
NITRO Programming Manual

Version 1.44

CONFIDENTIAL
© 2003-2006 Nintendo NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd., and are protected by Federal copyright law. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.
NTR-06-0180-001-A9 ii © 2003-2006 Nintendo
Released: January 4, 2006

Table of Contents
1 System...1

1.1 System Outline ..1
1.1.1 NITRO Processor...2
1.1.2 Main Memory ...4
1.1.3 LCD..4
1.1.4 Digital Keys ..4
1.1.5 Touch Screen...4
1.1.6 Microphone ..4
1.1.7 RTC..4
1.1.8 Wireless Communications..5
1.1.9 Nintendo DS Game Card ...5
1.1.10 DS Accessories..5

1.2 Memory Map..6
1.3 Accessing Devices Connected to the Subprocessor ...8
1.4 Startup Mode ...8

1.4.1 NITRO Mode..8
1.4.2 AGB Compatibility Mode..8

1.5 Destination...8
2 Memory..9

2.1 External Memory..11
2.1.1 Main Memory ...13

2.2 The NITRO Processor's Internal Memory..17
2.2.1 VRAM...17
2.2.2 Work RAM..29
2.2.3 I/O Registers ..31

2.3 Memory Map for Game Card Boot...32
3 The Main Processor Core (ARM946E-S) ..35

3.1 The Protection Unit ..35
3.2 Tightly Coupled Memory (TCM)...36

3.2.1 Instruction TCM..36
3.2.2 Data TCM...36

3.3 Cache Memory ..36
3.3.1 Instruction Cache ...37
3.3.2 The Data Cache...38
3.3.3 Cache Operations ..40
3.3.4 Optimizing the Cache...41

3.4 Write Buffer..42
3.4.1 Write Buffer Operations ...43

3.5 Ensuring Coherency ..43
3.5.1 Write-Back Mode ...43
3.5.2 Write-Through Mode ..44

4 Display...47
4.1 Display System ..47
4.2 LCD..49

4.2.1 LCD Controller Specifications ..49
4.3 Display Status..51
4.4 Display Control ..54

4.4.1 Top LCD/Bottom LCD Output Switching..54
4.4.2 Display Control of 2D Graphics Engine A ..55
4.4.3 2D Graphics Engine B Display Controls ..57
4.4.4 Display Modes ...58

4.5 Display Capture ...67
© 2003-2006 Nintendo iii NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
4.6 Master Brightness..71
5 2D Graphics...73

5.1 Controlling the 2D Display ...73
5.2 BG..77

5.2.1 BG Mode..77
5.2.2 BG Control ...81
5.2.3 Character BG ...88
5.2.4 Bitmap BG..103
5.2.5 BG Scroll ..105
5.2.6 BG Rotation and Scaling (Affine Transformation) ..106

5.3 OBJ..109
5.3.1 OBJ Display Control...111
5.3.2 OAM...112
5.3.3 Character OBJ ...121
5.3.4 Bitmap OBJ..128

5.4 Backdrop..135
5.5 Color Palettes ..136

5.5.1 Standard Palettes ..136
5.5.2 Extended Palettes..137

5.6 Windows ..142
5.6.1 The Precedence of Windows ...145

5.7 Color Special Effects ...146
5.8 Mosaic ...150
5.9 Display Priority...151

6 3D Graphics...153
6.1 3D Display Control...155
6.2 Geometry Engine...158

6.2.1 Overview ..158
6.2.2 The coordinate system...158
6.2.3 Coordinate Transformations...159
6.2.4 Projection Transformations ..161
6.2.5 Depth Buffering ..163
6.2.6 Geometry Commands..167
6.2.7 Swapping the Rendering Engine's Reference Data...178
6.2.8 Viewport ...180
6.2.9 Matrices ...181
6.2.10 Light ...189
6.2.11 Material ..190
6.2.12 Polygon Attributes ..196
6.2.13 Polygons ..200
6.2.14 Texture Mapping ..205
6.2.15 Tests ..215
6.2.16 Status...218
6.2.17 Warnings Regarding Calculation Precision..223
NTR-06-0180-001-A9 iv © 2003-2006 Nintendo
Released: January 4, 2006

6.3 Rendering Engine ..224
6.3.1 Overview ..224
6.3.2 Rendering Methods..226
6.3.3 Initializing the Rendering Buffers ...229
6.3.4 Rasterizing ...233
6.3.5 Textures ...242
6.3.6 Alpha-Test..256
6.3.7 Alpha-Blending...256
6.3.8 Edge Marking...257
6.3.9 Fog Blending..258
6.3.10 Anti-aliasing ...262
6.3.11 Status...265

6.4 2D Graphics Features You Can Apply to the 3D Screen After Rendering266
6.4.1 Raster scroll ...266
6.4.2 Order of Display Priority With 2D Screen...266
6.4.3 Windows ..267
6.4.4 Color Effects ..268

7 DMA...271
8 Timer ...277
9 Interrupts ...279

9.1 The Interrupt Master Enable Register..279
9.2 The Interrupt Enable Register..280
9.3 The Interrupt Request Register ...281
9.4 Interrupt Cautions ..282

9.4.1 Clearing IME and IE...282
9.4.2 Multiple Interrupts ..282
9.4.3 Interrupt Delays During DMA Operation ..282
9.4.4 Interrupts from ARM7...282

10 Power Management ..283
10.1 Sleep Mode..283
10.2 Controlling Various Power Supplies ..284

10.2.1 Sound...284
10.2.2 LCD Backlight ..284
10.2.3 LCD..284
10.2.4 Microphone ..284
10.2.5 System ...284
10.2.6 Graphics...285

10.3 Power Status ...288
10.3.1 Low Battery State...288
10.3.2 DS Open/Closed State...288

11 Accelerators...289
11.1 Divider..289

11.1.1 Number of Calculation Cycles..291
11.2 Square-Root Unit ...292

11.2.1 Number of Calculation Cycles..293
12 Keys...295

12.1 Input Keys..295
12.2 Interrupt Handling for Key Input...296

13 Sound ..297
© 2003-2006 Nintendo v NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
13.1 Hardware Specifications ..298
13.1.1 Data Format ...298
13.1.2 Channels..300
13.1.3 Mixer ..300
13.1.4 Master Volume...301
13.1.5 Sound Capture...301
13.1.6 Power Control ..301
13.1.7 Cautions...301

13.2 Sound Block Diagrams ..302
13.2.1 Overall Sound ..302
13.2.2 Channels 0 – 3 and Sound Capture 0 - 1 ..303
13.2.3 Channels 4 - 7..305
13.2.4 Channels 8 - 15..306
13.2.5 Examples of Using Sound..307

13.3 NITRO-Composer..310
13.3.1 The NITRO-Composer Playback Method ..310

14 Wireless Communications ...311
14.1 Hardware Specifications ..311
14.2 Wireless Manager..311

14.2.1 Internet Play...311
14.2.2 Multi-Card Play ..312
14.2.3 Single-Card Play ..312

15 Touch Panel ..313
15.1 Touch Panel Structure ...314

16 Microphone..315
17 Real-Time Clock (RTC) ...317
18 Internal Flash Memory...319

18.1 Touch Panel Calibration Data..319
18.2 Owner Information Data...319
18.3 NITRO Initial Setting Data ...320
18.4 RTC Operation Information Data ...320

Appendix A.Register List..321
A.1 Addresses 0x04000000 and higher ...321
A.2 Addresses 0x04001000 and higher (2D Graphics Engine B-related)....................................358
A.3 Addresses 0x04100000 and higher ...361

Appendix B.List of VRAM Data Capacities ..365
Appendix C.Data Formats..367
NTR-06-0180-001-A9 vi © 2003-2006 Nintendo
Released: January 4, 2006

Figures
Figure 1-1 : The Overall System Block Diagram..1
Figure 1-2 : ARM9 Overall Memory Map ...7
Figure 1-3 : ARM7 Overall Memory Map ...7
Figure 2-1 : Transfer Sequence from Main Memory to Work RAM (Basic Cycles).................................14
Figure 2-2 : Transfer Sequence from Main Memory to Work RAM (Worst Case)14
Figure 2-3 : Transfer Sequence from Work RAM to Main Memory (Basic Cycles).................................15
Figure 2-4 : Transfer Sequence from Main Memory to VRAM (Basic Cycles)..15
Figure 2-5 : Transfer Sequence from Main Memory to VRAM (Worst Case) ...16
Figure 2-6 : Transfer Sequence from VRAM to Main Memory (Basic Cycles)..16
Figure 2-7 : Texture image slot memory map ...22
Figure 2-8 : Texture Palette Slot Memory Map ...25
Figure 2-9 : BG Extended Palette Slot Memory Map..25
Figure 2-10 : OBJ Extended Palette Slot Memory Map ..26
Figure 2-11 : Memory Maps for Various Settings of ARM9, ARM7 Shared Internal Work RAM30
Figure 2-12 : Memory Map for Game Card Boot ..32
Figure 3-1 : Block Diagram of the Main Processor Core ..35
Figure 3-2 : Structure and Actions of the Instruction Cache ...38
Figure 3-3 : Structure and Actions of the Data Cache ..39
Figure 3-4 : Cache line state transitions (write-back mode)..44
Figure 3-5 : Cache line state transitions (write-through mode) ...45
Figure 4-1 : The Display System Block Diagram ...48
Figure 4-2 : LCD Scan Timing ...49
Figure 4-3 : Display Mode Selection (Display Output A Side Only) ...59
Figure 4-4 : Display Mode Selection (Display Output A Side Only) ...60
Figure 4-5 : An Example of Displaying the Bitmap OBJ Results of 3D Rendering62
Figure 4-6 : The VRAM Address Map of the LCD Pixels ...63
Figure 4-7 : An Example of the Motion Blur Effect that Uses the Display Capture64
Figure 4-8 : The LCD Pixel EVEN/ODD Map of the Main Memory Display FIFO Register66
Figure 4-9 : The LCD Pixel Map of the Capture Data (When the Capture Size is 256 x 192 Dots).........69
Figure 5-1 : Out-of-Area Processing Method Differences...84
Figure 5-2 : Text BG Screen Size ...86
Figure 5-3 : Affine BG Screen Size...87
Figure 5-4 : VRAM Offset for BG Character Data...89
Figure 5-5 : VRAM Offset for BG Screen Data ...90
Figure 5-6 : 256x256-Dot Address Mapping (Text BG) ..92
Figure 5-7 : 256x512-Dot Address Mapping (Text BG) ..92
Figure 5-8 : 512x256-Dot Address Mapping (Text BG) ..93
Figure 5-9 : 512x512-Dot Address Mapping (Text BG) ..93
Figure 5-10 : Character Data Address Mapping (Text BG 16-Color Mode)..94
Figure 5-11 : Character Data Address Mapping (Text BG 256-Color Mode)..95
Figure 5-12 : 128X128-Dot Address Mapping (Affine BG)..97
Figure 5-13 : 256x256-Dot Address Mapping (Affine BG) ..97
Figure 5-14 : 512x512-Dot Address Mapping (Affine BG) ..98
Figure 5-15 : 1024x1024-Dot Address Mapping (Affine BG) ..99
Figure 5-16 : Character Data Address Mapping (Affine BG) ..100
Figure 5-17 : Character Data Address Mapping (256-Color x 16-Palette Character BG).....................102
Figure 5-18 : Offset Schematic ...105
Figure 5-19 : BG Rotation and Scaling ...106
Figure 5-20 : OAM Memory Map (add 0x400h to 2D Graphics Engine B Addresses)..........................112
Figure 5-21 : Affine Transformation of Double-Size OBJ Field...114
Figure 5-22 : The Problem of OBJ Wrapping..115
Figure 5-23 : OBJ Rotation and Scaling ...120
© 2003-2006 Nintendo vii NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 5-24 : Character Data Address Mapping (16-Color Mode Character OBJ)123
Figure 5-25 : Character Data Address Mapping (256-Color Mode Character OBJ)124
Figure 5-26 : 2D Mapping ...125
Figure 5-27 : 1D Mapping when Character Name Boundary is 32 Bytes ...126
Figure 5-28 : 1D Mapping when Character Name Boundary is 128 Bytes ...127
Figure 5-29 : 2D Map of Bitmap OBJ Data VRAM (128 Horizontal Dots)...131
Figure 5-30 : 2D Image Map of Character Name VRAM ..131
Figure 5-31 : 2D Map of Bitmap OBJ Data VRAM (256 Horizontal Dots)...132
Figure 5-32 : 2D Image Map of Character Name VRAM ..132
Figure 5-33 : 1D Map of VRAM with 8x8-Dot Characters ...133
Figure 5-34 : 1D Map of VRAM with 16x16-Dot Characters ...134
Figure 5-35 : Backdrop Schematic..135
Figure 5-36 : Standard Palette RAM Addresses (Add 0x400h for 2D Graphics Engine B)136
Figure 5-37 : 16 Colors x 16 Palettes ...136
Figure 5-38 : 256 Colors x 1 Palette ...136
Figure 5-39 : BG Extended Palette Memory Map ...138
Figure 5-40 : OBJ Extended Palette Slot Memory Map ..141
Figure 5-41 : Altering the Window Shape ...144
Figure 5-42 : The Display Priority of Window 0, Window 1, and the OBJ Window145
Figure 5-43 : Alpha-Blending Display Priority ...148
Figure 5-44 : Display Changes According to Mosaic Size ..150
Figure 5-45 : Display Priority...151
Figure 6-1 : 3D Graphics Hardware Block Diagram..153
Figure 6-2 : Right-Handed Coordinate System...158
Figure 6-3 : Coordinate Transformation Flow Chart ...160
Figure 6-4 : Perspective Projections ...161
Figure 6-5 : Orthogonal Projections ..162
Figure 6-6 : Z-Buffering and W-Buffering (Perspective Projection)...164
Figure 6-7 : Z-Buffering and W-Buffering (Orthogonal Projection)..166
Figure 6-8 : Transferring Packed and Non-Packed Commands ...168
Figure 6-9 : Continuous writing to the Geometry FIFO using STM or STRD Instructions169
Figure 6-10 : Case 1: Preventing Commands without Parameters from being the first Valid Command ...
170
Figure 6-11 : Case 2: Preventing Commands without Parameters from being the first Valid Command ...
171
Figure 6-12 : When the First Valid Command has no Parameters ...172
Figure 6-13 : Schematic of the main Geometry Command processes ...177
Figure 6-14 : Size and Position of the Viewport..180
Figure 6-15 : Material Color Schematic ..190
Figure 6-16 : Directional Vector Relational Diagram (Diffuse Reflection Color)190
Figure 6-17 : Directional Vector Relational Diagram (Specular Reflection Color)191
Figure 6-18 : Specular Reflection Shininess...193
Figure 6-19 : Order in which the Vertex commands issues vertices...200
Figure 6-20 : Line segment using sides from a triangle ..201
Figure 6-21 : Quadrilateral Polygon shapes that yield unintended shapes...201
Figure 6-22 : The Process for Adding the X Coordinate ...204
Figure 6-23 : Texture Image Space (For an Image of 1,024x1,024 Texels) ...205
Figure 6-24 : Texture Image Space (no repeats)..209
Figure 6-25 : Texture Image Space (with Repeats) ..210
Figure 6-26 : Release of Shared Vertices Among Connected Polygons (Clip Coordinate System)222
Figure 6-27 : Color Buffer's FIFO Operation ...226
Figure 6-28 : Rendering Engine Blanking Periods..227
Figure 6-29 : VRAM Mapping of Clear Images (Texture Image Slots 2 and 3 Shared)........................231
Figure 6-30 : Clear Image Offset ..232
NTR-06-0180-001-A9 viii © 2003-2006 Nintendo
Released: January 4, 2006

Figure 6-31 : Shadow Volume ..236
Figure 6-32 : When Drawing the Shadow Polygon for the Mask ..237
Figure 6-33 : When Drawing the Shadow Polygon for Rendering ..237
Figure 6-34 : Technique for rendering a shadow on a translucent polygon..238
Figure 6-35 : Transformations using a Toon Table...239
Figure 6-36 : Texture Image Sampling ...242
Figure 6-37 : When an 8x8 texel Texture Is Applied to an 14-dot Wide Polygon242
Figure 6-38 : When an 8x8 texel Texture Is Applied to an 8-dot Wide Polygon243
Figure 6-39 : Displaying Front and Back Surfaces of an LCD ..243
Figure 6-40 : Texture Image Slots ..250
Figure 6-41 : Palette Base and Palette Address (4-color palette)...253
Figure 6-42 : Palette Base and Palette Address (16-color palette, 256-color palette)..........................254
Figure 6-43 : Palette Base and Palette Address (4x4 texel compression)..254
Figure 6-44 : Palette Base and Palette Address (A3I5, A5I3)...255
Figure 6-45 : Depth Values and Fog Density..260
Figure 6-46 : The Concept of Anti-aliasing ...263
Figure 6-47 : Final LCD Image Output (Anti-Aliasing) ..264
Figure 6-48 : H Offset for a 3D Surface ..266
Figure 10-1 : POWCNT: Graphics Power Control Register ..285
Figure 13-1 : The Sound Circuit Outline Diagram...297
Figure 13-2 : Pulse Width Modulation (PWM)...301
Figure 13-3 : The Overall Sound Block Diagram ..302
Figure 13-4 : The Channel 0-3 and Sound Capture 0-1 Block Diagram ...303
Figure 13-5 : The Channel 4-7 Block Diagram ...305
Figure 13-6 : The Channel 8-15 Block Diagram ...306
Figure 13-7 : An Example of Sound Usage (Normal) ...307
Figure 13-8 : An Example of Sound Usage (Reverb) ...308
Figure 13-9 : An Example of Sound Usage (Effect)..309
Figure 15-1 : Comparison of LCD Dot Size and Touch Pen Size ..314
Figure 15-2 : Touch Panel Structure...314
Figure 16-1 : Microphone Schematic ..315
© 2003-2006 Nintendo ix NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Tables
Table 1-1 : An Overview of LCD Screen Specifications...4
Table 1-2 : Differences in NITRO Consoles by Destination Region ..8
Table 2-1 : Memory Configuration and Specifications ...9
Table 2-2 : DMA Transfer Speeds between Internal Work RAM and VRAM...9
Table 2-3 : DMA settings to function as look-ahead buffer ..10
Table 2-4 : DMA transfer speeds between Main Memory and internal Work RAM10
Table 2-5 : DMA transfer speeds between Main Memory and VRAM ...10
Table 2-6 : Basic access cycles...13
Table 2-7 : Inserting waits according to the access start address ...13
Table 2-8 : Options for VRAM Use ..17
Table 2-9 : VRAM-A and VRAM-B Allocations ..27
Table 2-10 : VRAM-C and VRAM-D Allocations ..27
Table 2-11 : VRAM-E Allocations ..27
Table 2-12 : VRAM-F and VRAM-G Allocations ..28
Table 2-13 : VRAM-H Allocations ..28
Table 2-14 : VRAM-I Allocations..28
Table 2-15 : Result of Accessing an Undefined Register ..31
Table 3-1 : Cache Specifications ..37
Table 3-2 : Cache Operations...40
Table 3-3 : Access Modes when Data is Being Written ..42
Table 3-4 : Cache Line States (Write-Back Mode) ...43
Table 3-5 : Cache Line States (Write-Through Mode) ..44
Table 4-1 : Selector and Register Selection Flag Map ..47
Table 4-2 : LCD Clock Specifications ..49
Table 4-3 : LCD Scan Timing Specifications ...50
Table 4-4 : Period when Graphics Engines Access Memory...52
Table 4-5 : An Overview of the Display Modes (2D Graphics Engine A)...58
Table 4-6 : An Overview of the Display Modes (2D Graphics Engine B)...58
Table 4-7 : DMA Configuration when Using the Main Memory Display Mode ...65
Table 5-1 : List of BG Modes (2D Graphics Engine A) ..77
Table 5-2 : List of BG Modes (2D Graphics Engine B) ...78
Table 5-3 : Basic Features of BG Types...79
Table 5-4 : Specifications for BG types...80
Table 5-5 : Screen Sizes (2D Graphics Engine A)..83
Table 5-6 : Screen Sizes (2D Graphics Engine B)..84
Table 5-7 : OBJ Overview...109
Table 5-8 : The Rendering Cycle Count and Number of OBJ Displayable on One Line110
Table 5-9 : OBJ Shape and OBJ Size Settings ..116
Table 5-10 : Character OBJ ..118
Table 5-11 : Bitmap OBJ...118
Table 5-12 : Starting Character Name Boundaries for OBJ Attribute 2 ..121
Table 5-13 : Starting Character Name Boundaries for OBJ Attribute 2 ..122
Table 5-14 : Character Name Boundaries ..133
Table 5-15 : Palettes and BG Types...139
Table 5-16 : Color Special Effects ..146
Table 5-17 : Color Special Effects and Processing...147
Table 6-1 : Capacity of Polygon List RAM and Vertex RAM...154
Table 6-2 : Geometry Engine Specifications...158
Table 6-3 : Geometry Commands (in Command Code Order) ...173
Table 6-4 : No. of Geometry Command Run Cycles & Timing Related to Command Issue (in Command
Code Order) ...174
Table 6-5 : PLTT_BASE Values and Shift Volumes ...211
NTR-06-0180-001-A9 x © 2003-2006 Nintendo
Released: January 4, 2006

Table 6-6 : Vertex RAM Consumed and the Maximum Number of Polygons Stored per Primitive Type ...
221
Table 6-7 : Rendering Engine Specification List ...224
Table 6-8 : Overview of Rendering Engine Features..225
Table 6-9 : The Rendering Engine Buffer ...226
Table 6-10 : Rendering Engine Timing Specifications ..227
Table 6-11 : Maximum Polygons Rendered per Line and Fill Rate (Calculated Values)228
Table 6-12 : Texture Blending Equations (toon table) ..240
Table 6-13 : Texture Blending Equation (Highlight Shading)..241
Table 6-14 : Texture Blending Equations (decal mode)..244
Table 6-15 : Texture Blending expressions (modulation mode) ...245
Table 6-16 : List of Texture Formats...246
Table 6-17 : Texel Color Values ...249
Table 6-18 : Equation when α-blending ...256
Table 6-19 : Fog Blending Equations..261
Table 6-20 : Anti-aliasing Equations ...262
Table 6-21 : Anti-Aliasing and Alpha-Blending with a 2D Surface ..264
Table 7-1 : Processing Details for the Address Update Method ...273
Table 7-2 : Register Configuration (Step 1) ..274
Table 7-3 : Register Configuration (Step 3) ..275
Table 7-4 : ARM9-DMA Parallel Start Category Chart..275
Table 10-1 : Conditions for Waking from Sleep Mode ..283
Table 10-2 : Access to Memory and Registers when Clock Signal Is Stopped287
Table 10-3 : Battery state data..288
Table 10-4 : DS Opened/Closed State Data...288
Table 11-1 : Calculation Bit Count and Calculation Cycle Count by Divider Mode...............................291
Table 11-2 : Input Bit and Calculation Cycle Count by Computation Mode ..293
Table 13-1 : Duty Ratio and PSG Rectangular Wave Waveforms..299
Table 13-2 : An Overview of Data Formats and Playable Channels...300
Table 13-3 : Switch Input Priority from Channels 1 and 3 to the Mixer...304
Table 14-1 : Wireless Communications Hardware Specifications ..311
Table 15-1 : Touch Panel Input Data ..313
Table 16-1 : Ranges of Possible Settings for Gain and Amplitude Resolution315
Table 16-2 : Microphone Input Value When there is No Sound..316
Table 17-1 : Real-Time Data...317
Table 17-2 : Settings for Alarm 1 and Alarm 2..317
Table 18-1 : Owner Information Data..319
Table 18-2 : NITRO Initial Setting Data ..320
Table 18-3 : RTC Operation Information Data ..320
© 2003-2006 Nintendo xi NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 xii © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Revision History

Version Date Description

1.44 12/19/2005

• Corrected a description regarding data preload (page 41) because the data
preload feature does not work in ARM946E-S.

• In Chapter 16, added a caution regarding variation of microphone input values
when there is no sound.

• In Chapter 16, added that there is a possibility of noise, due to feedback, when
continuously recording the input from the microphone and playing sounds at the
same time.

1.43 11/25/2005 • Added that an overflow is generated when performing additions by setting a value
with the BoxTest command in the geometry engine.

1.42 9/15/2005 • Added paragraph in 6.2.16.1 “Reasons for Released Vertices in the Polygon
Attribute Settings for Rendering 1-Dot Polygons.”

1.41 7/8/2005 • Replaced the contents of Figure 13-7, since they were identical to those of
Figure 13-9.

1.40 7/1/2005

• Added a caution regarding the address of the data TCM in the memory map.

• Added a description regarding the Chinese NTR console to Chapter 1.

• Changed the address for the DTCM inside the memory map.

• Made corrections to an error in the cycling number of Figure 2-1.

• Clarified that the protection units mentioned in this manual are examples of
configuration.

• Deleted the protection unit configurations for the release version and the debug
version (listed in the NITRO-SDK Function Reference Manual).

• Added cautions for the data cache output.

• Added a supplemental description for the NCNB mode.

• Added that the virtual screen in Figure 5-22 has a size of 512x256.

• Corrected an error in the attributes of the color special effects / change shininess
factor register.

• Corrected an error in the formula for the color value of the texel in Table 6-17.

• Corrected an error in the sound circuit of Figure 13-4, and added a related caution.

• Added a desctiption about individual margins of error for microphone sensitivity.

• Deleted the ROM internal register data in Chapter 19, since the same contents are
now listed in the Nintendo DS Game Card Manual, and added references to that
manual where necessary.

• Added Chinese as one of the configurable languages that can be used in the initial
NITRO configuration data.

1.31 4/15/2005

• Corrected error in 2-1 (page 12) regarding access cycle (changed “wait” to
“access”).

• Added notes on page 145 about windows and corrected errors regarding the
window position setting register.

• Added note on page 234 about wireframes.
© 2003-2006 Nintendo xiii NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
1.30 02/15/2005

• Revised expressions that may be misleading in the overview description of RTC.

• Added a description for Table 2-1, because it was unclear what was indicated by
the numerical values in the table.

• Added 8 bits to Table 2-1 items in the “Read” column under “Bit width which Main
processor can access.”

• Added a note regarding the access cycle of a Game Pak on page 12.

• Corrected errors in the address and size of ARM7 dedicated internal Work RAM in
Figure 2-11.

• Added a note regarding the blank detection flag. (Added Table 4-4 and
renumbered those that follow.)

• Corrected the expressions, beginning on page 183, regarding the multiplication of
matrices with Geometry Engine so that they match the names of the determinant
of matrices.

• Added an example of application to “Fog Enable Flag” in “3. Draw the shadow
polygon for rendering” of “Shadow Polygon.”

• Added that Sleep Mode is recommended for the power control of LCD Backlight
and LCD.

• Added PWM block in sound block diagrams, Figure 13-3 through 13-9.

• Added the indications in the sound block diagrams (Figure 13-7 through Figure 13-
9) to show the data precision of the sound circuitry.

• Added to a note on page 313 regarding the touch determination flag and data
validity flag of the touch panel.

• Corrected the misalignment of the ruled lines in Figure 19-1.

1.22 11/16/2004 • Corrected errors in Figure 5-19.

1.21 11/11/2004

• Documented the difference between directions of upper and lower LCDs in "1.1.3
LCD" and "4.2 LCD".

• Revised description of character base block in 2D graphics engine B of "5.2.2 BG
Control".

1.20 11/8/2004

• Removed 512x256 settings.

• Deleted Figure 5-14 and renumbered subsequent figures.

• "6.2.7 Swapping the Rendering Engine's Reference Data": Revised the description
of the rendering engine's depth buffering selection flag.

• "6.3.5.2.1.4 4x4 Texel Compression Textures": Added a note.

• Corrected numerical error in Figure 6-23.

• DMAx control register (x=0-3): Corrected word count.

• "16 Microphone": Explained that noise synched to the V-Blank is superimposed
onto microphone input signals.

• Added a note concerning the method of updating DMA addresses.

• "10.2.3 LCD": Added a note.

• In general: removed T.B.D. and revised text.

Version Date Description
NTR-06-0180-001-A9 xiv © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
1.10 9/24/2004

• Deleted “AGB” in the descriptions of cartridges throughout the manual.

• Revised Figures 1-2, 1-3, 3-2, 3-3, and 3-4 as well as Tables 3-1 and 3-2 in
conjunction with moving the location of the DTCM.

• Changed the Memory Map during Card Boot.

• Corrected Figures 5-29, 5-31, and 5-34.

• Added a note regarding the Start Character Name Boundary in "5.3.3 Character
OBJ".

• Corrected errors in Figure 5-28.

• Added Figure 5-29 and revised the subsequent numbering of figures.

• Added a note regarding Geometry FIFO in "6.2.6 Geometry Commands".

• Added a note on quadrilateral polygons during drawing specification for the back in
"6.2.12 Polygon Attributes".

• Added supplemental description for specification of the polygon render plane. Also
replaced Figures 6-32 and 6-33.

• Added a note on the location of TexImageParam in "6.2.14 Texture Mapping".

• Changed the shadow polygon attribute to “Render Both Sides.”

• Corrected errors in 6.3.5.2.1.5 regarding A3I5 translucent texture texel data
format.

• Added explanation about the DMA bug that occurs when multiple DMA channels
are started in parallel on the ARM9 system bus.

• Deleted “Standby Mode” in "10 Power Management".

• Added “LCD” to “Power Controllers” in "10 Power Management".

• Added the “LCDE Bit” to “Graphics Power Save Register” in "10 Power
Management".

• Included that battery capacity is 10 – 20% for low battery status in "10 Power
Management".

• Changed the mode names in "14 Wireless Communications".

• Deleted the communication times in Table 14-1.

• Added a note regarding "15 Touch Panel".

• Included 80 grams as the force to press in "15 Touch Panel".

• Reflected in "17 Real-Time Clock (RTC)" the elimination of time notation settings
and the elimination of the PM flag.

• Changed the data contents in "18.2 Owner Information Data".

• Reflected in “19 ROM Registration Data” the changes in ROM internal registration
data.

1.00 8/2/2004 Initial release.

Version Date Description
© 2003-2006 Nintendo xv NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 xvi © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
About the Notation Used in this Programming Manual

Registers
Detailed classifications are shown at the top of the register, while broader classifications are shown on the
bottom. If text does not fit, then the description is shown below the register, as shown with the “enable flag”
in the example below. Notation such as “d15” is used to refer to a specific bit (in this case the highest-order
bit in a 16-bit register).

Example: NITRO Register
Name: NITRO Address: 0x04000??? Attribute: R/W Initial value: 0x0000

Bit lengths
Bit lengths for bytes, half-words, and words are defined as follows:

8-bit: Byte

16-bit: Half-word

32-bit: Word

Endian
NITRO adopts the little-endian method. Therefore, in a 16-bit register, the address for d15–d08 is one
more than the address for d07–d00.

08 715

E1 E0

Enable flag

Image mode

REDGREENBLUE

Color

d07-d00
d15-d08

x
x+1

Memory map16-bit register

d15-d08 d07-d00
© 2003-2006 Nintendo xvii NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 xviii © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
1 System

1.1 System Outline
The overall NITRO system block diagram is shown in Figure 1-1.

Figure 1-1 : The Overall System Block Diagram

2 D
G r a p h ic s E n g in e A

O A M 1 K B
S ta n d a r d P a le t te 1 K B

L C D
C o n t r o l le r

2 D
G r a p h ic s E n g in e B

O A M 1 K B
S ta n d a r d P a le t te 1 K B

3 D G r a p h ic s E n g in e
V R A M

A : 1 2 8 K B
B : 1 2 8 K B
C : 1 2 8 K B
D : 1 2 8 K B
E : 6 4 K B
F : 1 6 K B
G : 1 6 K B
H : 3 2 K B

I: 1 6 K B

A R M 9 C o r e

B u s S w it c h

A
R

M
9

B
us

A
R

M
7

B
us

A R M 7 C o r e

R e n d e r in g E n g in e

G e o m e t r y E n g in e

P o ly g o n R A M
5 2 K B × 2

V e r te x R A M
7 2 K B × 2

N IT R O G a m e
C a r d

M e m o r y M a x . 4 G B

A G B G a m e P a k

G e n e r a l- u s e B u s
M e m o r y S p a c e

M a x . 6 4 K B
A D B u s M e m o r y

S p a c e
M a x . 3 2 M B

M a in M e m o r y

4 M B

R T C

P M IC

W ire le s s
C o m m u n ic a tio n

A D
C o n v e r t e r

F la s h
M e m o r y

S q u a r e R o o t
U n it

D iv id e r

In te r r u p t
C o n t r o l le r

D M A
C o n tr o l le r

T im e r

S y s te m R O M
8 K B

W o r k
R A M
1 6 K B

S y s te m R O M
1 6 K B

W o r k R A M
6 4 K B

In t e r r u p t
C o n tr o l le r

D M A
C o n t r o l le r

T im e r
S o u n d

S o u n d
A m p

P G A

B
us

 S
w

itc
h

Se
ria

l B
us

Ex
te

rn
al

 M
em

or
y

In
te

rf
ac

e

W o r k
R A M
1 6 K B

M ix e r

M ic

L S p e a k e r

R S p e a k e r

N IT R O P r o c e s s o r

D C - D C
C o n v e r t e r

&
R e g u la t o r

F
I
F
O

F IF O

F
I
F
O

C a c h e
I :8 K B D :4 K B

T C M
I:3 2 K B D :1 6 K B

B
AY

X

D ig i ta l K e y s

U p p e r
S c r e e n

L C D

T o u c h S c r e e n

L o w e r
S c r e e n

L C D
© 2003-2006 Nintendo 1 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
1.1.1 NITRO Processor
The NITRO processor is a combined chip that consolidates ARM9 and ARM7 CPU cores with NITRO
features and memory for the 2D and 3D graphics engines.

