."

+ Added "3.4.9 Timing control parameter of MP Communications."

1.1.2 11/04/2005 + Updated table of contents.

1.1.1 11/01/2005 |- Indicated the addition of WM STATECODE DISCONNECT FROM MYSELF notification

to each of the WMStartParent, WMStartConnect, and WMSetPortCallback

functions.
+ Indicated the addition of the WM STATECODE PORT INIT notification to the
WMSetPortCallback function and the addition of the connectedAidBitmap

field to the WMPortRecvCallback structure.

1.1.0 07/29/2005 - Indicated the addition of WM STATECODE INFORMATION notification to
WMIndCallback function callback.
- Revised descriptions in each section due to change in the condition for a Null

response.

1.0.5 07/12/2005 - Revised the return values of the WM Initialize function in the list “Error Codes
Returned from the Wireless Communications Library”

- 3.4.3.”Operations When Communications Fail”. Added description of the MP
notification that happens when there is a failure.

- Added descriptions of changes in “3.11.12 Changes in MP Frame Sending
Conditions”

1.04 06/07/2005 - Added to each Key Sharing related description that we plan to phase it out.

- Changed the WM_StartKeySharing and WM_EndKeySharing functions in the list,
“Error Codes Returned from the Wireless Communications Library”.

- Added “3.4.5. Limitations to the number MP Communications related to picture

frames”
1.0.3 03/29/2005 - Added warning about repeated calling to 3.1.5 Asynchronous Function Callback and
Asynchronous Notifications.
1.0.2 03/22/2005 - Added note about CLASS1 state to 3.1.3 The Library Internal State.
- Added note about CLASS1 state to 3.10.2 Connection process.
© 2004-2006 Nintendo 5 NTR-06-0172-002-A7

Released: April 14, 2006

NITRO-SDK

Using the Wireless Communication API

Version | Revision Date Description
1.0.1 03/04/2005 - Made changes to the “List of Error Codes Returned from the Wireless
Communications Library”
- Changed the number of levels in the send queue from 64 to 32
- Made changes to the items related to the WM_SetMPData function in the “Event
Notifications Returned from the Wireless Communications Library”: changed the
description related to the restBitmap field in the WMPortSendCallback
structure, and added a description related to the sentBitmap field
- Added items to “Important Notes for Recent Releases”
1.0.0 02/18/2005 Initial version.
NTR-06-0172-002-A7 6 © 2004-2006 Nintendo

Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

1 Wireless Communication Library Overview

1.1 Introduction

The Nitro SDK includes a set of functions for wireless communications. This document describes the
basic features of the Wireless Communications Library.

1.2 Basic Specifications of the Wireless Communication Hardware

The basic specifications of the wireless hardware in the Nintendo DS are shown below.

Item Description

Communications Band Used 2.4-GHz band (May receive interference from microwave ovens or other

wireless devices that use the 2.4-GHz band)

Communication Standards IEEE 802.11 equivalent (Infrastructure mode)
Nintendo proprietary protocol (DS Wireless Play mode)

Nintendo proprietary protocol (DS download play mode)

Communications Speed 1 Mbps or 2 Mbps

Communications Range 10-30 m (This is highly variable based on the surrounding environment and

the positions of the systems)

Remarks Not compatible with the Game Boy Advance Wireless Adapter

1.3 Configuration of the Wireless Communications Library

The NitroSDK Wireless Communications Library processing is performed by both the ARM9 and ARM?.
The ARM7 component controls the wireless communication hardware and the ARM9 library transmits
requests from the application to ARM7. When creating an application, the ARM7 component does not
have to be considered. However, since caution is required for some cache-related processes, be sure
to follow the instructions in the reference manual when exchanging data with the Wireless
Communications Library.

The Wireless Communications Library provides three main communication modes.

© 2004-2006 Nintendo 7 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

Mode Description

This mode allows for wireless communication in which a single DS acts
DS Wireless Play mode | as the parent device, and up to 15 other DS devices act as child

devices.

Also known as wireless multiboot. This mode allows for the download of
DS Single-Card Play

d the program and data from a parent device to child devices that do not
mode

have Game Cards. The child device can then start up that program.

Allows connection to the Internet via wireless access points supporting
the IEEE 802.11b/g standard.

Infrastructure mode

This document is focused on DS Wireless Play. For further details about DS Single-Card Play, refer to
“A Description of DS Single-Card Play (AboutMultiBoot.pdf)”.

NTR-06-0172-002-A7 8 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

2 Glossary

This glossary defines the terms used in this guide.

Term

Definition

AID

Beacon

Block transmission

BSS

BSSID

Channel

Child device

Continuous

communication mode

Data sharing

Association ID (the connection identifier). The parent's AID is always 0. Child
devices are assigned AlDs from 1 to 15 when they connect. If the maximum
number of children permitted to connect is set to n, assigned AlDs must be from 1

ton.

A wireless signal, separate from an MP sequence, sent periodically by the parent.
A child can receive the beacon even when it has not established a connection. A
child making a new connection selects the parent based on the GameInfo

contained in the beacon. Normally sent at intervals of several hundred ms.

Feature designed to transmit a chunk of data from the parent to multiple children at
the same time. For details, see WBT* in the "NITRO-SDK Function Reference

Manual."

Basic Service Set. Specifies a set that performs transactions for a single service. In
DS Wireless Play, refers to the group that includes a parent and the children

connected to it.

Basic Service Set ID. This is an ID used to identify the BSS. For DS Wireless Play,
the MAC address of the parent device is used as is for the BSSID. This is used to
designate a connection destination when a child device connects to the parent

device.

A portion of the communication band. On the DS wireless communications
hardware, 1 to 14 channels can be used, but the actual number of available
channels is limited by regulations in each country. Also, adjacent channels can
interfere with each other, so we recommend setting up channels with roughly five

intervals between them.
The devices (1-15) that connect to a parent device in DS Wireless Play.

The communication mode sustained using continuous MP sequences. (This
contrasts with frame-synchronous communication mode.) It is effective for sending
large amounts of data, but consumes lots of power and should not be used for long
periods. It differs from frame-synchronous communications mode in that it starts
MP sequences continuously, but from a control standpoint, the two modes are

virtually identical. Thus, a single program can switch between the two modes.

Enables the sharing of data with a user-defined size in addition to key input.

© 2004-2006 Nintendo

9 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK

Using the Wireless Communication API

Term

Definition

DS Single-Card play

Frame-synchronous

communication mode

Game frame

Gamelnfo

GGID

IEEE 802.11

Specification

Indication

Key response frame

Key sharing

MAC address

MP communications

MP frame

A child device without a Game Pak or Game Card can boot by downloading a
game's ROM image from the parent over a wireless connection. For details, see
MB_* in the reference manual.

The communication mode that synchronizes MP communications and the picture
frame. (This contrasts with continuous communications mode.) The number of
times to communicate during each picture frame is specified. However, if signal
conditions are poor and a resend is necessary, the transmission is resent without

synchronizing with the frame (if possible).

The period defining a unit of game processing. If a game is running at 30

frames/second, the game frame is 1/30 of second.

A data structure that indicates the type of game offered by a parent and contains
the data needed to connect. Contains the GGID, the TGID, the maximum
transmission capacity of the parent, etc. It can also contain user-defined
information. For example, with Single-Card play, the Gamelnfo contains the game

name, icon data, etc.

Game Group ID. A unique four-byte ID assigned by Nintendo to each game title

and series title. Used when connecting.

A wireless communication standard defined by the IEEE. It defines a wireless
communication method that permits speeds of up to 2 Mbps. (802.11b, which is in
the same family of standards, allows a maximum speed of 11 Mbps, and is a
popular standard for wireless PC communications. 802.11b is backward
compatible with 802.11.) The DS uses the 1-2 Mbps backward compatibility mode
defined in the 802.11b standard.

A notification sent automatically from the wireless hardware to the application in
response to receiving data or another event. Differentiated from a response to a

request from the application.
The type of frame a child uses to respond to an MP frame from the parent.

Functionality common to key input data. Enables you to use wireless
communications without worrying about the details. We plan to discontinue key

sharing and recommend that you use Data Sharing instead.

An ID number for the wireless communication hardware. Each DS device has a
different 6-byte MAC address.

A generic term for communications using multi-poll (MP) sequences. In some

cases, it refers to the communication for a single MP sequence.

The frame at the beginning of an MP sequence, in which the parent broadcasts to
the child.

NTR-06-0172-002-A7
Released: April 14, 2006

10 © 2004-2006 Nintendo

Using the Wireless Communication API

NITRO-SDK

Term

Definition

MP sequence

MP_ACK frame

Null response frame

Packet

Parent device
Payload

Picture frame

PolIBitmap

Port

Raw communication

Sequential

communication

Session

Multi-Poll sequence. Nintendo's proprietary extension of 802.11 enables wireless
communications with a low latency time. For details, see the chapter on DS

Wireless Play.
The frame broadcast by a parent to its children at the end of an MP sequence.

The frame a child uses to respond to an MP frame sent by the parent. Sent when

the response data cannot be sent within the given time constraints.

A unit of communication that contains a header and footer. It contains a port
number, a packet size and, when necessary, destination information, a sequential
number, and so on. In actual communications, within a single MP sequence, a

payload contains multiple packets.
The device that controls all communication in DS Wireless Play.
The area in the MP and key response frames that carries data.

The time that elapses from one V-Blank interrupt signal to the next (1/60 of a

second).

A 16-bit bitmap in which each bit corresponds to the AID of a child device. In an
MP frame, the bits of the children from which a response is desired are enabled. In
an MP_ACK frame, the bits of the children from which the parent received no

response are enabled.

A concept used in the Wireless Communications Library to realize multiple
communication channels. If a transmission specifies a port that is an integer from 0
through 15, the destination calls a callback that corresponds to the number. Note

that this port has a lower level of abstraction than ports used in TCP/IP.

A communication method that does not perform additional controls like those in
sequential communications. Data may not reach its destination and the same data
may be transmitted several times. If ports 0 through 7 are selected, raw

communication is used.

The upper layer of MP communications, which guarantees the integrity of
communication. The Wireless Communications Library uses sequential numbers to
eliminate long packets and insure that packets reach their destination. If ports 8

through 15 are selected, sequential communication is used.

The period of time from a single WM_StartParent to WM EndParent.

© 2004-2006 Nintendo

11 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

Term Definition

SSID Info used to screen children connecting to a parent. The child uses the GGID and
TGID from GameInfo to generate an SSID. The parent connects only to children
having a matching GGID and TGID based on the SSID. The latter half of the user
area that is not used for matching can be used for communications from the child

to the parent.

TGID Temporary Group ID. A two-byte ID assigned when a new game or session is
started. When the same DS continues to be used as the parent device, the TGID

splits communications into new and old, since the BSSID and GGID are identical.

NTR-06-0172-002-A7 12 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

3 DS Wireless Play

3.1 Overview

3.1.1 Connection Configuration

—
«——

Parente Child
communication

&
Ti permitted Child 3
=

x o |® [child 2

Communication
between children
not permitted

Child 1

In DS Wireless Play, the network is configured in a hub-and-spoke arrangement. Communication is
limited to that between parent and children; children cannot communicate with each other. However, a
parent can transmit data to multiple children at the same time.

3.1.2 DS Wireless Play Characteristics

+ Low latency

When communications are being performed normally, the send data that is set in the beginning of

the picture frame will be received by the communications partner application at the end of the
picture frame.

. Data is transmitted at a specified time within one picture frame

Rather than visualizing that the data is sent at a timing desirable to the parent and child, consider
that if the send data is set in advance with the WM SetMPDataToPortfunction, the parent and
child send data will be exchanged in fixed sizes when communication occurs.

- The more child devices there are, the smaller the data size that can be sent from each child device

Since the maximum communication time that a single MP sequence can use is defined in the

programming guidelines, the maximum size that can be sent decreases as more child devices are
added.

If there is only one child device, the maximum send size in the Wireless Communications Library

© 2004-2006 Nintendo 13 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

of 512 bytes can be sent on both the parent and child. So, if 15 child devices are connected, the
parent device can send 256 bytes and the child devices can only send 8 bytes each. For further
details, refer to “3.4.4 Transmission Capacity”.

« The efficiency is better if broadcasting from the parent device

A particular child device can be selected to send data with the WM SetMPDataToPort function.
But, as a characteristic of MP, even if there is a broadcast to multiple child devices, the
appropriation time for a wireless channel will not change (except when data is resent or when
using a special communication mode).

- The efficiency is better for communications of a fixed volume

Communications from a child device always appropriate a wireless channel for the amount of time
required for the child send size (the maximum size that a child can send on a single MP sequence).
Therefore, thinking of this as a fixed-length communication allows for more efficient signal use.

The initial value of the send size for a child device is set by the parent when the connection is
established.

Currently, no logic is implemented to increase the number of communications according to how full
the send queue is. It is possible for the application to dynamically change the communications
frequency, but it is recommended to use communication specifications that do not cause
fluctuations in the volume of communication.

3.1.3 The Library Internal State

The Wireless Communications Library shows the internal states in the following diagram. The functions
it can call are limited based upon its state. Calling the wM_Init function after starting the DS will cause
it to transition to a READY state. Refer to the descriptions of each of the functions in the Function
Reference to determine in what state each function can be called.

NTR-06-0172-002-A7 14 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

WM Tnit ()

T

WM Enable WM Finish ()

WM Disable ()

WM StartScan ()

9

———— WM Reset ()

WM StartScan ()

WM PowerOn ()

WM EndScan ()
WM PowerOff ()

WM SetParentParameter @M_StartConnect ()

WM StartParent ()

WM EndParent ()
WM_Disconnect (

WM_StartMP () WM_StartMP ()

WM _EndMP () WM_EndMP ()

MP_PARENT

WM SetMPDataToPort ()

The DCF_CHILD state in the figure above cannot be used in DS Wireless Play.

There is also a CLASS1 state between the IDLE state and the CHILD state. When a connection
attempt with wM_StartConnect fails in a specific stage, or when a child disconnects from a parent
during connection, it will remain in this state. The only function that can be executed from the CLASS1
state is WM_Reset. Therefore, when WM_StartConnect fails or when a child receives a disconnect
notification, use WM Reset to transition to the IDLE state before moving to the next operation.

3.1.4 Error Codes

With a few exceptions, the Wireless Communications Library functions return the WMErrCode
enumerated structure as its error code.

Basically, when operations are normal, synchronous functions return w1 _ERRCODE_SUCCESS, while
asynchronous functions return WM ERRCODE_OPERATING.

For further details, refer to “WMErrCode” in the reference, or “3.8 A List of Error Codes Returned from
the Wireless Communications Library” in this document.

© 2004-2006 Nintendo 15 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.1.5 Asynchronous Function Callback and Asynchronous Notifications

Because the Wireless Communications Library sends instructions to the ARM7 driver, many of those
instructions are asynchronous functions. These asynchronous functions take callback, a
WMCallbackFunc type argument, and once the asynchronous process has ended, they call
callback.

When an asynchronous function is called and its return value is WM_ERRCODE OPERATING, the
completion callback is always called.

Also, due to the nature of the communications, there are many asynchronously generated notifications.
These notifications are sent as callback function calls. The correspondence between the main
notification type and its callback configuration function is shown in the following table:

Function that Configures the

Communications Type Communications Callback Destination

Notification of a connection | WM StartParent,

or a disconnection WM StartConnect*
MP sequence-related WM StartMp*
notification -

Reception to a port WM SetPortCallback
All other notifications WM SetIndCallback

The callback function types in the Wireless Communications Library are defined as WMCallbackFunc
types. The wMCallbackFunc type function takes the sole argument WwMCallback* arg, but since
some functions pass a structure unique to that function (example: WMPortRecvCallback), they
should be used as needed after casting them to that type. The type of callback argument that each
function returns is described in $NITROSDK_ROOT\man\en_US\wm\wm\WMCallbackFunc.html.

There may be instances where a field called state has been defined in the structures of the callback
arguments for some functions. This state field is used to express notification types that cannot be
expressed with the errcode field alone. For further details, refer to “3.7 - Event Notifications Returned
from the Wireless Communications Library.”

With a few exceptions, each asynchronous function in the wireless communication library registers its
callback individually. Use caution because if different callbacks are assigned to the same function at
the same time, only the later assigned callback will be valid. This is not true for the WM _SetMPData*
functions, which store callbacks separately each time they are called. They can be called repeatedly,
setting a different callback each time without a problem.

Avoid making multiple calls to asynchronous functions that change the internal state of the wireless
communication library. This can cause bugs that are difficult to reproduce.

NTR-06-0172-002-A7 16 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

3.2 Initializing the Wireless Communications Library

3.2.1 Differences between Each of the Initialization and Shutdown Functions

There are two procedures for initializing the Wireless Communications Library: calling the three
functions WM_Init, WM Enable, and WM_PowerOn in order or calling the WM Initialize function.
Similarly, there are two procedures for the shutdown process: calling the three functions WM PowerOff,
WM Disable, and WM_Finish in order or calling the WM_End function.

The WM Initialize function performs the same process as calling the three WM_Init, WM Enable,
and WM_PowerOn functions, while the WM_End function performs the same process as calling the three
WM PowerOff, WM Disable, and WM Finish functions.

WM Init Allocates the buffer the Wireless Communications

Library uses.

WM _Enable Transitions the wireless communications hardware
Initialization L to a usable state.

WM Initialize
Process (The POWER LED will begin to blink irregularly)

WM_PowerOn Starts providing power to the wireless

communications hardware.

(Power consumption will go up)

WM_PowerOff | Stops providing power to the wireless
communications hardware.

(Power consumption will go down)

Shutdown WM End WM Disable Transitions the wireless communications hardware
n

Process - to an unusable state.

(Stops the irregular blinking of the POWER LED)

WM _Finish Frees the buffer that the Wireless Communications

Library uses.

3.2.2 The DS Wireless Communications ON State

The DS wireless communications ON state is defined as the period from when the WM_Enable
function is called to when the WM Disable function is called. There are limitations, such as the need
for confirmation to the user, when transitioning to the DS wireless communications ON state. For
further details, refer to the DS Programming Guidelines.

3.2.3 The Buffer for the Wireless Communications Library

From the interval after the wM_Init function is called until the WM Finish function is called, the
Wireless Communications Library holds the buffer that will be used inside the library. Pass the
WM_SYSTEM BUF_ SIZzE-byte region aligned with the 32-byte boundary to the argument of the
WM_Init function from main memory.

© 2004-2006 Nintendo 17 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.3 Connecting a Parent and a Child

3.3.1 The Connection Process

The process leading up to a connection is as follows:

Parent Child

Initialize the wireless communication Initialize the wireless communication
hardware. hardware.

Set the parent's GGID, TGID, and other
data for communications.

Measure the degree of congestion on
3 | each of the wireless channels, and select
a channel to use.

Send the beacon on the specified channel.
. Scan the beacons on all channels that the
The beacon's GameInfo contains the

4 2 licat ibly use, and obtain th
GGID, the TGID, and a flag indicating that application can possibly use, and obtain fhe
parent device GameInfo.

it is available for connection.

Based on the data in GameInfo, list the
3 | parent devices for the user and prompt for a
selection.

Generate an SSID using the GGID and TGID
contained in GameInfo, and connect to the

4
parent based on the BSSID (the parent's
MAC address) and the SSID.
Compare the SSID of the incoming child
5 | with its own GGID and TGID, and OK the
connection if there is a match.
6 Assign an AID to the child and 5 Receive the assigned AID from the parent
complete the connection. and complete the connection.

3.3.2 Select a Channel to Use

The 802.11 specifications define fourteen channels, but the usable channels may be limited depending
on the regulations of the country in which they are being used. Also, even if a channel can be used,
neighboring channels may cause mutual interference, so try to use channels that are as far apart as
possible.

The DS keeps its usable channels internally, and the WM GetAllowedChannel function was prepared
therein to present channels that are sufficiently spaced apart. In the application, a channel must be
selected from the channels obtained with this function. The application has the responsibility to select a

NTR-06-0172-002-A7 18 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

channel from the presented channels that has as low of a signal usage rate as possible. The signal
usage rate of a specific channel can be obtained with the WM MeasureChannel function.

As of January 1, 2006, the international unified specification states that the DS can use channels 1-13.
However, this specification is subject to change and there are situations where WM is forbidden from
using any special channels internally, so avoid any programming that makes assumptions based on

the currently permissible channels. Instead, rely on the results of the WM_GetAllowedChannel function.

Note: If the WM_GetAllowedChannel function returns 0, wireless communications are unavailable. Do
not commence communications if this value is returned.

3.3.3 Beacon Information

While the parent device is in the PARENT or MP_PARENT state, it will transmit a signal known as a
beacon at regular intervals (the WMParentParam.beaconPeriod [ms] interval). The child device
that is trying to connect to a parent device will obtain this beacon with the WM StartScan function,
and will connect to that parent device by passing the included WMBssDesc structure as-is to the
argument of the WM StartConnect* function.

WMBssDesc contains a variety of fields, but the three most important bits of information are the
WMBssDesc.bssid, the WMBssDesc.gameInfo.ggid, and the TGID.

The BSSID is an identifier for the BSS. During DS Wireless Play, the MAC address of the parent device
is used as the BSSID. The GGID and TGID are used to identify the details of the services that the
parent device provides. The GGID is an ID assigned by Nintendo to each game or to each series (if
communications are possible among the same series). The child device looks for the
WMBssDesc.gameInfo.ggid of the scan results to confirm that it can connect to the parent device (a
code for authorization must be described in the application). The TGID, on the other hand, is assigned
by the parent device in each new session so that connections for old sessions are not mistakenly made
to new sessions.

3.3.4 Connection Operations

Inside the library, the BSSID and SSID are used when a child device connects to a parent device. The
BSSID is the MAC address of the parent device, as described in the previous paragraph. The SSID is a
total of 32 bytes, but in DS Wireless Play, the first 4 of those bytes are used to store the GGID and the
next 2 bytes are used to store the TGID. A 2 byte reserved region is added to these and used as an 8-
byte service identifier. The parent device compares its own GGID and TGID with the first 8 bytes of the
SSID that the child device declares to determine whether or not that child device is an appropriate
connection partner. If the child device is not an appropriate partner, it will be automatically rejected
during the initial steps of the connection process.

Since the first 8 bytes of the SSID are automatically set in the WM StartConnect function by the
library based on the WMBssDesc.gameInfo.ggid and TGID, there is no need for the application to
be aware of them. However, the latter 24 bytes in the SSIDs that are not used in the service identifier
are released to the application and can set user data as arguments of the WM StartConnect*
function to be sent to the parent device. When the WM _StartParent function callback function

© 2004-2006 Nintendo 19 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

receives the WM STATECODE CONNECTED notification, the parent device receives the data set in the
latter 24 bytes of the SSID by the child device as WMStartParentCallback.ssid.

3.3.5 Precautions for Ending Communications

Disconnection can be performed by either the parent or the child. Try to avoid the both parent and child
performing this operation at the same time, since one of the two processes will fail and in some cases
it may take some time for this result to be returned.

Note: There is a possibility that some of the WM functions may return errors, depending on their states,
once the process for ending communications has been entered. The end process may go into an
infinite loop if it starts on this error: abnormal end process due to communication error. If
an error occurs, try calling the WM_Reset function once and make sure the error process does not
cascade indefinitely.

3.4 MP Protocol Specifications

3.4.1 Communications Overview

Data can be sent once a connection has been established between a parent and child.
Communications are performed in each picture frame in the order shown below:

Parent Device Child Device

NTR-06-0172-002-A7 20 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API

NITRO-SDK

Set the send data with the
WM_SetMPDataToPort function.

1.

Set the send data with the
WM_SetMPDataToPort function.

MP communications are automatically performed on the designated timing in each picture

frame.

The data reception notification from the
child device arrives at the callback function
designated to the WM_SetPortCallback

function.

A notification that the send was a success
is sent to the callback function designated
with WM_SetMPDataToPort in step 1,

The data reception notification from the
parent device arrives at the callback
function designated to the
WM_SetPortCallback function.

A notification that the send was a success
is sent to the callback function designated

with WM_SetMPDataToPort in step 1,

above.

above.

3.4.2 MP Communications Operations

Read this section as necessary. You can use the Wireless Communications Library even if you do not
understand all the details of the MP protocol. The MP communications operations, which allow for DS
Wireless Play mode, are shown in the figure below:

Parent data and
transmit request
from parent

Confirm that child
data was received
and send the low-
power setting

MP (Data + Req)
Broadcast Broadcast
If parent confirms
receipt of own data,
= shift to low-power mode
ACK+Data
—

Confirm receipt of

parent data

(ACK) and send

child data

ACK +Data
16.7 msec

L
2
S

— Active mode

———— Low-power mode

Due to automatic V-Blank
synchronization, the V-Blanks of
child 1 and child 2 start at the same
timing as the parent.

&

© 2004-2006 Nintendo

21

NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

MP communications is a protocol where the parent completely controls the transmission timing.
1. First, the parent broadcasts an MP frame to all child devices.

The MP frame includes not only the data to send from the parent to the child but also control data,
such as Pol11Bitmap, which indicates which children should respond, and Tx0OP, which determines
how many bytes of transmission time are assigned to the children.

Data in the MP frame determine the overall time distribution for that MP sequence.

2. Each child receives the MP frame, looks at Po11Bitmap and TXOP, and then sends the Key
response frame to the parent after waiting for its turn to respond.

The child's Key response contains confirmation that it has received data from the parent in addition to
data it is sending to the parent. Since the Key response frame is sent automatically by the hardware
as the response to the MP frame, the child needs to set the data in the Key response frame ahead of
time. It is not possible to look at the data inside a received MP frame and then alter the contents of
the data that will be sent in the response during the same sequence.

If the TXOP (the allowable transmission time) given by the parent is shorter than the set length of
data, then the child cannot send the data. If this is the case, the child transmits a NULL response
frame instead of the Key response frame. This occurs when the child's transmission capacity as
specified by the parent is smaller than the transmission capacity as recognized by the child.

The child will also return a NULL response frame if the send data is not set in the child when the MP
frame is received from the parent.

3. Finally, the parent broadcasts an MP_ACK frame to all children to acknowledge receipt.

This MP_ACK frame also has a field called Po11Bitmap that, unlike with MP frames, indicates from
which children the parent failed to get either a Key response or a NULL response. Each child checks
PollBitmap in the received MP ACK frame to see whether the bit representing its own AID is
enabled. If its AID bit is not enabled, it is guaranteed to send data to the parent successfully. If,
however, its bit is enabled or if the child does not receive the MP ACK frame within a set period of time,
the transmission failed.

Because the wireless communication hardware consumes a lot of power when active, it enters low-
power mode frequently during MP communication. This occurs automatically and normally, so the
application can ignore the power mode.

Also, be aware of the child device designated with PollBitmap not being given the chance to respond.
In order to secure a communications band from the child to the parent, designate all connected child
devices on WM as PollBitmap and perform an MP sequence. However, there are exceptions when
resending (described in the next section) and when special communications modes are designated.

NTR-06-0172-002-A7 22 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

3.4.3 Operations When Communications Fail

This graphic shows the flow of operations when the parent receives no acknowledgment from a child.