The specifications of the NITRO processor are as follows:

• The CMOS Multi CPU

• Compatibility

Switches between NITRO mode and AGB compatibility mode.

• Graphics Engines

Main processor core ARM946E-S (67.028 MHz)

Subprocessor core ARM7TDMI (33.514 MHz)

2D Graphics Engines A and B 33.514MHz

3D Graphics Engine

Geometry Engine

33.514MHz

Maximum 4 million vertices / second

4 x 4 matrix computation

6-plane clipping

Lighting (4 parallel light sources)

Matrix stack

Texture coordinate conversion

Box culling test

Rendering Engine

33.514MHz

Maximum 120 thousand polygons / second

Maximum 30 million pixels / second

Triangular and quadrilateral rendering

Texture format
 4-, 16-, and 256-color palette formats
 Bitmap format
 4 x 4 texel compression format
Translucent (A3I5, A5I3) format

Texture size
8 x 8 to 1024 x1024

Alpha blending

Alpha test

Fog

Toon shading

Edge marking

Anti-aliasing
NTR-06-0180-001-A9 2 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• Memory

• LCD Controller (built-in for two LCDs: the upper and lower screens)

• Sound

ADPCM/PCM 16 channels (up to 6 channels for the PSG sound source and up to 2 channels for noise)

Includes sound capture capabilities (using reverb, etc.).

• Timers

ARM9 : 16-bit timer x 4

ARM7 : 16-bit timer x 4

• DMA

ARM9 : 4 channel

ARM7 : 4 channel + Sound DMA features

• Accelerator

Divider

Square root unit

• External Memory Interface

DS Game Card interface, DS accessories interface (AGB compatible)

System ROM ARM9 : 8 KB (2K x 32 bit)
ARM7 : 16 KB (4K x 32 bit)

NITRO Processor
Internal Work RAM

ARM9, ARM7 shared: 32 KB (8 K x 32 bit)
ARM7 dedicated : 64 KB (16 K x 32 bit)

VRAM
Total of 656 KB
(128KB + 128KB + 128KB + 128KB + 64KB + 16KB + 16KB
+ 32KB + 16KB)

System Clock 33.514 MHz

Display Size 256 x 192 x RGB dots

Display Colors 262,144 colors (R:G:B = 6:6:6)

Dot Clock 5.586 MHz
© 2003-2006 Nintendo 3 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
1.1.2 Main Memory
The main memory is 4 MB (expanded to 8 MB for NITRO debugging) and is connected to the NITRO
processor as an independent chip.

Because the NITRO card bus is not mapped to the CPU address space, applications and data must be
executed after loading them into main memory.

The load speed from the NITRO card bus into main memory is approximately 5.96 MB/sec.

The application for ARM9 is transmitted from the NITRO card to main memory by system ROM at startup.

The application for ARM7 is transmitted to the ARM7 exclusive work RAM at startup.

1.1.3 LCD
There are two LCD screens, an upper screen and a lower screen.

An overview of both LCD screen specifications is shown in Table 1-1.

Table 1-1 : An Overview of LCD Screen Specifications

Both LCDs have the same specifications but the directions differ, so the order of RGB pixel arrays differs.

1.1.4 Digital Keys
The digital keys are START, SELECT, the + Keypad, A, B, X, Y, L, and R.

1.1.5 Touch Screen
The entire lower screen LCD is a resistive membrane touch panel that can obtain dot-unit coordinates.

The Nintendo DS system comes equipped with a standard stylus.

1.1.6 Microphone
A built-in omnidirectional condenser microphone and a (planned) NITRO-exclusive headset can be used
with the console.

Sound input from the microphone can be sampled.

1.1.7 RTC
The RTC handles timekeeping operations.

By means of an alarm feature, the RTC can wake up the DS from Sleep Mode at a specified time.

Features Details

Display Resolution 256 x 192 dots (Ratio 4:3)

Number of
Displayable Colors 262,144 colors (RGB=6:6:6)

Screen Size 3 inches

Backlight 40 candelas
NTR-06-0180-001-A9 4 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
1.1.8 Wireless Communications
The DS includes an on-board wireless communications unit capable of using the 2.4-GHz bandwidth.

The following modes are available:

• Internet Play that allows connections to wireless LAN (IEEE 802.11b/g) access points

• Multi-Card Play that enables communications with up to sixteen DS devices

• Single-Card Play that downloads games from a parent device to child devices that are not equipped
with DS Game Cards

1.1.9 Nintendo DS Game Card
The DS Game Card is a game card with NITRO-exclusive security features.

A backup device can be installed in addition to the ROM.

The DS Game Card connects to the NITRO Processor with an external memory interface. Data transfer
speeds within the DS Game Card can be as fast as 5.96 MB/sec.

For more information, refer to the Nintendo DS Game Card Manual.

1.1.10 DS Accessories
Existing AGB Game Paks can be used in the AGB compatibility mode.

For applications in NITRO mode, the DS can access the data inside an AGB Game Pak plugged into the
Game Pak slot on the DS.

However, the EEPROM cannot be accessed on an AGB Game Pak that uses EEPROM in a backup
device.

NITRO option paks, which can be used to save data or for sensors, can be used as accessories for NITRO
games.

Note: DMG and CGB Game Paks cannot be used with NITRO.
© 2003-2006 Nintendo 5 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
1.2 Memory Map
The overall memory maps for the ARM9 and ARM7 on the DS are shown in Figure 1-2 and Figure 1-3.

The access attributes for the ARM9 memory space are determined by the configuration of the protection
units.

For more details, see "3.1 The Protection Unit" on page 35.

• About the image

A decoder converts the address output by the CPU to a memory address.

Because the decoder does not normally decode all the address bits, when an address that is not
mounted in memory is accessed, it is converted to the address of the memory located closest to the
smallest part of the address. (See the Note below.)

Images are regions of the memory map that appear where nothing normally exists (regions differ from
the physical memory).

Even if the address is different on the CPU, the address is the same in memory. Therefore, accessing
an image is the same as accessing the physical memory. Furthermore, when the image region is
larger than the memory size, an image the same size as the physical memory is repeated.

For example, the BG-VRAM physical memory for 2D Graphics Engine A occupies the 512 kilobytes in
the 0x06000000 - 0x0607FFFF section in the Memory Map, but the image region occupies the 1536
KB of the 0x06080000 - 0x061FFFFF section, so there are three images.

Note: For the shared ARM9 and 7 internal Work RAM, the position of the physical memory on the
memory map is shifted.

Normally, physical memory begins at 0x03000000. However, when accessing with the memory map
address, there is an advantage because the addresses for ARM7 dedicated Work RAM continue from
those values.

In addition, there are regions of indeterminate data that have no image (see Figure 1-2 and Figure 1-
3).

Note: Do not access the indeterminate data.
NTR-06-0180-001-A9 6 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 1-2 : ARM9 Overall Memory Map Figure 1-3 : ARM7 Overall Memory Map

Note: The I/O registers are different on ARM9 and ARM7.
Note: The data TCM can be moved around, so the address in

the figure above is just an example.

0x0A010000 0x0A010000
0x0A000000 DS Accessory RAM (64 KB) 0x0A000000 DS Accessory RAM (0–64 KB)
0x08000000 DS Accessory ROM (32 KB) 0x08000000 DS Accessory ROM (32 MB)
0x07000800 OAM Image

0x07000000 Indeterminate Data0x07000400 2D Graphics Engine B OAM (1 KB)
0x07000000 2D Graphics Engine A OAM (1 KB)
0x068A4000 VRAM Image for LCDC

0x06040000 Internal Expanded Work RAM Image

0x06800000 VRAM for LCDC (656 KB)
0x06620000 OBJ-VRAM Image

0x06600000 2D Graphics Engine B
OBJ-VRAM (max.128 KB)

0x06440000 OBJ-VRAM Image

0x06400000 2D Graphics Engine A
OBJ-VRAM (max. 256 KB)

0x06220000 BG-VRAM Image

0x06200000 2D Graphics Engine B
BG-VRAM (max. 128 KB)

0x06080000 BG-VRAM Image

0x06000000 2D Graphics Engine A
BG-VRAM (max. 512 KB) 0x06000000 Internal Expanded Work RAM

(max. 256 KB)
0x05000800 Palette RAM Image

0x04810000 Indeterminate Data

0x05000600 2D Graphics Engine B
Palette RAM for OBJ (512 B)

0x05000400 2D Graphics Engine B
Palette RAM for BG (512 B)

0x05000200 2D Graphics Engine A
Palette RAM for OBJ (512 B)

0x05000000 2D Graphics Engine A
Palette RAM for BG (512 B)

0x04000000 I/O Registers (see note)
0x04808000 Wireless Communications Wait State 1
0x04800000 Wireless Communications Wait State 0
0x04000000 I/O Registers (see note)

0x03800000 ARM9, 7 Shared Internal Work RAM
Image

0x03810000 ARM7 Exclusive Internal Work RAM Image
0x03800000 ARM7 Exclusive Internal Work RAM (64 KB)

0x037F8000 ARM9, 7 Shared Internal Work RAM
(max. 32 KB) 0x037F8000 ARM7, 9 Shared Internal Work RAM

(max. 32 KB)
0x03000000 ARM9, 7 Shared Internal Work RAM Image 0x03000000 ARM7, 9 Shared Internal Work RAM Image
0x02800000 Main Memory Image 0x02800000 Main Memory Image
0x027E0000 Data TCM (16 KB): Moveable

0x02400000 Main Memory (When Expanded) (4 MB)
0x02400000 Main Memory (When Extended) (4 MB)

0x02000000 Main Memory (4 MB)
0x02000000 Main Memory (4 MB)

0x00010400 Indeterminate Data
0x01008000 Indeterminate Data
0x01000000 Instruction TCM (32 KB)

0x00000000 System ROM (64 KB)
0x00000000 Indeterminate Data
© 2003-2006 Nintendo 7 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
1.3 Accessing Devices Connected to the Subprocessor
On NITRO, you must use the API to access devices connected to the subprocessor.

By using the API, you can access the device regardless of what state the subprocessor is in.

The following devices connect to the subprocessor: wireless communications, a portion of the digital keys,
the sound, Touch Screen, microphone, RTC, and built-in flash memory.

• What is an API?

An Application Program Interface (API) is a group of functions that increase efficiency when
developing applications.

In general, the API is used in low-level system calls and to control hardware.

Note: It is possible to access the registers related to the interface with the ARM7 subprocessor in ARM9,
but these registers should not be accessed if using the API.

1.4 Startup Mode
The following modes can be selected from the menu that appears after NITRO starts up.

Startup mode is available only from the menu that appears after NITRO starts up.

Startup mode cannot be switched in the application.

1.4.1 NITRO Mode
In this mode, all NITRO features are usable.

1.4.2 AGB Compatibility Mode
Of the NITRO processors, the subprocessor starts up at 16.777 MHz as an AGB CPU.

In this mode, the LCD1 screen, the 2D graphics engine, the LCD controller (LCDC), and a part of VRAM
are usable, but the ARM9 and ARM9-related peripheral circuitry, the 3D graphics engine, and the serial
bus are unusable.

In other words, the features not implemented on the AGB are unusable.

Note: When operating in AGB compatibility mode, the serial bus becomes unusable. Therefore, the
wireless communications, Touch Screen, RTC, microphone, and built-in flash memory connected
to that bus are also unusable. In addition, the X and Y buttons become unusable.

1.5 Destination
As shown in Table 1-2, there are two NITRO consoles depending on the destination region.

Table 1-2 : Differences in NITRO Consoles by Destination Region

Caution: Applications made specifically for China will not function in NITRO consoles sold in regions
outside of China.

Destination Everywhere Except China China (Excluding Hong Kong and
Taiwan)

Usable Banner Font Hiragana, Katakana, Alphabetical,
Signed Alphabetical, Numeric, etc.

Adds approximately 6700 simplified
Chinese characters to the character sets
found in the non-Chinese consoles

Configurable Languages Japanese, English, French,
German, Italian, Spanish

English, French, German, Italian,
Spanish, Chinese
NTR-06-0180-001-A9 8 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2 Memory
Table 2-1 shows the configuration and specifications of the memory built into NITRO.

Table 2-1 : Memory Configuration and Specifications

The values given for the number of access cycles correspond to a bus frequency of 33.514 MHz.

Furthermore, these values are for when memory is accessed in a bit width that is equal to or less than the
bus width. When memory is accessed in a bit width that is larger than the bus width, the number of access
cycles is limited to the bit width divided by the bus width.

Note: Because the access cycle in NITRO Mode when accessing AGB Game PAK EEPROM is shorter
than the AGB access cycle, data cannot be correctly read and written.

• Transfer speeds between memories
DMA transfer speeds between memories can be calculated from the bus width and the access cycle
values shown in Table 2-1. Table 2-2 shows an example of DMA transfers between Internal Work RAM
and VRAM.

Table 2-2 : DMA Transfer Speeds between Internal Work RAM and VRAM

Memory Type Bus
Width

Access
Cycle

Bit Width that
Allows DMA

Access

Bit Width that
Allows Main

Processor Access

Read Write Read Write

DS Accessory RAM
(SRAM, flash memory, etc.) 8 6-18 - - 8 8

DS Accessory ROM
(ROM, flash memory, etc.) 16 1st 6-18

2nd 4-6 16/32 16/32 8/16/32 16/32

OAM 32 1 16/32 16/32 8/16/32 16/32

VRAM 16 1 16/32 16/32 8/16/32 16/32

Palette RAM 16 1 16/32 16/32 8/16/32 16/32

I/O Registers 32 1 16/32 16/32 8/16/32 8/16/32

Internal Work RAM 32 1 16/32 16/32 8/16/32 8/16/32

Main Memory 16 1st R:5 / W:4
2nd 1 16/32 16/32 8/16/32 8/16/32

System ROM 32 1 - - 8/16/32 -

TCM/Cache 32 ½ - - 8/16/32 8/16/32

Transfer Memory DMA Transfer Bit
Count

Cycles Used
for Reading

Cycles Used
for Writing

Total Number
of Cycles

Transfer Speed
(MB/sec)

From Internal Work
RAM to VRAM

16 1 1 2 31.96

32 1 2 3 42.62

From VRAM to
Internal Work RAM

16 1 1 2 31.96

32 2 1 3 42.62
© 2003-2006 Nintendo 9 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• Main memory transfer speeds
Main memory can function as a look-ahead buffer by setting DMA for reading as shown in Table 2-3.

Table 2-3 : DMA settings to function as look-ahead buffer

Capable of holding 16 bits, the look-ahead buffer reads from main memory while data is being written
to the destination memory.
Table 2-4 and Table 2-5 show the DMA transfer speeds between main memory and internal Work
RAM, and between main memory and VRAM. The asterisk symbol (*) denotes a shortening of the
total number of cycles due to the look-ahead buffer. For more details about the look-ahead buffer, see
"2.1.1 Main Memory" on page 13.

Table 2-4 : DMA transfer speeds between Main Memory and internal Work RAM

Table 2-5 : DMA transfer speeds between Main Memory and VRAM

Transfer speeds by the CPU tend to be slower than calculated because the actual transfer speed is
related to the time it takes to execute commands and get to the bus.

Property to Set Set Value

Transfer Bit Count 32 bits

How to Update Source Address Increment

Destination Address Not main memory

Transfer Memory
DMA

Transfer Bit
Count

Cycles Used
for Reading

Cycles Used
for Writing

Total
Number of

Cycles

Transfer Speed
(MB/sec)

From Main Memory to
Internal Work RAM

16 1st 5
2nd- 1 1 1st 6

2nd- 2 2nd- 31.96

32 1st 6
2nd- 2 1 1st 7

* 2nd- 2 2nd- 63.92

From Internal Work RAM to
Main Memory

16 1 1st 4
2nd- 1

1st 5
2nd- 2

2nd- 31.96

32 1 1st 5
2nd- 2

1st 6
2nd- 3 2nd- 42.62

Transfer Memory
DMA

Transfer Bit
Count

Cycles Used
for Reading

Cycles Used
for Writing

Total Number
of Cycles

Transfer Speed
(MB/sec)

From Main Memory to
VRAM

16 1st 5
2nd- 1 1 1st 6

2nd- 2 2nd- 31.96

32 1st 6
2nd- 2 2 1st 8

* 2nd- 3 2nd- 42.62

From VRAM to Main
Memory

16 1 1st 4
2nd- 1

1st 5
2nd- 2 2nd- 21.31

32 2 1st 5
2nd- 2

1st 7
2nd- 4 2nd- 21.31
NTR-06-0180-001-A9 10 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2.1 External Memory
DS accessory refers to the hardware for the AGB-compatible 32-pin Game Pak slot. DS Game Card refers
to the hardware for the DS Game Card slot.

EXMEMCNT: External Memory Control Register
Name: EXMEMCNT Address: 0x04000204 Attribute: R/W Initial Value: 0x0000

• [d15, d14]: Main Memory: Settings related to main memory
• EP[d15]: Select the CPU priority

This defines which CPU has priority when ARM9 and ARM7 access main memory at same time.

• IFM[d14]: Interface mode switch flag

Note: You must set this to Synchronous mode.

• [d11]: Setting for the DS Game Card
• MP[d11]: Select the CPU with access rights

• [d07–d00]: Setting for DS accessories
• CP[d07]: Select the CPU with access rights

• PHI[d06–d05]: PHI terminal-output control

This is for supplying the clock from NITRO when the DS accessory has a special chip.

You should normally set this to 00 (Low-level output).

0 ARM9 priority

1 ARM7 priority

0 Asynchronous mode
(this setting prohibited)

1 Synchronous mode

0 ARM9

1 ARM7

0 ARM9

1 ARM7

00 Low-level output

01 4.19-MHz clock output

10 8.38-MHz clock output

11 16.76-MHz clock output

EP IFM MP CP PHI ROM2 ROM 1st RAM
Main Memory Game Card DS Accessory

15 14 11 8 7 6 5 4 3 2 1 0
© 2003-2006 Nintendo 11 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• ROM[d04]: ROM 2nd access cycle control *

• ROM[d03–d02]: ROM 1st access cycle control *

• RAM[d00–d01]: RAM-region access cycle control *

* Access Cycles:
The system clock frequency of NITRO is twice that of AGB, and the access cycles can be calculated
as follows:
(Wait cycle of AGB Game Pak access + 1) * 2
For example, if the ROM access with AGB is 3-1 access, it will be 8-4 access with NITRO. However,
unlike AGB, NITRO has only one address space that can be set to access cycles. There is a possibility
that a device that cannot access with the same cycles as that of AGB mask ROM may be mounted.
Check the specifications for memory before setting it.
Operations for cycles set shorter than the memory specifications are not guaranteed.

0 6 cycles

1 4 cycles

00 10 cycles

01 8 cycles

10 6 cycles

11 18 cycles

00 10 cycles

01 8 cycles

10 6 cycles

11 18 cycles
NTR-06-0180-001-A9 12 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2.1.1 Main Memory

2.1.1.1 Look-Ahead Buffer
A look-ahead buffer is implemented as the interface to main memory. This look-ahead buffer is shared by
ARM9 DMA and ARM7 DMA.

When a 32-bit DMA transfer is conducted from a source address in main memory to a destination address
other than main memory, the write time to the destination address is used to read the next data in 16-bit
units. This method enables 32-bit reads to be conducted in a single read cycle.

Note that the look-ahead buffer cannot be used for other types of access, such as reading by the CPU or a
16-bit DMA transfer.

2.1.1.2 Burst Mode
In Burst mode, the sequential access of half-word (16-bit width) is conducted in one cycle.

Table 2-6 shows the basic access cycles for random access and sequential access in Burst mode.

Table 2-6 : Basic access cycles

2.1.1.2.1 Burst Access Conditions

In Burst Mode, sequential access is called Burst Access.

Burst Access is used during DMA transfer when either the source or destination address is the main
memory and the address update method for main memory is set to increment.

Because DMA transfers from main memory to main memory are all first accesses, routing through internal
RAM provides fast transfer speeds.

In addition, burst access is also used when continuous transfers using LDM or STM instructions are
executed.

2.1.1.2.2 Conditions for Inserting Waits
When a span of 236 half-words occurs, a wait of three cycles, called a termination, is inserted.

When the address is defined from 0 in units of 16 half-words, waits are also inserted if access starts from
address 13, 14, or 15, as shown in Table 2-7 (a maximum of 3 waits are inserted). Processes are thus
more efficient if data are located from a 4 half-word boundary (8-byte boundary).

Table 2-7 : Inserting waits according to the access start address

Read Write

Random 5 cycles 4 cycles

Sequential 1 cycle 1 cycle

First Cycle 2 3 4 5 6 7 8 9 ...

13 14 15 wait 16 17 18 19 20 ...

14 15 wait wait 16 17 18 19 20 ...

15 wait wait wait 16 17 18 19 20 ...
© 2003-2006 Nintendo 13 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
2.1.1.2.3 Main Memory DMA Transfer Cycles

2.1.1.2.3.1 32-Bit DMA Transfer Cycle from Main Memory to Work RAM

Because main memory has a 16-bit bus and Work RAM has a 32-bit bus, data read in half-word units is
written in word units. While writing in word units, the look-ahead buffer reads more half-word data.
Transfers to the geometry command FIFO are the same as transfers to Work RAM.

• Basic Cycles
Figure 2-1 shows the basic cycles of the transfer sequence from main memory to Work RAM.

Figure 2-1 : Transfer Sequence from Main Memory to Work RAM (Basic Cycles)

• Worst Case
Depending on the main memory address where access starts, a wait known as a termination may
occur. In these cases, the access immediately after the termination becomes the first access.
Figure 2-2 shows the worst-case transfer sequence from main memory to Work RAM.

Figure 2-2 : Transfer Sequence from Main Memory to Work RAM (Worst Case)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

Work
RAM 1W 2W 3W 4W

Main
Memory wait wait wait wait 1LR 1HR 2LR 2HR 3LR 3HR 4LR 4HR 5LR

... 475 476 477 478 479 480 481 482 483 484 485 486 487

... 236W 237W 238W 239W

... 236LR 236HR T T T 237LR 237HR 238LR 238HR 239LR 239HR 240LR 240HR

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

Work
RAM 1W

Main
Memory wait wait wait wait 1LR 1HR T T T wait wait wait wait

14 15 16 17 18 19 20 21 22 23 24 25 26

2W 3W 4W 5W 6W 7W

2LR 2HR 3LR 3HR 4LR 4HR 5LR 5HR 6LR 6HR 7LR 7HR 8LR

wait Wait

T Termination

nLR Reads the lower 16 bits of the nth 32-bit data

nHR Reads the upper 16 bits of the nth 32-bit data

nW Writes the nth 32-bit data
NTR-06-0180-001-A9 14 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2.1.1.2.3.2 Cycles for 32-bit DMA Transfers from Work RAM to Main Memory
Figure 2-3 shows the basic cycles of the transfer sequence from Work RAM to main memory.

Figure 2-3 : Transfer Sequence from Work RAM to Main Memory (Basic Cycles)

2.1.1.2.3.3 Cycles for 32-bit DMA Transfers from Main Memory to VRAM

Because main memory and VRAM both have a 16-bit-width bus, data read in half-word units are written in
half-word units. While writing in half-word units, the look-ahead buffer reads more data from main memory.

• Basic Cycle
Figure 2-4 shows the basic cycles of the transfer sequence from main memory to VRAM.

Figure 2-4 : Transfer Sequence from Main Memory to VRAM (Basic Cycles)

• Worst Case
According to the main memory address where access starts, a wait known as a termination may occur.
In these cases, the access immediately after the termination becomes the first access.

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

Work
RAM 1R 2R 3R 4R

Main
Memory wait wait wait 1LW 1HW 2LW 2HW 3LW 3HW

wait Wait

nR Reads the nth 32-bit data

nLW Writes the lower 16 bits of the nth 32-bit data

nHW Writes the upper 16 bits of the nth 32-bit data

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

VRAM 1LW 1HW 2LW 2HW 3LW

Main
memory wait wait wait wait 1LR 1HR 2LR 2HR 3LR 3HR 4LR
© 2003-2006 Nintendo 15 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 2-5 shows the worst-case transfer sequence from main memory to VRAM.

Figure 2-5 : Transfer Sequence from Main Memory to VRAM (Worst Case)

2.1.1.2.3.4 Cycles for 32-bit DMA Transfers from VRAM to Main Memory

Figure 2-6 shows the basic cycles of the transfer sequence from VRAM to main memory.

Figure 2-6 : Transfer Sequence from VRAM to Main Memory (Basic Cycles)

Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13

VRAM 1LW 1HW

Main
Memory wait wait wait wait 1LR 1HR T T T wait wait wait wait

14 15 16 17 18 19 20 21 22 23 24 25 26

2LW 2HW 3LW 3HW 4LW 4HW 5LW 5HW

2LR 2HR 3LR 3HR 4LR 4HR 5LR 5HR 6LR

wait Wait

T Termination

nLR Reads the lower 16 bits of the nth 32-bit data

nHR Reads the upper 16 bits of the nth 32-bit data

nLW Writes the lower 16 bits of the nth 32-bit data

nHW Writes the upper 16 bits of the nth 32-bit data

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

VRAM 1LR 1HR 2LR 2HR 3LR 3HR

Main
Memory wait wait wait 1LW 1HW 2LW 2HW

wait Wait

nLR Reads the lower 16 bits of the nth 32-bit data

nHR Reads the upper 16 bits of the nth 32-bit data

nLW Writes the lower 16 bits of the nth 32-bit data

nHW Writes the upper 16 bits of the nth 32-bit data
NTR-06-0180-001-A9 16 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2.2 The NITRO Processor's Internal Memory

2.2.1 VRAM
VRAM (A to I) does not have a fixed use, so it can be assigned for each application in the ways that make
the most efficient use of memory resources. This ability is called VRAM bank control. Do not switch banks
during access to VRAM.

Table 2-8 shows the options for VRAM use.

Table 2-8 : Options for VRAM Use

Memory assigned to LCDC, ARM7, BG-VRAM, and OBJ-VRAM is also mapped to the ARM9 bus,
enabling memory to be read and written by ARM9. Memory assigned to the extended palette and texture
slots is not mapped to the ARM9 bus.

Note 1: LCDC: The LCD controller (LCDC) handles this region. VRAM A to D can be used as memory for
holding bitmap data during VRAM display mode and it can also be set as memory for writing bit-
map data during captures. (For details, see "4.4.4.2 VRAM Display Mode" on page 63 and "4.5
Display Capture" on page 67.)

VRAM

Use KB

A B C D E F G H I

128 128 128 128 64 16 16 32 16

LCDC X X X X X X X X X

ARM7 X X

2D Graphics
Engine A

BG-VRAM X X X X X X X

OBJ-VRAM X X X X X

BG Extended
Palette Slot X X X

OBJ Extended
Palette Slot X X

2D Graphics
Engine B

BG-VRAM X X X

OBJ-VRAM X X

BG Extended
Palette Slot X

OBJ Extended
Palette Slot X

3D Graphics
(Rendering

Engine)

Texture Image
Slot X X X X

Texture Palette
Slot X X X

(BG is screen data or character data. OBJ is character data.)
© 2003-2006 Nintendo 17 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
VRAM assigned to LCDC is uniquely mapped to the ARM9 bus. (When all A-to-I of VRAM is
assigned to LCDC, it is mapped in a contiguous region of the ARM9 bus.) Because there is no
access from the CPU when VRAM is allocated to the Extended Palette slot or the Texture Image/
Palette slot, you need to temporarily set data in LCDC to write data.

Note 2: BG-VRAM: This region stores BG screen data, character data, and bitmap data. Up to 512 KB for
2D Graphics Engine A or up to 128 KB for 2D Graphics Engine B can be assigned for this purpose.

Note 3: OBJ-VRAM: This region stores OBJ character data and bitmap data. Up to 256 KB for 2D Graph-
ics Engine A or up to 128 KB for 2D Graphics Engine B can be assigned for this purpose.

Note 4: Extended palette slots: This memory space is the property of the 2D graphics engine, which refer-
ence color data when BG and OBJ are displayed. The slots are not mapped in the CPU's memory
space.

Note 5: Texture image slot and texture palette slot: This memory space is the property of the rendering
engine inside the 3D graphics engine. The rendering engine references texel colors when textures
are blended. The slots are not mapped in the CPU's memory space.
NTR-06-0180-001-A9 18 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
VRAMCNT: RAM Bank Control Register 0
Name: VRAMCNT Address: 0x04000240 Attribute: W Initial Value: 0x00000000

• VRAM-D, VRAM-C
• E[d31][d23] Enable flag

• OFS[d28–d27][d20–d19]: Allocated addresses (Allocated to the addresses shown below
according to the MST: Allocation options)

1. When MST = 000

Allocated to LCDC, and also mapped to ARM9 memory space

2. When MST = 001

 Allocated to 2D Graphics Engine A's BG, and also mapped to ARM9 memory space

3. When MST = 010

Mapped to ARM7 memory space, so not mapped to ARM9 memory space

0 Disable

1 Enable

VRAM-C 0x06840000-0x0685FFFF

VRAM-D 0x06860000-0x0687FFFF

00 0x06000000-0x0601FFFF

01 0x06020000-0x0603FFFF

10 0x06040000-0x0605FFFF

11 0x06060000-0x0607FFFF

00 0x06000000-0x0601FFFF

01 0x06020000-0x0603FFFF

10 Setting prohibited

11 Setting prohibited

E OFS MST E OFS MST E OFS MST E OFS MST

VRAM-D VRAM-C VRAM-B VRAM-A

31 28 27 26 24 23 20 19 18 16 15 12 11 9 8 7 4 3 1 0
© 2003-2006 Nintendo 19 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
4. When MST = 011

Allocated to texture image slot, but not mapped to ARM9 memory space.

(See the texture image slot memory map in Figure 2-7.)

5. When MST = 100

Mapped to the following ARM9 memory spaces, no matter what the setting.

• MST[d26–d24][d18–d16]: Allocation options

Note: Although VRAM-C and VRAM-D can be allocated to the ARM7 subprocessor, to ensure that
the subprocessor API operates correctly, do not change the register settings.

• VRAM-B, VRAM-A
• E[d15][d07]: Enable flag

• OFS[d12–d11][d04–d03]: Allocated addresses (Allocated to the addresses shown below
according to the MST: Allocation options)

1. When MST = 00

Allocated to LCDC and also mapped to ARM9 memory space

00 Texture image slot 0

01 Texture image slot 1

10 Texture image slot 2 (clear color image)

11 Texture image slot 3 (clear depth image)

VRAM-C 0x06200000-0x0621FFFF

VRAM-D 0x06600000-0x0661FFFF

000 Allocate to LCDC

001 Allocate to 2D Graphic Engine A's BG

010 Allocate to ARM7

011 Allocate to 3D rendering engine's texture image

100 For VRAM-C: Allocate to 2D Graphic Engine B's BG
For VRAM-D: Allocate to 2D Graphic Engine B's OBJ

101-111 Setting prohibited

0 Disable

1 Enable

VRAM-A 0x06800000-0x0681FFFF

VRAM-B 0x06820000-0x0683FFFF
NTR-06-0180-001-A9 20 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2. When MST = 01

Allocated to the 2D Graphic Engine A 's BG and also mapped to the ARM9 memory space

3. When MST = 10

Allocated to the 2D Graphic Engine A's OBJ and also mapped to the ARM9 memory space

4. When MST = 11

Allocated to the texture image slot but not mapped to ARM9 memory space

(See the texture image slot memory map in "Figure 2-7 : Texture image slot memory map" on
page 22.)

• MST[d09–d08][d01–d00]: Allocation options

Operation is not guaranteed when multiple VRAM blocks are mapped to the same address or
assigned to the same slot.

00 0x06000000-0x0601FFFF

01 0x06020000-0x0603FFFF

10 0x06040000-0x0605FFFF

11 0x06060000-0x0607FFFF

00 0x06400000-0x0641FFFF

01 0x06420000-0x0643FFFF

10 Setting prohibited

11 Setting prohibited

00 Texture image slot 0

01 Texture image slot 1

10 Texture image slot 2 (clear color image)

11 Texture image slot 3 (clear depth image)

00 Allocated to the LCDC

01 Allocated to the 2D Graphic Engine A's BG

10 Allocated to the 2D Graphic Engine A's OBJ

11 Allocated to the 3D rendering engine's texture image
© 2003-2006 Nintendo 21 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Texture image slots are memory-mapped in the rendering engine as in Figure 2-7.

Figure 2-7 : Texture image slot memory map

Texture image Slot 2 and Slot 3 also works as a clear image buffer to initialize the rendering buffer.
(Read about initializing with a clear image in "6.3.3 Initializing the Rendering Buffers" on page 229).

0x00080000

0x00060000
Slot 3

(clear depth image)

0x00040000
Slot 2

(clear color image)

0x00020000 Slot 1

0x00000000 Slot 0
NTR-06-0180-001-A9 22 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
WVRAMCNT: RAM Bank Control Register 1
Name: WVRAMCNT Address: 0x04000244 Attribute: W Initial value: 0x00000000

• VRAM-G, VRAM-F
• E[d23][d15]: Enable flag

• OFS[d20–d19][d12–d11]: Allocated addresses (Allocated to the addresses shown below according to
the MST: Allocation options)
1. When MST = 000

Allocated to LCDC and also mapped to ARM9 memory space

2. When MST = 001
Allocated to the 2D Graphic Engine A's BG and also mapped to ARM9 memory space

3. When MST = 010
Allocated to the 2D Graphic Engine A's OBJ and also mapped to ARM9 memory space

0 Disable

1 Enable

VRAM-F 0x06890000-0x06893FFF

VRAM-G 0x06894000-0x06897FFF

00 0x06000000-0x06003FFF

01 0x06004000-0x06007FFF

10 0x06010000-0x06013FFF

11 0x06014000-0x06017FFF

00 0x06400000-0x06403FFF

01 0x06404000-0x06407FFF

10 0x06410000-0x06413FFF

11 0x06414000-0x06417FFF

BANK E OFS MST E OFS MST E MST

WRAM VRAM-G VRAM-F VRAM-E

31 24 23 20 19 18 16 15 12 11 10 8 7 2 0
© 2003-2006 Nintendo 23 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
4. When MST = 011
Allocated to the texture palette slot, but not mapped to ARM9 memory space.

(See the texture palette slot memory map in "Figure 2-8 : Texture Palette Slot Memory Map" on
page 25)

5. When MST = 100
Allocated to the 2D Graphic Engine A's BG extended palette slot, but not mapped to ARM9
memory space.

(See the BG extended palette slot memory map in "Figure 2-9 : BG Extended Palette Slot Memory
Map" on page 25)

6. When MST = 101
Allocated to the 2D Graphic Engine A's OBJ extended palette slot, but not mapped to ARM9
memory space.

The lower 8 KB are allocated to the slot, but the upper 8 KB are invalidated.

See the OBJ extended palette slot memory map in "Figure 2-10 : OBJ Extended Palette Slot
Memory Map" on page 26.

• MST[d18–d16][d10–d08]: Allocation options

00 Texture palette slot 0

01 Texture palette slot 1

10 Texture palette slot 4

11 Texture palette slot 5

00 2D Graphic Engine A BG extended palette slots 0-1

01 2D Graphic Engine A BG extended palette slots 2-3

10 Setting prohibited

11 Setting prohibited

000 Allocated to the LCDC

001 Allocated to the 2D Graphic Engine A's BG

010 Allocated to the 2D Graphic Engine A's OBJ

011 Allocated to the 3D Rendering Engine’s texture palette

100 Allocated to the 2D Graphic Engine A's BG extended palette

101 Allocated to the 2D Graphic Engine A's OBJ extended palette

110, 111 Setting prohibited
NTR-06-0180-001-A9 24 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• VRAM-E
• E[d07]: Enable flag

• MST[d02–d00]: Allocation options

Note: VRAM-E mapping is fixed according to the MST settings shown below. (The offset cannot be
changed.)

The texture palette slots are mapped in the Rendering Engine (see Figure 2-8) when VRAM blocks E, F,
and G are assigned. The BG palette slots are mapped as shown in Figure 2-9.

Figure 2-8 : Texture Palette Slot Memory Map

Figure 2-9 : BG Extended Palette Slot Memory Map

0 Disable

1 Enable

000 Allocated to the LCDC

001 Allocated to the 2D Graphic Engine A's BG

010 Allocated to the 2D Graphic Engine A's OBJ

011 Allocated to the 3D Rendering Engine’s texture palette

100 Allocated to the 2D Graphic Engine A's BG extended palette

101-111 Setting prohibited

000 ARM9 addresses 0x06880000-0x0688FFFF

001 ARM9 addresses 0x06000000-0x0600FFFF

010 ARM9 addresses 0x06400000-0x0640FFFF

011 Texture palette slots 0-3

100 BG extended palette slots 0-3 (only the lower 32 KB)

0x00018000

0x00014000 Slot 5

0x00010000 Slot 4

0x0000C000 Slot 3

0x00008000 Slot 2

0x00004000 Slot 1

0x00000000 Slot 0

0x00008000

0x00006000 Slot 3

0x00004000 Slot 2

0x00002000 Slot 1

0x00000000 Slot 0
© 2003-2006 Nintendo 25 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 2-10 shows the memory map when VRAM-F and -G are allocated to the OBJ extended palette.

Figure 2-10 : OBJ Extended Palette Slot Memory Map

Proper operation is not guaranteed when multiple VRAM blocks are mapped to the same address or
assigned to the same slot.

VRAM_HI_CNT: RAM Bank Control Register 2
Name: VRAM_HI_CNT Address: 0x04000248 Attribute: W Initial value: 0x0000

• VRAM-I, VRAM-H
• E[d15][d07]: Enable flag

• MST[d09–d08][d01–d00]: Allocation options
• For VRAM-H

• For VRAM-I

Table 2-9 through Table 2-14 show the addresses allocated to the various VRAM blocks for the given MST
and OFS bits.

0x00004000

0x00002000 Slot 1

0x00000000 Slot 0

0 Disable

1 Enable

00 Allocated to LCDC
Mapped to main processor addresses 0x06898000-0x0689FFFF

01 Allocated to 2D Graphics Engine B's BG
Mapped to main processor addresses 0x06200000-0x06207FFF

10 Allocated to 2D Graphics Engine B's BG extended palette
Mapped to slots 0-3

11 Setting prohibited

00 Allocated to LCDC
Mapped to main processor addresses 0x068A0000-0x068A3FFFF

01 Allocated to 2D Graphics Engine B's BG
Mapped to main processor addresses 0x06208000-0x0620BFFF

10 Allocated to 2D Graphics Engine B's OBJ
Mapped to main processor addresses 0x06600000-0x06603FFF

11 Allocated to 2D Graphics Engine B's OBJ extended palette
Mapped to slots 0-1

E MST E MST

VRAM-I VRAM-H

15 8 7 0910 12
NTR-06-0180-001-A9 26 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Table 2-9 : VRAM-A and VRAM-B Allocations

Table 2-10 : VRAM-C and VRAM-D Allocations

Table 2-11 : VRAM-E Allocations

MST OFS
Allocation 00 01 10 11

00 ARM9 VRAM-A: 0x06800000-0x0681FFFF
VRAM-B: 0x06820000-0x0683FFFF

01 2D Graphics
Engine A

BG-VRAM
(0x06000000-
0x0601FFFF)

BG-VRAM
(0x06020000-
0x0603FFFF)

BG-VRAM
(0x06040000-
0x0605FFFF)

BG-VRAM
(0x06060000-
0x0607FFFF)

10 2D Graphics
Engine A

OBJ-VRAM
(0x06400000-
0x0641FFFF)

OBJ
-VRAM

(0x06420000-
0x0643FFFF)

Setting prohibited

11 Texture Image
Slot 0 Slot 1 Slot 2 Slot 3

(clear image)

MST OFS
Allocation 00 01 10 11

000 ARM9 VRAM-C: 0x06840000-0x0685FFFF
VRAM-D: 0x06860000-0x0687FFFF

001 2D Graphics
Engine A

BG-VRAM
(0x06000000-
0x0601FFFF)

BG-VRAM
(0x06020000-
0x0603FFFF)

BG-VRAM
(0x06040000-
0x0605FFFF)

BG-VRAM
(0x06060000-
0x0607FFFF)

010 ARM7
ARM7

0x06000000-
0x0601FFFF

ARM7
0x06020000-
0x0603FFFF

Setting prohibited

011 Texture Image
Slot 0 Slot 1 Slot 2 Slot 3

(clear image)

100 2D Graphics
Engine B

VRAM-C: BG-VRAM (0x06200000-0x0621FFFF)
VRAM-D: OBJ-VRAM (0x06600000-0x0661FFFF)

101-
111

Setting
Prohibited Setting prohibited

MST Allocation Address

000 ARM9 0x06880000-0x0688FFFF

001 2D Graphics Engine A BG-VRAM (0x06000000-0x0600FFFF)

010 2D Graphics Engine A OBJ-VRAM (0x06400000-0x0640FFFF)

011 Texture Palette Texture palette slot 0-3

100 2D Graphics Engine A BG extended palette slots 0-3 (only the lower 32 KB are valid)

101-
111 Setting Prohibited Setting prohibited
© 2003-2006 Nintendo 27 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Table 2-12 : VRAM-F and VRAM-G Allocations

Table 2-13 : VRAM-H Allocations

Table 2-14 : VRAM-I Allocations

MST OFS
Allocation 00 01 10 11

000 ARM9 VRAM-F: 0x06890000-0x06893FFF
VRAM-G: 0x06894000-0x06897FFF

001 2D Graphics Engine A
BG-VRAM

(0x06000000-
0x06003FFF)

BG-VRAM
(0x06004000-
0x06007FFF)

BG-VRAM
(0x06010000-
0x06013FFF)

BG-VRAM
(0x06014000-
0x06017FFF)

010 2D Graphics Engine A
OBJ-VRAM

(0x06400000-
0x06403FFF)

OBJ-VRAM
(0x06404000-
0x06407FFF)

OBJ-VRAM
(0x06410000-
0x06413FFF)

OBJ-VRAM
(0x06414000-
0x06417FFF)

011 Texture Palette Slot 0 Slot 1 Slot 4 Slot 5

100 2D Graphics Engine A BG extended
palette slots 0-1

BG extended
palette slots 2-3 Setting prohibited

101 2D Graphics Engine A OBJ extended palette slot 0 (only lower 8 KB are valid)

110 Setting Prohibited
Setting prohibited

111 Setting Prohibited

MST Allocation Address

00 ARM9 0x06898000-0x0689FFFF

01 2D Graphics Engine B BG-VRAM (0x06200000-0x06207FFF)

10 2D Graphics Engine B BG extended palette slots 0-3

11 Setting Prohibited Setting prohibited

MST Allocation Address

00 ARM9 0x068A0000-0x068A3FFFF

01 2D Graphics Engine B BG-VRAM (0x06208000-0x0620BFFF)

10 2D Graphics Engine B OBJ-VRAM (0x06600000-0x06603FFF)

11 2D Graphics Engine B OBJ extended palette slots 0-1
NTR-06-0180-001-A9 28 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2.2.2 Work RAM
Work RAM does not have a fixed use, so it can be assigned for each application in the ways that make the
most efficient use of memory resources. This ability is called WRAM bank control.

Be sure not to switch banks while Work RAM is being accessed.

WVRAMCNT: RAM Bank Control Register 1
Name: WVRAMCNT Address: 0x04000244 Attribute: W Initial value: 0x00000000

• WRAM
• BANK[d25–d24]: Bank Specification

Selects whether to allocate 16 KB x 2 blocks to ARM9 or ARM7.

Figure 2-11 shows the memory maps for each value setting.

Note: Though you can change the Work RAM settings, to ensure that the subprocessor API operates
correctly, do not change the register settings.

ARM9 ARM7

00 32KB None

01 16KB (Block1) 16KB (Block0)

10 16KB (Block0) 16KB (Block1)

11 None 32KB

BANK E OFS MST E OFS MST E MST

WRAM VRAM-G VRAM-F VRAM-E

31 24 23 20 19 18 16 15 12 11 10 8 7 2 025
© 2003-2006 Nintendo 29 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 2-11 : Memory Maps for Various Settings of ARM9, ARM7 Shared Internal Work RAM
ARM9 Memory Map ARM7 Memory Map

Allocation for Entire Region (32KB) No Allocation

Block 1 Allocation (16KB) Block 0 Allocation (16KB)

Block 0 Allocation (16KB) Block 1 Allocation (16KB)

No Allocation Allocation for Entire Region (32KB)

0x04000000 I/O registers 0x04000000 I/O registers

0x03800000

Image of ARM9, ARM7 shared
internal Work RAM

0x03810000
Image of ARM7 dedicated
internal Work RAM

0x03800000
ARM7 dedicated internal
 Work RAM (64KB)

0x037F8000
ARM9, ARM7 shared internal
Work RAM (32KB)

0x03000000

Image of ARM7 dedicated
internal Work RAM (32KB)

0x03000000
Image of ARM9, ARM7 shared
internal Work RAM

0x02400000 Main memory image 0x02400000 Main memory image

0x04000000 I/O registers 0x04000000 I/O registers

0x03800000

Image of ARM9, ARM7 shared
internal Work RAM (block 1)

0x03810000
Image of ARM7 dedicated
internal Work RAM

0x03800000
ARM7 dedicated internal
 Work RAM (64KB)

0x037FC000
ARM9, ARM7 shared internal Work
RAM (block 1: 16KB) 0x037FC000

Image of ARM9, ARM7 shared internal
Work RAM (block 0: 16KB)

0x03000000
Image of ARM9, ARM7 shared internal
Work RAM (block 1) 0x03000000

Image of ARM9, ARM7 shared internal
Work RAM (block 0)

0x02400000 Main memory image 0x02400000 Main memory image

0x04000000 I/O registers 0x04000000 I/O registers

0x03800000

Image of ARM9, ARM7 shared internal
Work RAM (block 0)

0x03810000
Image of ARM7 dedicated
internal Work RAM

0x03800000
ARM7 dedicated internal
 Work RAM (64KB)

0x037FC000
ARM9, ARM7 shared internal Work
RAM (block 0: 16KB) 0x037FC000

Image of ARM9, ARM7 shared internal
Work RAM (block 1: 16KB)

0x03000000
Image of ARM9, ARM7 shared
internal Work RAM (block 0) 0x03000000

Image of ARM 9, ARM7 shared
internal Work RAM (block 1)

0x02400000 Main memory image 0x02400000 Main memory image

0x04000000 I/O registers 0x04000000 I/O registers

0x03000000

Indeterminate data

0x03810000
Image of ARM7 dedicated
internal Work RAM

0x03800000
ARM7 dedicated internal
 Work RAM (64KB)

0x037F8000
ARM9, ARM7 shared internal
Work RAM (32KB)

0x03000000
Image of ARM9, ARM7 shared
internal Work RAM

0x02400000 Main memory image 0x02400000 Main memory image
NTR-06-0180-001-A9 30 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2.2.3 I/O Registers
See the appendices to learn about the mapping for each I/O register.

• Accessing undefined registers
Table 2-15 shows the behaviors that occur when an undefined address is accessed in the I/O register
regions.

Table 2-15 : Result of Accessing an Undefined Register

Access Destination Write Read

Undefined Register Invalid ALL zero
© 2003-2006 Nintendo 31 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
2.3 Memory Map for Game Card Boot
Figure 2-12 shows the memory map when the system boots from a Game Card.

Figure 2-12 : Memory Map for Game Card Boot

The following are details about the regions shown in the memory map:

• Resident Module:
Loaded at application startup time.

• Overlay Module:
Loaded by the application itself.

• Data Binary
Loaded by the application itself.

Not linked; loaded by referencing FAT.

ARM7 Resident
Module

0x0380_F000

0x037F_8000

0x027F_FE00
0x027F_FF80

0x027F_FC80

0x023F_E000

0x0200_0000

Header
Region
16 KB

0x0000_4000

0x0000_0180
0x0000_0000

0x0000_8000

ARM9 Resident
Module

ARM9 Overlay
Module 1

ARM9 Overlay
Module 2

NITRO Memory Map

Main Memory

Device Map

ROM Registration Data

Non-load Region

ARM7 Resident
Module

Secure
Region
16 KB

Game
Region

ROM Image

ARM7 Overlay
Module 1

Data Binary 2

…

CPU Internal Work RAM

ARM7 Overlay
Module 2

Data Binary 1

…

…

ROM Registration Data

NITRO Setting Data

ARM9 Resident
ModuleEncrypted Region 2 KB

Encrypted Region 2 KB

ARM7
Bootable
Region
92 KB

Can load to
only one

ARM9
Bootable
Region
2.5 MB

ARM7
Bootable
Region
256 KB
from the
3.99 MB

0x0228_0000
NTR-06-0180-001-A9 32 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• The Header Region:
Stores the ROM registration data. This data is loaded into the System region of main memory at boot
time.
Cannot be reloaded after application startup.
(After the Game Code is determined) Provides a binary file called a ROM header template for each
application.

• The Secure Region:
Stores the starting part of the ARM9 Resident Module. This is loaded at boot time to the address in
main memory specified by the registration data in ROM.
Must be located within the first 64 KB from the start of main memory, for security reasons.
Decodes the first 2 KB, an encrypted region, when loaded.

To be specific, the encrypted system call library is linked to the start when the ARM9 resident
module is created.

Because this cannot be reloaded after application startup, only the .text and .rodata sections
should be located in the secure region. Otherwise, you cannot perform a software reset.

• The Game Region:
Loads (at boot time) the part of the ARM9 Resident Module that follows the security region and the
ARM7 Resident Module to the address specified by the registration data in ROM.
Set the bootable size for ARM9 so that it does not exceed 2.5 MB from the beginning of main memory.
For ARM7, the bootable region should not exceed 256 KB within the 3.99 MB region from the
beginning of main memory or should not exceed 92 KB from the beginning of the CPU internal work
RAM.
This region is always read-enabled. Load the Overlay Module and Data Binary as needed with the
application.

• The NITRO Settings Data:
Contains owner information and other data, stored in internal flash memory.

If this data is available, it is loaded by the IPL to address 0x027F_FC80 at startup.

For details about the data structure, see Chapter "18 Internal Flash Memory" on page 319.

Note: Refer to the Nintendo DS Game Card Manual for the ROM Internal Registration Data.
© 2003-2006 Nintendo 33 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 34 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
3 The Main Processor Core (ARM946E-S)
Figure 3-1 is a block diagram of the main processor core.

Figure 3-1 : Block Diagram of the Main Processor Core

3.1 The Protection Unit
The Protection Unit protects memory by configuring the read/write attributes and enabling/disabling the
use of the cache and Write buffers in each protection region.

Up to eight memory regions can be configured from the 4 GB of background (the entire address space
accessible from the CPU). Protection regions with higher region numbers have higher priority. (If regions
have duplicate protection region settings, the setting with the higher protection region number is given
priority.) Each protection region can be configured separately to enable/disable the cache and Write
buffers and allow/disallow reading/writing.

• Debug Version and Release Version

In addition to the production version of NITRO, there is a debug version that comes with the main
memory expanded to 8 MB. Though part of the additional 4 MB of main memory is used as the
debugger region, the remainder can be used during application development. Because the debug and
release versions of NITRO have different memory structures, the Protection Unit settings are also
different.

Interface Unit

ARM946E-S
Core

Data Cache
4KB

Instruction Cache
8KB

Write Buffer

Data
TCM
16KB

Instruction TCM
32KB

ARM9 Bus

DMA
Controller

Interrupt
Controller

Main Processor
IRQ

Protection
UnitProtection Unit

ARM7TDMI
Core

Subprocessor
FIFO External Memory Interface

Main Memory
DS Game Card
DS Accessory
© 2003-2006 Nintendo 35 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
3.2 Tightly Coupled Memory (TCM)
TCM is high-speed memory that is directly connected to the ARM9 core. It can be used as independent
Work RAM. Because TCM does not use the ARM9 bus, the ARM9 can use TCM to conduct processes
even while the ARM9 bus is being used (such as by DMA).

As a result, TCM can boost performance by storing frequently used programs and data that you want to
access during DMA transfers.

There are two types of TCM: one for instructions and one for data. Note that TCM cannot be accessed via
DMA.

3.2.1 Instruction TCM
This is 32 KB of high-speed memory, mapped from ARM9 address 0x01000000.

Instruction TCM is a good place to hold fast-running programs or programs for which you want to fix the
operation clock count. Examples include graphic libraries and routines that branch on interrupts.

Because Instruction TCM does not require the ARM9 bus while fetching instructions, Instruction TCM is
also an effective place to store programs you want to execute while DMA is using the ARM9 bus.
Examples include routines that generate display lists and computation routines.

You can store data in Instruction TCM memory also, but stalls occur when data access collides with
instruction fetches.

3.2.2 Data TCM
This is 16 KB of high-speed memory. Data TCM can be set to any address location in the memory map.

Data TCM is a good place to store data for fast reading and writing. Examples include stacks and
frequently accessed tables.

Because Data TCM does not require the ARM9 bus during access, Data TCM can be used for creating the
next display list even while the current display list is being transferred via DMA from main memory to the
geometry engine.

However, transfers from TCM must be conducted via the ARM9 core. In addition, instructions cannot be
placed in Data TCM. But that means there is no stalling of data access due to collisions with instruction
fetches.

3.3 Cache Memory
When the ARM9 bus references memory, it takes 32 bytes of data from that vicinity (the data in a range
corresponding to the upper 27 bits of the referenced address) and loads that data into the cache so the
data is accessible at the fast speeds of cache memory the next time that range is referenced.

If the ARM9 hits data that is in the cache, the data can be read quickly.

If the ARM9 does not hit data in the cache, the contents of memory are read in units of cache lines (line
fetching). During this process, the contents of the cache lines are replaced according to the replacement
algorithm.

Note that the Protection Unit must be enabled to use the cache.

Table 3-1 lists the specifications for the cache.
NTR-06-0180-001-A9 36 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Table 3-1 : Cache Specifications

Note 1: Read-allocate methods

In this method, when there is a write miss, the write is performed only for the memory (or for the
Write buffer, if it is enabled). Data is not loaded to the cache. (For the Write-allocation method, a
write miss is handled as a write hit after data is loaded into the cache.)

Note 2: Round-robin (recommended)

In this method, cache lines are replaced in order. Performance is stable in the worst-case scenario.

Note 3: Pseudo-random

In this method, cache lines are replaced randomly. This increases peak-time performance, but
lowers worst-case performance.

Note 4: Bus Snoop feature

By monitoring the bus, this feature detects whether another processor or DMA writes to the memory
region stored in the cache. Because the ARM946E-S does not have this feature, you must be careful
that there is coherency between memory and cache. (See "3.5 Ensuring Coherency" on page 43.)

3.3.1 Instruction Cache
This is 8 KB of high-speed memory, dedicated to instruction code.

The ARM9 bus is not used during cache hits, so a program in the Instruction cache can run even when a
non-ARM9 bus master (DMA or subprocessor) has possession of the ARM9 bus.

3.3.1.1 Determining Hits and Misses

When the ARM9 bus fetches instruction code from memory, the Instruction Cache Controller extracts the
Index bit and TAG bit from the memory addresses and compares the contents of TAG RAM in the nth
cache line (defined by the Index number) with the TAG bit at that memory address. Because the
ARM946E-S cache has a four-set structure, the comparison is made on four cache lines. If the comparison
finds a match for any of these four cache lines, and if the Valid bit flag is enabled, then it is determined that
the cache line contains the targeted instruction code (a hit). If not, it is considered a miss.

For a cache hit, the intended instruction code in Data RAM is identified from the address' Word or Byte and
can be accessed quickly. For a miss, the cache lines are fetched from memory via the ARM9 bus.

Figure 3-2 shows the structure and actions of the Instruction cache.

Capacity Instruction cache: 8 KB
Data cache: 4 KB

Configuration 4-way set associative method

Cache Line 8 words (32 bytes)

Write-miss Operation Read-allocate method (see note 1)

Replacement
Algorithm

Can choose either round-robin (see note 2) or pseudo-random
(see note 3)

Bus Snoop Feature
(see note 4) None

Other Features
(Instruction Cache)

Lockdown
Instruction prefetch

Other Features
(Data Cache)

Lockdown
Write-through mode / Write-back mode
© 2003-2006 Nintendo 37 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 3-2 : Structure and Actions of the Instruction Cache

About Instruction Cache TAG RAM

• TAG

The upper 21 bits of the memory address of the data in the cache line are stored here.

• Flag

Generated from the Valid bit, which indicates whether cache lines are enabled or disabled.

3.3.2 The Data Cache
This is 4 KB of high-speed memory. It is data-only.

The ARM9 bus is not used during cache hits, so the data in this cache can be accessed even when a non-
ARM9 bus master (DMA or subprocessor) has possession of the ARM9 bus.

Address

31 24 23 16 15 11 10 8 7 5 4 2 1 0
ByteWordIndexTAG

Set 3

Set 2

Set 1

Comparator

Hit / Miss

Instruction Code

Instruction Code Selector

Fetch-Width Data

(Sets 0 to 3 have the same architecture)

Valid

Address of instruction that ARM9 will fetch

Line 0
Line 1
Line 2

Line 62
Line 63

TAG RAMSet 0 Instruction Code RAM
TAG Flag Word 1Word 0 Word 7

Li
ne

 S
el

ec
to

r

NTR-06-0180-001-A9 38 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
3.3.2.1 Determining Hits and Misses

When ARM9 loads data into memory, the Data Cache Controller extracts the Index bit and TAG bit from
the memory address and compares the contents of TAG RAM in the nth cache line (defined by the index
number) with the TAG bit at the memory address. The ARM946E-S cache has a four-set structure, so the
comparison is made on four cache lines. If the comparison finds a match for any of these four cache lines,
and if the Valid flag bit is enabled, then it is determined that the cache line contains the targeted data (hit).
If not, it is considered a miss.

For a cache hit, the targeted data in data RAM is identified from the address' Word and Byte and can be
quickly accessed. For a miss, the data is accessed from memory via the ARM9 bus.

Figure 3-3 shows the structure and actions of the Data cache.
Figure 3-3 : Structure and Actions of the Data Cache

Address

31 24 23 16 15 10 9 8 7 5 4 2 1 0
ByteWordIndexTAG

Set 3

Set 2

Set 1

Comparator

Hit / M iss

Data

Data Selector

Access-W idth Data

(Sets 0 to 3 have the same architecture)

Valid

Address of data that ARM9 will read/write
(Differs from Instruction cache in that the Index is 5 bits)

Line 0
Line 1
Line 2

Line 30
Line 31

TAG RAMSet 0 Data RAM
TAG Flag W ord 1W ord 0 W ord 7

Li
ne

 S
el

ec
to

r

© 2003-2006 Nintendo 39 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
About Data Cache TAG RAM

• TAG

The upper 22 bits of the memory address of the data in the cache line are stored here.

• Flag

Generated from the valid bit, which indicates whether cache lines are enabled or disabled, and the
dirty bit for the first half of the line and the dirty bit for the second half of the line, which indicate whether
the contents of the cache and memory are the same.

When the contents of the cache match those in memory, the cache is said to be clean. When the
contents do not match, the cache is dirty.

The dirty bits are used only in write-back mode. To read more about this mode, see "3.4 Write Buffer"
on page 42.

The dirty bits are referenced when the contents of a line are to be written back to memory. If the flag is
dirty, a write-back occurs. If the flag is clean, no write-back occurs (because it is unnecessary).

3.3.3 Cache Operations
Table 3-2 shows the operations conducted on the cache. Some operations act on the entire cache, while
other operations act on specified cache sets, specified cache lines, or a particular cache line specified by a
memory address.

Table 3-2 : Cache Operations

The Clean, Invalidate, and Clean & Invalidate operations can cause changes in the usage state
of cache. To read more about these changes, see "3.5 Ensuring Coherency" on page 43.
About Each Operation

• Clean

Writes back dirty data in the cache to memory. The data remains in the cache. If the Write buffer is
enabled, the actual write back to memory is delayed.

• Invalidate

Invalidates the data in the cache. The next time this memory region is read, a read miss occurs and a
line fetch from memory to the cache is performed. The data moved into the cache by the line fetch is
treated as valid.

• Clean and Invalidate

Writes back dirty data in the cache to memory and invalidates the data in the cache. As a result, the
next time this memory region is accessed, the data will be line-fetched from memory to the cache.

Caution: If the write buffer (refer to "3.4 Write Buffer" on page 42 for details) is full and the Clean and
Invalidate command is issued, caches that are already clean will not be invalidated.

Cache Operation Instruction Cache Data Cache

Overall Direct Operations - Enable/Disable
- Invalidate

- Enable/Disable
- Invalidate

Direct Operations on Sets - Lockdown - Lockdown

Direct Operations on Lines --- - Clean
- Clean & Invalidate

Operations on Cache Lines
Corresponding to Memory

Addresses

- Prefetch

- Invalidate

- Clean
- Invalidate

- Clean & Invalidate
NTR-06-0180-001-A9 40 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• Instruction Prefetch (prefetch)
Takes instruction code that has not yet been fetched by the program and preloads it into the Instruction
cache. It uses coprocessor instructions.

• Lockdown
By locking down one set of cache, no line in that set can be replaced by line fetches and the whole set
can be used as a block of Work RAM. However, this reduces the cache region by the same amount
and increases the miss rate.

• Enable/Disable
When using the cache, in addition to enabling the cache, you must also enable the Protection Unit.

You can enable/disable the Instruction cache and the Data cache for each protection region. To read about
protection regions and their settings, see "3.1 The Protection Unit" on page 35.

Caution: Data Preload (preload) is a feature that preloads data that has not been accessed by the
program and normally operates by using the PLD instruction. However, due to ARM946E-S
specifications, no operation will be performed even when a PLD instruction is recognized.
Therefore, the data preload feature does not work with ARM946E-S.

3.3.4 Optimizing the Cache
The cache uses the memory reference locality of most programs to accelerate memory access.

Temporal locality The high probability that data, once referenced, will be referenced again soon.

Spatial locality The high probability that data near referenced data will also be referenced.

Programs with a higher reference locality have higher cache hit rates and faster average access speeds.

Depending on how a program is pieced together, you can manually increase the reference locality to some
extent. For example, when constructing a loop to handle a two-dimensional (or higher) array, you can
boost the spatial locality of the array by handling addresses in consecutive order.

Examples:

In loop example A, the TEST array is referenced every 0x100 addresses inside the loop, so there is no
cache hit during the first iteration. Lines are fetched one after another in the first iteration. However,
because the capacity of the Data cache is 32 lines x 4 sets for a total of 128 lines (0x80 lines), the entire
loop does not fit in the Data cache and hits occur only half the time in the second and subsequent
iterations.

In contrast, in loop example B, the TEST array is referenced in the same order as the addresses inside the
loop, enabling the maximum hit rate.

Loop Example A Loop Example B

for(j=0; j<0x100; j++) {
 for(i=0; i<0x100; i++) {
 RESULT += TEST[i, j];

 }
}

for(i=0; i<0x100; i++) {
 for(j=0; j<0x100; j++) {
 RESULT += TEST[i, j];

 }
}

© 2003-2006 Nintendo 41 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
3.4 Write Buffer
The Write buffer is 32 bytes x 16 layers of FIFO memory that integrates addresses and data.

The type of entry is determined by the address/data flag. Address entries have an appended data size.

Writing data to the high-speed Write buffer instead of memory keeps ARM9 from stalling during the write
process. However, ARM9 will stall when writing to the Write buffer when it is full.

When the Protection Unit is enabled, you can select among the access modes shown in Table 3-3 for
writing data. The selection is made by configuring the Data cache and the Write buffer for each protection
region as shown.

To read more about protection regions, see "3.1 The Protection Unit" on page 35.

Table 3-3 : Access Modes when Data is Being Written

• Write-back mode (recommended)

If there is a hit during the data write, data is written only to the cache and not to the Write buffer.
Therefore, the contents of the cache may not be the same as in memory, but writing is fast.

A Clean operation must be performed in order for the data rewritten by the CPU to be reflected in
memory.

Further, when a read-miss occurs while the cache is full, and the cache lines to be emptied by the
replacement algorithm are dirty, they are written back to the Write buffer.

• Write-through mode

If there is a hit during the data write, the data is written to the Write buffer at the same time it is written
to the cache. Therefore, the cache line does not become dirty as a result of writing to ARM9, but
writing is slow.

Further, if the cache is full when a read-miss occurs, the replacement algorithm overwrites the cache
line.

In both of these modes, data is written only to the Write buffer when a write-miss occurs.

Also, if a line is being fetched, the contents of the Write buffer are discharged first to maintain data
coherency.

Note: Be careful about the access width of memory when writing in write-through mode. (For example,
you cannot use an access width of 8 bits with VRAM.) To read about the access width for each
memory type, see "2 Memory" on page 9.

To read about cache state transitions and control in regards to either of these modes, see "3.5
Ensuring Coherency" on page 43.

Data Cache Setting Write Buffer Setting Access Mode

Disable Disable NCNB modea

(Data cache and Write buffer are both disabled)

a. In NCNB mode, the contents of the write buffer are output when writing, and are accessed ahead of the write
buffer output when reading.

Disable Enable NCB mode
(Data cache disabled; Write buffer enabled)

Enable Disableb

b. In write-through mode, the Write buffer is disabled, but it is used.

Write-through mode

Enable Enable Write-back mode
NTR-06-0180-001-A9 42 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
3.4.1 Write Buffer Operations
• Wait for the Write buffer to empty

The ARM9 bus can stall until all data in the Write buffer is written to memory.

Use this operation to make certain that all content rewritten by the CPU is reflected in memory.

Note that this operation is not necessary when data is written to I/O registers or other regions where
cache and buffers are disabled, because in these cases the CPU stops until the Write buffer is empty.

To read why this operation is necessary in other cases, see "3.5 Ensuring Coherency" on page 43.

3.5 Ensuring Coherency
You need to be careful when using the cache to make sure no inconsistencies arise between the contents
of the cache and memory.

The cache state is managed in each cache line by the flag in TAG RAM.

This flag includes one valid bit and two dirty bits. The dirty bits indicate the state of the first half and second
half of the cache line. All three bits are used for the Data cache in the write-back mode, but only the valid
bit is used in the write-through mode or for the Instruction cache.

3.5.1 Write-Back Mode
Table 3-4 shows how the flag states define the cache line state in write-back mode.

Table 3-4 : Cache Line States (Write-Back Mode)

Operations Managed Automatically by the Cache Controller

As shown in Figure 3-4, read misses/hits and write misses/hits on access from the ARM9 as well as state
transitions by the replacement algorithm are performed automatically.

When the replacement algorithm replaces valid but dirty lines, the lines are first written back to memory (or
to the Write buffer, if enabled). Because the process is actually conducted on the first and second halves of
the line and not on the entire line, the volume of data written back can be 0, 16, or 32 bytes.

Operations that Must Be Managed by the User

Because the ARM946E-S lacks the bus snoop feature, when cached memory is accessed by a bus master
other than ARM9 (such as the subprocessor or DMA), the cache lines must be operated manually.

When data are written to memory by a bus master other than ARM9, you should invalidate the appropriate
cache lines.

Also, when memory is read by a bus master other than ARM9, you should clean the cache line beforehand
and perform the Wait for Write buffer to empty operation.

State
Flag State

Explanation
Valid Dirty

Dirty 1 1 Cache line is valid, contents differ from memory

Clean 1 0 Cache line is valid, contents match memory

Invalid 0 * Cache line is invalid
© 2003-2006 Nintendo 43 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 3-4 : Cache line state transitions (write-back mode)

Example

• If the program in main memory is overwritten by an overlay, etc.