Set to request
transmission from
Child 2 only

Set to acknowledge
receipt from Child
2 only

Set to acknowledge
receipt from Child 1
only

MP(Data+Req) P_ACK MP(Data+Req) MP_ACK

l{ Broadcast Broadcast Broadc¢ast

{ Broadcast

ACK+Data

[CHId 1] s

Parent did
not receive

this packet
_ A/u@ata ACK+Data
Child 2

16.7 msec

This machine is in low-power mode—it ignores the
transmission. T a transmission is received by chance, — Active mode
machine does not reply, because no request was made

——— Low-power mode

NS
L

\\%\ \\6

If reception fails, the MP_ACK frame indicates the children from which no response was received, and
then an MP sequence for a resend is started. Note that the resend MP sequence targets only children
from whom a response was not received. The resend MP sequence sends packets that need to be
resent from the packets that just failed. Depending on the communication mode and the type of packet
that was not received, the resend process may not be performed and the application is notified that a
transmission failure occurred. The resend will continue while communications have failed and there are
still packets that need to be resent.

If only the MP_ACK frame communications fail, the parent device will be unable to learn about the
failure and the MP sequence for resending will not be performed. However, since the child device is
unable to determine whether the send was a success, the failed packets will be resent in the next MP
sequence.

The resend process differs depending on the type of communications packet. For more information,
refer to 3.5.3 Raw Communications and Sequential Communications.

In addition, with the MP sequence for resending, the send destination is limited to the resend partner
due to the Po11Bitmap setting. However, the rest of the process is the same as for a normal MP
sequence, so receipt notifications are generated each time an MP frame is received.

Note: The Port Receive callback (described later) only gets called when new data is received.

3.4.4 Transmission Capacity

In MP communications, the parent determines the transmission capacity for both itself and the child

© 2004-2006 Nintendo 23 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

which are specified as the default values at the start of communications. To be specific, the default
values for transmission capacity are set by the parent's parameter setting function
WM_SetParentParameter. In the WMParentParam structure passed to the
WM_SetParentParameter function, the parentMaxSize field indicates the default send capacity
value for sending data from the parent to the child, and the childMaxSize field indicates the default
send capacity value for sending data from the child to the parent. However, at the time of connection,
the child initializes its own transmission capacity setting to the childMaxSize value found in the
parent’'s beacon.

The transmission capacity value must meet these three requirements:
1. It must be a multiple of 2.
2. The maximum capacity cannot exceed 512 bytes for parent or child.

3. The time duration of one MP communication, as calculated from the parent and child transmission
capacities, must not exceed 5600 microseconds. In other words, the following expression must be
satisfied:

96+(24+4+[parent's transmission capacity]+6+4)*4+ (10+96+(24+[child's transmission capacity]+4+4)*4+6)*[number of children]
+10+96+(24+4+4)*4 <= 5600
&

[parent's transmission capacity]+([child's transmission capacity]+60)*[number of children] < 1280
(Programming Guidelines "6.3.3 Data Size of One MP Communication [Recommended]")

If the WMParentParam.KS Flag is set to TRUE, the number of transmission bytes for Key Sharing
will be added internally, so the actual value that can be set for the transmission capacity is smaller than
what is calculated by the above expression. Include in your calculation the bytes that will get secured
internally for Key Sharing, which is 36 bytes + 6 bytes (header and footer) for the parent and 6 bytes +
4 bytes (header and footer) for the child.

There is a script available for calculating restrictions on communications time. You can access it at
SNITROSDK ROOT/man/ja JP/wm/wm/wm_time calc.html.

The above expression is used to determine the maximum time that communications will require. The
amount of time taken by each MP sequence will actually be shorter, depending upon the parent send
data size. However, on the child side, the amount of time needed is based on the child send volume
size. This happens because, when an MP sequence starts, the parent sets timing on the information it
knows. A summary is shown below:

Amount of time needed to send parent Related to the time for the data size that the parent sent in the
data sequence. Not influenced by the parent send volume.

Amount of time needed to send child data | Related to the size that the parent configures as the child send volume.
Not influenced by the size sent by the child.

3.4.5 Send and Receive Buffers for MP Communications

The Send buffer and the Receive buffer for MP communications are passed to the WM StartMP
function when MP communications begin. The sizes of these two buffers vary, depending on the parent

NTR-06-0172-002-A7 24 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

and child transmission capacities and the maximum number of connected children.

There are two ways to calculate the size of the Send and Receive buffers. One way is to call the

WM GetMPSendBufferSize or WM GetMPReceiveBufferSize function in the PARENT state or
the CHILD state. The other way is to make static calculations by passing the values for the
transmission capacity and maximum number of connected children to the function macros shown in the
table below.

The WM GetMPSendBufferSize and WM GetMPReceiveBufferSize functions dynamically
calculate the sizes required of the Send and Receive buffers for MP communications based on the
parent information being used in the current connection. For the parent information, the value that was
set by the WM_SetParentParameter function prior to the start of communications is referenced. As
for child, the information in the beacon obtained from the parent during connection is used. The point to
note is that the value obtained by the child with these functions is a value obtained from an external
source. If memory is to be secured based on this value, you must verify that the memory size you plan
to secure is in the proper range or that the memory has been secured successfully.

See the Reference to read about these functions and function macros in detail.

The Send and Receive buffers for MP communications that get passed to the wM_StartMP function
must have 32-byte alignment.

Related communications parameters
Function macros for static calculations Parent's Child's Max. number of
transmission transmission connected
capacity capacity children

Parent | Send Buffer size WM SIZE MP PARENT SEND BUFFER o

Receive Buffer WM SIZE MP PARENT RECEIVE BUFFER o o

size
Child Send Buffer size WM _SIZE MP CHILD SEND BUFFER o

Receive Buffer WM SIZE MP CHILD RECEIVE BUFFER o

size

3.4.6 V-Blank Synchronization

When MP communications start, the wireless communications library automatically synchronizes V-
Blanks between the parent and the child. Be aware that the period between V-Blanks is longer than
16.7 ms while the timing of V-Blanks is being adjusted. Each frame is prolonged by as much as around
0.5 ms. At this time the V-Alarm count value varies between 200 and 213 counts, so do not use a V-
Alarm with a count value in this range during communications.

The timing adjustment of V-Blank synchronization is mainly performed right after the connection is
established, but it can also occur at any time during communications.

© 2004-2006 Nintendo 25 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.4.7 Frame Synchronous Communications Mode and Continuous
Communications Mode

The parent device may be operating in either frame synchronous communications mode or continuous
communications mode, depending on the timing that starts the MP sequence.

Frame synchronous communications mode is a communications mode that starts the MP sequence on
a specific V-Count for each picture frame. After the MP sequence starts, the power-saving mode wait
state is entered after the set number of MP sequences has continuously started.

Here, the number of MP sequences in the frame synchronous mode is counted as the number of times
an ACK was received from the child devices. This count is done in order to secure a communications
band for communications from the child devices. Even when there is no send data from the parent
device, the MP sequence continues to be started so that the child devices can perform a prescribed
number of sends. Also, if there is a failure in receiving the response frame from the child device,
communications will be performed with the number of communications for resends tacked on to that
prescribed number. If at this time there are too many communications and it goes into the next picture
frame, the counter value for the remaining number of communications will increase cumulatively.
However, if the counter exceeds a fixed value, it will not advance any further.

Continuous communications mode is a communications mode in which the next MP sequence starts
immediately after the last MP sequence ends. This mode blocks transmissions and other instances
where large volumes of data are sent at once. Be aware that this mode consumes relatively large
amounts of power, because there is little opportunity to enter into power-saving mode.

The reason there is a time limit of 5600 microseconds on individual MP sequences is to keep
operations stable even when multiple parents and children reside on the same channel. When
numerous MP sequences run during the same picture frame, the exclusive time on the wireless
channel lengthens which destabilizes operations with multiple parents and children on the channel. We
recommend keeping the frequency of MP sequences to one per picture frame and work to minimize
the frequency to the bare minimum for communications in your applications.

3.4.8 Restrictions on the Number of MP Communications Per Picture Frame

Regardless of whether frame synchronous communication or continuous communication is set, the
number of MP communications that may occur in one picture frame is limited. The upper limit can be
set using the wM_SetMPParameter function. The default value is six.

The MP frequency in frame synchronous communications mode is set to the number of
communications to succeed in each picture frame. However, the limitation on the number of
communications is a limit for the total number of communications, including those that failed.

This limit is set because in the case that few children are connected and the size of the parent send
data temporarily becomes small, one MP communication becomes as short as a few hundred
microseconds, and therefore, the frequency of MP communications could increase more than expected
by the application.

This restriction feature is how the fixFregqMode argument of the WM StartMPEx function gets
realized. The fixFregMode argument can be set to place an upper limit on the number of

NTR-06-0172-002-A7 26 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

communications. When the argument is set to TRUE, the upper limit is set to the same value as the
MP frequency value.

3.4.9 Lifetime

If a communications partner suddenly disappears and communications do not take place for a fixed
amount of time, the wireless communications driver will automatically disconnect from that partner in
accordance with the current lifetime setting. There are two lifetimes for DS Wireless Play: caM lifetime
and the MP communications lifetime. Both can be configured with the WM SetLifeTime function.

The caM lifetime is a value that determines how long to wait before disconnecting if there is no
wireless communications frame from the parent device to a child device, or from the child device to a
parent device. It is normally set to 4 seconds.

The MP communications lifetime is a value that determines how long to wait before disconnecting if
there is no Key response frame sent from the child device to a parent device, or no MP frame sent
from the parent device to a child device. It is normally set to 4 seconds.

For the cam lifetime only, the child ARM7 will not disconnect properly if it freezes. Because this
depends on the freeze timing, the wireless communications hardware will automatically return a Null
response frame in response to an MP frame. The MP communications lifetime was created to avoid
this problem.

Even if a connection is established using WM_StartParent or WM_StartConnect, communications
will not begin between the parent and child until the parent device calls the wM_StartMP function. So,
there is a chance that the lifetime will run out. However, because the child device will not respond until
the wM StartMP function is called, there is the chance that the MP communications lifetime will run
out. Make sure to call wM_StartMP immediately after communications begin.

It is possible to disable automatic disconnection according to the lifetime, but it should always be used
with the standard values because it is required in certain situations (such as when the power of a
communications partner is suddenly turned off during communications).

© 2004-2006 Nintendo 27 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.5 Port Communications

3.5.1 About Port Communications

Due to the multiplexing of communication pathways in MP communications, the concept of the port has
been introduced in the Wireless Communications Library. Both parents and children have16 virtual
ports. By designating a port number and sending data, the processes on the receiving end can be
sorted.

3.5.2 Port Receive Callback

After the initialization of the wireless communications, the receiving end configures the reception
callback function to the port number being used with the WM SetPortCallback function. After that,
once the send data set by the send side with the WM SetMPDataToPort* function arrives via MP
communication, the receive callbacks that correspond to the port number are called on the receive side.

If there is a new connection, or if a communications partner is disconnected, that fact is notified to the
receive callbacks of all ports.

For details about notifications, see the section about the wM SetPortCallback functionin 3.7 -
Event Notifications Returned from the Wireless Communications Library.

3.5.3 Raw Communications and Sequential Communications

There are two types of port communications, sort by the port to use. Ports 0-7 perform Raw
communications, while ports 8-15 perform Sequential communications.

There are almost no communication controls performed on raw communications. Sometimes data will
not arrive at the communications partner, or the same data will arrive several times. On the other hand,
sequential communications performs guaranteed and non-repetitive communication by checking for
duplication at the Wireless Communication Library level by attaching a sequence number to each
packet and by using a low-level resend process.

If communications fail with raw communications, resends will be attempted up to the number specified
in the defaultRetryCount argument of the WM StartMPEx function. If WM_StartMP is used to
start MP communications, no resends are attempted. Sequential communication resend until
successful.

When communications are successful or when communications fail even after the specified number of
resends, the send-complete callback, which is specified when calling the WM_SetMPDataToPort*
function, is called. Do not overwrite the memory region where the send data specified with the
WM_SetMPDataToPort* function is located until the send-complete callback arrives.

Unlike the relationship between TCP and UDP, latency and throughput for raw and sequential
communications are similar. Select between them according to whether resends are required. Note
that resends to a child device may become a bottleneck with sequential communications if that child
device has a poor signal.

NTR-06-0172-002-A7 28 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

3.5.4 Priority and the Send Queue

Port communications include the concept of four levels of priority, from 0-3. The send data set by the
WM SetMPDataToPort* function is processed with a FIFO (First In First Out) send queue, but there
are four send queues with differing priorities. As long as a queue with a high priority is not empty, data
will never be sent from a lower-priority queue. Communications that are more likely to be performed in
real time, such as Data Sharing, are set to priority 1; the communications that are less likely to be
performed in real time, such as block transfer, are set to priority 3.

With raw communications, the priority can be changed and data set while specifying the same port
number; however with sequential communications, inconsistencies in the order control can be caused
by the sequence number if data is set while changing the priority. Specifically, if higher priority data is
set later, the send will be still performed in the order of priority, but lower priority items that were

skipped may not be properly sent (in the current implementation, skipped data is sometimes discarded).

If the WM_SetMPDataToPort* function is called when the send queue is full,
WM_ERRCODE_ SEND QUEUE_ FULL will be returned to the callback and the function will fail. Up to 32
send packets of differing priorities can be placed in the queue. However, when performing controls that
wait for the send-complete callback for the WM SetMPDataToPort* function before setting the next
data, only one level of the send queue is used, so it is unlikely that queue will overflow with normal use
of this method. Data Sharing also uses a maximum of two levels.

3.5.5 Packet Headers and Footers

In order to make port communications work, a data structure for communications known as a packet is
used in the Wireless Communications Library layer.