Invalidate the Instruction cache in the appropriate region.

3.5.2 Write-Through Mode
Table 3-5 shows how the flag states define the cache line state in write-through mode.

Table 3-5 : Cache Line States (Write-Through Mode)

Operations Managed Automatically by the Cache Controller

As shown in Figure 3-5, read misses/hits and write misses/hits for access from the ARM9 as well as state
transitions by the replacement algorithm are performed automatically.

Operations that Must Be Managed by the User

Because the ARM946E-S lacks the bus snoop feature, when cached memory is accessed by a bus master
other than ARM9 (such as the subprocessor, DMA, etc.), the cache lines must be operated manually.

When data are written to memory by a bus master other than ARM9, you should invalidate the appropriate
cache lines.

Also, when memory is read by a bus master other than ARM9, perform the Wait for Write buffer to empty
operation.

State
Flag State

Explanation
Valid Dirty

Clean 1 * Cache line is valid, contents match memory

Invalid 0 * Cache line is invalid

- Clean & Invalidate

- Invalidate

Line Fetch due to
Read Miss

Write Miss

Write Hit

Dirty

CleanInvalid

- Write Hit

- Read Hit

- Clean & Invalidate
- Invalidate

- Write-back using
 another Bus Master

- Clean

- Replace using the
 Replacement Algorithm

- Read Hit

- Replace using the
 Replacement Algorithm
- Clean
NTR-06-0180-001-A9 44 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 3-5 : Cache line state transitions (write-through mode)

Example

• If the program in main memory is overwritten by an overlay, etc.

Invalidate the Instruction cache in the appropriate region.

- Invalidate

- Line Fetch due
 to Read Miss

- Write Miss
- Write Hit
- Replace Using the
 Replacement Algorithm

- Read Hit

CleanInvalid
© 2003-2006 Nintendo 45 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 46 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4 Display

4.1 Display System
The display system block diagram is shown in "Figure 4-1 : The Display System Block Diagram" on page 48.

Each selector in the block diagram can be controlled using the register selection flags in Table 4-1.

Table 4-1 : Selector and Register Selection Flag Map

After selecting the graphics display, VRAM display, or main memory display using SEL DISP, the image
output becomes Image Output A.

Similarly, the image output of the 2D graphics engine B becomes Image Output B.

Image Outputs A and B each go through the Master Brightness Up/Down A and B, respectively, and
become the Display Output A and Display Output B that are sent to the LCD.

When finally output to the LCD, these display outputs cannot be layered.

Choose one of the following:

• Send Display Output A to the Upper Screen LCD and send Display Output B to the Lower Screen LCD

• Send Display Output A to the Lower Screen LCD and send Display Output B to the Upper Screen LCD

For games that require only one LCD, disable the LCD display you do not use.

For further details, see “Power Management” on page 283.

Image Output A allows you to blend and display 2D graphics and 3D graphics in the graphics display.

See “Display” on page 47 for information on the hardware block for 3D image creation.

Selector Name Register Name Flag Name

SEL DISP DISPCNT Display mode selection

SEL BG0 DISPCNT 2D/3D display selection for BG0

SEL DISP VRAM DISPCNT Display VRAM Selection

SEL A DISPCAPCNT Capture source A selection

SEL B DISPCAPCNT Capture source B selection

SEL CAP DISPCAPCNT Capture mode selection

SEL CAP VRAM DISPCAPCNT Capture data write destination VRAM selection

SEL LCD POWCNT LCD output destination switch
© 2003-2006 Nintendo 47 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 4-1 : The Display System Block Diagram

VRAM A

VRAM B

VRAM C

VRAM D SE
L

D
IS

P
VR

AM

Main Memory
Display FIFO

SE
L

D
IS

PCapture

Main Memory Display

M
as

te
r B

rig
ht

ne
ss

 U
p/

D
ow

n
A

SE
L

BG
0

3D Graphics
Engine

2D Graphics
Engine A

BG0

OBJ

BG3

BG2

BG1

La
ye

rin
g

an
d

C
ol

or
 S

pe
ci

al
 E

ffe
ct

s
A

Main Memory
DMA

SEL A

SEL B

VRAM Display

Graphics Display

SE
L

C
AP

Blending

2D Graphics
Engine B

BG0

OBJ

BG3

BG2

BG1 La
ye

rin
g

an
d

C
ol

or
 S

pe
ci

al
 E

ffe
ct

s
B

SEL CAP VRAM

M
as

te
r B

rig
ht

ne
ss

 U
p/

D
ow

n
B

SE
L

LC
D

Logic

Memory

Selector

Im
ag

e
O

ut
pu

t A

D
is

pl
ay

 O
ut

pu
t A

Im
ag

e
O

ut
pu

t B

D
is

pl
ay

 O
ut

pu
t B
NTR-06-0180-001-A9 48 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.2 LCD
The specifications for the two LCD controllers included on the DS are shown below.

Both LCDs have the same specifications but the directions differ, so the order of RGB pixel arrays differs.

4.2.1 LCD Controller Specifications
The LCD clock specifications of the LCD controller are shown in Table 4-2, the LCD scan timing is shown
in Figure 4-2, and the specifications for the LCD scan timing are shown in "Table 4-3 : LCD Scan Timing
Specifications" on page 50.

Table 4-2 : LCD Clock Specifications

Figure 4-2 : LCD Scan Timing

LCD Clock Frequency (time)

Image Processing Clock 33.513982 Mhz (29.838293 ns)

Dot Clock 5.585664 Mhz (179.029757 ns) (see note)

Note: The Dot Clock is 1/6 of the Image Processing Clock.

Display Screen

V-Blank

H-Blank

256 dots

355 dots

19
2

lin
es

26
3

lin
es

99 dots

71
 li

ne
s

© 2003-2006 Nintendo 49 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Table 4-3 : LCD Scan Timing Specifications

The V-Blank cycle for the 3D rendering engine consists of the 23 lines 191–213. For details, see
“Rendering Engine” on page 224.

Item Spec Period Reference: AGB Value

Display
Screen Size

Horizontal Dot Count 256 dots 45.8316 μs 240 dots (57.221 μs)

Vertical Line Count 192 lines 12.2027 ms 160 lines (11.749 ms)

Total Dot
Count

Horizontal Dot Count 355 dots 63.5556 μs 308 dots (73.433 μs)

Vertical Line Count 263 lines 16.7151 ms 228 lines (16.743 ms)

Blanking
H-Blank Dot Count 99 dots 17.7239 μs 68 dots (16.212 μs)

V-Blank Line Count 71 lines 4.5124 ms 68 lines (4.994 ms)

Scan Cycle
H-Cycle 15.7343 KHz 63.5556 μs 13.618 KHz (73.443 μs)

V-Cycle 59.8261 Hz 16.7151 ms 59.727 Hz (16.743 ms)
NTR-06-0180-001-A9 50 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.3 Display Status
DISPSTAT: Display Status Register

Name: DISPSTAT Address: 0x04000004 Attribute: R/W Initial value: 0x0000

• [d15–d07] : V-Counter Match Setting Values

Note that VC8 is located in d07 (for compatibility with AGB). Values between 0 and 262 can be set.
Proper operation is not guaranteed for a value of 263 or higher.

• [d05–d03] : Interrupt Request Enable Flags
• VQI[d05] : V-Counter match interrupt request enable flag

• HBI[d04] : H-Blank interrupt request enable flag

When enabled, H-Blank interrupts are permitted with the Interrupt Enable Register (IE). H-Blank
interrupts can be made during the display interval, and also during any of the 263 vertical lines
(Line 0 – 262) on the LCD, including V-Blank intervals.

• VBI[d03] : V-Blank interrupt request enable flag

• [d02–d00] : Status Flag
• LYC[d02] : V-Counter match detection flag

• HBLK[d01] : H-Blank detection flag

• VBLK[d00] : V-Blank detection flag

0 Disable

1 Enable

0 Disable

1 Enable

0 Disable

1 Enable

0 Outside a matching interval

1 During a matching interval

0 Outside H-Blank interval

1 During H-Blank interval

0 Outside V-Blank interval

1 During V-Blank interval

VC7 VC6 VC5 VC4 VC3 VC2 VC1 VC0 VC8 VQI HBI VBI LYC HBLK VBLK

V-Counter Match Setting Values Status Flags

15 8 7 5 3 2 0

Interrupt Request
Enable Flags
© 2003-2006 Nintendo 51 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Note: V-Blank detection flag becomes 1 at the moment it reaches Line 192, and becomes 0 when it
reaches Line 262. This is because the OBJ rendering circuitry accesses OBJ-VRAM and OAM
starting at Line 262, which is one line before the actual display. In addition, the timing that ends
access to OBJ-VRAM and OAM depends on whether the OBJ process is performed during H-
Blank. On the other hand, BG-VRAM, BG Palette RAM, and OBJ Palette RAM begin access at
Line 0, and end at Line 191. This is summarized in Table 4-4 below.

Table 4-4 : Period when Graphics Engines Access Memory
Memory Accessed by Graphics Engines V-Counter Value

Access period when OBJ render-
ing circuitry accesses OBJ-VRAM
and OAM

Perform OBJ process during H-Blank 0-191, 262
Does not perform OBJ process during
H-Blank 0-190, 262

Access period when rendering circuitry accesses BG-VRAM, BG Palette
RAM, and OBJ Palette RAM 0-191

(Reference) Period when the V-Blank deflection flag becomes 1 192-261
NTR-06-0180-001-A9 52 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
VCOUNT: V-Counter Register
Name: VCOUNT Address: 0x04000006 Attribute: R/W Initial value: 0x0000

• [d08–d00] : V-Counter Values

Unlike the bit arrangement of the V-Counter Match Setting Values in the DISPSTAT register, these bits
are in a normal arrangement.

1. When reading values

Can read which of the LCD's total 263 lines is currently displayed. The readout value is between 0
and 262.

If the readout value is between 0 and 191, images are being drawn. If the value is between 192
and 262, it is a V-Blank period.

To learn about the LCD's display timing, see “LCD” on page 49.

2. When writing values

Written values are reflected when the hardware's V-Counter is updated.

By using this register, you can synchronize all NITRO V cycles by adjusting the V-count value
when communicating among multiple DS devices.

Confirm that the current value of the V-Counter is between 202 and 212, and write values only
between 202 and 212. Proper operation of the 3D engine is not guaranteed when writing values
outside this range.

Note: When there is a conflict between the access to the display circuit VRAM and the access to VRAM
from the CPU, the display circuit VRAM takes precedence.

Because the dot clock of the LCD controller is 1/6 of a cycle of the image processing clock and the
system clock, the timing for the LCD controller to access the VRAM is once every six cycles.

With this timing, when simultaneously accessing from the CPU, the CPU access must wait for one
cycle.

V8 V7 V6 V5 V4 V3 V2 V1 V0

V-Counter Values

15 8 7 0
© 2003-2006 Nintendo 53 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
4.4 Display Control

4.4.1 Top LCD/Bottom LCD Output Switching

POWCNT: Power Control Register
Name: POWCNT Address: 0x04000304 Attributes: R/W Initial Value: 0x0000

• DSEL[d15] : LCD Output Switching Flag

You can switch the LCD output destination with no delay by configuring the Power Control Register.

0 Send Display Output A to the Lower Screen LCD
Send Display Output B to the Upper Screen LCD

1 Send Display Output A to the Upper Screen LCD
Send Display Output B to the Lower Screen LCD

DSEL 2DGB GE RE 2DGA MDE

15 8 7 13 2 0

LCD Output Destination
Switching Flag

9

NTR-06-0180-001-A9 54 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.4.2 Display Control of 2D Graphics Engine A

DISPCNT: Display Control Register
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial value: 0x00000000

• [d19–d18] : Display VRAM

Selects the VRAM block to display when in VRAM Display Mode (see “d17–d16 Display mode”).

• [d17–d16] : Display mode

When the Display mode is OFF, the 2D/3D graphics, VRAM display, and main memory display are not
selected and appear white.

Graphics display mode displays both 2D and 3D graphics.

VRAM display mode displays the bitmap data stored in VRAM.

Main memory display mode displays the bitmap data stored in main memory (requires a DMA setting).

For details, see the appropriate sections.

00 VRAM-A

01 VRAM-B

10 VRAM-C

11 VRAM-D

0 Display OFF

1 Graphics Display

2 VRAM Display

3 Main Memory Display

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen
Base Offset

BG Character
Base Offset

OBJ Process During
H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

2D/3D Display
Selection for BG0

171819 3
© 2003-2006 Nintendo 55 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• [d07] : 2D Display Forced Blank

The 2D graphics display is forcibly halted by the CPU. Because 2D display is halted, 3D graphics
using BG0 are not displayed either.

During a forced blank, the 2D graphics circuitry does not access VRAM and the LCD screen is white.

However, even during a forced blank, the internal HV synchronization counter continues to run.

If the forced-blank setting is changed from ON to OFF during a display period of the internal HV
synchronization counter, the effect takes place immediately; if it is changed from OFF to ON, the
switch takes place at the start after 3 lines.

• [d03] : 2D/3D Display Selection for BG0

This bit determines whether to use one of the BG screens (BG0) for 2D graphics or for 3D graphics.

When 3D graphics are selected, the 2D graphics features for BG0 are limited and the specifications for
color special effects change. See "6.4 2D Graphics Features You Can Apply to the 3D Screen After
Rendering" on page 266.

• Other bits

The bits in the DISPCNT register not covered above are explained in the following sections:

Bits related to the display control of 2D graphics features are explained in "5 2D Graphics" on page 73.

Bits related to BG are explained in "5.2 BG" on page 77.

Bits related to OBJ are explained in "5.3 OBJ" on page 109.

0 Display 2D graphics

1 Display 3D graphics
NTR-06-0180-001-A9 56 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.4.3 2D Graphics Engine B Display Controls

DB_DISPCNT: Display Control Register 1
Name: DB_DISPCNT Address: 0x04001000 Attributes: R/W Initial Value: 0x00000000

• [d16] : Display Mode

• [d07] : 2D Display Forced Blank

This forcibly stops the 2D graphics engine circuit using the CPU.

During a forced blank, the 2D graphics circuit does not access the VRAM, and the LCD screen
appears white.

However, the internal HV synchronization counter runs even during a forced blank.

If the internal HV counter changes a forced blank during the display interval, the ON/OFF switches
immediately after configuration when going from ON to OFF, or switches from the top after 3 lines
when going from OFF to ON.

0 Display OFF

1 Display ON

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended
Palette

OBJ Process During
H-Blank Period

2D Display
Forced Blank

OBJ Mapping
Mode

Extended Object

Display Mode
© 2003-2006 Nintendo 57 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
4.4.4 Display Modes
As indicated in Table 4-5, on the Display Output A side (the 2D Graphics Engine A), there are modes that
display the bitmap data in the VRAM and main memory in addition to the mode that displays the images
generated by the graphics circuit.

Table 4-5 : An Overview of the Display Modes (2D Graphics Engine A)

As indicated in Table 4-6, on the Display Output B side (the 2D graphics engine B), the only mode
selection is graphics display ON or OFF.

Table 4-6 : An Overview of the Display Modes (2D Graphics Engine B)

"Figure 4-3 : Display Mode Selection (Display Output A Side Only)" on page 59 is a simplified version of
the display mode for Display Output A in "Figure 4-1 : The Display System Block Diagram" on page 48.

Display Mode
Number Display Mode Display

Size
Frame
Rate

Features

3D
Display

Character
BG Display

Bitmap BG
Display

OBJ
Display

0 Display OFF - - - - - -

1 Graphics Display 256x192 60 fps X X X X

2 VRAM Display 256x192 60 fps X

3 Main Memory Display 256x192 60 fps X

Display Mode
Number Display Mode Display

Size
Frame
Rate

Feature

Character
BG Display

Bitmap BG
Display

OBJ
Display

0 Display OFF - - - - -

1 Graphics Display 256x192 60 fps X X X
NTR-06-0180-001-A9 58 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 4-3 : Display Mode Selection (Display Output A Side Only)

S
E

L
D

IS
P

Main Memory Display
M

as
te

r B
rig

ht
ne

ss
 U

p
/ D

ow
n

Logic

Memory

Output

3D Graphics
Engine

2D Graphics
Engine A

VRAM Display

Graphics Display

DISPCNT Register
Display Mode Selection

VRAM

Main Memory

Selector
© 2003-2006 Nintendo 59 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
4.4.4.1 Graphics Display Mode
This mode displays images generated with the 2D and 3D graphics features.

See "Figure 4-1 : The Display System Block Diagram" on page 48 for information about the entire display
system.

To read about the various graphic features, see "5 2D Graphics" on page 73 and "6 3D Graphics" on page 153.

• Graphics display mode – Example 1

The example in Figure 4-4 shows how the results of 3D rendering are layered with the 2D screen and
displayed.

Although 3D display is handled as the BG0 screen, the 2D graphics features of BG0 are limited and the
color special effect specifications have changed. See "6.4 2D Graphics Features You Can Apply to the 3D
Screen After Rendering" on page 266.

Figure 4-4 : Display Mode Selection (Display Output A Side Only)

SE
L

D
IS

P

Main Memory Display

M
as

te
r B

rig
ht

ne
ss

 U
p/

D
ow

n

Logic

Memory

Output

S
E

L
BG

0

3D Screen

2D Screen
(BG + OBJ)

BG0

OBJ

BG3

BG2

BG1

La
ye

rin
g

an
d

C
ol

or
 S

pe
ci

al
E

ffe
ct

s

VRAM Display

Graphics Display

DISPCNT Register
2D/3D Display
Selection for BG0

DISPCNT Register
Display Mode Selection

Capture

Selector
NTR-06-0180-001-A9 60 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• Graphics display mode – Example 2

In the example shown in "Figure 4-5 : An Example of Displaying the Bitmap OBJ Results of 3D
Rendering" on page 62, the results of 3D rendering are pasted in a Bitmap OBJ and displayed.

The rendering engine's clear alpha value is set to 0 and the 3D rendering result is captured. Then, in
the next frame, the VRAM is assigned to a bitmap OBJ according to the value of the RAM Bank
Control register. This enables the 3D rendering result to be displayed as an OBJ.

At this moment in the sequence, alpha value segments that remain 0 in the 3D alpha-blending process
are transparent. (See the "6.3.7 Alpha-Blending" on page 256 for the capture feature and the rendering
engine.)

In this example, double buffering occurs by alternately assigning VRAM-A and VRAM-B to LCDC and
OBJ-VRAM.
© 2003-2006 Nintendo 61 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 4-5 : An Example of Displaying the Bitmap OBJ Results of 3D Rendering

V R A M - A
1 2 8 K B

V R A M - B
1 2 8 K B

V R A M - C
1 2 8 K B

V R A M - D
1 2 8 K B

SE
L

D
IS

P
V

R
A

M

M a in M e m o r y
D is p la y F IF O

S
EL

 D
IS

P

C a p tu r e

M a in M e m o r y D is p la y

M
as

te
r B

rig
ht

ne
ss

 U
p/

D
ow

n

L o g ic

M e m o r y

O u p tu t

S
EL

 B
G

0

3 D S c r e e n

2 D S c r e e n
(B G + O B J)

B G 0

O B J

B G 3

B G 2

B G 1

La
ye

rin
g

an
d

C
ol

or
 S

pe
ci

al
Ef

fe
ct

s

M a in M e m o r y
D M A

S E L A

S E L B

V R A M D is p la y

G r a p h ic s D is p la y

D IS P C N T R e g is t e r
2 D /3 D D is p la y
S e le c t io n fo r B G 0

D IS P C A P C N T R e g is t e r
S e le c t io n o f V R A M to w r i te c a p tu r e d a ta

D IS P C N T R e g is t e r
D is p la y V R A M S e le c t io n

D IS P C A P C N T R e g is t e r
C a p tu r e S o u r c e A S e le c t io n

D IS P C N T R e g is t e r
D is p la y M o d e S e le c t io n

S
E

L
C

A
P

B le n d in g

D IS P C A P C N T R e g is t e r
C a p tu r e M o d e S e le c t io n

D IS P C A P C N T R e g is t e r
C a p tu r e S o u r c e B S e le c t io n

S e le c to r
NTR-06-0180-001-A9 62 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.4.4.2 VRAM Display Mode
When the DISPCNT register is set for VRAM display mode, one frame’s worth of bitmap data stored in a
VRAM block is shown from the start of the next display. The DISPCNT register can specify which VRAM
block to use.

VRAM is displayed using a different system than the 2D circuitry and the 3D circuitry, so when the mode is
set to VRAM display mode, images can be created by the graphics circuitry and captured to VRAM at the
same time that images are being displayed. (See "Figure 4-1 : The Display System Block Diagram" on
page 48).

You can specify the same VRAM block for display and for capturing images.

For details about capturing images, see "4.5 Display Capture" on page 67.

The pixel data format for VRAM display mode is shown below.

VRAM Display Mode Data Format

Figure 4-6 shows the VRAM address map of the LCD pixels.

Figure 4-6 : The VRAM Address Map of the LCD Pixels

• VRAM display mode - Example

In "Figure 4-7 : An Example of the Motion Blur Effect that Uses the Display Capture" on page 64, the
image created by the graphic circuitry is put into VRAM using the capture feature, and then the image
is displayed with the mode set to VRAM Display. When the image is captured, a motion blur effect is
achieved by blending with the display-use VRAM.

BLUE GREEN RED

Pixel Color Data

15 14 10 9 8 7 5 4 0

Dot 0 1 2 3 253 254 255

Line 0 0h 2h 4h 6h 1FAh 1FCh 1FEh

1 200h 202h 204h 206h 3FAh 3FCh 3FEh

2 400h 402h 5FCh 5FEh

3 600h 602h 7FCh 7FEh

4 800h 9FEh

187 17600h 177FEh

188 17800h 17802h 179FCh 179FEh

189 17A00h 17A02h 17BFCh 17BFEh

190 17C00h 17C02h 17C04h 17C06h 17DFAh 17DFCh 17DFEh

191 17E00h 17E02h 17E04h 17E06h 17FFAh 17FFCh 17FFEh
© 2003-2006 Nintendo 63 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 4-7 : An Example of the Motion Blur Effect that Uses the Display Capture

V R A M - A
1 2 8 K B

V R A M - B
1 2 8 K B

V R A M - C
1 2 8 K B

V R A M - D
1 2 8 K B

S
EL

 V
R

AM

M a in M e m o r y
D is p la y F IF O

S
EL

 D
IS

P

C a p tu r e

M a in M e m o r y D is p la y

M
as

te
r B

rig
ht

ne
ss

 U
p/

D
ow

n

L o g ic

M e m o r y

O u tp u t

S
EL

 B
G

0

3 D S c r e e n

2 D S c r e e n
(B G + O B J)

B G 0

O B J

B G 3

B G 2

B G 1

La
ye

rin
g

an
d

C
ol

or
 S

pe
ci

al
Ef

fe
ct

s

M a in M e m o r y
D M A

S E L A

S E L B

V R A M D is p la y

G r a p h ic s D is p la y

D IS P C N T R e g is t e r
2 D /3 D D is p la y
S e le c t io n fo r B G 0

D IS P C A P C N T R e g is t e r
S e le c t io n o f V R A M to w r i t e c a p tu r e d d a ta

D IS P C N T R e g is t e r
D is p la y V R A M S e le c t io n

D IS P C A P C N T R e g is t e r
C a p tu r e S o u r c e A S e le c t io n

D IS P C N T R e g is t e r
D is p la y M o d e S e le c t io n

S
E

L
C

A
P

B le n d in g

D IS P C A P C N T R e g is t e r
C a p tu r e M o d e S e le c t io n

D IS P C A P C N T R e g is t e r
C a p tu r e S o u r c e B S e le c t io n

S e le c to r
NTR-06-0180-001-A9 64 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.4.4.3 Main Memory Display Mode
This mode enables the display of bitmap data held in main memory. When the DISPCNT register is set to
main memory display mode, the data held in the main memory display FIFO is transferred to the LCD
module at the beginning of the next display. A data request is sent to DMA for every data transfer.

There is a four-layer FIFO between the main memory display FIFO register and the LCD module, and the
LCD module takes four words at a time. For this reason, you should write four layers of data at a time to
the main memory display FIFO register.

To be more specific, after setting the DMA transfer bit width to 32 bits and the word count to 4, set the DMA
startup mode to main memory display mode. For this mode, be sure to set the DMA source address to the
main memory region.

Table 4-7 shows the DMA configuration when using the main memory display mode.

Table 4-7 : DMA Configuration when Using the Main Memory Display Mode

For details about the DMA configuration, see "7 DMA" on page 271.

Data from main memory is displayed using a system other than the 2D and 3D circuitry, so when the mode
is set to main memory display, images can be created by the graphics circuitry and captured to VRAM at
the same time that images are being displayed. (See "Figure 4-1 : The Display System Block Diagram" on
page 48.)

Main Memory Display FIFO Register
Name: DISP_MMEM_FIFO Address: 0x04000068 Attribute: R/W Initial value: 0x00000000

"Figure 4-8 : The LCD Pixel EVEN/ODD Map of the Main Memory Display FIFO Register" on page 66
shows the LCD pixel EVEN/ODD map of the main memory display FIFO register.

Setting Value

Source Address Main memory

Transfer Bit Width 32 bits

Word Count 4

BLUE GREEN RED BLUE GREEN RED

ODD EVEN

31 30 26 25 24 23 21 20 16 15 14 10 9 8 7 5 4 0
© 2003-2006 Nintendo 65 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 4-8 : The LCD Pixel EVEN/ODD Map of the Main Memory Display FIFO Register

Dot 0 1 2 3 253 254 255

Line 0 EVEN ODD EVEN ODD ODD EVEN ODD

1 EVEN ODD EVEN ODD ODD EVEN ODD

2 EVEN ODD EVEN ODD

3 EVEN ODD EVEN ODD

4 EVEN ODD

187 EVEN ODD

188 EVEN ODD EVEN ODD

189 EVEN ODD EVEN ODD

190 EVEN ODD EVEN ODD ODD EVEN ODD

191 EVEN ODD EVEN ODD ODD EVEN ODD
NTR-06-0180-001-A9 66 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.5 Display Capture
This feature enables 2D and 3D graphics and image output from VRAM and main memory to be read into
VRAM.

Only the image output on the Display Output A side (the 2D graphics engine) can be captured.

It also enables images from two sources to be blended and then captured.

DISPCAPCNT: Display Capture Control Register
Name: DISPCAPCNT Address: 0x04000064 Attribute: R/W Initial value: 0x00000000

• E[d31] : Display Capture Enable Flag

When the flag is set to 1, one screen's worth of data is captured from the next 0 line, and then the flag
is set to 0.

• MOD[d30–d29] : Capture Mode

0 Disable

1 Enable

00 Capture data from source A

01 Capture data from source B

10 Capture the result of blending data
from sources A and B11

E B A

MOD WSIZE WOFS DEST EVB EVA

31 24 23 16 15 8 7 0

Capture Enable Flag

Capture Mode

Capture Source VRAM
Address Offset

Capture Data Write Size

VRAM Selection for
Write Destination

Blending Factor on
Graphics Display Side

Blending Factor on
RAM Display Side

COFS SRC

Write Address Offset

412171819202125262730 29

Capture
Source

Selection
© 2003-2006 Nintendo 67 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• COFS[d27–d26] : Read Address Offset for Capture Data Source VRAM

Invalid in VRAM display mode.

If the offset exceeds 0x20000 during reading, the reading continues after wrapping to address
0x00000.

• SRC[d25–d24] : Capture Data Source Selection

B

A

• WSIZE[d21–d20] : Capture Size

Specifies the size when writing the capture data. With RAM captures, 1 line is always read as a
256-dot image, so you cannot blend and then capture (see Capture mode above) when the setting is
128x128 dots.

• WOFS[d19–d18] : Address Offset for Capture Data Write

This can specify the offset value for the address where data is written in the specified VRAM. If the
offset exceeds 0x20000 during writing, the writing continues after wrapping to address 0x00000.

00 0x00000

01 0x08000

10 0x10000

11 0x18000

0 VRAM

1 Main Memory

0 Graphics display screen (after 3D/2D blending)

1 3D screen

00 128x128 dots (0x08000 bytes)

01 256x64 dots (0x08000 bytes)

10 256x128 dots (0x10000 bytes)

11 256x192 dots (0x18000 bytes)

00 0x00000

01 0x08000

10 0x10000

11 0x18000
NTR-06-0180-001-A9 68 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• DEST[d17–d16] : Capture Data Write Destination VRAM Selection

The write destination VRAM must be allocated to the LCDC.

• EVB[d12–d08], EVA[d04–d00] : Blending Factors

Sets the blending factors for capture sources A and B. See below for the calculation method.

In VRAM display mode, you can set the same VRAM block for display VRAM and for writing the
captured image data.

Capture Data Format

Although 3D graphics are output in R:G:B=6:6:6 color, because capture occurs in R:G:B=5:5:5 color
(employing the upper 5 bits), the image gradient becomes a little coarse.

Figure 4-9 shows the LCD pixel map of the captured data when the capture size is 256 x 192 dots.

Figure 4-9 : The LCD Pixel Map of the Capture Data (When the Capture Size is 256 x 192 Dots)

00 VRAM-A

01 VRAM-B

10 VRAM-C

11 VRAM-D

A BLUE GREEN RED

α Pixel Color Data

15 14 10 9 8 7 5 4 0

Dot 0 1 2 3 253 254 255

Line 0 0h 2h 4h 6h 1FAh 1FCh 1FEh

1 200h 202h 204h 206h 3FAh 3FCh 3FEh

2 400h 402h 5FCh 5FEh

3 600h 602h 7FCh 7FEh

4 800h 9FEh

187 17600h 177FEh

188 17800h 17802h 179FCh 179FEh

189 17A00h 17A02h 17BFCh 17BFEh

190 17C00h 17C02h 17C04h 17C06h 17DFAh 17DFCh 17DFEh

191 17E00h 17E02h 17E04h 17E06h 17FFAh 17FFCh 17FFEh
© 2003-2006 Nintendo 69 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• How to calculate data to write

1. For data captured from source A:

CAP = Ca

Capture source A's alpha value is used for the alpha value.

2. For data captured from source B:

CAP = Cb

Capture source B's alpha value is used for the alpha value

3. For capturing data blended from sources A and B:

The alpha value is 1 when EVA is non-zero and capture source A's alpha value is 1, or when EVB
is non-zero and capture source B's alpha value is 1. In all other circumstances, the alpha value is
0.

CAP: The color to write (calculation results are rounded to the nearest integer)

Ca: A's capture source data color, EVA: Blending factor for A

Cb: B's capture source data color, EVB: Blending factor for B

Aa: A's alpha value: A's capture source alpha value.

Determined as shown below.

Ab: alpha value of B: alpha value of B's capture source

Note: When a conflict occurs between access to the display circuit VRAM and access to VRAM from the
CPU, the display circuit VRAM access takes precedence.

Because the dot clock of the LCD controller is 1/6 of a cycle of the image processing clock and the
system clock, the timing for the LCD controller to access the VRAM is once every six cycles.

If the VRAM of the capture is being displayed while display capturing, the frequency at which the
display circuit accesses the VRAM is doubled, and the VRAM is accessed with a timing of once
every three cycles.

With this timing, when simultaneously accessing from the CPU, the CPU access must wait one
cycle.

Capture Source A
Selection

3D Screen Alpha
Value Aa

0 - 1

1
0 0

1 - 31 1

() ()
16

EVBAbCbEVAAaCaCAP ××+××
=

NTR-06-0180-001-A9 70 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4.6 Master Brightness
The brightness up/down process for Image Output A is handled by the configuration of the
MASTER_BRIGHT register, while the brightness up/down process for Image Output B is handled by the
configuration of the DB_MASTER_BRIGHT register.

MASTER_BRIGHT: Master Brightness Up/Down Register
Name: MASTER_BRIGHT Address: 0x0400006C Attribute: R/W Initial value: 0x0000

DB_MASTER_BRIGHT: Master Brightness Up/Down B Register
Name: DB_MASTER_BRIGHT Address: 0x0400106C Attribute: R/W Initial value: 0x0000

The MASTER_BRIGHT and DB_MASTER_BRIGHT registers share identical configuration details.

• E_MOD [d15–d14] : Mode

Sets the mode for processing brightness up/down.

• E_VALUE [d04–d00] : Factor

Sets the factors as calculated below.

1. Brightness up computation

Rout = Rin + (63 – Rin) x (E_VALUE/16)

Gout = Gin + (63 – Gin) x (E_VALUE/16)

Bout = Bin + (63 – Bin) x (E_VALUE/16)

2. Brightness down computation

Rout = Rin – Rin x (E_VALUE/16)

Gout = Gin – Gin x (E_VALUE/16)

Bout = Bin – Bin x (E_VALUE/16)

The result of the Brightness Up and Down computation (Rout, Gout, and Bout) is rounded to the
nearest integer.

Setting Process

00 No change in brightness

01 Increase brightness

10 Decrease brightness

11 Setting prohibited

E_MOD E_VALUE

Mode Factor

15 14 4 0

E_MOD E_VALUE

Mode Factor

15 14 4 0
© 2003-2006 Nintendo 71 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 72 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5 2D Graphics
NITRO has two 2D graphics engines: 2D Graphics Engine A and 2D Graphics Engine B. 2D Graphics
Engine A can use 3D Graphics BG and large-screen 256-color Bitmap BG, but 2D Graphics Engine B
cannot. In the following sections, 2D Graphics Engine A is sometimes referred to as 2D_A and 2D
Graphics Engine B as 2D_B. Where register names differ for 2D Graphics Engine A and 2D Graphics
Engine B, the register name for 2D Graphics Engine B is given inside square brackets [].