Packet Header Packet Footer
(2bytes) (4bytes)
[I
i Parent | ~ Packet Body
Packet Header Packet Footer
(2bytes) (2bytes)
[
[1 ~
Child Packet Body

A single packet consists of a two-byte header, the data to be sent, and a footer (a maximum of four
bytes for a parent and two bytes for a child).

© 2004-2006 Nintendo 29 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

The bit assignments for headers and footers are shown here. When using the Wireless
Communications Library, there is no need to be aware of the following structure:

: Packet Header -

15 ‘ VSync Flag (Used internally by library) ‘8

Port Length

‘ DestBitmap Flag (Parent only) ‘

Packet Footer -

‘ If DestBitmap Flag == TRUE ‘
15 87 0
Destination AID Bitmap (Only for parent transmission)

‘ If Port >= 8 ‘
15 87 0
Sequential Number

The header contains the data length (in two-byte units), port number, and control flags. The footer
contains a bitmap of the destination children as well as sequential numbers. If the data length is 0, it is
treated as 512 bytes.

Packets sent from parent to children normally contain a destination bitmap. However, if the header's
DestBitmap Flag is set to 0, then the parent is broadcasting to all children and the footer does not
contain a destination bitmap.

Also, the sequential number is used to control sequential communication. If the highest-order bit of the
header's four-bit port number is enabled (i.e. the port number is 8 or higher), then a sequential number
is added.

3.5.6 Packing Multiple Packets

In MP communications, only a method for transmission of a data payload has been defined, but with
this method, small amounts of data cannot be transmitted efficiently. Therefore, on port
communications, multiple packets are packed as much as the maximum transmission capacity will
allow and then sent.

NTR-06-0172-002-A7 30 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

3.6

K Example of packing multiple packets ; \

Packet Packet

7
Send capacity

Not included in send capacity M

Packet
Y

K Sendable if only a single packet of send capacity is used /

Note that the sizes of the header and footer portions of one packet are added internally, based on the
value that has been set for the transmission capacity. The transmission capacity should be viewed as
the maximum number of bytes available for user data.

Accordingly, when sending multiple packets, in addition to the actually transmitted data, the size of the
headers and footers in-between uses more space. For each packet, the size for each packet addition is
up to six bytes for a parent transmission and up to four bytes for a child transmission.

When sending multiple packets at the same time, determine the number of bytes using the following
formula:

[The Number of Bytes Used] = [The Total User Data Size to Pack] + [Added Headers and Footers] x ([The Number of Packets to Pack]-1)
[Added Headers and Footers] = 6 bytes (in the case of the parent device) or 4 bytes (in the case of the child device)

To simplify this document, consistent numeric values are used for the bytes added to headers and
footers which assume all packets are sent using sequential communications. However, the raw
communications footer is two bytes smaller. In raw communications, you can send each packet with 2
fewer bytes than what is calculated in the above expression.

Data Sharing

3.6.1 Data Sharing

For games that rely on real-time communications, you can periodically share the same data (positional
information, movement information, etc.) with all the participants. A Data Sharing library is available for
situations like this. We are planning to discontinue Key Sharing and the current implementation that
uses Data Sharing internally.

The Data Sharing and Key Sharing are both libraries that operate on ARM9 and use only the public
Wireless Communications Library functions.

© 2004-2006 Nintendo 31 NTR-06-0172-002-A7

Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.6.2 Directions for Use

#define DS SIZE 8 // Share each 8 bytes
#define DS MAX 8 // Max of 7 child devices + parent device
#define DS BITMAP 0x00ff // aidBitmap for 8 devices

WMDataSharingInfo dsInfo; // this is an approx. 2kb structure, so be careful
where allocated

ul6 sendData[DS SIZE/sizeof (ulé6)]; // send data

WMDataSet receiveData; // receive data

BOOL fUpdate;

// dinitialize wireless communications amd perform WM StartMP ()
WM StartDataSharing(&dsInfo, DS PORT, DS BITMAP, DS SIZE, TRUE);

// main loop
while (TRUE)

{
OS WaitIrg(TRUE, OS IE VBLANK); // V-blank wait

// create sendData from PAD input, etc.

if (WM StepDataSharing(&dsInfo, sendData, &receiveData)
== WM ERRCODE SUCCESS)

int 1i;
for (1=0; i<DS MAX; i++)
{
ul6* p = WM GetSharedDataAddress (&dsInfo, &receiveData, 1);
|

if (p != NULL)
{
// use p to configure the input from AID i

}
fUpdate = TRUE;

}

else

{

fUpdate = FALSE;

// Execute the render process with the current internal state
if (fUpdate)

...... // update the game state based on the input

First, immediately after MP communications have been started with the wM_StartMP function, call the
WM_StartDataSharing function to initialize Data Sharing. After that, data can be shared on the
parent and child simply by calling the WM StepDataSharing function at the start of each game frame.

If the WM StepDataSharing function returns WM _ERRCODE SUCCESS, it indicates that all participants
in the Data Sharing are able to share data, so use that shared data to start a new game frame. The
shared data can be obtained from the WM_StepDataSharing function as WwMDataSet type data. Use

NTR-06-0172-002-A7 32 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

the WM _GetSharedDataAddress function to obtain data from this data set that was set by individual
DS devices.

If on the other hand, WM ERRCODE_NO DATASET is returned, it indicates that one of the
communications partners is experiencing performance problems, so delay the game frame update and
wait one picture frame.

For details about this method, refer to the data sharing model demo in
$NITROSDK ROOT/build/demos/wm/dataShare-Model and the “Wireless Communications
Tutorial (WmTutorial.pdf)”.

3.6.3 Single Mode and Double Mode

There are two operations modes in Data Sharing: Single Mode and Double Mode. Designate them with
the doubleMode argument of the WM StartDataSharing function.

« Single Mode
If the game frame is 30 fps, or if the game frame is 60 fps but the frequency of the MP sequence is
twice or more per picture frame, single mode can be used. It obtains the data set with the previous
WM StepDataSharing function. When Data Sharing starts, a single empty data set that does not
contain any AID data will be loaded.

« Double Mode
Double mode is used when the game frame is 60 fps and the frequency of the MP sequence is
once per picture frame. It takes in the data set with the second WM StepDataSharing function.
When Data Sharing starts, two empty data sets that do not contain any AID data will be loaded.

One of the characteristics of MP communications is that two MP sequences are needed to collect data
from a child and then return that data to the child device. Therefore, if there is one MP sequence in one
picture frame, in order to call the wM StepDataSharing function at a frequency of 60 fps (in other
words, 1 game frame = 1 picture frame), a single buffer must be placed in the interval. This mode is
Double Mode.

For a diagram of the operations, refer to “3.6.7 General Information about the Internal Operations”.
Essentially, the difference between Single Mode and Double Mode is the initial preparation of some
empty data sets for loading.

3.6.4 Communications Data Size
The send data size that Data Sharing uses is calculated as follows:

[The Parent Device Data Size] = [The Shared Data Size] x [The Number of Devices Sharing the Data(including the parent device)] + 4
[The Child Device Data Size] = [The Shared Data Size]

As a limitation on the library, the parent data size must be 512 bytes or less. This means that [the
shared data size] * [number of shared devices] must be less than or equal to 508. Also, the shared
data size must be an even number. For example, if there are 5 child devices, the shared data size is up
to 84 bytes.

(84"6 + 4 =508 <= 512, 86"6 + 4 = 520 > 512)

© 2004-2006 Nintendo 33 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

When the number of children is 6 or more, the 5600 us limitation for the required communication time,
as explained in 3.4.4 Transmission Capacity, determines the maximum size of shared data. For
example, if there are 15 child devices, the shared data size is up to 12 bytes.

((12*16 + 4) + (12+60)*15 = 1276 < 1280, (14*16 + 4) + (14+60)*15 = 1338 >= 1280)

Following is a list of the maximum size of shared data for each number of child devices.

Number of Child Devices 1,234 |5 |67 (8|9 (1011 |12 |13 |14 |15
254|168 (126|100 84 | 72 | 62 | 56 | 50 | 46 | 42 | 38 | 36 | 32 | 30

Maximum shared size by the
restriction of the parent’s data

size <= 512 bytes.

Maximum shared size by the
restriction of the required time

for communication <= 5600 ps

When using this at the same time as a normal WM_SetMPData* function, multiple packets are packed.

Note: When calculating the respective maximum sizes for each parent and child device, the header
and footer portion of the packet (6 bytes for the parent, 4 bytes for the child) must be added.

3.6.5 Cautions Related to Function Call Order

You must attempt to call the WM StartDataSharing function immediately after calling the completion
callback of the wM StartMP, and you must attempt to call the WM EndDataSharing function
immediately before the WM EndMP function. This is a current limitation for Data Sharing.

To delay the start of Data Sharing, you can try not calling the WM StepDataSharing function. No
alarms or timers are used inside Data Sharing; its processes are driven by library function calls and
send/receive callbacks. Therefore, even after the wM StartDataSharing function is performed, as
long as the WM StepDataSharing function is not called, extra processes and communications are
not carried out.

However, since nothing along the lines of a timer is being used, there are limits to the timing that calls
the WM StepDataSharing function. In order to perform stable Data Sharing, the
WM_StepDataSharing function must be called at the earliest timing possible after a V-blank interrupt.
This is done so that the send data can be set up to the timing (in V-count terms, child device 240 /
parent device 260) that will carry out the preparation of the next MPS sequence on ARM?7.

3.6.6 Cautions When Operating at 30fps or Less

With an application that has a game frame of 30 fps, the WM _StepDatasSharing function is called
once every two frames, but if WM _ERRCODE_NO DATASET is returned, the next call must be performed
in the very next frame.

NTR-06-0172-002-A7 34 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

0l: WM StepDataSharing() == WM ERRCODE SUCCESS
02: ----

03: WM StepDataSharing() == WM ERRCODE SUCCESS
04: ----

05: WM StepDataSharing() == WM ERRCODE NO DATASET
06: WM StepDataSharing() == WM ERRCODE SUCCESS
075 ====

08: WM StepDataSharing() == WM ERRCODE SUCCESS
09: ----

Perform the above process when there is a failure, and make sure that a one-frame interval is not
placed in between the 5" frame and 6" frame. Otherwise, if the parent and child are off by one frame,
any fixes will not work.

When at 30 fps and calling in the manner described above, the parent / child game frame timing
discrepancy can be fixed, but at 20 fps and below, the timing cannot be completely brought into line.
This is one of the current limitations for Data Sharing. However, even at 20fps and below, the
consistency of the shared data is maintained. So, even if the timing is a bit off, if it is possible to share
only the data and Data Sharing can be used.

3.6.7 General Information about the Internal Operations

Below are some diagrams that illustrate the internal operations of Data Sharing. The
WM StepDataSharing function is noted as StepDS in the diagrams.

© 2004-2006 Nintendo 35 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK

Using the Wireless Communication API

DataSharing
(Single Mode)

;

} .
Parent 'S /1/‘9@7 Child

|
i A
P iz s
€ otrPPath m >
€eotMPBat:
MP-)
i In Single Mode, a dummy
ABK- data read occurs once at the
start.
MPACK
Port
*- Send g
|}
When the data for the parent .
and all the children is ready, '
pack it into a single DataSet and l
send it to all the children. 1
i
7 D
2 11
L o Recewe P q
If a DataSet transmission is ' = ASK Ij
successful, it is assumed that all the] e
children have received it and it H A 1
becomes readable from the parent. Port ' I
[Send — 9 i
i
: Be--
. i P
A call of StepDS will succeled !] A call of StepDS will succeed and the
and the new parent data will be | i o< ACH 5 h :
L new child data will be set only when the
set only when a readable : (] next DataSet has been received
DataSet exists. = MPAGK .
o @ o Port —p
MPDato> Send
[}
1
[}
]
~ M-
1 < ACK é Recovs P [:2@
! MPRAGK
] 1
Port |
i"' Send —® i
i i
i Be--
. €]
€ SetMRDJie® >
iR 1
ASIC !
MDPACIK
Port
- Send g
|}
[}
1
]
[}
1 e
! o Port >p [:'13 ;@
! < ACH
L MPAGH
[} [}
Port | [}
i"' Send —® i
])
[}
v v v v
NTR-06-0172-002-A7 36 © 2004-2006 Nintendo

Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

DataSharing
(Double Mode)

V-Blank
<«
Ak -Receive
When the data for the parent MRfeic
Port
and all the children is ready, - Seond >
pack it into a single DataSet and | & Port ‘iﬁ'
send it to all the children. . Send |
i
| oDl
| .
; - e 1
i 5 . e 1;\ In Double Mode, a dummy
If a DataSet transmission is : r ‘ e Recoeive dtatri1 read ocours e atthe
! 5] start.
successful, it is assumed that all the . Port+— MPAGK Port
children have received it and it 2--1>SetMP 5 Ll Seond —>
becomes readable from the parent. {‘er:qa ™
1 Send!
‘ '
- [
e I
! b
H IL MR]
A call of StenDS will dand i l Port 2;_2] A call of StepDS will succeed and the
call of Ste, will succeed an =Gk 5 i i
the next argnt ot will be set onl Y Receive next child data will be set on_ly when the
p ! y 1 next DataSet has been received.
when a readable DataSet exists. 3 MPACK
o— Port]
Send .
]
[}
[}
et TE05]
peviPDa
MR]

. Port
Receive

Port]
- Send > l
i !]
. I i
BEENEN [= (B~
[Stephs 1 ! j \,@@] .
< i $etMPDa >
; ; . .
i ! >3
i 1 — —_Che . Ol
; . i Receive
P MRACK oo .
E--os'eﬂwpqet $ Sena ¥
3 SetMPOpte '
VT Send | 1
1 . H
]
- (6N - l M € -~
[StepRs_. 1 i SepD3S
<43 O ; SethPDale >
H I IR 1
i &g Ak Pt > [;5;53
i 1 d = - Receive
{21.6: Port— MPAESK — SPOr}j 3 H
B - en .
-QP-SQLNE‘QatP !
1 Send! |
|]
]

© 2004-2006 Nintendo 37 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.7 Event Notifications Returned from the Wireless Communications
Library

For some asynchronous function callbacks, an event notification call from the Wireless
Communications Library is issued in addition to the "operation complete" notification corresponding to
the call. The trigger for the callback is stored as the value of the WMStateCode enumerated type in the
state field of the WM*Callback structure of the callback argument.