5.1 Controlling the 2D Display
The display for each 2D graphics feature can be controlled and turned on or off independently. Control
register settings differ for 2D Graphics Engine A and 2D Graphics Engine B.

DISPCNT: Display Control Register (2D Graphics Engine A)
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

• [d15–d13] : Window Display Enable Flag

See "5.6 Windows" on page 142 to read about the window features.
• OW [d15] : OBJ Window Display Enable Flag

To display the OBJ Window requires enabling both the OBJ Window Display Enable Flag and the OBJ
Display Enable Flag.
• W1 [d14] : Window 1 Display Enable Flag

0 Disable display

1 Enable display

0 Disable display

1 Enable display

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

1213
© 2003-2006 Nintendo 73 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• W0 [d13] : Window 0 Display Enable Flag

• [d12–d08] : Display Selection Flag
• O [d12] : OBJ Display Enable Flag

• B3 [d11] : BG3 Display Enable Flag

• B2 [d10] : BG2 Display Enable Flag

• B1 [d09] : BG1 Display Enable Flag

• B0 [d08] : BG0 Display Enable Flag

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display
NTR-06-0180-001-A9 74 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
DB_DISPCNT: Display Control Register 1(2D Graphics Engine B)
Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000

• [d15–d13] : Window Display Enable Flag

See "5.6 Windows" on page 142 to read about the window features.
• OW [d15] : OBJ Window Display Enable Flag

To display the OBJ Window requires enabling both the OBJ Window Display Enable Flag and the OBJ
Display Enable Flag.
• W1 [d14] : Window 1 Display Enable Flag

• W0 [d13] : Window 0 Display Enable Flag

• [d12–d08] : Display Selection Flag
• O [d12] : OBJ Display Enable Flag

• B3 [d11] : BG3 Display Enable Flag

• B2 [d10] : BG2 Display Enable Flag

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display

0 Disable display

1 Enable display

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

OBJ Processing
during H-Blank Period

Display Mode 2D Display
Forced Blank

OBJ Mapping
Mode

Extended OBJ

13 12
© 2003-2006 Nintendo 75 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• B1 [d09] : BG1 Display Enable Flag

• B0 [d08] : BG0 Display Enable Flag

0 Disable display

1 Enable display

0 Disable display

1 Enable display
NTR-06-0180-001-A9 76 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2 BG

5.2.1 BG Mode
The BG modes that can be set for 2D Graphics Engine A and 2D Graphics Engine B are different.

5.2.1.1 2D Graphics Engine A
With 2D Graphics Engine A, BG0 can be displayed as either 2D or 3D. In addition, Large-Screen
256-Color Bitmap BG can be selected as the BG type for BG2.

DISPCNT: Display Control Register (2D Graphics Engine A)
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

• [d02–d00] : BG Mode

These bits set the BG mode number. The BG mode selects the BG types that can be used. See Table
5-1 for a list of BG modes for 2D Graphics Engine A.

The DISPCNT register can be used to select either Text BG or 3D BG as the BG type for BG0. See
chapter "6 3D Graphics" on page 153 for details on 3D BG display.

Table 5-1: List of BG Modes (2D Graphics Engine A)
BG Mode Number BG0 BG1 BG2 BG3

0 Text BG/3D BG Text BG Text BG Text BG

1 Text BG/3D BG Text BG Text BG Affine BG

2 Text BG/3D BG Text BG Affine BG Affine BG

3 Text BG/3D BG Text BG Text BG Affine Extended BG

4 Text BG/3D BG Text BG Affine BG Affine Extended BG

5 Text BG/3D BG Text BG Affine Extended BG Affine Extended BG

6 3D BG — Large-Screen
256-Color Bitmap BG —

7 Prohibited Setting

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

2

© 2003-2006 Nintendo 77 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.1.2 2D Graphics Engine B

DB_DISPCNT: Display Control Register 1 (2D Graphics Engine B)
Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000

• [d02–d00] : BG Mode

These bits set the BG mode number. The BG mode selects the BG types that can be used. See Table
5-2 for a list of BG modes for 2D Graphics Engine B.

Note: Unlike 2D Graphics Engine A, Large-screen 256-Color Bitmap BG cannot be set as the BG
type for BG2. Furthermore, 3D BG display cannot be set as the BG type for BG0.

Table 5-2 : List of BG Modes (2D Graphics Engine B)
BG Mode Number BG0 BG1 BG2 BG3

0 Text BG Text BG Text BG Text BG

1 Text BG Text BG Text BG Affine BG

2 Text BG Text BG Affine BG Affine BG

3 Text BG Text BG Text BG Affine Extended BG

4 Text BG Text BG Affine BG Affine Extended BG

5 Text BG Text BG Affine Extended BG Affine Extended BG

6 Prohibited Setting

7 Prohibited Setting

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

OBJ Processing
during H-Blank Period

Display Mode 2D Display
Forced Blank

OBJ Mapping
Mode

Extended OBJ

2

NTR-06-0180-001-A9 78 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.1.3 Basic Features for Each Type of BG
Each BG type has its own special features described in Table 5-3.

Table 5-3 : Basic Features of BG Types
BG Type Features

3D BG
This type can display images generated by the 3D graphics engine.

It can be displayed with other BG screens according to alpha-blending and priority settings.
2D Graphics Engine B cannot use this type.

Text BG
This type is a character format BG.

Text BG is the only BG type that can handle characters defined in 16 colors and control
VRAM consumption, but it cannot accommodate affine transformations.

Affine BG This type is the character format BG that can accommodate affine transformations.
It cannot perform character-unit processes (such as HV Flips).

Affine Extended BG

Three types are available:
• Character BG that can use 256 colors x 16 palettes
• 256-Color Bitmap BG
• Direct Color Bitmap BG that can specify color directly

Large-Screen
256-Color Bitmap BG

This type is the Large-Screen Bitmap BG.
Because one screen makes full use of the maximum capacity of BG-VRAM (512 KB), it

cannot be used together with other BGs. However, it can be used together with a 3D screen.
2D Graphics Engine B cannot use this type.
© 2003-2006 Nintendo 79 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.1.4 Specifications for Different BG Types
The specifications for the different types of BG are shown in Table 5-4.

Table 5-4 : Specifications for BG types

Note: 2D Graphics Engine B cannot set 3D BG and Large-Screen 256-Color Bitmap BG as BG types.

Note: Because the allocation of BG-VRAM to 2D Graphics Engine B is limited, the following settings
cannot be used:
• 256-Color Bitmap: 512x512
• Direct Color Bitmap: 512x256 and 512x512

Category Character BG Bitmap BG

BG Type

Specs

3DBG Text BG Affine BG

Affine Extended BG Large-
Screen 256-

Color
Bitmap BG

256-Color x
16 Palettes 256-Color Direct

Color

Screen Size 256x192

256x256
512x256
256x512
512x512

128x128
256x256
512x512

1,024x1,024

128x128
256x256
512x512

1,024x1,024

128x128
256x256
512x256
512x512

128x128
256x256
512x256
512x512

512x1,024
1,024x512

Specifiable
Character Count — 1,024 256 1,024 — — —

Number of
Colors/Palettes 262,144

16/16
256/1

256/16
256/1 256/16 256/1 32,768 256/1

Affine X X X X X

HV Flip X X

H Scroll X X X X X X X

V Scroll X X X X X X

Mosaic X X X X X X

Fade-in/Fade-out X X X X X X X

Alpha Blending X X X X X X X

Priority X X X X X X X
NTR-06-0180-001-A9 80 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.2 BG Control
There are four BG control registers that correspond to the number of BG screens. With the 2D Graphics
Engine A, the BG screens are controlled with the BG0CNT, BG1CNT, BG2CNT, and BG3CNT
registers.With the 2D Graphics Engine B, the BG screens are controlled with the DB_BG0CNT,
DB_BG1CNT, DB_BG2CNT, and DB_BG3CNT registers.

Note: 2D Graphics Engine A and 2D Graphics Engine B use different register names as well as different
methods to calculate base address values for BG screen data and BG character data.

BGx(x=0, 1) Control Register

• [d15–d14] : Screen Size

• [d13] : BG Extended Palette Slot Selection

This bit specifies the Extended Palette Slot Number used when BG extended palettes are enabled.
The settings differ for BG0 and BG1. Extended palettes are enabled/disabled with the DISPCNT
[DB_DISPCNT] register. See "2.2.1 VRAM" on page 17 for more information on the palette slot
memory map.
1. BG0CNT [DB_BG0CNT]

2. BG1CNT [DB_BG1CNT]

Name Address Attribute Initial Value

(2D_A) BGxCNT(x=0, 1) 0x04000008, 0x0400000A R/W 0x0000

(2D_B) DB_BGxCNT(x=0, 1) 0x04001008, 0x0400100A R/W 0x0000

Screen Size
Settings

Text BG

Screen Size Screen Data Size

00 256x256 2 KB

01 512x256 4 KB

10 256x512 4 KB

11 512x512 8 KB

0 Slot 0

1 Slot 2

0 Slot 1

1 Slot 3

SB4 SB3 SB2 SB1 SB0 CM CB3 CB2 CB1 CB0

Screen Base Block Character Base Block Priority

15 8 7 0

Screen Size

BG Extended Palette
Slot Selection

Color Mode

Mosaic

14 13 12 6 5 2 1
© 2003-2006 Nintendo 81 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• SB4-SB0 [d12–d08] : Screen Base Block

These bits specify (in 2-KB units) the starting block in VRAM where screen data is stored. When
screen data is actually referenced, the starting address is calculated as follows.

2D Graphics Engine A

The starting address is the sum of the DISPCNT register's screen base offset value with a 64-KB offset
and the screen base block with a 2-KB offset.

(screen base offset x 0x10000) + (screen base block x 0x800)

2D Graphics Engine B

The starting address is the screen base block with a 2-KB offset.

(screen base block x 0x800)

• CM [d07] : Color Mode

This bit specifies whether the screen data references BG character data in 16-color or 256-color
format.

• [d06] : Mosaic

This bit controls whether the mosaic process for BG is on or off. Set the mosaic size with the MOSAIC
[DB_MOSAIC] register.

• CB3-CB0 [d05–d02] : Character Base Block

These bits specify (in 16-KB units) the starting block in VRAM for storing character data. When
character data is actually referenced, the starting address is calculated as follows.

2D Graphics Engine A

The starting address is the sum of the DISPCNT register's character base offset value with a 64-KB
offset and the character base block with a 16-KB offset.

(character base offset x 0x10000) + (character base block x 0x4000)

2D Graphics Engine B

The starting address is the character base block with a 16-KB offset.

(character base block x 0x4000)

• [d01–d00] : Priority

The default order of priority among the BG screens is BG0 > BG1 > BG2 > BG3 (when priority settings
are the same). However, this order can be changed. Priorities of 0 (highest) to 3 (lowest) can be set.
Be careful of the pixel specifications to which color special effects are applied when changing BG
priorities.

0 16-color mode

1 256-color mode
NTR-06-0180-001-A9 82 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
BGx(x=2, 3) Control Register

The bit definitions for Color Mode, Mosaic, Character Base Block, and Priority are the same as for the BGx
(x=0, 1) Control Registers described above. BG2 uses Extended Palette Slot 2 and BG3 uses Extended
Palette Slot 3 when extended palettes are enabled. The extended palette numbers used by BG2 and BG3
cannot be changed. The extended palettes can be enabled/disabled with the DISPCNT [DB_DISPCNT]
register.

• [d15–d14] : Screen Size

The screen sizes that can be configured depend on the BG type and are described in Table 5-5 and
"Table 5-6 : Screen Sizes (2D Graphics Engine B)" on page 84.

Note: 2D Graphics Engine A and 2D Graphics Engine B accommodate different combinations of
screen sizes and BG types that can be configured. 2D Graphics Engine B cannot set Large-
Screen 256-Color Bitmap BG as the BG type. In addition, because a maximum of 128 KB of
BG-VRAM can be allocated to 2D Graphics Engine B, screen sizes exceeding 128 KB are pro-
hibited.

Table 5-5 : Screen Sizes (2D Graphics Engine A)

Note: The screen size is enclosed in parentheses () and the bitmap data size in angle brackets <>.

Name Address Attribute Initial Value

(2D_A) BGxCNT(x=2, 3) 0x0400000C, 0x0400000E R/W 0x0000

(2D_B) DB_BGxCNT(x=2, 3) 0x0400100C, 0x0400100E R/W 0x0000

Screen Size
Settings Text BG Affine BG

Affine Extended BG
Large-Screen

256-Color
Bitmap BG

256-Color x 16-
Palette

Character BG

256-Color
Bitmap BG

Direct-Color
Bitmap BG

00 256x256
(2 KB)

128x128
(256 bytes)

128x128
(512 bytes)

128x128
 <16 KB >

128x128
 <32 KB >

512x1024
 <512 KB >

01 512x256
(4 KB)

256x256
(1 KB)

256x256
(2 KB)

256x256
 <64 KB >

256x256
 <128 KB >

1024x512
 <512 KB >

10 256x512
(4 KB)

512x512
(4 KB)

512x512
(8 KB)

512x256
 <128 KB >

512x256
 <256 KB > —

11 512x512
(8 KB)

1024x1024
(16 KB)

1024x1024
(32 KB)

512x512
 <256 KB >

512x512
 <512 KB > —

SB4 SB3 SB2 SB1 SB0 CM CB3 CB2 CB1 CB0

Screen Base Block Character Base Block Priority

15 8 7 0

Screen Size

Out-of-Area
Processing

Color Mode

Mosaic

14 13 12 6 5 2 1

Extended BG Type Selection
(only for Extended BG)
© 2003-2006 Nintendo 83 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Table 5-6 : Screen Sizes (2D Graphics Engine B)

Note: The screen size is enclosed in parentheses () and the bitmap data size in angle brackets <>.

• [d13] : Out-of-Area Processing

This bit selects either to make out-of-area regions transparent or to wrap around and display when the
BG screen does not lie entirely within the display screen because of affine transformations.

The difference between the two Out-of-Area processing methods is shown in Figure 5-1.

Figure 5-1 : Out-of-Area Processing Method Differences

• SB4-SB0 [d12–d08] : Screen Base Block

Calculation of the base address for the screen base block differs according to the BG mode.

1. Character BG

These bits specify (in 2-KB units) the starting block in VRAM where screen data is stored. When
screen data is actually referenced, the starting address is calculated as follows.

Screen Size
Settings Text BG Affine BG

Affine Extended BG

256-Color x 16-
Palette

Character BG

256-Color
Bitmap BG

Direct-Color
Bitmap BG

00 256x256
(2 KB)

128x128
(256 bytes)

128x128
(512 bytes)

128x128
 <16 KB >

128x128
 <32 KB >

01 512x256
(4 KB)

256x256
(1 KB)

256x256
(2 KB)

256x256
 <64 KB >

256x256
 <128 KB >

10 256x512
(4 KB)

512x512
(4 KB)

512x512
(8 KB)

512x256
 <128 KB >

Prohibited
Setting

11 512x512
(8 KB)

1024x1024
(16 KB)

1024x1024
(32 KB)

Prohibited
Setting

Prohibited
Setting

0 Transparent display

1 Wraparound display

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

Transparent Display of Out-of-Area Part Wraparound Display of Out-of-Area Part

Display
Screen

BG
Screen

BG
Screen

Display
Screen

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO

NITRO NITRO NITRO
NTR-06-0180-001-A9 84 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2D Graphics Engine A

The starting address is the sum of the DISPCNT register's screen base offset value with a 64-KB
offset and the value of the screen base block with a 2-KB offset.

(screen base offset x 0x10000) + (screen base block x 0x800)

2D Graphics Engine B

The starting address is the screen base block with a 2-KB offset.

(screen base block x 0x800)

2. 256-Color Bitmap BG and Direct Color Bitmap BG

These bits specify (in 16-KB units) the offset address in BG-VRAM where the bitmap data is
stored. Because there is no relation to the screen base offset value in the DISPCNT register, the
same calculation for the BG bitmap data starting address is used for both 2D Graphics Engine A
and 2D Graphics Engine B.

2D Graphics Engine A and 2D Graphics Engine B

(screen base block x 0x4000)

3. Large-Screen 256-Color Bitmap BG

The screen base block value is invalid for 2D Graphics Engine A.

The BG mode cannot be set to large-screen 256-color bitmap BG for 2D Graphics Engine B.

• [d07, d02] : Affine Extended BG Type Selection (only with Affine Extended BG)

Note: When CM = 0, a unique 256-color x 16-palette Character BG is used and CB3-CB0 are han-
dled as normal character base blocks.

CM CB0 Affine Extended BG Type

0 (See note) 256-color x 16-palette Character BG

1 0 256-color bitmap BG

1 1 Direct-color bitmap BG
© 2003-2006 Nintendo 85 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.2.1 Screen Sizes and Display Screens

5.2.2.1.1 Text BG

Text BG screen sizes are shown in Figure 5-2.

Figure 5-2 : Text BG Screen Size

Screen 0
(256× 256)

Screen 0
(256× 256)

Screen 0
(256× 256)

Screen 0
(256× 256)

D isplay
Screen

(256× 192)

Screen S ize 256× 256 Screen S ize 512× 256

Screen S ize 256× 512 Screen S ize 512× 512

Screen 0
(256× 256)

Screen 1
(256× 256)

Screen 1
(256× 256)

Screen 0
(256× 256)

D isplay
Screen

(256× 192)

Screen 1
(256× 256)

Screen 1
(256× 256)

Screen 0
(256× 256)

Screen 0
(256× 256)

D isplay
Screen

(256× 192)

Screen 1
(256× 256)

Screen 3
(256× 256)

Screen 2
(256× 256)

Screen 0
(256× 256)

D isplay
Screen

(256× 192)

Screen 0
(256× 256)

Screen 2
(256× 256)

Screen 1
(256× 256)

Screen 0
(256× 256)

Screen 0
(256× 256)
NTR-06-0180-001-A9 86 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.2.1.2 Affine BG

Affine BG screen sizes are shown in Figure 5-3.

Figure 5-3 : Affine BG Screen Size

Screen 0
or

Transparent

Screen 0
or Transparent

Screen Size 128×128 Screen Size 256×256

Screen Size 512×512
Screen Size 1024×1024

Screen 0
(128×128)

Screen 0
or

TransparentDisplay
Screen

(256×192)

Screen 0
or

Transparent

Screen 0
or

Transparent

Screen 0
or

Transparent

Screen 0
(256×256)

Display
Screen

(256×192)

Screen 0
or Transparent

Screen 0
or Transparent

Screen 0
or Transparent

Screen 0
(512×512)

Display
Screen

(256×192)

Screen 0
or Transparent

Screen 0
(1024×1024)

Display
Screen

(256×192)
© 2003-2006 Nintendo 87 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.3 Character BG
For character BG, BG screen composition elements are treated as characters of 8 x 8 dots (8x8-dot).
Accordingly, character data is required to display the BG. In addition, character index data for each 8x8-dot
unit is required; this character index data is called screen data.

Note: 2D Graphics Engine B differs from 2D Graphics Engine A in that there are no settings for the BG
screen base offset and BG character base offset.

Display Control Register
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

• [d29–d27] : BG Screen Base Offset

These bits offset (in 64-KB units) the base address of the screen data set with the BG Control Register.

Accordingly, the base address of the BG screen data is calculated as follows:

The value set in the BG Control Register + (BG screen base offset x 0x10000)

An arbitrary base address can be specified from a maximum 512 KB of BG-VRAM space.

• [d26–d24] : BG Character Base Offset

These bits offset (in 64-KB units) the base address of the screen data set with the BG Control Register.

Accordingly, the base address of the BG character data is calculated as follows:

The value set in the BG Control Register + (BG character base offset x 0x10000)

An arbitrary base address can be specified from a maximum 512 KB of BG-VRAM space.

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

29 27 26
NTR-06-0180-001-A9 88 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.3.1 VRAM Maps of BG Data
Character BG requires both BG screen data and BG character data. Store both the BG screen data and
the BG character data in VRAM that was allocated to BG-VRAM by the RAM Bank Control Register. BG-
VRAM can be assigned up to a maximum of 512 KB with 2D Graphics Engine A and up to a maximum of
128 KB with 2D Graphics Engine B.
1. BG Character Data

With 2D Graphics Engine A, the starting address for referencing BG character data can be set by
specifying the DISPCNT register's character base offset and the BG Control register's character base
block. With 2D Graphics Engine B, there is no setting for character base offset. The VRAM offset for
BG character data is shown in Figure 5-4.

The volume of data depends on the amount of registered character data and the format (Color Mode:
256 or 16 colors).

Figure 5-4 : VRAM Offset for BG Character Data

Note: For 2D Graphics Engine A, the maximum amount of VRAM that can be used for BG character
data is 256 KB because the DISPCNT register's base offset cannot be set for each BG screen.

For 2D Graphics Engine B, the maximum amount of VRAM that can be used for BG character
data is 128 KB because there are limitations on the size of BG-VRAM that can be allocated.

BG Character Data
Base Blocks

Base Offset 3

Base Offset 2

Base Offset 1

Base Offset 0

Base Offset 7

Base Offset 6

Base Offset 5

Base Offset 4

0x00000

0x10000

0x20000

0x30000

0x40000

0x50000

0x60000

0x70000

0x80000

Base Block 3

Base Block 2

Base Block 1

Base Block 0

Base Offset in VRAM

Base Block 7

Base Block 6

Base Block 5

Base Block 4

0000h

4000h

8000h

C000h

20000h

1C000h

18000h

14000h

10000h

Base Block 11

Base Block 10

Base Block 9

Base Block 8

Base Block 15

Base Block 14

Base Block 13

Base Block 12

24000h

28000h

2C000h

30000h

40000h

3C000h

38000h

34000h
© 2003-2006 Nintendo 89 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
2. BG Screen Data

For 2D Graphics Engine A, the starting address for referencing BG screen data can be set by
specifying the DISPCNT register's screen base offset and the BG Control register's screen base block.
With 2D Graphics Engine B, there is no setting for the screen base offset. The VRAM offset for BG
screen data is shown in Figure 5-5.

The volume of data depends on the BG type (Text BG or Affine BG) and the screen size.

Figure 5-5 : VRAM Offset for BG Screen Data

Note: For 2D Graphics Engine A, the maximum amount of VRAM that can be used for BG screen
data is 64 KB because the DISPCNT register's base offset cannot be set for each BG screen.

With 2D Graphics Engine B, the maximum amount of VRAM that can be used for BG screen
data is 64 KB.

BG Screen Data
 Base Blocks

Base Offset 3

Base Offset 2

Base Offset 1

Base Offset 0

Base Offset 7

Base Offset 6

Base Offset 5

Base Offset 4

0x00000

0x10000

0x20000

0x30000

0x40000

0x50000

0x60000

0x70000

0x80000

Base Block 0

Base Block 7

Base Block 8

Base Block 15

Base Block 16

Base Block 23

Base Block 24

Base Block 31

Base Offsets in VRAM

800h

3800h

4800h

7800h

8800h

B800h

C800h

F800h

4000h

8000h

C000h

10000h

000h
NTR-06-0180-001-A9 90 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.3.2 Text BG

5.2.3.2.1 Screen Data Format

Store the BG screen data starting from the starting address of the BG screen base block specified by the
BG Control Register. BG screen data for Text BG screens is configured using the following format:

Text BG Screen Data

• [d15–d12] : Color Palette

Palettes applied to characters are specified in the range of 0-15. The Color Palette specification is
enabled with 256 colors x 16 palettes or 16 colors x 16 palettes, but it is disabled with 256 colors x 1
palette.

• [d11–d10] : Flip
• VF: Vertical Flip Flag HF: Horizontal Flip Flag

• [d09–d00] : Character Name

These bits specify the character number of the character that serves as the origin of the starting
address for the character base block specified by the BG Control Register.

0 Do not flip

1 Flip

VF HF

Color Palette Flip Character Name

15 12 11 10 9 8 7 0
© 2003-2006 Nintendo 91 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.3.2.2 Screen Data Address Mapping

1. 256x256-Dot Screen Size

Figure 5-6 shows the address map for screen data with a 256x256-dot screen size.

Figure 5-6 : 256x256-Dot Address Mapping (Text BG)

2. 256x512-Dot Screen Size

Figure 5-7 shows the address map for screen data with a 256x512-dot screen size.

Figure 5-7 : 256x512-Dot Address Mapping (Text BG)

192 Dots
(24 Blocks)

000h 002h

7C0h 7C2h 7C4h 7FEh

256 Dots
(32 Blocks)

256 Dots
(32 Blocks)

040h 042h 044h

004h

07Eh

03Eh

5C0h 5C2h 5C4h 5FEh

Display Region

192 Dots
(24 Blocks)

000h 002h

7C0h 7C2h 7C4h 7FEh

800h 83Eh

FC0h FFEh

256 Dots
(32 Blocks)

256 Dots
(32 Blocks)

512 Dots
(64 Blocks)

040h 042h 044h

004h

07Eh

03Eh

5C0h 5C2h 5C4h 5FEh

Display Region
NTR-06-0180-001-A9 92 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
3. 512x256-Dot Screen Size

Figure 5-8 shows the address map for screen data with a 512x256-dot screen size.

Figure 5-8 : 512x256-Dot Address Mapping (Text BG)

4. 512x512-Dot Screen Size

Figure 5-9 shows the address map for screen data with a 512x512-dot screen size.

Figure 5-9 : 512x512-Dot Address Mapping (Text BG)

000h 002h

7C0h 7C2h 7C4h 7FEh

256 Dots
(32 Blocks)

256 Dots
(32 Blocks)

040h 042h 044h

004h

07Eh

03Eh

5C0h 5C2h 5C4h 5FEh

800h

FC0h FFEh

83Eh

512 Dots
(64 Blocks)

256 Dots
(32 Blocks)

Display Region

192 Dots
(24 Blocks)

256 Dots
(32 Blocks)

256 Dots
(32 Blocks)

512 Dots
(64 Blocks)

000h 002h

7C0h 7C2h 7C4h 7FEh

256 Dots
(32 Blocks)

040h 042h 044h

004h

07Eh

03Eh

5C0h 5C2h 5C4h 5FEh

Display Region

800h

FC0h FFEh

83Eh

512 Dots
(64 Blocks)

256 Dots
(32 Blocks)

1000h

17C0h 17FEh

103Eh 1800h

1FFEh

183Eh

1FC0h

192 Dots
(24 Blocks)
© 2003-2006 Nintendo 93 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.3.2.3 Character Data Formats

The character data formats for Text BG 16-color mode and Text BG 256-color mode are shown below. The
Character Display table shows the case when an 8x8-dot character is defined.

5.2.3.2.3.1 16-Color Mode

The character data format for 16-color mode, correspondence between character display and pixel data,
and address mapping (Figure 5-10) are shown below.

16-Color Mode Character Data Format

Character Display

Figure 5-10 : Character Data Address Mapping (Text BG 16-Color Mode)

P0 P1 P2 P3

P3 P2 P1 P0

4 pixels worth of data (4 bits/pixel)

15 12 11 8 7 4 3 0

4 bits of data for each dot
(specifies 1 of 16 colors)

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

Byte 0

4

8

28

20

16

12

24

1

5

9

29

13

17

21

25

2

6

10

14

18

22

26

30

3

7

11

15

19

23

27

31

8 Dots

8 Dots
NTR-06-0180-001-A9 94 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.3.2.3.2 256-Color Mode

The character data format for 256-color mode, correspondence between character display and pixel data,
and address mapping (Figure 5-11) are shown below.

256-Color Mode Character Data Format

Character Display

Figure 5-11 : Character Data Address Mapping (Text BG 256-Color Mode)

P0 P1

P1 P0

2 pixels worth of data (8 bits/pixel)

15 12 11 8 7 4 3 0

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Byte 0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

8 bits of data for each dot
(specifies 1 of 256 colors)

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

8 Dots

8 Dots
© 2003-2006 Nintendo 95 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.3.3 Affine BG
This character format BG type can be rotated and scaled.

Note: Affine BG can be set only with BG2 and BG3. The color mode for Affine BG screens is fixed to
256-color mode. Consequently, the BG Control Register's color-mode setting is disabled.
Furthermore, horizontal and vertical flips cannot be performed on Affine BG.

5.2.3.3.1 Screen Data Format

Store the BG screen data starting from the starting address of the BG screen base block specified by the
BG Control register.

BG screen data for Affine BG screens is configured using the following format:

Affine BG Screen Data

• [d07–d00] : Character Name

These bits specify the character number of the character that serves as the origin of the starting
address for the character base block specified by the BG Control Register.

Character Name

7 0
NTR-06-0180-001-A9 96 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.3.3.2 Screen Data Address Mapping

1. 128X128-Dot Screen Size

Figure 5-12 shows the address map for screen data with a 128x128-dot screen size.

Figure 5-12 : 128X128-Dot Address Mapping (Affine BG)

2. 256x256-Dot Screen Size

Figure 5-13 shows the address map for screen data with a 256x256-dot screen size.

Figure 5-13 : 256x256-Dot Address Mapping (Affine BG)

192 Dots
(24 Blocks)

000h 001h

128 Dots
(16 Blocks)

128 Dots
(16 Blocks)

010h 011h 01Fh

00Fh

0F0h 0F1h 0FFh

Display Region

192 Dots
(24 Blocks)

000h 001h

3E0h 3E1h 3E2h 3FFh

256 Dots
(32 Blocks)

256 Dots
(32 Blocks)

020h 021h 022h

002h

03Fh

01Fh

2E0h 2E1h 2E2h 2FFh

Display Region
© 2003-2006 Nintendo 97 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
3. 512x512-Dot Screen Size

Figure 5-14 shows the address map for screen data with a 512x512-dot screen size.

Figure 5-14 : 512x512-Dot Address Mapping (Affine BG)

192 Dots
(24 Blocks)

7FFh

020h000h 001h

512 Dots
(64 Blocks)

040h 041h 042h

002h

05Fh

01Fh

5C0h 5C1h 5C2h 5DFh

Display Region

03Fh

07Fh

5FFh

060h

5E0h

7C0h 7C1h 7C2h 7DFh 7E0h

FFFhFC0h FC1h FC2h FDFh FE0h

83Fh820h800h 81Fh801h 802h

256 Dots
(32 Blocks)

512 Dots
(64 Blocks)
NTR-06-0180-001-A9 98 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4. 1024x1024-Dot Screen Size

Figure 5-15 shows the address map for screen data with a 1024x1024-dot screen size.

Figure 5-15 : 1024x1024-Dot Address Mapping (Affine BG)

192 Dots
(24 Blocks)

020h000h 001h

1024 Dots
(128 Blocks)

1024 Dots
(128 Blocks)

080h 081h 082h

002h

09Fh

01Fh

B80h B81h B82h B9Fh

Display Region

07Fh

BFFh

0A0h

BA0h

0FFh

FFFhFC0h FC1h FC2h

256 Dots
(32 Blocks)
© 2003-2006 Nintendo 99 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.3.3.3 Character Data Format

The character data format for Affine BG screens is shown below. The Character Display table shows the
case when an 8x8-dot character is defined. Figure 5-16 shows the character data address mapping.

Character Data Format

Character Display

Figure 5-16 : Character Data Address Mapping (Affine BG)

P0 P1

P1 P0

2 pixels worth of data (8 bits/pixel)

15 12 11 8 7 4 3 0

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Byte 0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

8 bits of data for each dot
(specifies 1 of 256 colors)

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

8 Dots

8 Dots
NTR-06-0180-001-A9 100 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.3.4 256-Color x 16-Palette Character BG (Affine Extended BG)
Select 256-Color x 16-Palette Character BG with the BG Control Register. Select the 256-Color x 16-
Palette Character BG by selecting Affine Extended BG as the BG type and setting the BG Control Register
Color Mode to 0.

Note: 256-Color x 16-Palette Character BG can be set only for BG2 and BG3.

5.2.3.4.1 Screen Data Format

256-Color x 16-Palette BG Screen Data

• [d15–d12] : Color Palette

When enabled, extended palettes applied to characters are specified in the range of 0-15. When
extended palettes are disabled, standard palettes are used. Extended palettes are enabled/disabled
with the DISPCNT [DB_DISPCNT] Register.

• [d11–d10] : Flip
• VF: Vertical Flip Flag HF: Horizontal Flip Flag

• [d09–d00] : Character Name

These bits specify the character number of the character that serves as the origin of the starting
address for the character base block specified by the BG Control Register.

0 Do not flip

1 Flip

VF HF

Color Palette Flip Character Name

15 12 11 10 9 8 7 0
© 2003-2006 Nintendo 101 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.3.4.2 Character Data Format

Character data format is the same as for 256-Color Mode Text BG.

Figure 5-17 shows the character data address mapping.

Character Data Format

Character Display

Figure 5-17 : Character Data Address Mapping (256-Color x 16-Palette Character BG)

P0 P1

P1 P0

2 pixels worth of data (8 bits/pixel)

15 12 11 8 7 4 3 0

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Byte 0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

8 bits of data for each dot
(specifies 1 of 256 colors)

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

8 Dots

8 Dots
NTR-06-0180-001-A9 102 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.4 Bitmap BG
For Bitmap BG, BG screen composition elements are treated as pixels and the contents of VRAM (frame
buffer) are displayed as color data for each individual screen pixel.

Note: 256-Color Bitmap BG and Direct-Color Bitmap BG can be set only for BG2 and BG3. Large-
Screen 256-Color Bitmap BG can be set only for BG2 with the 2D Graphics Engine A.

5.2.4.1 256-Color Bitmap BG (Affine Extended BG)
Select 256-Color Bitmap BG with the BG Control Register.

Select the 256-Color Bitmap BG by selecting Affine Extended BG as the BG type and setting the BG
Control Register Color Mode to 1 and the Character Base Block CB0 to 0.

5.2.4.1.1 Pixel Data Format

The pixel data format for 256-color Bitmap BG is shown below.