The following table defines the notifications associated with various functions and the type of
WMStateCodes for the notifications. With the exception of the WM SetMPData* function,
asynchronous functions have an internal table of callback functions by function, so do not assign a
different callback function to the same function each time it is called.

Function WMStateCodes

WM _StartParent WM_STATECODE_PARENT START An asynchronous notification that the

function call is complete.

WM_STATECODE BEACON_ SENT The beacon is sent. There is no special

processing required.

WM_STATECODE CONNECTED A child device connected to the parent. At

connection time, the following data is sent via callback:

o The AID of the child connected to WMStartParentCallback.aid

o The MAC address of the child in WMStartParentCallback.macAddress

o The user region (the second 24 bytes) of the SSID declared by the child in
WMStartParentCallback.ssid

WM_STATECODE_DISCONNECTED A child disconnected from the parent.
WMStartParentCallback.aid and WMStartParentCallback.macAddress
behave as in WM STATECODE CONNECTED.

WM_STATECODE DISCONNECTED FROM MYSELF

This notification is used when a WM function is called within an application and a
parent disconnected its own child. The same values as used with
WM_STATECODE_DISCONNECTED are used in notifications.

NTR-06-0172-002-A7 38 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

Function WMStateCodes
WM_StartConnect WM_STATECODE_CONNECT START An asynchronous notification that the function
WM_StartConnectEx call is complete. If no more entries are being received because the parent's entry

flag is set to FALSE or the device has reached its maximum number of connections
occurs, WM_ERRCODE_NO_ENTRY or WM_ERRCODE_OVER MAX ENTRY may be
returned in errcode. Even if WM_ERRCODE_SUCCESS is returned in this state, be
aware that it does not necessarily mean that the connection is complete. The
completion of a connection is notified with wM_STATECODE _CONNECTED. Also,
caution is also needed for the WM ERRCODE OVER MAX ENTRY returned when
the parent device exceeds its maximum number of connections, since the
notification is issued after a single WM ERRCODE SUCCESS is returned.

WM_STATECODE BEACON LOST A connected parent device beacon fails to be
received for a fixed amount of time. There is a high possibility that the signal has
degraded and the V-blank period is damaged, but there is no further processing

required.

WM_STATECODE CONNECTED A connection was made with the parent

device. At connection time, the following data is sent via callback:
o The AID of the child connected to WMStartConnectCallback.aid

WM_STATECODE_DISCONNECTED A parent disconnected from a child.
WMStartConnectCallback.aid behaves asin WM STATECODE CONNECTED.

WM_STATECODE DISCONNECTED_ FROM MYSELF

This notification is used when a WM function is called within an application and a
parent disconnected its own child. The same values as used with
WM_STATECODE_DISCONNECTED are used in notifications.

WM_StartMP WM_STATECODE MP_START An asynchronous notification that the

WM_StartMPEx function call is complete.

WM_STATECODE_MPEND_ IND The parent device sends out the MP_ACK frame
and successive MP sequences are finished. Normally, there is no particular need
to perform this process. Notifies the pointer to the WMMpRecvHeader structure
that stores the contents of the frame received from the child in
WMStartMPCallback.recvBuf. We recommend using the port receive callback
to receive the data. However, since the recvBuf field is defined as a

WMMpRecvBuf type, you must forcibly recast the field type.

WM_STATECODE MP_IND The child received the MP frame from the
parent. Notifies the pointer to the WMMpRecvBuft structure that stores the contents
of the frame received from the parent in WMStartMPCallback.recvBuf. We
recommend using the port receive callback to receive the data. If the port was not

assigned with the Po11Bitmap of the MP frame, the errcode is

© 2004-2006 Nintendo 39 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

Function WMStateCodes

WM _ERRCODE INVALID POLLBITMAP. Because this occurs most often when
multiple child devices are connected, it should not be handled as an
unrecoverable error. Also, if counting the header information and nothing was
included in the received MP frame, WM _ERRCODE_NO_DATA is notified as the

errcode. Normally, as long as the WM Library is operating, this cannot occur.

WM_STATECODE MPACK IND The child received the MP_ACK frame from
the parent device. Normally, there is no particular need to perform this
process. The errcode is WM_ERRCODE INVALID POLLBITMAP if not primarily
self-designated with the Po11Bitmap of the MP frame that corresponds to this
MP_ACK. Since this occurs most often when multiple child devices are connected, it
should not be handled as an unrecoverable error. Otherwise, if the parent is not
notified with the Po11Bitmap field of the MPACK frame that the Key(Null) response
frame was not received, the errcode is WM_ERRCODE SEND FAILED. Evenifa
given time passes after receiving the MP frame, if the MPACK frame could not be
received, then this indication occurs, the errcode is WM_ERRCODE _TIMEOUT, and

there is a notification.

WM_SetIndCallback WM_STATECODE_FIFO_ERROR This WMStateCode is sent to the ARM7
when the execution control queue overflows due to a process overload on the

ARMY. Treat as a non-recoverable fatal error.

WM_STATECODE_INFORMATION Notification of some type of internal event.
The notification is stored in WMIndCallback.reason.
WM_INFOCODE_ FATAL ERROR, which is sent as notification when a fatal error
occurs and the ignoreFatalError argument of the WM StartMPEx function is

set to TRUE, is defined as the value placed in reason.

WM_STATECODE_BEACON RECV The beacon from the connected parent is
received. Normally, there is no need to perform this process. If
WMIndCallback.state was this value, by recasting the type in
WMBeaconRecvIndCallback, the Gamelnfo can be obtained from
WMBeaconRecvIndCallback.gameInfolength,

WMBeaconRecvIndCallback.gameInfo, etc.

WM_STATECODE DISASSOCIATE Used for debugging. Normally, you can

ignore this constant.

WM_STATECODE_REASSOCIATE Used for debugging. Normally, you can

ignore this constant.

WM_STATECODE AUTHENTICATE Used for debugging. Normally, you can

ignore this constant.

NTR-06-0172-002-A7 40 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

Function WMStateCodes

WM_SetPortCallback WM_STATECODE PORT_ INIT This is called with the interrupts disabled
while WM_SetPortCallback is called. This notification stores the AID bitmap for
the partner currently connected to
WMPortRecvCallback.connectedAidBitmap. [f the connection has not
started yet, 0 is stored in connectedAidBitmap. In addition, void* arg,

passed to an argument to WMSetPortCallback, is passed to *.arg.

WM_STATECODE_PORT RECV Data is received from the communication

partner. The following data is sent via callback:

o The AID of the child connected to WMStartConnectCallback.aid
o The AID of the send source in WMPortRecvCallback.aid

o The pointer to the receive data in WMPortRecvCallback.data

o The size of the receive data in WMPortRecvCallback.length

o The void* arg given to the argument of the WMSetPortCallback in

*.arg

WM_STATECODE CONNECTED Immediately after notification in the callbacks
of the wMStartParent function and the WMStartConnect* function that the
connection was established, similar notifications are sent to the receive callbacks
of every port. Note that, regardless whether it's a parent or child,
WMPortRecvCallback.aid always takes the AID of the connection partner at
that time (the child device is fixed at 0, while the parent takes the AID of the
connected child). Its own AID is stored in * .myAid. Also, the MAC address and
user region SSID (for the parent device) of the respective communication partners

are set to * .macAddress and *.ssid.

WM_STATECODE_DISCONNECTED Immediately after notification in the callbacks
of the WwMStartParent function and the WMStartConnect function that the
connection was terminated due to an external cause, similar notifications are sent
to the receive callbacks of every port. The same notes apply to AID as to
WM_STATECODE_CONNECTED. Also, the MAC address of the disconnected partner

is stored in * .macAddress.

WM_STATECODE DISCONNECTED FROM MYSELF

This notification is used when a WM function is called within an application and a parent
disconnected its own child. The same values as used with

WM _STATECODE_DISCONNECTED are used in notifications.

WM_SetMPData WM_STATECODE PORT_SEND Only one kind of wMStateCode is notified
WM_SetMPDataToPort as the completion callback of an asynchronous function, but because it is an
WM_SetMPDataToPortEx | important notification in the communication controls, it is described separately

here.

© 2004-2006 Nintendo 41 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

Function WMStateCodes

In WMPortSendCallback.errcode, the following data is sent via callback:

o WM _ERRCODE_SUCCESS when the send succeeded
o WM ERRCODE SEND FAILED when the send failed

o WM ERRCODE_SEND QUEUE_ FULL when the send queue was full

Basically, with Sequential communications, WM_ERRCODE SEND FAILED will not
be returned except when communications have been terminated. The bitmap of

the AID of the partner that must retry is stored in * . restBitmap.

The AID bitmap of the communications partner for which the send was a
success is stored in * . sentBitmap. Send destinations that are not
connected or which become disconnected during a send are not included
in either * . restBitmap or *.sentBitmap. The condition for
WM_ERRCODE_SUCCEDD to return to *.errcode is that *.restBitmap is
0. In other words, communications are successfully sent to all designated
send destinations which are still connected. In order to confirm that
everything was sent to the designated send destination , re-check

* _sentBitmap (with the exception of when the partner has called the
WM_EndMP function). While it is guaranteed that the send is a success
for communications partners that are included in * . sentBitmap, there is
no such guarantee for communications partners that are not included
there.

Exactly one callback will be called each time the WM _SetMPData*
function is called. At this time, during the interval from when the function

is called to when the callback is called, do not overwrite the memory
region for the send data. It is also possible to obtain the address of the set
send data with WMPortSendCallback.data. The argument of the

WM SetMPDataToPortEx function is passed to *.arg.

3.8 Error Codes Returned from the Wireless Communications Library

3.8.1 Return Values of Functions that Return a WMErrCode Type

The rows in the following chart contain functions and the columns contain their return values. They are
abbreviated by omitting the WM _ERRCODE__ prefix from the WMErrCode enumerated values.

NTR-06-0172-002-A7 42 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK
w = WM SetWEPKey o| o o o
= < =
L | W= x

10) 5 @ % < S | [MM_SetWEPKeyEx o| o o o
(%) Z I < | < 0|l

7] ElZ|2 k|2 w s

SRR BRI w8
O | m 22225 o el T 5
OlZ|MIaIZ|o|= e Olhlalyl< o
. 2| < 22z |2|2 | a A A=
Function Name »|w| o - | Z|] alZl2|2]% a % %
' Tnitiald Qle2(3|9|8(3|5|D
[Tnitialize oflo|o o o Ol o |w|w | 1| < 1| O
Dl |x |- § o|lz|olE

WM Init o oo o ®Iw|Oo|= z|s/z2 |t

WM_Enable o | o o

WM PowerOn o|o o

WM End o| o o

WM PowerOff o| o o

WM Disable ofo o

WM _Finish o o

WM Reset o| o o

WM StartMP* o| o o o

WM_SetMPParameter ol o o

WM SetMPData* o| o o|o;| o

WM EndMP o| o o

WM SetParentParameter o|o o [¢

WM StartParent o|o o

WM_EndParent o| o o

WM StartScan* o| o o o

WM EndScan o| o o

WM _StartConnect* ol o ° ° 1: This is an errcode that is generated depending on

a variety of conditions even if the application

[i SEenmeett °|° © o] © process is appropriate.

WM DisconnectChildren ol o o, | o Communications will continue as normal, so this is

not treated as a fatal error.