256-Color Bitmap BG Pixel Data Format

5.2.4.1.2 Pixel Data VRAM Map

The screen base address set in the BG Control Register specifies (in 16-KB units) the address in VRAM
where the bitmap data is stored. The DISPCNT register's screen base offset value is invalid.

5.2.4.2 Direct-Color Bitmap BG (Affine Extended BG)
Select the Direct-Color Bitmap BG with the BG Control Register.

Direct-Color Bitmap BG can be selected by selecting Affine Extended BG as the BG type and setting the
BG Control Register Color Mode to 1 and the Character Base Block CB0 to 1.

5.2.4.2.1 Pixel Data Format

The pixel data format for Direct-Color Bitmap BG is shown below.

Direct-Color Bitmap BG Pixel Data Format

5.2.4.2.2 Pixel Data VRAM Map

The screen base address set in the BG Control Register specifies (in 16-KB units) the address in VRAM
where the bitmap data is stored. The DISPCNT register's screen base offset value is invalid.

Color Number

7 0

α BLUE GREEN RED

15 8 7 014 10 9 5 4
© 2003-2006 Nintendo 103 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.4.3 Large-Screen 256-Color Bitmap BG
The Large-Screen 256-Color Bitmap BG cannot be used with 2D Graphics Engine B.

5.2.4.3.1 Pixel Data Format

The pixel data format for Large-Screen 256-Color Bitmap BG is shown below.

Large-Screen 256-Color Bitmap BG Pixel Data Format

5.2.4.3.2 Pixel Data VRAM Map

The starting address for pixel data is fixed to the starting address of BG-VRAM (0x6000000). Both the BG
Control Register's screen base address and the DISPCNT Register's screen base offset value are invalid.

Color Number

7 0
NTR-06-0180-001-A9 104 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.2.5 BG Scroll
For each Text BG screen, the display screen and its offset value can be set in dots.

The Offset register is valid only for Text BG. Set the BG reference starting point (see "5.2.6 BG Rotation
and Scaling (Affine Transformation)" on page 106) to display Affine BG and Bitmap Mode BG with an
offset.

BG Offset Setting Registers

Figure 5-18 shows the offset for BG scrolling.

Figure 5-18 : Offset Schematic

Name Address Attribute Initial Value

(2D_A) BGxOFS(x=0 - 3) 0x04000010, 0x04000014, 0x04000018, 0x0400001C W 0x00000000

(2D_B) DB_BGxOFS(x=0 - 3) 0x04001010, 0x04001014, 0x04001018, 0x0400101C W 0x00000000

V Offset H Offset

31 24 23 16 15 8 7 0

Screen

H Offset

V
 O

ffs
et

Display Screen
© 2003-2006 Nintendo 105 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.2.6 BG Rotation and Scaling (Affine Transformation)
The BG pixels are referenced horizontally in sequence from the top-left when a BG is displayed, so a
rotated BG can be displayed by rotating the reference direction.

Figure 5-19 shows the rotating and scaling process for a BG.

Figure 5-19 : BG Rotation and Scaling

Note: α is the scale ratio along the x-axis; β is the scale ratio along the y-axis.

The (x2, y2) coordinates correspond to the (x1, y1) coordinates after affine transformation and are
calculated with the following formula:

dx (reference distance in x-direction for same line) = (1/α)cosθ
dy (reference distance in y-direction for same line) = - (1/β)sinθ
dmx (reference distance in x-direction for next line) = (1/α)sinθ
dmy (reference distance in y-direction for next line) = (1/β)cosθ

Horizontal Line

After Rotation

BG Data

Reference Region

Horizontal Line
Before Rotation

BG Display Screen
dx

dydmy

dmx

Origin (0,0) X Axis

Y
 A

xi
s

?

?

Coordinates
before Rotation

(x1, y1)

Coordinates for
Center of Rotation

(x0, y0)

Coordinates
after Rotation

(x2, y2)

x2

y2

A B

C D

x1 x0–
y1 y0–

x0

y0
+=

A
1
α
--- θcos B

1
α
--- θsin= C

1
β
--- θsin–= D

1
β
--- θcos=, , ,=
NTR-06-0180-001-A9 106 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• BG Rotation and Scaling Process

1. Using the equation above, calculate the results of affine transformation for the top-left coordinates
of the display screen and then set the results as the BG data reference start point in the following
registers:
• 2D Graphics Engine A BGxX, BGxY Registers (x=2, 3)
• 2D Graphics Engine B DB_BGxX, DB_BGxY Registers (x=2, 3)

Also, refer to "Figure 5-19 : BG Rotation and Scaling" on page 106 and set the BG data reference
direction in the following registers:
• 2D Graphics Engine A BGxPA, BGxPB, BGxPC, BGxPD Registers (x=2, 3)
• 2D Graphics Engine B DB_BGxPA, DB_BGxPB, DB_BGxPC, DB_BGxPD Registers (x=2, 3)

2. The image processing circuitry sums the cumulative increase in the x-direction (dx and dy) and
calculates the x-direction coordinates in relation to the BG data reference start point set in these
registers.

3. If the line advances, the rendering start point coordinates for the next line are calculated by
summing the cumulative increase in the y-direction (dmx and dmy) in relation to the reference start
point. Then the process in Step 2 is performed.

4. If the BG Data Reference Start Point Registers are overwritten during an H-Blank, the cumulative
sum for the y-direction related to those registers is not computed. Use this mode to have the CPU
change the affine transformation parameters and the center coordinates for each line.

BG Data Reference Start Point Setting Registers

Name Address Attribute Initial Value

(2D_A) BGxX (x=2, 3) 0x04000028, 0x04000038 W 0x00000000

(2D_B) DB_BGxX (x=2, 3) 0x04001028, 0x04001038 W 0x00000000

Name Address Attribute Initial Value

(2D_A) BGxY (x=2, 3) 0x0400002C, 0x0400003C W 0x00000000

(2D_B) DB_BGxY (x=2, 3) 0x0400102C, 0x0400103C W 0x00000000

S INTEGER_SX DECIMAL_SX

x-Coordinate of the Reference Start Point (Affine Transformation Result)

31 24 23 16 15 8 7 0

S INTEGER_SY DECIMAL_SY

y-Coordinate of the Reference Start Point (Affine Transformation Result)

31 24 23 16 15 8 7 0
© 2003-2006 Nintendo 107 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
BG Data Reference Direction Setting Registers

Name Address Attribute Initial Value

(2D_A) BGxPA (x=2, 3) 0x04000020, 0x04000030 W 0x0100

(2D_B) DB_BGxPA (x=2, 3) 0x04001020, 0x04001030 W 0x0100

Name Address Attribute Initial Value

(2D_A) BGxPB (x=2, 3) 0x04000022, 0x0400032 W 0x0000

(2D_B) DB_BGxPB (x=2, 3) 0x04001022, 0x0401032 W 0x0000

Name Address Attribute Initial Value

(2D_A) BGxPC (x=2, 3) 0x04000024, 0x0400034 W 0x0000

(2D_B) DB_BGxPC (x=2, 3) 0x04001024, 0x0401034 W 0x0000

Name Address Attribute Initial Value

(2D_A) BGxPD(x=2, 3) 0x04000026, 0x0400036 W 0x0100

(2D_B) DB_BGxPD(x=2, 3) 0x04001026, 0x0401036 W 0x0100

S INTEGER_DX DECIMAL_DX

Reference distance dx in x-direction for the same line

15 8 7 0

S INTEGER_DMX DECIMAL_DMX

Reference distance dmx in x-direction for the next line

15 8 7 0

S INTEGER_DY DECIMAL_DY

Reference distance dy in y-direction for the same line

15 8 7 0

S INTEGER_DMY DECIMAL_DMY

Reference distance dmy in y-direction for the next line

15 8 7 0
NTR-06-0180-001-A9 108 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3 OBJ
NITRO can handle two types of OBJ: Character OBJ and Bitmap OBJ. Table 5-7 summarizes the features
for both Character OBJ and Bitmap OBJ.

Table 5-7 : OBJ Overview

Note: See "5.7 Color Special Effects" on page 146 to learn about OBJ color effects.

• Other items

See "5.6 Windows" on page 142 to learn about OBJ windows.

• Number of OBJ that can be displayed on one line

Table 5-7 gives the capacity of OBJ that can be displayed on one line under the most efficient
conditions. When display OBJ are positioned in series from the start of OAM, the number of OBJ that
can be displayed on one line is calculated as follows:

(H dot count x 6 – 6)/rendering cycle count) = Number of OBJ displayable on 1 line (128 max.)

H dot count is normally 355 dots, but it becomes 256 dots if the DISPCNT [DB_DISPCNT] Register’s
OBJ Processing during H-Blank Period flag is set to 1 (see "4.2 LCD" on page 49).

x 6 represents the number of cycles that the OBJ rendering circuitry can use per dot. - 6 represents the
number of cycles needed for the OBJ rendering pre-process at the start of the H-line.

Table 5-8 shows the relation between rendering cycle count and the number of OBJ that can be
displayed on one line.

Item Character OBJ Bitmap OBJ

Number of Display Colors

1. Standard Palette
 16 colors x 16 palettes
 256 colors x 1 palette

2. Extended Palette
 16 colors x 16 palettes (Standard Palette)

 256 colors x 16 palettes (Extended Palette)

32,768 colors

Number of Characters
(Converted to 8x8-Dot)

1. One-dimensional Mapping
 1,024 to 8,192 (16-color mode)
 512 to 4,096 (256-color mode)

2. Two-dimensional Mapping
 1,024 (16-color mode)
 512 (256-color mode)

1. 1D Mapping
 1,024 to 2,048

2. 2D Mapping
 256

Character Size 8x8 dot to 64x64 dot (12 varieties)

Maximum Number Displayed
on One Screen 128 (converted to 64x64 dot)

Maximum Number Displayed
on One Line 128 (converted to 8x8 dot)

Features HV Offset, HV Flip, Affine Transformation, Translucence (see note), Mosaic,
and Priority settings
© 2003-2006 Nintendo 109 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Table 5-8 : The Rendering Cycle Count and Number of OBJ Displayable on One Line

Note 1: A Normal OBJ has the OBJ Mode of OBJ Attribute 0 set to Normal OBJ.

Note 2: An Affine OBJ has the Affine Enable Flag of OBJ Attribute 0 set to Enable.

Table 5-8 shows values under the most efficient conditions. Efficiency is actually lower because some OBJ
in OAM are outside of the rendered line. Two cycles are lost for an OBJ outside of the rendered line.

OBJ H-Size
Render Cycle Count Number of OBJ Displayable on One Line

Normal OBJ*1 Affine OBJ*2 Normal OBJ Affine OBJ

8 8 26 128 81

16 16 42 128 50

32 32 74 66 28

64 64 138 33 15

128
(Double-Sized 64) — 266 — 7
NTR-06-0180-001-A9 110 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3.1 OBJ Display Control
The overall configuration of OBJ features is performed with the DISPCNT Register for 2D Graphics Engine
A and with the DB_DISPCNT Register for 2D Graphics Engine B. The settings for an individual OBJ are
configured with the OBJ Attribute Data stored in OAM. (This subject is touched on later.)

Display Control Register (2D Graphics Engine A)
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

• OH [d23] : OBJ Processing during H-Blank Period Flag

When set to 0, the OBJ render process is performed during the entire H-line period (including the
H-Blank period).

When set to 1, the OBJ render process is performed only during the display period, but not during the
H-Blank period. In this case, the maximum number of OBJ cannot be displayed.

Display Control Register 1 (2D Graphics Engine B)
Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000

• OH [d23] : OBJ Processing during H-Blank Period Flag

When set to 0, the OBJ render process is performed during the entire H-line period (including the
H-Blank period).

When set to 1, the OBJ render process is performed only during the display period, but not during the
H-Blank period. In this case, the maximum number of OBJ cannot be displayed.

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

OBJ Processing
during H-Blank Period

Display Mode 2D Display
Forced Blank

OBJ Mapping
Mode

Extended OBJ
© 2003-2006 Nintendo 111 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.3.2 OAM
An OBJ is displayed by storing data in Object Attribute Memory (OAM). A total of 128 sets of OBJ data can
be written to the NITRO Processor's internal OAM (1 KB from 07000000h – 070003FFh for 2D Graphics
Engine A and 1 KB from 07000400h – 070007FFh for 2D Graphics Engine B). Accordingly, a total of 128
OBJ characters of any size can be displayed on the LCD.

5.3.2.1 Memory Map
48 bits x 128 sets of OBJ Attribute data can be written to OAM. If an OBJ is to be rotated and scaled, then
a total of 32 groups of affine transformation parameters PA, PB, PC, and PD can be written to OAM as
shown in Figure 5-20.

Figure 5-20 : OAM Memory Map (add 0x400h to 2D Graphics Engine B Addresses)

Affine Transformation Parameter
PD (31)

Attribute 2

Attribute 1

Attribute 0

Affine Transformation Parameter
PB (0)

Attribute 2

Attribute 1

Attribute 0
Affine Transformation Parameter

PA (0)
Attribute 2

Attribute 1

Attribute 0

(16-bit Width)

0x070003FEh

0x070003F8h

0x07000008h

0x07000000h

OBJ 0

OBJ 1

OBJ 127
NTR-06-0180-001-A9 112 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3.2.2 OAM Data Format

OBJ Attribute 0

• [d15–d14] : OBJ Shape

These bits set the shape of the OBJ. The number of dots in the OBJ's horizontal and vertical
direction is determined by this setting and the OBJ size specification in OBJ Attribute 1. See OBJ
Size under " OBJ Attribute 1" on page 116.

• [d13] : Color Mode

This bit sets whether the OBJ character data is referenced in 16-color format or 256-color format. Be
sure to set Color Mode to 0 for Direct-Color Bitmap OBJ settings.

• [d12] : Mosaic

• [d11–d10] : OBJ Mode

The 00 to 10 settings specify Character OBJ. When 10 (the OBJ Window) is specified, data are not
displayed as normal OBJ; if there are dots of non-zero character data, the data are handled as an OBJ
window that can take any shape. See "5.6 Windows" on page 142 for display settings inside the OBJ
window. The 11 setting specifies Bitmap OBJ.

00 Square

01 Long rectangle

10 Tall rectangle

11 Prohibited code

0 16-color mode

1 256-color mode

0 Mosaic off

1 Mosaic on

00 Normal OBJ

01 Translucent OBJ

10 OBJ Window

11 Bitmap OBJ

OBJ Shape OBJ Mode Y Coordinate

15 8 7 0

Color Mode

Mosaic

Double-Size Flag for
Affine Transformation

Affine Transformation
Enable Flag

14 13 12 11 10 9
© 2003-2006 Nintendo 113 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• [d09] : Double-Size Flag for Affine Transformation

When the d08 Affine Transformation Enable Flag is set to 1, the OBJ field can be doubled in size for
display. Using a double-size OBJ field allows a rotated OBJ to be displayed in its entirety without losing
any sections. In addition, an OBJ can be enlarged up to double its original size and displayed without
losing any sections (see Figure 5-21).

When the d08 Affine Transformation Enable Flag is set to 0 and this bit to 1, the OBJ is hidden.

Figure 5-21 : Affine Transformation of Double-Size OBJ Field

• [d08] : Affine Transformation Enable Flag

When this bit is enabled, the affine transformation parameters set in OBJ Attribute 1 are referenced.

When this bit is disabled and the d09 Double-Size Flag for Affine Transformation is set to 1, the OBJ is
hidden.

• [d07–d00] : Y Coordinate

These bits specify the OBJ's Y coordinate in the display screen in the range of 0 to 255.

0 Disable double-size

1 Enable double-size

0 Disable

1 Enable

Normal Display Rotated Display

Enlarged Display using
Double-Size OBJ Field

Rotated Display using
Double-Size OBJ Field
NTR-06-0180-001-A9 114 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Workaround for AGB Problem with OBJ Wrapping

As shown in Figure 5-22, the AGB has a problem that prevents the upper part of the OBJ in the lower
portion of the screen from displaying when the lower part of the OBJ was wrapped for display to the upper
portion of the screen. This problem is corrected in NITRO (but the problem remains when NITRO is set to
AGB-compatible mode).

Figure 5-22 : The Problem of OBJ Wrapping

Lower part of
OBJ wrapped
and displayed

Upper part of
OBJ

LCD Display Region

Virtual Screen
512 x 256
© 2003-2006 Nintendo 115 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
OBJ Attribute 1

• [d15–d14] : OBJ Size

These bits set the OBJ size. The number of vertical and horizontal dots for an OBJ depends on this
setting and the OBJ shape set in OBJ Attribute 0. Table 5-9 shows the relationship.

Table 5-9 : OBJ Shape and OBJ Size Settings

• [d13–d09] : Affine Transformation Parameter Selection

These bits specify which of the 32 sets of OAM PA – PD affine transformation parameters to reference.

When the OBJ Attribute 0 Affine Transformation Enable Flag is set to 0 (disabled), the [d13] VF bit is
treated as the Vertical Flip Flag and the [d12] HF bit is treated as the Horizontal Flip Flag.

• [d08–d00] : x Coordinate

These bits specify the OBJ's x-coordinate in the display screen in the range of 0 to 511.

OBJ Attribute 1
OBJ size

OBJ Attribute 0
OBJ shape

00 01 10 11

00 (Square) 8x8 16x16 32x32 64x64

01 (Long rectangle) 16x8 32x8 32x16 64x32

10 (Tall rectangle) 8x16 8x32 16x32 32x64

11 (Prohibited setting) Prohibited Setting

VF HF

OBJ Size X Coordinate

15 14 13 12 9 8 7 0

Affine Transformation
Parameter Selection
NTR-06-0180-001-A9 116 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
OBJ Attribute 2

• [d15–d12] : Color Parameter

What these bits specify depends on whether OBJ Mode in OBJ Attribute 0 is set to Character OBJ or
Bitmap OBJ. These bits specify the Color Palette Number for Character OBJ. They specify the αOAM
for Bitmap OBJ. The αOAM value is used as a factor for blending with the BG for the Bitmap OBJ (see
"5.3.4 Bitmap OBJ" on page 128).

1. For Character OBJ: Color Palette Number

This specifies one of 16 palettes to apply to the character data.

This bit is invalid in 256-color mode when extended palettes are disabled (see " OBJ Attribute 0"
on page 113).

Extended palettes are enabled/disabled with the DISPCNT [DB_DISPCNT] register.

2. For Bitmap OBJ: αOAM value

The αOAM value is an element of the OBJ's transparency α, where α = αBMP x (αOAM +1). Set
αBMP using the Bitmap OBJ data (see "5.3.4.1 Bitmap OBJ Data" on page 130).

• [d11–d10] : Display Priority

These bits set the order of priority for display.

See "5.9 Display Priority" on page 151 to learn about the priority relation with BG.

The priority set with this bit is invalid when OBJ Mode in OAM Attribute 0 is set to OBJ Window. See
"5.6 Windows" on page 142 to learn about the precedence of windows.

• [d09–d00] : Starting Character Name

The basic character number at the start of the OBJ character data mapped in OBJ-VRAM is written
here. The specification in Bitmap OBJ mode is the same as for Character mode with 8x8-dot units.

2D Mapping Mode

When in 2D Mapping mode and 256-Color mode, the starting character name's lowest bit is fixed at 0.
In addition, OBJ-VRAM references regions only up to 32 KB.

1D Mapping Mode

When in 1D Mapping mode, the capacity of OBJ-VRAM can be expanded (see the RAM Bank Control
Registers 0 and 1 and the Display Control Register).

Color Parameter Display Priority Starting Character Name

15 8 7 0

For Character OBJ: Color Palette Number
For Bitmap OBJ: Valueα OAM
© 2003-2006 Nintendo 117 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
The boundary of the starting character name varies, as shown in Table 5-10 and Table 5-11,
depending on the OBJ-VRAM capacity to allow the entire OBJ-VRAM region to be referenced with the
setting region of the starting character name (10 bits).

Table 5-10 : Character OBJ

Table 5-11 : Bitmap OBJ

Note: The maximum capacity of OBJ-VRAM is 128 KB for 2D Graphics Engine B because of restric-
tions on VRAM allocation. Therefore, the Character OBJ and Bitmap OBJ capacity cannot be
set to 256 KB.

OBJ-VRAM Capacity Starting Character Name Boundary

 32 KB 32 bytes

 64 KB 64 bytes

128 KB 128 bytes

256 KB 256 bytes

OBJ-VRAM Capacity Starting Character Name Boundary

128 KB 128 bytes

256 KB 256 bytes
NTR-06-0180-001-A9 118 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Affine Transformation Parameters
See "5.3.2.3 OBJ Rotation and Scaling (Affine Transformation)" on page 120 for how to determine the
OBJ's affine transformation parameters.

Affine Transformation Parameter PA

Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)

Affine Transformation Parameter PB

Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)

Affine Transformation Parameter PC

Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)

Affine Transformation Parameter PD

Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)

S_PA INTEGER_PA DECIMAL_PA

Distance dx moved in x-direction on the same line

15 8 7 014

S_PB INTEGER_PB DECIMAL_PB

Distance dmx moved in x-direction on the next line

15 8 7 014

S_PC INTEGER_PC DECIMAL_PC

Distance dy moved in y-direction on the same line

15 8 7 014

S_PD INTEGER_PD DECIMAL_PD

Distance dmy moved in y-direction on the next line

15 8 7 014
© 2003-2006 Nintendo 119 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.3.2.3 OBJ Rotation and Scaling (Affine Transformation)
The OBJ character data is referenced horizontally in sequence from the top-left when an OBJ is displayed,
so a rotated OBJ can be displayed by rotating the reference direction. The center of the rotation is fixed to
the center of the OBJ field (dot boundary). If a reference point is outside the specified OBJ size, it becomes
transparent.

Figure 5-23 shows the rotating and scaling process for an OBJ.

Figure 5-23 : OBJ Rotation and Scaling

Note: α is the scale ratio along the x-axis; β is the scale ratio along the y-axis.

• OBJ Rotation and Scaling Process

1. Affine transformation parameter numbers to be applied are specified in OBJ Attribute 1 registered
in OAM. In addition, the affine transformation parameters PA, PB, PC, and PD to be applied are
set in OAM using the information in Figure 5-23.

2. The image processing circuitry calculates the coordinates in the x-direction in relation to the data
reference start point that uses the center of the OBJ field as the center of rotation by summing the
cumulative increase in the x-direction (dx and dy).

3. If the line advances, the rendering start point coordinates for the next line are calculated by
summing the cumulative increase in the y-direction (dmx and dmy) in relation to the reference
starting point. Then the process in Step 2 is performed.

dx (reference distance in x-direction for same line) = (1/α)cosθ
dy (reference distance in y-direction for same line) = - (1/β)sinθ
dmx (reference distance in x-direction for next line) = (1/α)sinθ
dmy (reference distance in y-direction for next line) = (1/β)cosθ

Coordinates of
Center of Rotation.
OBJ Center (x0, y0)

Origin (0,0) X Axis

Y
A

xi
s

Horizontal Line after

Rotation

OBJ Field
Double OBJ Field

dx

dydmy

dmx

θ

NTR-06-0180-001-A9 120 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3.3 Character OBJ
For OBJ character data, 8x8-dot sections are treated as basic characters and are assigned a Character
Number. The OBJ size can be from 8x8 dots to 64x64 dots (12 different sizes). The OBJ character data
base address is fixed as the VRAM base address. OBJ are defined as having either 16 colors or 256
colors, so the definition of a single basic character requires either 32 bytes or 64 bytes (both have the
same format as BG character data).

The Color Mode setting in OAM OBJ Attribute 1 defines whether to reference OBJ character data in
16-Color format or 256-Color format. In addition, the palette specified in OBJ Attribute 2 is used when
16-Color mode has been set or when 256-Color mode is set when extended palettes are enabled.
Extended palettes can be enabled/disabled with the DISPCNT [DB_DISPCNT] Register.

Select either 1D Mapping or 2D Mapping for character data VRAM mapping.

Display Control Register (2D Graphics Engine A)
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

• [d22–d20] : OBJ-VRAM Region Extended Flag
• CH [d21–d20] : VRAM Region Extended Flag for Character OBJ

These bits specify OBJ-VRAM capacity when OBJ character data uses 1D mapping. When set to
00, the capacity is the same as the AGB. Table 5-12 shows the starting character name
boundaries that can be specified with OAM OBJ Attribute 2.

Table 5-12 : Starting Character Name Boundaries for OBJ Attribute 2

Note: When the OBJ-VRAM Region Setting flag has been set greater than the VRAM size allocated to
the OBJ, do not access the region that exceeds the VRAM size allocated to the OBJ.

00 32 KB (Starting character name boundary: 32 bytes)

01 64 KB (Starting character name boundary: 64 bytes)

10 128 KB (Starting character name boundary: 128 bytes)

11 256 KB (Starting character name boundary: 256 bytes)

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

22 21 20 6 5 4
© 2003-2006 Nintendo 121 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• [d06–d04] : OBJ Data Mapping Mode
• CH [d04] : Character OBJ Data Mapping Mode

In 2D mapping mode, only up to 32 KB of OBJ-VRAM can be referenced.

In 1D mapping mode, a capacity of 32 to 256 KB can be set with the OBJ-VRAM Region Extended
Flag. Accordingly, more OBJ characters can be defined in OBJ-VRAM using 1D mapping mode.

Display Control Register 1 (2D Graphics Engine B)
Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000

• [d21–d20] : OBJ-VRAM Region Extended Flag
• CH [d21–d20] : VRAM Region Extended Flag for Character OBJ

These bits specify OBJ-VRAM capacity when OBJ character data uses 1D mapping. When set to
00, the capacity is the same as the AGB. Table 5-13 shows the starting character name
boundaries that can be specified with OAM OBJ Attribute 2.

Table 5-13 : Starting Character Name Boundaries for OBJ Attribute 2

Note: With 2D Graphics Engine B, the maximum size that can be allocated to VRAM is 128 KB.
When the OBJ-VRAM Region Setting flag has been set greater than the VRAM size
allocated to the OBJ, do not access the region that exceeds the VRAM size allocated to
the OBJ.

• [d06–d04] : OBJ Data Mapping Mode
• CH [d04] : Character OBJ Data Mapping Mode

In 2D mapping mode, only up to 32 KB of OBJ-VRAM can be referenced.

In 1D mapping mode, a capacity of 32 to 256 KB can be set with the OBJ-VRAM Region Extended
Flag. Accordingly, more OBJ characters can be defined in OBJ-VRAM using 1D mapping mode.

0 2D mapping

1 1D mapping

00 32 KB (starting character name boundary: 32 bytes)

01 64 KB (starting character name boundary: 64 bytes)

10 128 KB (starting character name boundary: 128 bytes)

11 256 KB (starting character name boundary: 256 bytes)

0 2D mapping

1 1D mapping

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

OBJ Processing
during H-Blank Period

Display Mode 2D Display
Forced Blank

OBJ Mapping
Mode

Extended OBJ

21 20 6 5 4
NTR-06-0180-001-A9 122 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3.3.1 Character Data Format
The character data format for Character OBJ is shown below. The Character Display table shows the case
when an 8x8-dot character is defined.

5.3.3.1.1 16-Color Mode

The character data format for 16-color mode, correspondence between character display and pixel data,
and address mapping (Figure 5-24) are shown below.

16-Color Mode Character Data

Character Display

Figure 5-24 : Character Data Address Mapping (16-Color Mode Character OBJ)

P0 P1 P2 P3

P3 P2 P1 P0

4 pixels worth of data (4 bits/pixel)

15 12 11 8 7 4 3 0

4 bits of data for
 each dot

(specify 1 of 16 colors)

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

Byte 0

4

8

28

20

16

12

24

1

5

9

29

13

17

21

25

2

6

10

14

18

22

26

30

3

7

11

15

19

23

27

31

8 Dots

8 Dots
© 2003-2006 Nintendo 123 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.3.3.1.2 256-Color Mode

The character data format for 256-color mode, correspondence between character display and pixel data,
and address mapping (Figure 5-25) are shown below.

256-Color Mode Character Data

Character Display

Figure 5-25 : Character Data Address Mapping (256-Color Mode Character OBJ)

P0 P1

P1 P0

2 pixels worth of data (8 bits/pixel)

15 12 11 8 7 4 3 0

4

12

20

28

36

44

52

60

5

13

21

29

37

45

53

61

6

14

22

30

38

46

54

62

7

15

23

31

39

47

55

63

Byte 0

8

16

24

32

40

48

56

1

9

17

25

33

41

49

57

2

10

18

26

34

42

50

58

3

11

19

27

35

43

51

59

8 bits of data for each dot
(specify 1 of 256 colors)

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

d0

d1

d4

d2

d3

d5

d6

d7

8 Dots

8 Dots
NTR-06-0180-001-A9 124 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3.3.2 Mapping Modes for Character OBJ Data

5.3.3.2.1 2D Mapping

When displaying 256-color x 1-palette characters in 2D mapping mode, the character name specification is
limited to even numbers, as shown in Figure 5-26.

Figure 5-26 : 2D Mapping

000h 001h 002h 003h 004h 005h 01Dh 01Eh 01Fh

020h 021h 022h 023h 024h 025h

040h 041h 042h 043h 044h 045h

060h 061h 062h 063h 064h 065h

080h 081h 082h 083h 084h 085h

0A0h 0A2h0A1h 0A3h 0A4h 0A5h

0DFh

0BEh 0BFh

02Eh02Dh 02Fh

04Dh 04Eh 04Fh

06Dh 06Eh 06Fh

08Dh 08Eh 08Fh

0C0h 0C1h 0C2h 0C3h 0C4h 0C5h 0DDh 0DEh

0BDh

32 x 32 Dots
(16-Color Mode)

8 x 8 Dots
(16-Color Mode)

8 x 32 Dots
(256-Color Mode)

16 x 16 Dots
(256-Color Mode)
© 2003-2006 Nintendo 125 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.3.3.2.2 1D Mapping

The address where the data that makes up the character is stored is consecutive for each character, as
shown in Figure 5-27 and Figure 5-28.

Figure 5-27 : 1D Mapping when Character Name Boundary is 32 Bytes

8 x 8 Dots
(16-Color Mode)

000h 001h 002h 003h

004h 005h 006h 007h

008h 009h 00Ah 00Bh

00Ch 00Dh 00Eh 00Fh

010h 011h

012h 013h

014h 015h

016h 017h

018h 019h 01Ah 01Bh

01Ch 01Dh 01Eh 01Fh

020h

00Fh

001h

000h

017h

010h

018h

020h

002h

00Eh

011h

019h

021h

01Fh

0x0000h

0x0200h

0x0400h

0x0600h

32 x 32 Dots
(16-Color Mode)

8 x 32 Dots
(256-Color Mode)

16 x 16 Dots
(256-Color Mode)

0x0020h

0x0240h

0x0440h

0x0620h

016h

01Eh

Address
Offset

Character Name
VRAM Map

Character Name
OBJ Image Map
NTR-06-0180-001-A9 126 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 5-28 : 1D Mapping when Character Name Boundary is 128 Bytes

000h

001h

002h

003h

004h

005h

006h

007h

008h

000h

004h

006h

008h

001h

0x 000
0 h

0x 020
0 h

0x 030
0 h

0x 040
0 h

0x 008
0 h

005h

007h

Address
Offset

Character Name
VRAM Map

32 x 32 Dots
(16-Color Mode)

8 x 32 Dots
(256-Color Mode)

16 x 16 Dots
(256-Color Mode)

Character Name
OBJ Image Map

8 x 8 Dots
(16-Color Mode)
© 2003-2006 Nintendo 127 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.3.4 Bitmap OBJ
The VRAM Extended Flag and Mapping Mode for Bitmap OBJ are set with the DISPCNT [DB_DISPCNT]
Register.

Display Control Register (2D Graphics Engine A)
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

• [d22–d20] : OBJ-VRAM Region Extended Flag
• BM [d22] : VRAM Extended Flag for Bitmap OBJ

These bits specify OBJ-VRAM capacity when 1D mapping is selected for OBJ bitmap data.

• [d06–d04] : OBJ Data Mapping Mode
• BM [d06–d05] : Bitmap OBJ Data Mapping Mode

The OBJ-VRAM Region Extended Flag is ignored with 2D mapping. In this case, OBJ-VRAM is
referenced in a range of addresses that can be specified by the 10-bit character name set by OBJ
Attribute 2 in OAM.

Capacity is set with the OBJ-VRAM Region Extended Flag with 1D mapping.

0 128 KB (starting character name boundary of 128 bytes)

1 256 KB (starting character name boundary of 256 bytes)

00 2D mapping with 128 horizontal dots

01 2D mapping with 256 horizontal dots

10 1D mapping

11 Prohibited Setting

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

22 21 20 6 5 4
NTR-06-0180-001-A9 128 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
DB_DISPCNT: Display Control Register 1 (2D Graphics Engine B)
Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000

• [d06–d04] : OBJ Data Mapping Mode
• BM [d06–d05] : Bitmap OBJ Data Mapping Mode

In 2D mapping mode, only up to 32 KB of OBJ-VRAM can be referenced.

In 1D mapping mode, OBJ-VRAM capacity is set to 128 KB.

Note: With 2D Graphics Engine B, a maximum of 128 KB can be allocated to VRAM.
Accordingly, although it can be specified for 2D Graphics Engine A, the OBJ-VRAM
capacity for 1D mapping mode is fixed to 128 KB.

00 2D mapping with 128 horizontal dots

01 2D mapping with 256 horizontal dots

10 1D mapping

11 Prohibited Setting

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

OBJ Processing
during H-Blank Period

Display Mode 2D Display
Forced Blank

OBJ Mapping
Mode

Extended OBJ

6 5 4
© 2003-2006 Nintendo 129 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.3.4.1 Bitmap OBJ Data

Bitmap OBJ data

• A [d15] : αBMP

The αBMP value is an element of the OBJ's transparency α, where α = αBMP x (αOAM +1). Set αOAM
using OBJ Attribute 2 (see "5.3.2.2 OAM Data Format" on page 113).