WM SetIndCallback o o

WM SetPortCallback o o

WM StartDataSharing oo o o

WM _EndDataSharing o o o

WM _StepDataSharing o | o o o, | o

WM SetGameInfo o| o o o

WM SetBeaconIndication o| o o o

WM SetLifeTime ofo o

WM MeasureChannel o| o o

WM InitWirelessCounter o| o o

WM GetWirelessCounter o| o o

WM SetEntry o| o o

WM StartKeySharing | o | © o o

WM _EndKeySharing o o o

WM GetKeySet o | o o o, | o

[0} o (¢}

WM_ReadStatus

WM StartDCF

WM SetDCFData

WM _EndDCF

© 2004-2006 Nintendo

43

NTR-06-0172-002-A7

Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.8.2 errcode Values Returned to the Callback Function

The rows in the following chart contain functions and the values of the state field of the WwM*Callback
structure returned to their callbacks. The columns contain the values of the errcode field of the
WM*Callback structure. They are abbreviated by omitting the WM STATECODE and WM_ERRCODE

prefixes.
A indicates that the wM*Callback.state values are sometimes indefinite.
. %
L = é E E
[0) E I'_IlJ E é x %l E' g 8 é
e ZWIE&’§|98F%E§&.<§$
(] E|l2|o|E =|x S| E|= E |
Wio|g|5|8|2 Q|3 alzldIE] ol
83w8§'0|§0|owgm|5<0|%2
FunctionName | " Catiback. state 2| 2|8 2[5|2|2|2|z|2|8|2|3|2|2|8|z
WM Initialize o | o o
WM Enable o o
WM_PowerOn o o o o
WM End o | o o o
WM _PowerOff o | o o o
WM Disable o o o
WM _Reset o o o
WM StartMp* MP_START o o o A
MPEND INDq ©
MP_INDq o 0, | o3
MPACK IND; o [eP} 0,
WM _SetMPParameter o o o o
WM SetMPData* PORT_SEND o o o A 0,
WM _EndMP o | o o o
WM_SetParentParameter o | o o o
WM StartParent PARENT START o A o o A
BEACON_SENT o
CONNECTED o
DISCONNECTED o
DISCONNECTED FROM MYSELF| o
WM EndParent o | o o o
WM StartScan* PARENT NOT_FOUND ol A o o A
PARENT FOUND o
WM_EndScan o | o o o
WM StartConnect* CONNECT_START ol A o o A O | 04
CONNECTED o
DISCONNECTED o
DISCONNECTED FROM MYSELF| o
NTR-06-0172-002-A7 44 © 2004-2006 Nintendo

Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

BEACON_LOST; o
WM Disconnect o | o o o
WM DisconnectChildren o | o o o
WM_SetGameInfo o | o o
WM SetBeaconIndication o | o o
WM SetLifeTime o | o o
WM MeasureChannel o | o o o
WM InitWirelessCounter o | o o
WM GetWirelessCounter o | o o
WM _SetEntry o o o
WM StartDCF DCF_ START o A
DCF_IND
WM SetDCFData
WM
WM _SetWEPKey o o
WM _SetWEPKeyEx o o o
WM SetIndCallback FIFO_ERROR o
INFORMATION o
BEACON_ RECV; o
DISASSOCIATE; o
REASSOCIATE o
AUTHENTICATE| o
UNKNOWN [}
WM_SetPortCallback PORT_RECVINIT o
PORT_RECV o
CONNECTED o
DISCONNECTED o
DISCONNECTED FROM MYSELF| o
4 <
. - 2| |E|E
zZ [1q
= g, I:‘j 0 é S % > Lul E'I; @ g
2| |212(3|8|5a|2|5|8 E|2|Y|c|E|E
woé<5<91w8|2|9<|1'
85w8§'0|§0|olwgm|52‘0|%2
2| X|8|2|S|2|2|2|x|E|B(2|3|z|2|8 |
1: It is OK if processing is not normally performed on this state notification.
2: This is an errcode that is generated depending on a variety of conditions even if the application process is appropriate.
Communications will continue as normal, so this is not treated as a fatal error.
3: This is an errcode that should not be generated as long as the library is operating normally.
4: After the WM_ERRCODE_SUCCESS notification arrives, there may be a notification for this error again.
© 2004-2006 Nintendo 45 NTR-06-0172-002-A7

Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.9 Cautions When Using the Wireless Communications Library

This section describes cautions for using the Wireless Communications Library.

3.9.1 The Load from using Wireless Communications

Because the wireless communications driver in the current SDK is 100k or larger, the wireless
communications driver codes can not be loaded into the ARM7 working memory and are stored in main
memory. Therefore, when performing wireless communications, ARM7 frequently accesses main
memory, which leads to a large overhead when there is continuous access from ARM9 to the main
memory for rendering, etc (normally, ARM7 has a higher access priority to main memory than ARM9).

Conversely, if ARM9 is given priority to main memory access (e.g., when using HDMA), the execution
of the wireless communication driver may be adversely impacted because ARM9 frequently accesses
the main memory. In particular, there is a strong possibility that ARM7 program execution may be
delayed for a long time if multipurpose DMA accesses main memory. If the wireless communications
drivers are operated when ARM9 has the higher access priority to main memory, try not to use the
multipurpose DMA.

One effective method is allocating VRAM-C or VRAM-D for use by ARM7 is to store the wireless
communications driver. This method decreases the time for ARM7 to appropriate the main memory bus.
For details, refer to the WVR library reference or the ichneumon component of the “Component
Description (AboutComponents.pdf).”

3.9.2 The Callback

The callback is called inside the PXI interrupt handler. Functions that cannot be called when interrupts
are forbidden and cannot be used. Also, try not to call any long-term processes. If another ARM9
interrupt is delayed, there are times when the ARM7 wireless communications driver waits for the
ARMO callback to finish. This wait time negatively impacts the wireless communications process.

3.9.3 The Cache Process

Forced cache storage is performed in some functions to pass data to ARM7. It is recommended to
pass 32-byte aligned data to the relevant function and that the data region be allocated as a multiple of
32 bytes. If this is not done, the surrounding memory regions are also forcibly stored together in the
cache and unforeseen operations might occur.

On the other hand, there are two kinds of data that are passed to the application from the library: data
that is passed after the cache is invalidated and data that requires the cache to be invalidated by the
application.

The given memory region is that which is stored | The WM SetParentParameterfunction argument
in the internal cache of the library. pparaBuf or

pparaBuf->userGamelInfo,

WM StartConnect*, WM SetMPData*,

WM _StartDCF, WM SetDCFData, WM SetWEPKey*

NTR-06-0172-002-A7 46 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API

NITRO-SDK

The given memory region is that which is not
stored in the cache. (It is stored after being
copied to an internal buffer)

WM SetGameInfo, WM StartScant,

WM_SetMPParameter

Other functions that pass only small memory regions

The region which takes in the data is that which
is passed after the cache is invalidated inside
the library.

Data fields of the port reception callback set with the
WM_SetPortCallback function, WM_ReadStatus

The region that takes in the data is that which is
passed without the cache being invalidated
inside the library.

The region designated with the param->scanBuf
argument of the wM_StartScan* function
NOTE: Passed after WwMStartScan*Callback is

invalidated

3.10 Taking Greater Control over Communications

This section describes higher-use wireless communications and ways to fine-tune performance.

3.10.1 Overview of Timing Control Parameter of MP Communications

The following figure displays the way a number of parameters can be used to control the timing of MP
communications. Each of these parameters can be configured by setting their values in specific fields
of the WMMPParam structure and calling the wM_SetMPParentParameter function.

WMMPParam. WMMPParam.
arentlnterval
VBlank parentVCount p
— A‘
Port | MPEND ‘ Port | MPEND
Start Recv | IND Start Recv | IND
r)ext MP Port pext MP Port
(|ntt;rnal) Send (|nte;nal) Send
Parent m r m o I
H [H 1o HEH
H [H o R
s = ' E E—ay
. H . H HE
H H H H HE
i — S . |
Chlld — = V __________ 15l —*
f Port Port Port Port
Set Recv Send Set Recv Send
next data next data
(internal) MPACK (mternal) MP MPACK
IND IND IND IND
N
WMMPParam. WMMPParam.
childVCount childinterval

3.10.2 parentVCount, childVCount

When in frame synchronous communications mode, WMMPParam.parentVCoun defines the V-Count

© 2004-2006 Nintendo

47 NTR-06-0172-002-A7

Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

value for internally starting the first MP sequence in each frame. The default value is 260. Similarly,
WMMPParam.childvVCount defines the V-Alarm value for internally setting the first Response data in
each frame on the child side. The default value is 240. These two values can also be set by the
WM_SetMPParameter function's wrapper function WM_SetMPTiming.

By changing the values of parentvVCount and childVCount, you can adjust the timing of MP
sequence occurrences in frame synchronous communications mode. Because the wireless driver on
the ARM?7 side performs frequent accesses to main memory around the time of the MP sequence,
applications on the ARM9 side will often stall when accessing main memory. You can sometimes
lessen the impact of this stalling by adjusting the MP sequence to a time when the application on the
ARM@ side is not heavily accessing main memory. Of course, the value of parentVCount is irrelevant
to the timing of communications when the communications environment is poor or when
communications are carried out in continuous communications mode. Also note that if the ARM7's
internal processing is delayed, the MP sequence will actually occur later than the value set in
parentVCount.

3.10.3 parentinterval, childinterval

When in frame synchronous communications mode, WMMPParam.parentInterval defines the
interval (in microseconds) that passes between the end of one MP sequence by the parent and the
internal start of the next. It affects the second and all subsequent MP sequences that occur. Similarly,
WMMPParam.childInterval defines the interval between the end of one MP sequence and the
internal setting of Response data for the next MP sequence by the child. The default value is 1000
microseconds for parentinterval and 0 microseconds for childinterval. Both of these values can also be
set by the WM SetMPParameter function's wrapper function WM_SetMPInterval.

Note If the ARM7's internal processing is delayed, the actual transmission interval between MP
sequences during continuous communications will be longer than the value set in parentInterval.

In continuous communications, the Send data that will be transmitted in the next MP sequence is
determined at the end of the interval period for both the parent and child, and is based on the Send
data set in the Send queue. In current implementation, the interval period does not begin until the Port
Receive callback and Port Send callback of the previous MP sequence have ended on the ARM9 side.
Because of this specification, data that gets set in the Send queue by the WM SetMPDataToPort
function during these callbacks will be set in time for transmission in the next MP sequence.

The default interval period is longer for the parent than for the child because this ensures that the
child's Response data is set in time for the next MP sequence. Setting the parent and child to the same
interval period will result in numerous communication errors when the child has a weighty callback
process. This happens because the wireless communications driver on the child's side waits for the
ARMBY's processing to end, so the next MP sequence can come before the child has had time to set the
Response data. The child MP frame will stop responding until the response data is set, so the failure of
the communications during that interval will be the result. An example of this can be observed in the
wbt-fs demo, where sometimes the callback process on the child side takes around 700 microseconds,
and communications fail with high frequency if the parent and child are set to have the same interval
period.

NTR-06-0172-002-A7 48 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

If you know that the processing load inside the callbacks for parent and child will always be the same,
then you can shorten parentinterval and raise the throughput of MP communications during continuous
communications. Conversely, if the child's Port Send and Port Receive callback processes take longer
than 1000 microseconds, then you will need to set parentinterval longer than the default value. Of
course, you do not really want to have a process like a callback that takes longer than 1000
microseconds inside the interrupt handler. If this situation arises, you will need to rethink your design.

For heavy Send and Receive processes, limit your process requests from inside the Port Send and
Receive callbacks to a thread for communications and immediately exit the callbacks. You can perform
continuous communications without wasting time by using this thread to configure parentinterval &
childinterval for the worst-case longest duration it should take to set the next Send data. Since the
Send queue has 32 steps, an alternative strategy is to design things so there is always buffering of
multiple sets of Send data in the Send queue.

To stabilize the communications process, there are future plans to modify the ARM7 wireless
communication driver so the interval period can be entered immediately without waiting for the callback
process on the ARM9 side, and increase the initial values for parentinterval and childinterval instead.

3.10.4 Dynamically Changing the Transmission Capacity

Communications normally proceed using the transmission capacities that were set by the parent in
parentMaxSize and childMaxSize using the WM SetParentParameter function. However, the
parent can use the WM _SetMPParentSize and WM_SetMPChildSize functions as required to
reconfigure the transmission capacities of the parent and the child.

Note: These the values cannot exceed the initial values as set by the WM _SetParentParameter
function. Also, the child's transmission capacity gets updated to the value set by the parent every time
the parent sends an MP sequence. As a result, even though the child can set its own transmission
capacity using the WM SetMPChildSize function, that value can only be used when preparing Send
data for the immediately next MP sequence.

Initial value Maximum value | How to reset value on How to reset value on child
that can be set parent side side
Parent The parentMaxSize Same as left WM SetMPParentSize () | (Only has meaning on the
transmission value in the parent's parent side)
capacity beacon
Child The childMaxSize Same as left WM _SetMPChildSize () WM SetMPChildSize ()
transmission value in the parent's Note that this gets overwritten
capacity beacon by parent's setting when MP
frame is received

Be careful about clashes between the child transmission capacity set for the child and the child
transmission capacity configured in the parent for the child. Communications can proceed without
trouble if the child's transmission capacity is set smaller than the setting configured in the parent for the
child. But, if the child transmission capacity is set larger than this configuration, the parent will not give
sufficient time for the sending child data and the data will not return from the child to the parent. For
more information, see the description in 3.4.2 MP Communications Operations. In the example MP

© 2004-2006 Nintendo 49 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

sequence, the child transmission capacity on the child side gets updated by the MP sequence, so the
subsequent resending of data proceeds with no problems in communication between parent and child.
Unnecessary communications can be avoided by cooperation between parent and child and use of the
WM_SetMPChildSize function to simultaneously update the child transmission capacity.

There are two cases where it would be meaningful to change the transmission capacity:
When you want to cut unnecessary child transmission capacity.

As per the MP Communications specifications, if the child transmission capacity was set to 32
bytes, then each communication would consume an amount of time equal to 32 bytes x the
number of children. This occurs even when the child is sending only 2 bytes of data each time. By
designing the application to reduce the child transmission capacity according to the
communications mode, you can reduce the overall time needed for communications, which will
make communications more stable.

There is no need to control the parent transmission capacity because the time spent for sending
data in communications on the parent side only takes as long as is necessary for the amount of
Send data.

When you want to maximize transmission capacity depending on the number of connected children.

Assume the parent transmission capacity is 512 bytes and you want to connect a maximum of
five children. When five children are connected to the parent, the child transmission capacity
calculates out to 92 bytes, since the limitation on communications time is 5600 microseconds. If
the transmission capacity is fixed, it does not change even when only one child is connected. But
if transmission capacity is set dynamically, its can be maximized depending the number of
connected children. With this setup, the transmission capacity calculates out to 512 bytes when
there is one child, 322 bytes where there are two children and 194 bytes when there are three,
etc. However, the NITRO-SDK does not have am upper-level protocol that can make use of this
kind of dynamically set transmission capacity.

If your goal in changing the transmission capacity matches with case 1 you can use these functions
relatively safely. However, if your goal is more in line with case 2, then you should be aware that there
are many points you need to be careful about and it is normally recommended to avoid this method.