OBJ Display

5.3.4.2 Blending with BG
As with translucent OBJ, Bitmap OBJ can be blended with the BG of the second target screen for display.
When αOAM = 0, the entire region of the OBJ becomes transparent and is not rendered. When αOAM is
non-zero, the OBJ is blended for display according to the following formula:

α = αBMP x (αOAM + 1)

αBMP is set with Bitmap OBJ data, and αOAM is a value specified with OBJ Attribute 2 of OAM.

C is the color of the blending result (calculation results are rounded to the nearest integer).

COBJ is the Bitmap OBJ color of the first target screen.

CBG is the BG color of the second target screen.

P0

A BLUE GREEN RED

 BMP P0

15 14 10 9 8 7 5 4 0

α

C
COBJ α CBG+× 16 α–()×

16
---=
NTR-06-0180-001-A9 130 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3.4.3 Mapping Modes for Bitmap OBJ Data

5.3.4.3.1 2D Mapping with 128 Horizontal Dots

Figure 5-29 shows the 2D map of Bitmap OBJ data with 128 horizontal dots in VRAM.

Figure 5-29 : 2D Map of Bitmap OBJ Data VRAM (128 Horizontal Dots)

Character names are set in units of 8x8 dots (128 bytes) of bitmap data. Figure 5-30 shows the 2D image
map of character names in VRAM.

Figure 5-30 : 2D Image Map of Character Name VRAM

Dot 0 1 2 3 125 126 127

Line 0 0h 2h 4h 6h FAh FCh FEh

1 100h 102h 104h 106h 1FAh 1FCh 1FEh

2 200h 202h 2FCh 2FEh

3 300h 302h 3FCh 3FEh

4 400h 4FEh

0-7 8-15 16-23 24-31 104-111 112-119 120-127

0-7 0h 1h 2h 3h Dh Eh Fh

8-15 10h 11h 12h 13h 1Dh 1Eh 1Fh

16-23 20h 21h 22h 23h 2Dh 2Eh 2Fh

24-31 30h 31h 32h 33h 3Dh 3Eh 3Fh

32-39 40h 41h 42h 43h 4Dh 4Eh 4Fh

Line
Dot
© 2003-2006 Nintendo 131 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.3.4.3.2 2D Mapping with 256 Horizontal Dots

Figure 5-31 shows the 2D map of Bitmap OBJ data with 256 horizontal dots in VRAM.

Figure 5-31 : 2D Map of Bitmap OBJ Data VRAM (256 Horizontal Dots)

Character names are set in units of 8x8 dots (128 bytes) of bitmap data. Figure 5-32 shows the 2D image
map of character names in VRAM.

Figure 5-32 : 2D Image Map of Character Name VRAM

Dot 0 1 2 3 253 254 255

Line 0 0h 2h 4h 6h 1FAh 1FCh 1FEh

1 200h 202h 204h 206h 3FAh 3FCh 3FEh

2 400h 402h 5FCh 5FEh

3 600h 602h 7FCh 7FEh

4 800h 9FEh

Dot 0-7 8-15 16-23 24-31 232-239 240-247 248-255

0-7 0h 1h 2h 3h 1Dh 1Eh 1Fh

8-15 20h 21h 22h 23h 3Dh 3Eh 3Fh

16-23 40h 41h 42h 43h 5Dh 5Eh 5Fh

24-31 60h 61h 62h 63h 7Dh 7Eh 7Fh

32-39 80h 81h 82h 83h 9Dh 9Eh 9Fh

Line
NTR-06-0180-001-A9 132 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.3.4.3.3 1D Mapping

Character Names

In 2D Graphics Engine A, the Bit Map OBJ VRAM extension flag in the display control register DISPCNT
changes both the OBJ-VRAM range that can be specified by a character name, and the character name
boundary (see Table 5-14).

In 2D Graphics Engine B, VRAM allocation is restricted, so the OBJ-VRAM range is fixed to 128 KB and
the character name boundary is fixed to 128.

Table 5-14 : Character Name Boundaries

For example, if the VRAM Extended Flag for Bitmap OBJ is set to 0, and the OBJ Attribute 2 setting for
Starting Character Name is set to 4Ch, then the Bitmap OBJ data defined from address 2600h (= 4Ch x
128 bytes) is referenced.

1D VRAM Mapping of Bitmap OBJ Data

Map bitmap data from the starting address of the character name boundary for the size of the character.
This size is not in units of 8x8 dots. Figure 5-33 and Figure 5-34 show the 1D map for 8x8-dot characters
and 16x16-dot characters. In these figures, C+xxh denotes the offset from the starting address of the
character name boundary.

Figure 5-33 : 1D Map of VRAM with 8x8-Dot Characters

Bitmap OBJ
VRAM Extended Flag OBJ-VRAM Specifiable Range Character Name Boundary

0 128 KB 128 bytes

1 256 KB 256 bytes

0 1 2 5 6 7
0 C+0h C+2h C+4h C+Ah C+Ch C+Eh
1 C+10h C+12h C+14h C+1Ah C+1Ch C+1Eh
2 C+20h C+2Eh
3

7 C+70h C+72h C+74h C+7Ah C+7Ch C+7Eh

5 C+50h C+5Eh
6 C+60h C+62h C+64h C+6Ah C+6Ch C+6Eh

4

3 4
C+6h C+8h

C+16h C+18h

C+76h C+78h
C+66h C+68h

C+30h
C+40h

C+3Eh
C+4Eh
© 2003-2006 Nintendo 133 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 5-34 : 1D Map of VRAM with 16x16-Dot Characters

0 1 2 13 14 15
0 C+0h C+2h C+4h C+1Ah C+1Ch C+1Eh
1 C+20h C+22h C+24h C+3Ah C+3Ch C+3Eh
2 C+40h C+5Eh

15 C+1E0h C+1E2h C+1E4h C+1FAh C+1FCh C+1FEh

13 C+1A0h C+1BEh
14 C+1C0h C+1C2h C+1C4h C+1DAh C+1DCh C+1DEh
NTR-06-0180-001-A9 134 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.4 Backdrop
The 2D graphics displayed on the LCD are composed of OBJ, BG, and the Backdrop. An OBJ is a
relatively small image, but several of them can be displayed. They are mainly used to display characters
that move around the screen. A BG has features equivalent to an OBJ, but only a few BG screens can be
displayed because a BG is large and consumes a lot of memory. A BG is used to display large images
such as objects that are continuously on-screen or in the background.

On NITRO, regions of the LCD screen where no OBJ and BG are displayed are filled with a single color.
This region is called the Backdrop and can be visualized as a single-color surface that is always displayed
furthest in the back, as depicted in Figure 5-35. The Backdrop is a surface filled only with a single color and
does not have the features of OBJ and BG. The Backdrop color can be changed with the palette (see "5.5
Color Palettes" on page 136).

Figure 5-35 : Backdrop Schematic

OBJ

BGBackdrop

LCD Display
© 2003-2006 Nintendo 135 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.5 Color Palettes
As a standard feature, NITRO has RAM allocated specifically for BG and OBJ palettes (Palette RAM).
Data stored in Palette RAM are called standard palettes.

A BG or OBJ can be displayed using just a standard palette, but extended palettes allow the use of 256
colors x 16 palettes and enable richer visuals. To use extended palettes, allocate VRAM using the RAM
Control Register and enable the Extended Palette Flag with the DISPCNT [DB_DISPCNT] Register.

5.5.1 Standard Palettes
Standard palette RAM is allocated separately for OBJ and for BG in both 2D Graphics Engine A and 2D
Graphics Engine B. Color 0 in each palette is the transparent color, regardless of the settings. The
Backdrop screen uses the color set at the beginning of the BG palette (Color 0 of Palette 0). Because
standard palette RAM resides inside the 2D Graphic Engines, the 2D Graphic Engine must be enabled in
the Power Control Register (POWCNT) before data can be written to its RAM.

Figure 5-36 shows the standard palette RAM addresses. Figure 5-37 shows the color specifications for 16
Colors x 16 Palettes. Figure 5-38 shows the color specifications for 256 Colors x 1 Palette.

Figure 5-36 : Standard Palette RAM Addresses (Add 0x400h for 2D Graphics Engine B)

Figure 5-37 : 16 Colors x 16 Palettes

Figure 5-38 : 256 Colors x 1 Palette

0x050003FFh

0x05000200h
0x050001FFh

0x05000000h

OBJ Palette RAM
(512 bytes)

BG Palette RAM
(512 bytes)

Start of palettes

Palette 15

Palette 2
Palette 1
Palette 0

Color 15

Color 2
Color 1
Color 0

Start of palettes

Color 255

Color 2
Color 1
Color 0

Palette
NTR-06-0180-001-A9 136 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
The format for color data is shown below.

Color Data Format

5.5.2 Extended Palettes
OBJ and each BG screen can be allocated 256 colors x 16 palettes (8 KB) of VRAM by setting the
Extended Palette Flag in the DISPCNT [DB_DISPCNT] Register and the RAM Bank Control Register.
When allocated, palette slots are not mapped to the CPU bus. To rewrite the palette data, the palette slot
must be allocated to LCDC.

5.5.2.1 BG Extended Palettes

Display Control Register (2D Graphics Engine A)
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

Display Control Register 1 (2D Graphics Engine B)
Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000

BLUE GREEN RED

Color Data

15 14 10 9 8 7 5 4 0

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

30

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

OBJ Processing
during H-Blank Period

Display Mode 2D Display
Forced Blank

OBJ Mapping
Mode

Extended OBJ

30
© 2003-2006 Nintendo 137 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• [d31,d30] : Extended Palette Enable Flag
• BG [d30] : BG Extended Palette

This flag is valid for BG screens that can be displayed with 256 Colors x 16 Palettes.

The standard palette is always used for BG screens that do not support 256 Colors x 16 Palettes,
even if BG Extended Palettes are enabled. In addition, the Backdrop screen always uses Color 0
of the standard palette.

To use BG extended palettes, VRAM must be allocated to the BG Extended Palette Slots. See the
RAM Bank Control Register for allocating VRAM to the BG Extended Palette Slots.

BG Extended Palette Slots

BG Extended Palettes can have up to 32 KB allocated to Slots 0-3. Whether BG0 uses Slot 0 or Slot 2 is
selected with the BG0 Control Register, and whether BG1 uses Slot 1 or Slot 3 is selected with the BG1
Control Register. BG2 can use only Slot 2, and BG3 can use only Slot 3. So, if Slot 0 is set to BG0 and Slot
1 to BG1, each BG screen can use its own extended palette. On the other hand, by setting Slots 2 and 3 to
be shared by all BG screens, the BG Extended Palettes can conserve 16 KB.

Color 0 in both palettes is the transparent color regardless of the settings. The Backdrop screen uses the
color set at the beginning of the BG standard palette (Color 0 of Palette 0).

Figure 5-39 shows the memory map for BG extended palette slots.

Figure 5-39 : BG Extended Palette Memory Map

0 Disable (256 colors x 1 palette)

1 Enable (256 colors x 16 palettes)

Slot 3

Slot 2

Slot 1

Slot 0

0x00008000

0x00006000

0x00004000

0x00002000

0x00000000
NTR-06-0180-001-A9 138 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Table 5-15 lists the palettes that can be used by each type of BG.

Table 5-15 : Palettes and BG Types

As shown in "Table 5-15 : Palettes and BG Types" on page 139, the Extended Palette Slot number can be
selected for BG0 and for BG1. With 2D Graphics Engine B, Large-Screen 256-Color Bitmap BG cannot be
selected for the BG type. See the section on the BG Control Register in "5.2.2 BG Control" on page 81 to
learn how to select slots.

Category BG Type Colors/
Palette

BG
Screen

Usable Palette Region

Standard
Extended Palette Slot

0 1 2 3

Character
BG

Text BG

16/16 BG0–3 X

256/16

BG0 X X X
BG1 X X X
BG2 X X
BG3 X X

Affine BG 256/1 BG2–3 X

Ext.
BG

256-Color x 16-
Palette BG 256/16

BG2 X X
BG3 X X

Bitmap
BG

256-Color 256/1 BG2–3 X

Direct Color 32,768 BG2–3

Large-Screen 256-Color 256/1 BG2 X
© 2003-2006 Nintendo 139 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.5.2.2 OBJ Extended Palettes

Display Control Register (2D Graphics Engine A)
Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000

Display Control Register 1 (2D Graphics Engine B)
Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000

• [d31,d30] : Extended Palette Enable Flag
• O [d31] : OBJ Extended Palette

The standard palette (palette RAM) is always used for 6-Color Mode OBJ, even if OBJ Extended
Palettes are enabled. See "5.5 Color Palettes" on page 136 for more information on these
palettes.

To use OBJ extended palettes, VRAM must be allocated to the OBJ Extended Palette Slots. See
the RAM Bank Control Register for allocating VRAM to the OBJ Extended Palette Slots.

0 Disable (256 colors x 1 palette)

1 Enable (256 colors x 16 palettes)

O BG OH BM CH OW W1 W0 O B3 B2 B1 B0 BM CH

Ext. OBJ Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

BG Screen Base
Offset

BG Character Base
Offset

OBJ Processing
during H-Blank Period

Display VRAM

Display Mode

2D Display
Forced Blank

OBJ Mapping
Mode

BG0 2D/3D
Display Selection

30

O BG OH CH OW W1 W0 O B3 B2 B1 B0 BM CH

Window Display BG Mode

31 24 23 16 15 8 7 0

Extended Palette

OBJ Processing
during H-Blank Period

Display Mode 2D Display
Forced Blank

OBJ Mapping
Mode

Extended OBJ

30
NTR-06-0180-001-A9 140 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
OBJ Extended Palette Slots

Although 16 KB of VRAM is allocated to the OBJ extended palettes, only 8 KB of this can be used as an
extended palette. As Figure 5-40 illustrates, only Slot 0 can be used as an extended palette; Slot 1 is
invalid.

Color 0 for each palette is handled as the transparent color regardless of the settings. The Backdrop
screen uses the color set at the beginning of the standard BG palette (Color 0 of Palette 0).

Figure 5-40 : OBJ Extended Palette Slot Memory Map

Slot 1 (Invalid Region)

Slot 0

0x00004000

0x00002000

0x00000000
© 2003-2006 Nintendo 141 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.6 Windows
Window features can restrict the regions where BG and OBJ screens are displayed as well as the region
where color special effects are applied. NITRO uses three kinds of windows: Window 0, Window 1, and the
OBJ Window (see OBJ Attribute 0 in "5.3 OBJ" on page 109 to read about the OBJ Window settings).

Window Interior Control Register

Window Exterior and OBJ Window Interior Control Register

• [d13], [d05] : EFCT: Color Special Effects Enable Flag

• OBJ, BG3-0 [d12–d08], [d04–d00] : Display Enable Flag

Display control over the window’s exterior is valid whenever Window 0, Window 1, or the OBJ Window is
displayed.

Name Address Attribute Initial Value

(2D_A) WININ 0x04000048 R/W 0x0000

(2D_B) DB_WININ 0x04001048 R/W 0x0000

Name Address Attribute Initial Value

(2D_A) WINOUT 0x0400004A R/W 0x0000

(2D_B) DB_WINOUT 0x0400104A R/W 0x0000

0 Disable

1 Enable

0 Hide

1 Show

EFCT OBJ BG3 BG2 BG1 BG0 EFCT OBJ BG3 BG2 BG1 BG0

Inside Window 1 Inside Window 0

15 13 12 8 7 5 4 0

EFCT OBJ BG3 BG2 BG1 BG0 EFCT OBJ BG3 BG2 BG1 BG0

Inside OBJ Window Outside Window (0,1, and OBJ Windows)

15 13 12 8 7 5 4 0
NTR-06-0180-001-A9 142 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Window Position Setting Register

• [d15–d08] : Window Top Left x-coordinate

Set this in the range between 0 and 255.

• [d07–d00] : Window Bottom Right x-coordinate

Set this in the range between 0 and 255.

(

• [d15–d08] : Window Top Left y-coordinate

Set this in the range between 0 and 191.

• [d07–d00] : Window Bottom Right y-coordinate

Set this in the range between 0 and 192.

Window Range

If the window's top left coordinates are (lx, ly) and the bottom right coordinates are (rx, ry), then the window
range for LCD coordinates (0, 0) – (255, 191) is (lx, ly) – (rx-1, ry-1).

To locate a window along the right side of the LCD screen, set its bottom right x-coordinate to 0. To locate
a window along the left side of the LCD screen, set the top left x-coordinate to 0. However, if both x-
coordinates are set to 0, the window is not displayed; consequently, the window cannot span the entire
LCD screen width. Use another window (or the OBJ Window) to span the entire width of the LCD screen
with windows.

Window Shape

Window 0 and Window 1 can be set only as rectangular shapes. However, the shape’s appearance can be
altered by overwriting the Window Position Setting Register during an H-Blank period (see Figure 5-41).

Name Address Attribute Initial Value

(2D_A) WINxH(x=0, 1) 0x04000040, 0x04000042 W 0x0000

(2D_B) DB_WINxH(x=0, 1) 0x04001040, 0x04001042 W 0x0000

Name Address Attribute Initial Value

(2D_A) WINxV (x=0, 1) 0x04000044, 0x04000046 W 0x0000

(2D_B) DB_WINxV (x=0, 1) 0x04001044, 0x04001046 W 0x0000

Window Top Left x-coordinate Window Top Left y-coordinate

15 8 7 0

Window Top Left y-coordinate Window Bottom Right y-coordinate

15 8 7 0
© 2003-2006 Nintendo 143 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 5-41 : Altering the Window Shape
Screen Screen

Window Window
NTR-06-0180-001-A9 144 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.6.1 The Precedence of Windows
As shown in Figure 5-42, Window 0 always has display priority (precedence) over Window 1, and the OBJ
Window has the lowest precedence. The precedence cannot be changed.

Figure 5-42 : The Display Priority of Window 0, Window 1, and the OBJ Window

Note 1 Regarding Windows: When the top left y-coordinate of the window is between 0 and 6,
the top left y-coordinate is forcibly displayed as though it were 0. Use one of the following two
methods to work around this problem.

Method 1: Perform the following steps:

1. Set the window's y-coordinate to a value of 7 or higher before the V-Count reaches 256 during
the V-Blank process.

2. Restore the window's y-coordinate to its original value after confirming that V-Count has
reached 262 by checking V-Count using a V-Count Match Interrupt or an H-Blank Interrupt.

Method 2: Perform the following steps:

1. Set the Window Display Enable Flag in the Display Control Register using the values shown
below after confirming that V-Count has reached 262 by checking V-Count using a V-Count
Match Interrupt or an H-Blank Interrupt.

When the window y-coordinate is 0: 1 (Show window)
When the window y-coordinate is non-zero: 0 (Hide window)

2. Read the V-Count value using an H-Blank Interrupt and compare that value to (window y-
coordinate – 1). If the two values are equal, set the Window Display Enable Flag in the Display
Control Register to 1 (Show window) during the H-Blank.

Note 2 Regarding Windows: Immediately after drawing a line in which the bottom right x
coordinate is set to 0, drawing of the current window will not be complete at H-Blank. If the
coordinates of the next window are set in this state, the window will continue drawing up to the
bottom right x coordinate of the next window.

To avoid this, you must wait until the window has finished drawing before setting the coordinates of
the next window. If the bottom right x coordinate is 0, the window will finish drawing 3 clock cycles
of the system clock (33MHz) after the H-Blank flag changes from 1 to 0 (or the V-Count value
increments by 1). Between this point in time and the time when the H-Count reaches the top left x
coordinate of the next window, it will be outside the window. So set the coordinates for the next
window during this period. Note that you cannot use this method when setting window coordinates
using H-Blank-initiated DMA.

OBJ Window

Window 1

Window 0

Screen
© 2003-2006 Nintendo 145 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.7 Color Special Effects
OBJ and BG can use the alpha-blending and fade-in/fade-out color special effects. These effects can be
limited to a region by using windows (see "5.6 Windows" on page 142). Table 5-16 summarizes color
special effects.

Table 5-16 : Color Special Effects

Color Special Effect Control Register

Color special effects are set with the BLDCNT [DB_BLDCNT] Register. For alpha-blending, which
processes two screens, the two target screens must have the proper priority. In addition, translucent OBJ
are specified separately in OAM and the BLDCNT [DB_BLDCNT] Register specifies color special effects
for the entire OBJ.

Color Special Effect Result

Alpha-Blending
Computations are conducted and a 16-level translucency process is performed on two

selected screens.
This process is not performed on transparent portions (transparent pixels).

Brightness Up/Down
(Fade-in/Fade-out)

Computations are conducted and a 16-level process of changing the brightness is
performed on the selected screen.

This process is not performed on transparent portions (transparent pixels).

Name Address Attribute Initial Value

(2D_A) BLDCNT 0x04000050 R/W 0x0000

(2D_B) DB_BLDCNT 0x04001050 R/W 0x0000

BD OBJ BG3 BG2 BG1 BG0 BD OBJ BG3 BG2 BG1 BG0

Second Target Screen First Target Screen

15 13 8 7 6 5 0

Special Effect
Selection
NTR-06-0180-001-A9 146 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• [d07–d06] : Special Effect Selection

Table 5-17 : Color Special Effects and Processing

Note: As stated in Table 5-17, alpha-blending is always performed on translucent OBJ, Bitmap OBJ,
and BG0 rendered with a 3D surface and a second target screen, where the second target
screen is directly behind regardless of the Special Effect Selection setting. Therefore, to use
Fade-in/Fade-out with these screens, do not specify a second target screen (clear all), or
place something other than a second target screen immediately behind these screens.

Effect Selection
Type Description of the Color Special Effect Processing

d07 d06

0 0 None

Normally, color special effect processing is not performed.
However, 16-level translucency processing (alpha-blending) is performed if a

second target screen is directly behind a translucent OBJ, Bitmap OBJ, or a 3D
surface is rendered to a BG0 screen.

0 1 Alpha-
Blending

16-level translucency processing (alpha-blending) is performed if a second
target screen is directly behind the first target screen.

Set the first target screen's Backdrop screen bit to off ([d05] = 0).
If OBJ = 1 for the first target screen, processing is executed on all OBJ

regardless of type. If OBJ = 0, processing is executed only for translucent OBJ,
Bitmap OBJ, or a 3D surface rendered to a BG0 screen.

1 0
Brightness
Up
(see note)

Gradually increases the brightness of the first target screen. If the first target
screen specifies OBJ = 1, processing is executed only for normal OBJ. alpha-
blending is always performed when a second target screen is directly behind a

translucent OBJ, Bitmap OBJ, or 3D surface rendered to a BG0 screen.

1 1
Brightness
Down
(see note)

Gradually decreases the brightness of the first target screen. If the first target
screen specifies OBJ = 1, processing is executed only for normal OBJ. alpha-
blending is always performed when a second target screen is directly behind a

translucent OBJ, Bitmap OBJ, or 3D surface rendered to a BG0 screen.
© 2003-2006 Nintendo 147 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
1. Alpha-Blending

Color Special Effect Alpha-Blending Factor Register

The factors used for alpha-blending are set with EVA and EVB in the BLDALPHA [DB_BLDALPHA]
Register. EVA and EVB are divided by 16 and are used as the pixel color factors in the equations
below (when EVA or EVB exceeds 16, it is reset to 16).

Note that when a Bitmap OBJ is blended with the second target screen, the Bitmap OBJ's alpha value
is used instead of these values. For further details, see "5.3.4 Bitmap OBJ" on page 128 and "5.3.4.2
Blending with BG" on page 130.
• Computations for alpha-blending (16 levels of translucency)

Display color (R) = 1st pixel color (R) x (EVA /16) + 2nd pixel color (R) x (EVB / 16)

Display color (G) = 1st pixel color (G) x (EVA /16) + 2nd pixel color (G) x (EVB / 16)

Display color (B) = 1st pixel color (B) x (EVA /16) + 2nd pixel color (B) x (EVB / 16)

The computation results for alpha-blending are rounded to the nearest integer.

Note: An OBJ cannot be alpha-blended with another OBJ.

Figure 5-43 shows a case where an OBJ is specified as the first target screen, and a BG and an OBJ
are specified as the second target screen. In this situation, OBJ-B is ignored as the target pixels for
alpha-blending and alpha-blending is carried out with OBJ-A and BG, just as if the BG were located
directly behind OBJ-A.

Figure 5-43 : Alpha-Blending Display Priority

Name Address Attribute Initial Value

(2D_A) BLDALPHA 0x04000052 R/W 0x0000

(2D_B) DB_BLDALPHA 0x04001052 R/W 0x0000

EVB EVA

15 12 8 7 4 0

BG

OBJ-B OBJ-A

Display Priority
HighLow
NTR-06-0180-001-A9 148 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2. Brightness Up/Down

Color Special Effect Brightness Change Factor Register

The factor used for changing brightness is set with EVY in the BLDY [DB_BLDY] Register. EVY is
divided by 16 and is used as the pixel color factor in the equations below (when EVY exceeds 16, it is
reset to 16.)
• Computations to increase brightness

Display color (R) = 1st pixel (R) + (31 - 1st pixel (R)) x (EVY / 16)

Display color (G) = 1st pixel (G) + (31 - 1st pixel (G)) x (EVY / 16)

Display color (B) = 1st pixel (B) + (31 - 1st pixel (B)) x (EVY / 16)
• Computations to decrease brightness

Display color (R) = 1st pixel (R) - 1st pixel (R) x (EVY / 16)

Display color (G) = 1st pixel (G) - 1st pixel (G) x (EVY / 16)

Display color (B) = 1st pixel (B) - 1st pixel (B) x (EVY / 16)

The computation results for brightness are rounded to the nearest integer.

Name Address Attribute Initial Value

(2D_A) BLDY 0x04000054 W 0x0000

(2D_B) DB_BLDY 0x04001054 W 0x0000

EVY

15 8 7 0
© 2003-2006 Nintendo 149 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
5.8 Mosaic
The Mosaic size is set with the MOSAIC [DB_MOSAIC] Register. Mosaic is turned on/off for each BG with
the Mosaic Flag on the BG Control Register.

Mosaic Register

The Mosaic Size value specifies how many dots of a normal display should comprise each large dot
displayed. The Mosaic display starts with the top-most left dot on the screen and uses the dots spaced a
distance of the Mosaic size from the top-most left dot. All other dots are overwritten with the mosaic (see
Figure 5-44). In other words, if the Mosaic size is set to 0, then images display normally even if Mosaic is on.

Figure 5-44 : Display Changes According to Mosaic Size

Name Address Attribute Initial Value

(2D_A) MOSAIC 0x0400004C W 0x0000

(2D_B) DB_MOSAIC 0x0400104C W 0x0000

V Size H Size V Size H Size

OBJ Mosaic Size BG Mosaic Size

15 8 7 0

Normal Display

01 02 03 04 05 06 07

11 12

21

13

22

30

14

23

31

40

15 16

24 25

17

26 27

32

41

33 34 35

42

50

45 46 47

55 56

65

57

66

75

67

76 77

60 61 62 63 64

70 71 72 73 74

51 52 53 54

36 37

43 44

00

10

20

00 02 04 06

00

22

40

24 26

42 46

6660 62 64

44

00

00

20

00 00 00 04

00 00 00

60 64

00

00

00 00 0000

00 00 0000

00 00 0000

00 00 0000

Mosaic H Size: 1
V Size: 1

Mosaic H Size:3
V Size: 5
NTR-06-0180-001-A9 150 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
5.9 Display Priority
• BG Display Priority

Four levels of display priority can be set for BGs with the BG Control Register. When BGs have the
same priority, the one with the lower BG number has higher priority. The Backdrop screen always has
the lowest priority.

• OBJ Display Priority

Four levels of display priority can be set for OBJs with the OBJ Attribute Data stored in OAM. When
OBJs have the same priority, the one with the lower OBJ number has higher priority.

• BG - OBJ Display Priority

If an OBJ and a BG have the same priority, the OBJ has higher priority than the BG (see Figure 5-45).

Figure 5-45 : Display Priority

Workaround for the AGB OBJ Display Priority Problem

A problem with AGB caused an improper display when the OBJ numbers (the order OBJs are registered in
OAM) and the OBJ priority levels were reversed. This problem is corrected in NITRO (unless NITRO is set
to AGB-compatibility mode).

BG
Priority 3Backdrop

BG
Priority 2

BG
Priority 1

BG
Priority 0

OBJ
 Priority 3

OBJ
Priority 2

OBJ
Priority 1 OBJ Priority 0

Display Priority
HighLow
© 2003-2006 Nintendo 151 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 152 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6 3D Graphics
Figure 6-1 is a schematic of the hardware block involved in the rendering of 3D graphics.

Figure 6-1 : 3D Graphics Hardware Block Diagram

Rendering Engine (RE)

Geometry Engine (GE)

Current Texture
Matrix

GXFIFO
Register

GXSTAT
Register

Polygon List
RAM Vertex RAM

Toon Table

Edge Color
Table

BG0 Screen

Polygon List
RAM

Counter

Specular Reflection
Brightness Table

Texture
Image Slot

Current Position
Coordinate Matrix

Current
Directional

Vector Matrix

Logic Memory

Matrix Stack
Level 31

Matrix Stack
Level 31

Stage 1

Depth Buffer

Rasterize

Texture Mapping

α-Blending

Stage 2

Fog

Edge Marking

Fog Blending
Factor Table

Stencil Buffer

3D Graphics
Registers/Memory

Command
FIFO

Command
Register
Group

(Stage 3 Current)

Color Buffer

(Stage 1 Current)

Current
Projection

Matrix

Matrix Stack
Level 1

Linked

Current Clip
Coordinate

Matrix

(Stage 2 Current)

Stage 3
Anti-Aliasing

Attribute Buffer

Texture
Palette Slot

Vertex RAM
Counter

Buffer
© 2003-2006 Nintendo 153 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• Polygon List RAM, Vertex RAM

The data that is passed from the Geometry Engine to the Rendering Engine is stored in Polygon List
RAM and Vertex RAM.

Table 6-1 shows the capacity for this Polygon list RAM and Vertex RAM.

Table 6-1 : Capacity of Polygon List RAM and Vertex RAM

The capacity of polygon list RAM is just enough for 2048 triangular polygons. Because quadrilateral
polygons have four vertices, fewer of these can be stored in this RAM. A maximum of 1706 can be
stored for the quadrilateral strip because neighboring quadrilateral polygons share vertices.

• Buffers inside the Rendering Engine

The Stencil buffer, Attribute buffer, Depth buffer and Color buffer are memory regions that store
information for each pixel. One buffer block in Figure 6-1 depicts a line buffer for an LCD horizontal line
of 256 pixels. For more details, see the "6.3 Rendering Engine" on page 224.

RAM Capacity

Polygon List RAM 2048 polygons

Vertex RAM 6144 vertices
NTR-06-0180-001-A9 154 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.1 3D Display Control
DISP3DCNT: 3D Display Control Register

Name: DISP3DCNT Address: 0x04000060 Attribute: R/W Initial value: 0x0000

• CIE[d14] : Clear Image enable flag

Two VRAMs of 128 kilobytes each are used to set the values for Clear Color, Clear α, Clear Depth,
and Clear Fog.

The Clear α value is specified with 1 bit, so you can select only transparent or opaque.

VRAM2 banks must be assigned to the Clear Image buffer with the RAM Control register 0.

Even when this feature is used, the register value is used for the Clear Polygon ID.

For further information, see "6.3.3.2 Initializing with Clear Images" on page 230.

• GBO[d13] : Polygon List RAM and Vertex RAM overflow flag

The flag is set to 1 when the Geometry Engine processes too many polygons and vertices and
Polygon List RAM and Vertex RAM overflow.

Once an overflow has occurred, the bit remains 1 even if it is no longer overflowing. You can reset the
flag by writing 1.

When the polygon list RAM or vertex RAM overflow, the polygon that caused the overflow and all the
polygons after it are not registered.

• RBU[d12] : Color buffer underflow flag

This flag is set to 1 when rendering is not done in time to display and a Color buffer underflow occurs
(a line overflow in the Rendering Engine).

Once the Color buffer has underflowed, this bit remains 1 even upon deletion. You can reset by writing
1. See "6.3.2 Rendering Methods" on page 226.

0 No overflow

1 Overflow

0 No underflow

1 Underflow

CIE GBO RBU FOG_SHIFT FME FMOD EME AAE ABE ATE THS TME

Fog

15 14 13 12 11 8 7 6 5 4 3 2 1 0

Clear Image Enable Flag

Color Buffer Underflow Flag Edge Marking Enable Flag

Anti-aliasing Enable Flag

α-Blending Enable Flag

α-Test Enable Flag

Toon/Highlight Shading Selection

Texture Mapping Enable Flag

Polygon List RAM and
Vertex RAM Overflow Flag
© 2003-2006 Nintendo 155 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• [d11–d06] : Fog

This feature applies a fog effect. For details, see the "6.3.1 Overview" on page 224.
• [d11–d08] : Fog Shift

The depth value used by fog uses the upper 15 bits (called the fog depth value) of the 24 bits.

The Fog table is referenced using 5 bits of the depth value as an index.

When the Fog Shift is 0, the bits d14 - d10 of the depth value are referenced as the index. For
every 1-step increase in the Fog Shift, the reference bits are shifted 1-bit to the right.

Note: Setting values of 11–15 is prohibited.

• FME[d07] : Fog master enable flag

• FMOD[d06] : Fog mode

Selecting 1 makes 3D objects appear to dissolve into a 2D background.

• EME[d05] : Edge-marking enable flag

This feature draws an outline in the specified color around the edges of polygons with different polygon
IDs.

For details, see the "6.3.1 Overview" on page 224.

• AAE[d04] : Anti-aliasing enable flag

This feature blends the edges of a polygon with the color value for the polygon behind it.

For details, see the "6.3.1 Overview" on page 224.

If you plan to capture the rendering result used as Bitmap OBJ, etc., disabling this flag gives you more
natural images.