Here are some of the many points you need to be careful about in case 2. Normally, when the
WM_StartMP function executes, a precheck is carried out on the transmission capacity and buffer size
used for the maximum number of children. You must disable this precheck by setting
WMMPParam.ignoreSizePrecheckMode to TRUE with the WM SetMPParameter function.

Two things result from setting ignoreSizePrecheckMode to TRUE: the warning relating to the 5600-
microsecond restriction on needed communications time is suppressed, and errors can be avoided by
precalculating the receive buffer size. Taking case 2 as an example again, assume that
WNMParentParam sets the parent transmission capacity and the child transmission capacity both at 512
bytes and sets the maximum number of connected children at five. When
ignoreSizePrecheckMode is set to FALSE, the precheck when the WM StartMP function executes
would display a warning for debug output because the communications time totals 13970
microseconds, exceeding the 5600-microsecond limitation. Also, the receive buffer size on the parent is

NTR-06-0172-002-A7 50 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

1408 bytes for having two children with the child send capacity of 322 bytes when actually changing
the child send capacity within the 5600 microsecond limitation. However, when the WM StartMP
function runs the precheck, it calculates that 5312 bytes are required (i.e., the 512 bytes of child
transmission capacity x 5 children). Thus, when a Receive buffer of 1408 bytes is passed to the
WM_StartMP function it generates the error WM_ERRCODE INVALID PARAM. To avoid this error and fit
the data into the smallest required buffer size, you need to set ignoreSizePrecheckMode to TRUE.

When the precheck is disabled, the parent will enter the MP PARENT state even when the Receive
buffer size appears to be too small. However, the MP sequence will not execute if a check is conducted
at the time of communications to calculate the size of the Receive buffer based on the child
transmission capacity and the number of children to which data are being sent. If the transmission
capacity and other parameters are not corrected to the appropriate values, the MP lifetime will expire
after a certain period and the connection will be dropped. If, however, the transmission capacity is
immediately adjusted when more children are added so the size of the Receive buffer remains
sufficient, then communications can proceed without problems. However, if the child's Receive buffer is
too small, then communications will not operate normally and will not be able to proceed. Because of
this, you need to prepare a Receive buffer for the child that can accommodate the maximum value for
the parent transmission capacity as defined by parentMaxSize in the beacon. Unlike the parent's
Receive buffer, the child's Receive buffer is not affected by the number of connected children. So, even
if you prepare this maximume-size buffer, it will not always impact the amount of memory used. Further,
with the precheck disabled, the library will not check the 5600-microsecond limitation on
communications time. So, you will need to be very careful when setting parameters with your
application.

As these points suggest, you need to be especially careful setting parameters values when you use
ignoreSizePrecheckMode, because mistakes will cause strange behavior during execution. If any
of these points are at all unclear, you should refrain from using ignoreSizePrecheckMode.

3.10.5 Controlling PollBitmap

The parent may want responses from all children or it may want responses from specific children.
PollBitmap in the MP frame indicates from which children the parent wants a response. By
controlling Po11Bitmap from the very start, you can cut down on overall communications time by
having only required children make responses. However, a child not specified by Po11Bitmap cannot
send out a Key Response frame, so be careful about that child not getting an opportunity to send data
to the parent. For this reason, in normal MP communications the Po11Bitmap is always sent with the
bit standing for all connected children at all times other than for retransmissions so that a window of
opportunity exists for communications from each child.

To provide fine control over PollBitmap, the wireless communications library has prepared the
operation flags minPol1BmpMode and singlePacketMode in the WM StartMPEx function and the
WM SetMPParameter function. But, in order to use these operating modes, the complex restrictions
below must be cleared. It is important to have a detailed understanding of the wireless communications
protocol so, under normal circumstances, you should not enable the flags.

When minPollBitmapMode is enabled, the parent device will designate the value taken by the logical

© 2004-2006 Nintendo 51 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

OR of the send destination for the packet to be sent in its sequence as PollBitmap. In such an event,
use the flag along with singlePacketMode so there are no mistaken attempts to communicate with
more partners than for which it is designed. If there is a communication condition where the parent's
receive buffer overflowed as a result of more enabled PollBitmaps than intended, because of the
assumption that the simultaneous communications partner is limited and a large send volume keeps on
getting configured, an insufficient buffer will be detected when the MP sequence starts and the sending
will stop. After this sort of stop, it is possible to recover by reducing the send volume and avoiding
limitations on the receive buffer, but it is difficult to determine any causal factors from the application-
side.

To use minPollBmpMode, you must perform communication once every 60 seconds with port 8
through 15 on every child so the sequence numbers used in Sequential communication do not cycle
through. Further, use it with singlePacketMode so there are no mistaken attempts to communicate
with more partners than designed.

3.11 FAQ

Some of the common questions asked by the Wireless Communications Library users are shown
below in question and answer format.

3.11.1 Initialization process

Q: Avalid value is not returned for the WM_GetAllowedChannel function.

A: The WM _GetAllowedChannel function does not return a valid value until after the wM Init
function is called. If it was called before the initialization, it returns 0x8000, which indicates an error.

3.11.2 Connection process

Q. How do | determine the values for transmission capacities, Send and Receive Buffer sizes, and all
other communication parameters?

A. Here are procedures for determining typical parameter values:

Typical determinations Example
Determine the maximum number of Assuming that three children are connected to the parent, set
connected children. WMParentParam.maxEntry to 3.

Determine the number of shared bytes if | Set 16 bytes for data sharing.
using data sharing.

Use the expression described in 3.6.4 - The data size used by the parent for data sharing is 16 x (3+1) +4 = 68
Communications Data Size to calculate bytes. The data size for each child is 16 bytes.

the data size used by parent and child
for data sharing.

Determine the number of packets and To do a block transfer using WBT, have the parent use 128 bytes and
the size for communications in situations | each child use 14 bytes. For event notifications from the parent, use 32
other than for data sharing. (When bytes in an independent Sequential communication.

making these determinations, you need
to be aware that by increasing the
maximum data size that can be sent

NTR-06-0172-002-A7 52 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API

NITRO-SDK

Typical determinations

Example

simultaneously from the children, the
transmission time will always be
consumed to this maximum value even
when there is only a small amount of
data to send.)

Count up the number of packets that can
be sent at the same time, and use the
expression in 3.5.6 - Packing Multiple
Packets to calculate the number of bytes
needed for the parent's transmission
capacity.

For the parent, data sharing is 68 bytes, WBT is 128 bytes, and the
independent communication for event notification is 32 bytes. So, the
total is 128 + 68 + 32 + 6 x 2 = 240 bytes. For the child, the total is 16 +
14 + 4 x 1 = 34 bytes.

Note: WBT is normally used on ports 4-7 for RAW communications, so
WBT is 2 bytes smaller, or 238 bytes for the parent and 32 bytes for the
child.

Use the value calculated above for the
parent's transmission capacity and the
child's transmission capacity. Verify that
you have not exceeded the 512-byte
limitation for transmission capacity.

WMParentParam.parentMaxSize is setto 240 and childMaxSize is
set to 34.
Neither value exceeds 512 bytes, so it is OK.

Use the expression in 3.4.4 -
Transmission Capacity to calculate the
required time for one MP sequence
based on the parent & child transmission
capacities and the maximum number of
connected children, and check whether
the result exceeds the 5600-
microsecond limit. If this limit is
exceeded, redesign the data sizes so
the result of the calculation falls within
the limit.

The calculation is:
96+(24+4+240+6+4)*4+(10+96+(24+34+4+4)*4+6)*3+10+96+(24+4+4)*4

The result is 2570 microseconds. Since this is below the 5600-
microsecond limit, there is no problem.

(This expression is easy to calculate if you use the "Wireless
Communications Time Calculation Sheet" in the "Figures, Tables &
Information" part of the Function Reference.)

Calculate the sizes of the Send &
Receive buffers needed for MP
communications based on the maximum
number of connected children and the
patent and child transmission capacities.

For the parent, the size of the Receive buffer passed to the WM StartMP
function is WM_SIZE MP PARENT RECEIVE BUFFER (36, 3,

FALSE), and the Send buffer size is

WM_SIZE MP PARENT SEND BUFFER (240,
For the child, the Receive buffer size is

WM SIZE MP CHILD RECEIVE BUFFER(240, FALSE) andthe Send
buffer size isWwM_SIZE MP CHILD SEND BUFFER (36, FALSE).

FALSE).

Determine the frequency of MP
communications.

The data volumes sent in block transfer are not very large, so there
should not be a problem always performing MP communications at a
frequency of once per picture frame. Set the mpFreq parameter passed
to the function wM_sStartMP to 1.

Determine the operations mode for data
sharing, taking into consideration the
frequency of MP communications and
what the game frame fps will be.

The MP communications frequency set to 1, and you want the game
frame to move at a rate of 60 fps, so set doubleMode passed to the
WM_StartDataSharing function to TRUE.

Q: | don’t know the value to set to WMParentParam. tgid.

A: Ideally, it should be a different value every time, even when the power is restored. For an easy and
convenient way, a pseudo-random number can be generated by combining the return values of the

0S_GetVBlankCount function and the GX GetvCount function. Also, by using the value for seconds
or minutes on RTC, it is possible to guarantee that value to be different for some time even after the

power was restored. For the implementation which a child reconnects to the parent multiple times, a

secure connection may be achieved by sending some bits of TGID to the phase information to prevent

NTR-06-0172-002-A7
Released: April 14, 2006

© 2004-2006 Nintendo 53

NITRO-SDK Using the Wireless Communication API

a child from connecting to the parent with a different phase.
Q: When creating a list of parents from the scan result, a parent is sometimes difficult to find.

A: If all parents have the same beacon intervals and the beacon send timing happens immediately
after the other parent’s beacon, that parent may be difficult to find. Also, processing overhead can have
an effect as well as the parent’s beacon interval matching the child’s scan interval.

As a preventative measure, it is possible to achieve an overall resolution of these sorts of problems by
first using the WM_StartScanEx function, which can get multiple parent devices at one time.

You can also try to mix random numbers into the parent beacon interval and child scan interval.

The WM_GetDispersionBeaconPeriod function and the WM _GetDispersionScanPeriod
function were prepared for this purpose. Each of these functions returns random values that are
around 200 ms and 30 ms, respectively. By setting a value of WM_GetDispersionBeaconPeriod to
WMParentParam.beaconPeriod, the frequency of getting the same beacon intervals on the parents
can be reduced. Set the beacon interval only once when starting the parent device. Changing the
beacon interval dynamically impacts the child device connection.

In the same way, variation in the timing for the child device scan can be achieved by resetting the
maxChannelTime parametertothe WM GetDispersionScanPeriod return value each time a child
device calls the WwM_StartScan function or the WM_StartScanEx function.

Q: The connection process with the WM_StartConnect* function is not stable.

A: Make sure that you did not forget to call WM Reset when retrying a failed connection attempt. If the
connection process has already made progress before failing, the internal state may be CLASS1, so
WM_Reset must be used to restore the internal state to IDLE before WM StartConnect is called again.

Also, unintentional connection to the child device after the parent stops accepting entries can be
prevented by calling the WM SetEntry function to disable the entry flag when the parent device stops
accepting child device entries. The child device can check the WM ATTR FLAG ENTRY bit of
gameInfo.gameNameCount attribute in the beacon before the actual connection is tried to
determine if the parent is accepting entries.

Q: When | end the communication once and reconnected to the same parent, it sometimes fails.

A: When trying to reconnect after scanning, the timing of the child device reconnection process is too
fast and there are cases where an old beacon from the pre-shutdown parent device gets picked up.
Before connecting, use the beacon information to check whether or not the parent device has started a
new connection. In order to figure out the parent device state from the beacon information, use a
method such as including the parent device phase information in userGameInfo or checking the
changes in the TGID. After starting up in DS Download Play, the child device re-scans the parent
device, and makes a connection by checking the wM ATTR FLAG MB of
gameInfo.gameNameCount attribute. This enables you can determine whether or not the parent
device is still in a mode for DS Download Play.

If not rescanning, update TGID by the predetermined rule when reconnecting. Use some of the bits in
TGID for the phase information of the parent and rewrite that section of WMParentParam and
WMBssDesc on parent and child to reconnect. When doing so, the child cannot be reconnected if the

NTR-06-0172-002-A7 54 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

parent accidentally changed the channel with the connection immediately before.

Q: My application has a parent device for DS Wireless Play, rather than a parent device for DS
Download Play. But, when | startitup themb child simple.srl that started up on another DS
responds (“Gamelnfo Receiving...” keeps appearing).

A: Check if the multiBootFlag field of the WMParentParam structure specified by

WM SetParentParam is set to other than 0. To wait for the DS Download Play child device, make
sure that the multiBootFlag is not enabled on anything other than a parent that is sending out a
beacon for DS Download Play.

3.11.3 General MP communications
Q: How do | send out data with the shortest delay for MP communication?

A: With the frame synchronization communication mode, the first MP sequence start process is
performed when the V-Count is 260 lines. When a child receives the MP frame from the parent, the
transmission data should already be set, so the transmission data setting process starts a little earlier
at 240 lines. Therefore, call the WM SetMPDataToPort* function just before 260 lines for the parent,
and 240 lines for a child to reduce the latency as much as possible. However, immediate sending is not
guaranteed because there can be unpredictable delays between when the library function is called
from ARM9 and ARM7 wireless communication driver processing. Additionally, if there is other data in
send queue, that data is sent first.

The values of 260 lines and 240 lines can be reconfigured using the WM SetMPTiming function.

In continuous communications mode and in frame synchronization mode, the parent starts the next MP
sequence and the child sets the next group of Response data after an interval following the previous
MP sequence. By calling the WM SetMPDataToPort* function during this waiting period, you can get
the Response data set in time for the next MP sequence.

Note: Depending on the state of the ARM7 wireless communications library, the Response data may
not get set in time. The waiting period can be configured using the WM _SetMPInterval function.

Q. | received unpredictable results when continuously calling the wM_SetMPDataToPort function.

A. Did wM_ERRCODE_FIFO_ ERROR get returned as the return value of the function? If there is an
overflow in the FIFO used for sending commands from ARM9 to ARM7, this error will be returned. Try
to reduce the number and frequency of the calls so that the ARM7 processing can catch up.

Q. When | try to send large amounts of small data packets, the communications state degrades and
things do not work well.

A. s WM ERRCODE_FIFO_ ERROR being returned to some callback? When large amounts of small data
packets are sent, the processing capacity of the child-side ARM7 is sometimes exceeded because the
communication state degrades and remaining communications accumulate.

If wM_ERRCODE_FIFO ERRORis returned to the callback in this way, there will be too many processes
and the ARM7-side FIFO for internal processing will overflow. The communication state cannot
generally be recovered from here, so try to immediately transition to the communications error screen
to reset the communications.

© 2004-2006 Nintendo 55 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

If heavy processing is being performed inside a child device-side communications related callback, this
problem will occur more frequently, since ARM7 is waiting for those processes to finish. Also, in
comparison, there are times when the child device processes overflow if the parent device processing
is too light. There are a variety of measures to avoid this problem, such as lightening the processing
load inside the child device-side callback, avoiding sending large amounts of small data packets, and
making sure that the lowest send interval for the parent is empty with the WM_SetMPInterval function.

3.11.4 Data Sharing

Q: The WM_StepDataSharing function frequently returns WM _ERRCODE_NO DATASET.

A: There are a few possibilities. If either the parent or the child is always successful, the Step may fail
because the device that continues to succeed experiences a performance slow down and the other
device is waiting for the performance slow down. If WM _StepDataSharing is set to be called at every
frame, and it always fails every other frame, check if doubleMode of the WM StartDataSharing
function is set to TRUE. If the WM StepDataSharing function is set to be called every other frame
and it fails on a regular basis, there may be a problem with the retry process if

WM_ERRCODE_NO DATASET was returned. Check to see if the next WM_StepDatasSharing function is
called in the frame immediately after the failure.

If it fails with parent and child randomly and at about the same frequency, the WM_StepDataSharing
function is might be called using bad timing. Make sure to call the WM StepDataSharing function at
the earliest possible time immediately after the V blank. The WM_StepDataSharing function calls the
WM SetMPDataToPort function internally, but in order to perform data sharing with the least MP
communication frequencies, it requires data to be on every MP sequence. Therefore, as explained in
the previous item, data sharing may not be stable because of the communication timing, if it is not 260
lines with the parent and 240 lines with a child. This is the same with Key Sharing because it performs
data sharing internally.

Q: The code does not work properly when pausing with the WM EndDataSharing function and
restarting with the WM StartDataSharing function.

A: The WM EndDataSharing function is designed to be called as a series of processes for ending
communication, and it may cause a problem if the termination during MP communications and
restarting were performed in a row. If you want to interrupt Data Sharing, set a flag in the shared data
in advance, and once an interrupt timing is determined on the parent and child, you can simply stop
calling the WM StepDataSharing function. Unless the WM StepDataSharing function is called,
excess processing time and communications related to Data Sharing will not be generated. Be aware
that when restarting, the last data that was set before the interruption will still get through.

In the future, the API for pausing will be provided.

Q: Can the shared data size be changed by using the same port?

A: This is planned for the future, but is not available now. Call the WM StartDataSharing function
and the WM _EndDataSharing function once for starting communication and ending communication
respectively, and use one port for data sharing of the same setting during the communication. Instead,
the same process is achieved by performing two sets of data sharing with different shared sizes at
different ports, and switching them. Precautions for switching are as shown above.

NTR-06-0172-002-A7 56 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

3.11.5 Others
Q: The communication stops sometimes for an unknown reason.

A: There may be various causes such as the destruction of memory in the application. Check for the
following.

» Are you using a process that takes a long period in the callback? Callback is in the interrupt
handler, so it may be in interrupt prohibited state and the wireless communications driver of
ARMY7 may be waiting for the callback to complete. It would cause negative effects in some
areas, so avoid using processes that takes some milliseconds.

» Are there multiple levels of nesting of function callbacks within a callback? Or, are you calling a
function such as 0s_Printf that consumes many stacks in a deeper level of nesting? Make
sure to reduce the consumption of stacks because the IRQ stack used while the callback is
executing is not very big. If it freezes during debug output, the situation may be improved by
using the 0S_TPrintf function instead of the 0S_Printf function.

* Has the calling of the wM_startbatasharing function been separated from calling of the
wM_StartMp* function in the child? These child functions must be called consecutively
because of the current restrictions on the implementation.

Q: Is there anything that requires special attention when debugging the wireless communication
portion?

A: First, make sure to allocate enough time for debugging wireless communication. It may seem to be
working properly, but a problem that occurs once every a few dozen times is very common.

For debugging, change to fixed channels by temporarily disabling the automatic channel selection
feature, and start multiple groups of parent and children on the same channel. By repeating this test,
you may have a better chance of recreating the problem.

3.12 Important Notes for Recent Releases

Several important changes to the Wireless Communications Library are explained below. Note that
some changes are not obvious when compiling.

3.12.1 Changes in MP Frame Send Conditions (NITRO-SDK 2.2 PR and Later)

Previously, a parent in the MP_PARENT state sent MP frames regardless of the child’s connection
status. This has been changed so that nothing is sent if no child is connected. This eliminates
occurrences of MPEND notifications when the number of connected children is 0. When using port send
receive callbacks, there is no change in behavior. MP frames may be sent immediately after a child is
disconnected, even though the number of connected children becomes O.

Arestriction was added so that no more that 6 MP frames will be sent in one picture frame. This
restriction will normally not be an issue during meaningful communication. See 3.4.8 Restrictions on
the Number of MP Communications Per Picture Frame.

© 2004-2006 Nintendo 57 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

3.12.2 Addition of Notification to WM_SetindCallback Function Callback
(NITRO-SDK 3.0PR2 and later)

WM_STATECODE INFORMATION is now returned to the wM setIndcCallback function callback. Its purpose
is to provide notification of internal events. The type of event can be determined from
WMIndCallback.reason, Which is passed to the callback as an argument.

WM_INFOCODE FATAL ERROR i defined as the value placed in wMIndCallback.reason. This indicates
that a fatal error occurred with the ignoreFatalError argument of the wM_startMPEx function set to
TRUE. In general, ignoreFatalError is set to FALSE, so there is no such notification.

3.12.3 Change in Null Response Condition (NITRO-SDK 3.0PR2 and later)

Previously, if processing by the ARM7 for a child device in the Mp_cHILD state was not fast enough, a
null response was issued when the MP frame was received. However, no response is returned now. If
no response is returned, no MP receive notification is generated internally by the child device. Although
this somewhat decreases transmission efficiency, it may alleviate overloading of the child device.

In addition, because return of no response can be guaranteed if the child device is not in the mp_CHILD
state, there are no longer problems that result from gaps between the calls to the wM startConnect
and wM_startMP functions. However, be cautious; too much time between the calls will cause a
disconnection due to lifetime expiration.

3.12.4 Addition of WM_STATECODE_DISCONNECT_FROM_MYSELF (NITRO-
SDK 3.0RC and later)

Up to now, specifications did not include the generation of a disconnect notification when terminating
one’s own connection by explicitly calling the WM DisconnectChildren, WM_Reset, WM_EndParent,
or WM Disconnect function. This has been changed by adding

WM _STATECODE DISCONNECTED FROM MYSELF to WMStateCode so that such notifications can be
made.

WM STATECODE DISCONNECTED FROM MYSELF has the same callback structure as
WM_STATECODE DISCONNECTED and is used for notifications to the callback of the WM_StartParent,
WM_StartConnect, and WM_SetPortCallback functions.

Since this change increases the state codes which may be used to fill the state field of
WMStartParentCallback, WMStartConnectCallback, or WMPortRecvCallback, care must be
taken in cases where programs have been coded so that the execution of a program is halted when
anything other than an existing WM-STATE CODE_* is received.

In addition, data sharing will no longer stop even when a child is explicitly disconnected from a parent
using this notification.

3.12.5 Addition of WM_STATECODE_PORT_INIT (NITRO-SDK 3.0RC and later)

WM_STATECODE PORT INIT was added to WMStateCode and specifications were changed so a port

NTR-06-0172-002-A7 58 © 2004-2006 Nintendo
Released: April 14, 2006

Using the Wireless Communication API NITRO-SDK

receive callback is called if this state code is in effect when WM_SetPortCallback is called. It is
designed to be used for initialization processing that uses the my2Aid and connectedAidBitmap
fields of WMPortRecvCallback.

Note: The value 0 is stored in both the connectedAidBitmap and myAid fields when the
WM SetPortCallback function was called before connection.

In order to maintain consistency among connection notifications, do not perform too much processing
as calls made under WM STATECODE PORT INIT are made while interrupts are disabled.

3.12.6 Additional Change to Null Response Generation Conditions (NITRO-SDK
3.0plus and Later)

In NITRO-SDK 3.0PRZ2, if processing by the ARM7 for a child device in the Mp_cu1LD state was not fast
enough, a null response was not issued when the MP frame was received. This has been changed so
that a NULL response is now sent. The parent device now considers the child device’s receive
operation to have failed when a NULL response is returned.

This change was made because of conflicts in internal mounting; there is almost no change in
operation visible on the application side.

In addition, a function was added in 3.0PR2 to have child devices return neither Key response nor
NULL response when not in the Mp_cHILD state.

© 2004-2006 Nintendo 59 NTR-06-0172-002-A7
Released: April 14, 2006

NITRO-SDK Using the Wireless Communication API

© 2004-2006 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo Co. Ltd.

NTR-06-0172-002-A7 60 © 2004-2006 Nintendo
Released: April 14, 2006

	1 Wireless Communication Library Overview
	1.1 Introduction
	1.2 Basic Specifications of the Wireless Communication Hardware
	1.3 Configuration of the Wireless Communications Library

	2 Glossary
	3 DS Wireless Play
	3.1 Overview
	3.1.1 Connection Configuration
	3.1.2 DS Wireless Play Characteristics
	3.1.3 The Library Internal State
	3.1.4 Error Codes
	3.1.5 Asynchronous Function Callback and Asynchronous Notifications

	3.2 Initializing the Wireless Communications Library
	3.2.1 Differences between Each of the Initialization and Shutdown Functions
	3.2.2 The DS Wireless Communications ON State
	3.2.3 The Buffer for the Wireless Communications Library

	3.3 Connecting a Parent and a Child
	3.3.1 The Connection Process
	3.3.2 Select a Channel to Use
	3.3.3 Beacon Information
	3.3.4 Connection Operations
	3.3.5 Precautions for Ending Communications

	3.4 MP Protocol Specifications
	3.4.1 Communications Overview
	3.4.2 MP Communications Operations
	3.4.3 Operations When Communications Fail
	3.4.4 Transmission Capacity
	3.4.5 Send and Receive Buffers for MP Communications
	3.4.6 V-Blank Synchronization
	3.4.7 Frame Synchronous Communications Mode and Continuous Communications Mode
	3.4.8 Restrictions on the Number of MP Communications Per Picture Frame
	3.4.9 Lifetime

	3.5 Port Communications
	3.5.1 About Port Communications
	3.5.2 Port Receive Callback
	3.5.3 Raw Communications and Sequential Communications
	3.5.4 Priority and the Send Queue
	3.5.5 Packet Headers and Footers
	3.5.6 Packing Multiple Packets

	3.6 Data Sharing
	3.6.1 Data Sharing
	3.6.2 Directions for Use
	3.6.3 Single Mode and Double Mode
	3.6.4 Communications Data Size
	3.6.5 Cautions Related to Function Call Order
	3.6.6 Cautions When Operating at 30fps or Less
	3.6.7 General Information about the Internal Operations

	3.7 Event Notifications Returned from the Wireless Communications Library
	3.8 Error Codes Returned from the Wireless Communications Library
	3.8.1 Return Values of Functions that Return a WMErrCode Type
	3.8.2 errcode Values Returned to the Callback Function

	3.9 Cautions When Using the Wireless Communications Library
	3.9.1 The Load from using Wireless Communications
	3.9.2 The Callback
	3.9.3 The Cache Process

	3.10 Taking Greater Control over Communications
	3.10.1 Overview of Timing Control Parameter of MP Communications
	3.10.2 parentVCount, childVCount
	3.10.3 parentInterval, childInterval
	3.10.4 Dynamically Changing the Transmission Capacity
	3.10.5 Controlling PollBitmap

	3.11 FAQ
	3.11.1 Initialization process
	3.11.2 Connection process
	3.11.3 General MP communications
	3.11.4 Data Sharing
	3.11.5 Others

	3.12 Important Notes for Recent Releases
	3.12.1 Changes in MP Frame Send Conditions (NITRO-SDK 2.2 PR and Later)
	3.12.2 Addition of Notification to WM_SetIndCallback Function Callback (NITRO-SDK 3.0PR2 and later)
	3.12.3 Change in Null Response Condition (NITRO-SDK 3.0PR2 and later)
	3.12.4 Addition of WM_STATECODE_DISCONNECT_FROM_MYSELF (NITRO-SDK 3.0RC and later)
	3.12.5 Addition of WM_STATECODE_PORT_INIT (NITRO-SDK 3.0RC and later)
	3.12.6 Additional Change to Null Response Generation Conditions (NITRO-SDK 3.0plus and Later)