• ABE[d03] : Alpha-Blending enable flag

This feature blends the Color buffer's color with the fragment color in accordance with the fragment's
alpha value.

For details, see the "6.3.1 Overview" on page 224.

0 Disable

1 Enable

0 Fog blending using pixel's color value and α value.

1 Fog blending using only the pixel's α value.

0 Disable

1 Enable

0 Disable

1 Enable

0 Disable

1 Enable
NTR-06-0180-001-A9 156 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• ATE[d02] : α-Test enable flag

This feature enables you to skip the drawing of pixels that have an α-value lower than the specified
value.

For details, see the "6.3.1 Overview" on page 224.

• THS[d01] : Toon/Highlight Shading Selection

This bit selects the shading mode for the polygon specified for Toon shading/Highlight shading with the
PolygonAttr command.
• TMOD : Toon/Highlight polygon mode

• TME[d00] : Texture Mapping master enable flag

This selects whether to perform texture mapping.

0 Disable

1 Enable

0 Toon shading

1 Highlight shading

0 Disable

1 Enable
© 2003-2006 Nintendo 157 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2 Geometry Engine

6.2.1 Overview
Table 6-2 lists geometry engine specifications.

Table 6-2 : Geometry Engine Specifications

Note: A 1-dot polygon is a polygon whose constituent coordinates (x, y) have been condensed to the
same coordinate.

6.2.2 The coordinate system
In three-dimensional space, the coordinate system can be defined in two ways: as a right-handed
coordinate system or as a left-handed coordinate system, depending on the direction of the z-axis relative
to the x and y axes.

As a rule, NITRO adopts the right-handed coordinate system. However, because Z values are inverted
with the projection matrix, the coordinates after clipping are in the left-handed coordinate system.

Figure 6-2 shows the relation of the x, y, and z axes in a right-handed coordinate system.

Figure 6-2 : Right-Handed Coordinate System

Operating Frequency 33.514MHz

Coordinate
Transformation Maximum 4 million vertices/sec

Matrix Computation 4×4 matrix computation and matrix stack

Clipping 6-plane clipping

Lighting
Light: Parallel light source × 4
Material: Reflected light (diffuse reflection, specular reflection,
ambient reflection), Emission light

Other features
Backface culling; Specify display of 1-dot polygons (see note); Box
culling test; Texture coordinate transformation; Adjust specular
reflection shininess distribution

X

Y

Z

NTR-06-0180-001-A9 158 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.3 Coordinate Transformations
In OpenGL, when a model is located in view coordinates, the model is first multiplied by the model view
matrix, which includes the view transformation. This is then multiplied by the projection matrix, and the
apparent size of the model is determined based on the view volume.

To reduce the load on the hardware, NITRO uses a clip coordinate matrix that is a concatenation of the
projection matrix and the position coordinates matrix, so that clip coordinate conversion is done with only
one coordinate transformation. Then the clip coordinate values (x, y, z, w) are divided by 2w (perspective
division) after only the w coordinate is translated to get the normalized screen coordinates, and a scaling
transformation is done on the BG screen coordinates by a viewport transformation.

For the vertex's normal vector and light vector, OpenGL performs a transformation with the transposed
matrix of the modelview matrix. In contrast, NITRO assumes the vector is normalized, and uses only the
rotational component's matrix (the orthogonal matrix) for the transformation. This kind of transformation is
called a directional vector transformation.

In OpenGL, vertex position coordinates and directional vectors are transformed into view coordinates just
by setting the modelview matrix. But in NITRO, the vertex position coordinates and directional vectors are
transformed by separate matrices, and these are separately defined as the position coordinates matrix and
directional vector matrix.
© 2003-2006 Nintendo 159 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 6-3 illustrates the coordinate transformation flow on the NITRO.

Figure 6-3 : Coordinate Transformation Flow Chart

Object Coordinates

Normalized Screen
Coordinates

BG Screen
Coordinates

Projection
Transformation

Clip Coordinates

Perspective
Division

Viewport
Transformation

View Coordinates

Modeling
Transformation

World Coordinates

Viewing
Transformation

x

y

z

Object Coordinate System

Vertex coordinates specified with Vertex
commands.

Sign + 3-bit integer + 12-bit fractional part

Clip Coordinate System

Clipped by view volume with an reversed
z-axis.

Sign + 11-bit integer + 12-bit fractional part

Normalized Screen Coordinates

The x,y,z axes of the plane of projection
(the near clip plane) are normalized to 0.0
to 1.0

BG Screen Coordinate System

Normalized screen coordinates are scaled,
offset, and applied to the BG0 screen.
The Y-axis is inverted when rendering with
the Rendering Engine.

View Coordinate System

World space where the eye point is at the
origin and the z-axis is opposite the line of
sight.
Sign + 16-bit integer + 12-bit fractional part

x

y

z

x

y

z

x

y

x

y

World Coordinate System

World space

Sign + 16-bit integer + 12-bit fractional part

x

y

z

Po
si

tio
n

C
oo

rd
in

at
es

Tr

an
sf

or
m

at
io

n

C
lip

 C
oo

rd
in

at
es

Tr

an
sf

or
m

at
io

n

NTR-06-0180-001-A9 160 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.4 Projection Transformations
The perspective of the viewed polygon object from the eye point is defined by the view volume.

The view volumes and projection matrices for perspective projections (Figure 6-4) and orthogonal
projections ("Figure 6-5 : Orthogonal Projections" on page 162) are described below.

1. Perspective Projections
Figure 6-4 : Perspective Projections

a. Left-Right Asymmetrical Perspective Projection

b. Left-Right Symmetrical Perspective Projection

Near Clip Plane

Eye
Point

Far Clip Plane

Frustum

2n
r l–
------------ 0 0 0

0
2n
t b–
------------ 0 0

r l+
r l–
------------ t b+

t b–
------------ f n+

f n–
------------– 1–

0 0
2fn
f n–
------------– 0

scaleW×=

Perspective

θcos
asp θsin⋅
--------------------------- 0 0 0

0
θcos
θsin

------------- 0 0

0 0
f n+
f n–
------------– 1–

0 0
2fn
f n–
------------– 0

scaleW×=
© 2003-2006 Nintendo 161 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
2. Orthogonal Projections
Figure 6-5 : Orthogonal Projections

t : Top edge y-coordinate of near clip plane

b : Bottom edge y-coordinate of near clip plane

r : Right edge x-coordinate of near clip plane

l : Left edge x-coordinate of near clip plane

n : Distance from eye point to near clip plane

f : Distance from eye point to far clip plane

θ : Angle of field-of-view (screen angle) in vertical (y) direction ÷ 2

asp : Aspect ratio of width to height of field-of-view (height:width ratio = width of field-of-view ÷ height
of field-of-view)

scaleW : Parameter for precision-adjusting view volume

(Use to change the scaling of clip coordinate space and increase the precision of the orthogonal
screen coordinates after perspective division.)

Near Clip Plane

Eye
Point

Far Clip Plane

Ortho

2
r l–
------------ 0 0 0

0
2

t b–
------------ 0 0

0 0
2

f n–
------------– 0

r l+
r l–
------------– t b+

t b–
------------– f n+

f n–
------------– 1

=

NTR-06-0180-001-A9 162 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.5 Depth Buffering

1. For Perspective Projections

The perspective projection matrix parameters are set as shown below. (For details about elements
p0-p5, see "6.2.4 Projection Transformations" on page 161).

When the View coordinates are (x, y, z, 1), the Clip coordinates (x’, y’, z’, w’) are as follows:

When each clip coordinate component is translated by w’ and then divided by 2w’ (perspective
division), the normalized screen coordinates (x”, y”, z”, 1) are obtained. The z” component is calculated
as follows:

p4 and p5 are elements of the perspective projection matrix, so using the matrix shown in the equation
"a. Left-Right Asymmetrical Perspective Projection" on page 161 yields:

During Z buffering, this z” value is multiplied by 0x7FFF to get the depth value z’’’. The z’’’ value is
proportional to the inverse of the View coordinate z value, so in View coordinate space the position
coordinates are more precise the closer they are to the eye point, and less precise the farther they are
away from the eye point. As a result, when you represent a large space, drawings that are farther away
tend to be more imprecise. To resolve this problem, NITRO supports W buffering, which uses clip
coordination as the depth value.

Because the depth value is taken as a multiple of the view coordinate z from the equation...

... the precision of rendering in the distance improves. The trade-off is that this diminishes the precision
of nearby images compared to Z-buffering. But by enlarging the view volume space and adjusting
scaleW in order to maintain a certain level of resolution, this should not present a problem for nearby
images. (See Figure 6-6.)

M

p0 0 0 0

0 p2 0 0

p1 p3 p4 1–
0 0 p5 0

scaleW×=

x' p0 x p1 z×+×() scaleW×=
y' p2 y p3 z×+×() scaleW×=
z' p4 z p5 1×+×() scaleW×=
w' z scaleW×–=

z'' z' w'+
2w'

-------------- p4 z p5 z–+×() scaleW×
2z– scaleW×

-- 1
2
--- p4

2
------– p5

2z
------–= = =

z'' f
f n–()

---------------- 1
n
z
---+⎝ ⎠

⎛ ⎞ far z near–≤ ≤–()=

w' z scaleW far z≤– near–≤()×–=
© 2003-2006 Nintendo 163 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 6-6 : Z-Buffering and W-Buffering (Perspective Projection)

f : Distance from eye point to far clip plane

n : Distance from eye point to near clip plane

View Coordinate
Z value

Z buffering W Buffering

View Coordinate
Z value

－f

f×scaleW

－f －n

0x7FFF

－n

n×scaleW

Depth Value Depth Value
NTR-06-0180-001-A9 164 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
2. For Orthogonal Projections

The orthogonal projection matrix parameters are set as shown below. (For details about elements
p0-p5, see "6.2.4 Projection Transformations" on page 161.

When the View coordinates are (x, y, z, 1), the Clip coordinates (x’, y’, z’, w’) are as follows:

When each component of the clip coordinate is translated by w’ and then divided by 2w’

When each clip coordinate component is translated by w’ and then divided by 2w’ (perspective
division), the normalized screen coordinates (x”, y”, z”, 1) are obtained. When scaleW = 1, coordinates
are translated by 1 and divided by 2, so the clip coordinate system values -1.0 to 1.0 are transformed
into the normalized screen coordinate system values 0.0 to 1.0.

The normalized screen coordinate z” component is calculated as follows:

p4 and p5 are elements of the orthogonal projection matrix, so using the matrix shown in the equation
"2. Orthogonal Projections" on page 162 yields:

During Z buffering, this z” value is multiplied by 0x7FFF to get the depth value z’’’. This z’’’ value is
proportional to the View coordinate z value, so no problems arise with the precision of distant images.

When w buffering is used, the w’ clip coordinate which serves as the depth value is always fixed to the
value 1 x scaleW. For this reason, w buffering is not used with orthogonal projections. (See Figure 6-7.)

M

p0 0 0 0

0 p2 0 0

0 0 p4 0

p1 p3 p5 1

scaleW×=

x' p0 x p1 1×+×() scaleW×=
y' p2 y p3 1×+×() scaleW×=
z' p4 z p5 1×+×() scaleW×=
w' 1 scaleW×=

z'' z' w'+
2w'

-------------- p4 z p5 1+ +×() scaleW×
2 scaleW×

-- p4 z p5 1+ +×
2

-------------------------------------= = =

z'' 1–
f n–()

---------------- z n+() far z near–≤ ≤–()=
© 2003-2006 Nintendo 165 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 6-7 : Z-Buffering and W-Buffering (Orthogonal Projection)

f : Distance from eye point to far clip plane

n : Distance from eye point to near clip plane

Depth value format
The NITRO Depth buffer uses 24 bits for each pixel, so the depth value must fit inside that range.

For Z buffering, the depth value is the value that expresses the distance from the near clip plane to the far
clip plane with 24-bit precision.

For W buffering, the distance from the eye point in the View coordinate system must fit within the 24-bit
precision (sign + 11-bit integer + 12-bit fractional part) range of the Clip coordinate system, and the depth
value is the result of translating the W value of the clip coordinates a distance of W and then dividing by
two (12-bit integer + 12-bit fractional part).

Note: Make sure that the Clip coordinate values do not exceed the 24-bit range.

For fog, the depth value is the upper 15 of the 24 bits. See Chapter 6.3.3.1“Initializing with the
Clear Registers” on page 229 for details.

View Coordinate
Z value

－f

0x7FFF

View Coordinate
 Z value

－f

1×scaleW

－n

Z Buffering Depth Value W Buffering Depth Value

－n
NTR-06-0180-001-A9 166 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.6 Geometry Commands
To transfer the data of matrices and polygons, etc. to the Geometry Engine requires the writing of
command strings to Command FIFO. There are two ways to write to Command FIFO:

Method 1: Write parameters to the group of command registers mapped in the register space of the main
processor.

Write the parameters into Command registers, and the command code and parameters are
automatically written into Command FIFO. This method works when the CPU will process one
command at a time.

Method 2: Write command code and parameters to the Command FIFO register.

This method is appropriate for transferring large amounts of data to the Geometry Engine,
such as for DMA transfers of command strings stored in main memory.

Note: The Geometry Command register group and Command FIFO are specialized for 32-bit access.
Whether you are writing using the CPU or DMA, make sure the access width is 32 bits.

When an attempt is made to write to Command FIFO when it is full, the process enters a wait state
until 32 bits open up in Command FIFO. During this wait state the bus cannot be used even by
another bus master. You can avoid this situation by doing the following:

Transfer commands using the DMA Geometry Command FIFO startup mode

In this mode, DMA is started when Command FIFO becomes less than half full, sending in units of
112 words (see note) until the specified transfer volume is reached. See Chapter 7.

Note: If commands have been packed, the word count equals the number of words before
unpacking.

You can determine the status of Command FIFO by checking the Command FIFO status
flag in the Geometry Engine status register (GXSTAT).
© 2003-2006 Nintendo 167 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
GXFIFO: Command FIFO Register
Name: GXFIFO Address: 0x04000400 (Image: 0x04000404 - 0x0400043F) Attribute: W

Data written to the Command FIFO register is sent to Command FIFO.

Command FIFO has a depth of 32 bits x 256 levels.

Be careful not to transfer undefined command codes.

Command Packing
When transferring command strings to the Command FIFO register, the command strings can be
compressed by packing up to four command codes in one word.

Packed command strings are first decompressed and then stored in command FIFO. The packed
command strings are stored in command FIFO in order starting from the low-order byte, so you need to
pack the command codes starting from the low-order address and fill the empty higher-order bytes with 0.

Figure 6-8 shows the different command transfers for commands that are packed and that are not packed.

Figure 6-8 : Transferring Packed and Non-Packed Commands

In the example shown above, Commands 1, 4 and 5 have one parameter each, Command 2 has two
parameters, and Commands 3 and 6 have no parameters.

In Figure 6-8, a data volume of 11 words is sent to the Command FIFO register when the commands are
not packed, but when commands are packed only 7 words are sent, for a savings of 4 words.

31 24 23 16 15 8 7 0

Word
Count

1

2

3

4

5

6

7

8

9

10

11

d31 - d24 d23 - d16 d15 - d08 d07 - d00

GXFIFO

0x00 0x00 0x00 Command 1

GXFIFO

Command 4 Command 3 Command 2 Command 1

Parameter for Command 1

0x00 0x00 0x00 Command 2

0x00 0x00 0x00 Command 3

0x00 0x00 0x00 Command 4

0x00 0x00 0x00 Command 5

0x00 0x00 0x00 Command 6

Parameter A for Command 2

Parameter B for Command 2

Parameter for Command 4

Parameter for Command 5

Parameter for Command 1

Parameter A for Command 2

Parameter B for Command 2

Parameter for Command 4

0x00 0x00 Command 6 Command 5

Parameter for Command 5

4-Word Reduction

Non-packed Commands Packed Commands

d31 - d24 d23 - d16 d15 - d08 d07 - d00
NTR-06-0180-001-A9 168 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Cautions regarding the CPU continuously writing to Geometry FIFO
Continuous writing to the Geometry FIFO using STM or STRD instructions can occur properly only when
the two following conditions are met. See Figure 6-9.

• Command Pack is not used
• Write only one command-parameter pair at a time

Figure 6-9 : Continuous writing to the Geometry FIFO using STM or STRD Instructions

The “Unit that can be continuously transferred with STM or STRD instructions” mentioned above can be
written at a single time. However, do not perform a write with STM or STRD instructions that exceed this
unit. Leave a blank interval of one system cycle between each “Unit that can be continuously transferred
with STM or STRD instructions.”

Cautions regarding Data Arrays for Command Packs
Writing to the Geometry FIFO when command packs are used can occur properly only when one of the fol-
lowing conditions are met whether using the CPU or DMA.

• Do not have a command without parameters (see Note 2 below) come in the top level of valid
commands in the command pack (see Note 1 below). See Figures for details.

Note 1: “Valid command” indicates a command defined within the region between 0x10 and 0xFF. “Invalid
Commands” are in the region between 0x00 and 0x0F.

000000h
Valid

Command
21h (Normal)

000000h
Valid

Command
23h (Vertex1)

000000h
Valid

Command
41h (End)

000000h
Valid

Command
29h (PolygonAttr)

Parameters for Normal

Parameters for Vertex1

Parameters for Vertex1

Parameters for PolygonAttr

31 24 23 16 15 8 7 0

.

.

.

Unit that can be
continuously
transferred with
STM or STRD
instructions

Unit that can be
continuously
transferred with
STM or STRD
instructions

Unit that can be
continuously
transferred with
STM or STRD
instructions

Unit that can be
continuously
transferred with
STM or STRD
instructions
© 2003-2006 Nintendo 169 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Note 2: A “command without parameters” is one of the four following commands.

• PushMatrix
• LoadIdentity
• End
• Commands undefined within the region between 0x10 and 0xFF

Figure 6-10 : Case 1: Preventing Commands without Parameters from being the first Valid Command

Valid
Command

29h (PolygonAttr)

Valid
Command
40h (Begin)

Valid
Command

22h (TexCoord)

.

.

.

.

.

.

Top Level of Valid Commands

Valid
Command

21h (Normal)

Parameters for Normal

31 24 23 16 15 8 7 0

Parameters for Vertex1

Parameters for Vertex1

Valid
Command

29h (PolygonAttr)

Parameters for PolygonAttr

Valid
Command

23h (Vertex1)

Valid
Command
41h (End)

Invalid
Command

00h

Valid
Command
40h (Begin)

Valid
Command

22h (TexCoord)

Valid
Command

23h (Vertex1)

Valid
Command

21h (Normal)

Parameters for Normal

31 24 23 16 15 8 7 0

Parameters for Vertex1

Parameters for Vertex1

Parameters for PolygonAttr

Valid
Command

23h (Vertex1)

Valid
Command
41h (End)

Invalid
Command

00h

Invalid
Command

00h
NTR-06-0180-001-A9 170 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 6-11 : Case 2: Preventing Commands without Parameters from being the first Valid Command

.

.

.

.

.

.

Not included in the command pack

Valid
Command

11h (PushMatrix)

31 24 23 16 15 8 7 0

Valid
Command

29h (PolygonAttr)

Parameters for PolygonAttr

Valid
Command

11h (PushMatrix)

Valid
Command

11h (PushMatrix)

Valid
Command

11h (PushMatrix)

Valid
Command
40h (Begin)

Valid
Command

22h (TexCoord)

Valid
Command

23h (Vertex1)

Parameters for PolygonAttr

Valid
Command

11h (PushMatrix)

31 24 23 16 15 8 7 0

Valid
Command

11h (PushMatrix)

Invalid
Command

00h

Invalid
Command

00h

Invalid
Command

00h

Valid
Command

11h (PushMatrix)

Valid
Command

11h (PushMatrix)

Valid
Command

29h (PolygonAttr)
© 2003-2006 Nintendo 171 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• When a command without parameters comes in the top level of valid commands in the command
pack, insert zeros at the end of the parameter array corresponding to that command pack.

Figure 6-12 : When the First Valid Command has no Parameters

Parameters for Vertex1

.

.

.

Valid
Command

21h (Normal)

31 24 23 16 15 8 7 0

Valid
Command

23h (Vertex1)

Valid
Command
41h (End)

Invalid
Command

00h

Parameters for Normal

Parameters for Vertex1

Top Level of Valid Commands

Parameters for Vertex1

.

.

.

Valid
Command

21h (Normal)

31 24 23 16 15 8 7 0

Valid
Command

23h (Vertex1)

Valid
Command
41h (End)

Invalid
Command

00h

Parameters for Normal

Parameters for Vertex1

All Zeros (0)
NTR-06-0180-001-A9 172 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Table 6-3 and Table 6-4 show lists of Geometry Commands.

Table 6-3 : Geometry Commands (in Command Code Order)

Category Feature Command name

Command
register
address

(see note)

Command
code

No. of
words in

parameter
Page

— No operation Nop — 0x00 0 None

Matrix mode Sets the matrix mode MatrixMode 0x440 0x10 1 181

Operations
on the
current
matrix

Pushes to stack PushMatrix 0x444 0x11 0 186

Pops from stack PopMatrix 0x448 0x12 1 186

Writes to specified location in stack StoreMatrix 0x44C 0x13 1 187

Reads from specified location in
stack RestoreMatrix 0x450 0x14 1 187

Initializes a unit matrix Identity 0x454 0x15 0 182

Sets a 4x4 matrix LoadMatrix44 0x458 0x16 16 182

Sets a 4x3 matrix LoadMatrix43 0x45C 0x17 12 182

Multiplies a 4x4 matrix MultMatrix44 0x460 0x18 16 183

Multiplies a 4x3 matrix MultMatrix43 0x464 0x19 12 183

Multiplies a 3x3 matrix MultMatrix33 0x468 0x1A 9 184

Multiplies a scale matrix Scale 0x46C 0x1B 3 185

Multiplies a translation matrix Translate 0x470 0x1C 3 184

Vertex
information

Directly sets vertex color Color 0x480 0x20 1 201

Sets normal vector Normal 0x484 0x21 1 202

Sets texture coordinates TexCoord 0x488 0x22 1 205

Vertex
coordinates

Sets the vertex coordinates Vertex 0x48C 0x23 2 202

Same as above Vertex10 0x490 0x24 1 203

Sets the XY coordinates of the
vertex VertexXY 0x494 0x25 1 203

Sets the XZ coordinates of the
vertex VertexXZ 0x498 0x26 1 203

Sets the YZ coordinates of the
vertex VertexYZ 0x49C 0x27 1 203

Sets vertex using the differential
value of the last-set coordinate VertexDiff 0x4A0 0x28 1 204

Polygon
attribute Sets the polygon attribute PolygonAttr 0x4A4 0x29 1 196

Texture
information

Sets the texture parameters TexImageParam 0x4A8 0x2A 1 206

Sets the base address of the texture
palette TexPlttBase 0x4AC 0x2B 1 211

Material

Sets the colors for ambient
reflection and diffuse reflection MaterialColor0 0x4C0 0x30 1 192

Sets the colors for emission light
and specular reflection MaterialColor1 0x4C4 0x31 1 192

Sets the specular reflection
shininess table Shininess 0x4D0 0x34 32 193
© 2003-2006 Nintendo 173 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Note: The Command register address values shown here are offset from address 0x04000000.

Be careful not to issue undefined command codes to the Geometry Engine's command FIFO.

Table 6-4 : No. of Geometry Command Run Cycles & Timing Related to Command Issue (in Command Code Order)

Light
Sets the directional vector for light LightVector 0x4C8 0x32 1 189

Sets the light color LightColor 0x4CC 0x33 1 189

Vertex list
begin/end

Declares the start of the vertex list Begin 0x500 0x40 1 200

Declares the end of the vertex list End 0x504 0x41 0 201

Swap
Rendering

Engine
reference

data

Swaps the data group referenced
by the Rendering Engine SwapBuffers 0x540 0x50 1 178

Viewport Sets the viewport ViewPort 0x580 0x60 1 180

Test

Tests whether the box is inside the
view volume BoxTest 0x5C0 0x70 3 215

Sets position coordinates for test PositionTest 0x5C4 0x71 2 216

Sets directional vector for test VectorTest 0x5C8 0x72 1 216

Command
Name

Run
Cycle

Number

Issue
Timing

When Settings Take
Effect When Settings Are Destroyed

Nop No
Restriction

Category Feature Command name

Command
register
address

(see note)

Command
code

No. of
words in

parameter
Page
NTR-06-0180-001-A9 174 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
MatrixMode 1

No
Restriction

When command is
executed

When next MatrixMode command is executed

PushMatrix 17 When next Push/StoreMatrix command is executed

PopMatrix 36 When next Matrix change command is executed

StoreMatrix 17 When next Push/StoreMatrix command is executed

RestoreMatrix 36

When next Matrix change command is executed

Identity 19

LoadMatrix44 34

LoadMatrix43 30

MultMatrix44 35*

MultMatrix43 31*

MultMatrix33 28*

Scale 22

Translate 22*

Color 1
When next Color, Normal command is executed

Normal 9 – 12**

TexCoord 1 When next TexCoord command is executed

Vertex 9

Only
between
Begin–End

When next Vertex related command is executed

VertexShort 8

VertexXY 8

VertexXZ 8

VertexYZ 8

VertexDiff 8

PolygonAttr 1

Only
outside
Begin –
End

When Begin command
is executed (settings
are valid between
Begin–End units)***

When next PolygonAttr command is executed

TexImagePara
m 1 Per

Polygon****

When command is
executed (settings are
valid in polygon units)

When next TexImageParam command is executed

TexPlttBase 1 When next TexPlttBase command is executed

MaterialColor0 4

No
Restriction

When Normal
command is executed

When next MaterialColor0 command is executed

MaterialColor1 4 When next MaterialColor1 command is executed

Shininess 32 When next Shininess command is executed

LightVector 6 When next LightVector command is executed

LightColor 1 When next LightColor command is executed

Begin 1 When command is
executed

When next Begin command is executed

End 1 No set value

Command
Name

Run
Cycle

Number

Issue
Timing

When Settings Take
Effect When Settings Are Destroyed
© 2003-2006 Nintendo 175 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
The number of run cycles is a system clock (33.514Mhz) converted value.

* When in Position and Vector Simultaneous Setting mode, this takes another 30 cycles.

** Is increased according to the number of lights that are enabled (ON)

*** The PolygonAttr command is enabled with the Begin command. However, to reflect the light enable flag
on vertex color, issue a Normal command again to recalculate the lighting.

**** Concerning the Polygon unit:

Commands that can be issued in polygon units can be issued in the Vertex-related command string at
polygon breakpoints (breakpoints appear as • in the following table.)

SwapBuffers 392 Only
outside
Begin –
End

When enter V-Blank
period When next SwapBuffers command is executed

ViewPort 1

When command is
executed

When next ViewPort command is executed

BoxTest 103 When next BoxTest command is executed

PositionTest 9
Per
Polygon**** When next PositionTest is executed

VectorTest 5 No
Restriction When next VectorTest is executed

Triangular Polygons Triangular Polygon Strip Quadrilateral Polygons Quadrilateral Polygon Strip

•
Begin

 •
 Vertex //Polygon 1
 Vertex
 Vertex

 •
 Vertex //Polygon 2
 Vertex
 Vertex

 •
 Vertex //Polygon 3
 Vertex
 Vertex

 •
End

•

•
Begin

 •
 Vertex //Polygon 1
 Vertex
 Vertex
 Vertex
 Vertex //Polygon 2
 Vertex //Polygon 3

 •
End

•

•
Begin

 •
 Vertex //Polygon 1
 Vertex
 Vertex
 Vertex

 •
 Vertex //Polygon 2
 Vertex
 Vertex
 Vertex

 •
 Vertex //Polygon 3
 Vertex
 Vertex
 Vertex

 •
End

•

•
Begin

 •
 Vertex //Polygon 1
 Vertex
 Vertex
 Vertex
 Vertex //Polygon 2
 Vertex
 Vertex //Polygon 3
 Vertex

 •
End

•

Command
Name

Run
Cycle

Number

Issue
Timing

When Settings Take
Effect When Settings Are Destroyed
NTR-06-0180-001-A9 176 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual

C

B
c

C

C

C

T
C

L
C

Li
C

Ma
C

S
C

V
C

P
Tex

C

Figure 6-13 shows a schematic of the main Geometry Command processes.

Figure 6-13 : Schematic of the main Geometry Command processes

Note: The flow shown here for the TexCoord command is for when the texture coordinate transformation
mode is set to TexCoord source.

Current Texture
Matrix

Specular Reflection
Shininess Table

Current Position
Coordinate Matrix

Current Directional
Vector Matrix

Matrix Stack
Level 31

Matrix Stack
Level 31

Current Projection
Matrix

Matrix Stack
Level 1

Linked

Current Clip
Coordinate Matrix

Current
Viewport

Clip Coordinate
Transformation

Vector coordinate
transformation Lighting

Viewport
Transformation

Matrix
ommands

Current Vertex
Color

Current texture
coordinates

Vertex RAM

Current Light
Color

Current Light
Vector

Current Material
Color

Polygon List
RAM

Vector
Coordinate

Transformation

R
en

de
rin

g
En

gi
ne

egin, End
ommands

Vertex
ommands

Normal
ommand

Color
ommand

exCoord
ommand

ightColor
ommand

ghtVector
ommand

terialColor
ommand

hininess
ommand

iewport
ommand

olygonAttr,
ImageParam
ommands

Current
Attribute

When the Begin Command
is Processed

Register Can
 be Read

Register
Can be Read

Automatically
Concatenated

Perspective
Division

When Vertex Color for Diffuse
Color is Set

Texture Coordinate
Transformation

P
rim

iti
ve

 T
ra

ns
la

tio
n

Maximum 6144
Vertices

Maximum 2048 Polygons
© 2003-2006 Nintendo 177 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.7 Swapping the Rendering Engine's Reference Data

SwapBuffers: Swaps the Data Group Referenced by the Rendering Engine
Name: SWAP_BUFFERS Address: 0x04000540 Attribute: W Command Code: 0x50

• DP[d01] : Depth buffering selection flag

Selects the value used for the depth test. To read how the depth value differs depending on the depth-
buffering method, see "6.2.5 Depth Buffering" on page 163.

• YS[d00] : Translucent polygon Y-sorting selection flag

Translucent polygons are polygons with (1 ≤ α ≤ 30) or mapped with a translucent texture.

Select manual sort mode to specify the order of rendering, such as when using shadow volume.

The Geometry Engine writes the data passed to the Rendering Engine to Polygon List RAM.

For translucent polygons, you can choose whether to sort the data and then write, or to simply write
the data in the order they are processed, without sorting. In Auto-sort mode, polygons are sorted from
the polygon with smallest maximum Y value on the LCD (see note) to the polygon with the largest
maximum Y value. Polygons that share the same maximum Y value are sorted in order from the
polygon with smallest minimum Y value.

In Manual sort mode, polygons are sorted according to the order in which they are sent to the
Geometry Engine.

In Auto sort mode, the Rendering Engine does not reference polygons with minimum Y values larger
than the scan line (a line that is being rendered) or polygons with maximum Y values smaller than the
scan line. However, all polygons are referenced in manual mode, which increases the load on the
geometry engine (and reduces rendering efficiency). Because of this, be careful when using Manual
sort mode when there are a large number of translucent polygons.

Opaque polygons are always Auto sorted.

Regardless of the sort mode, opaque polygons are always rendered before translucent polygons.

Note: Maximum Polygon Y value on the LCD

The Y coordinates are the inverse of Y coordinates in the BG Screen Coordinate Group in the
Coordinate Transformation Flow Chart (Figure 6-3). Therefore, the maximum Y value for a
polygon on the LCD is the minimum value in the BG Screen Coordinate Group.

0 Select buffering with the Z value

1 Select buffering with the W value
(Does not function properly for orthogonal projections)

0 Auto-sort mode

1 Manual sort mode

DP YS

31 24 23 16 15 8 7 1 0
NTR-06-0180-001-A9 178 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• Reflecting the Depth Buffering Select Flag and Translucent Polygon Y Sorting Select Flag

These flags are reflected in the geometry engine from the next frame. However, because polygon list
RAM and vertex RAM are double buffered, the rendering engine renders the data that the geometry
engine stored in the previous frame. Therefore, data that the geometry engine outputs is rendered with
an additional one-frame delay.

• Processing the SwapBuffers command

The SwapBuffers command is processed at the next V-Blank, regardless of when it was input. (The
geometry engine is in wait status until the V-Blank period arrives.) The Polygon List RAM, Vertex RAM,
rendering-related registers, and other data referenced by the Rendering Engine is swapped at the start
of the next V-Blank period after the issuance of the SwapBuffers command. Because of this timing,
rendering reflects the written graphics data in the next frame after the SwapBuffers command is
issued.
© 2003-2006 Nintendo 179 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.8 Viewport

ViewPort: Sets the Viewport
Name: VIEWPORT Address: 0x04000580 Attribute: W Command Code: 0x60

• Y2, X2 [d31–d24, d23–d16] : Top right coordinates

Set Y2 to a value larger than Y1. Can be set in the range 0–191.

Set X2 to a value larger than X1. Can be set in the range 0–255.

• Y1, X1[d15–d08, d07–d00] : Bottom left coordinates (the viewport origin)

Set Y1 to a value smaller than Y2. Can be set in the range 0–191.

Set X1 to a value smaller than X2. Can be set in the range 0–255.

This sets the position and the size of the viewport which draws 3D graphics on the BG0 screen.

The BG0's H offset is added to get the display position on the LCD.

Notice that the origin point is different than for the 2D coordinate group. (See Figure 6-14)

Figure 6-14 : Size and Position of the Viewport

Note: Rendering may result in one dot protruding from the right or bottom edge of the viewport.

INTEGER_Y2 INTEGER_X2 INTEGER_Y1 INTEGER_X1

Y2 X2 Y1 X1

31 24 23 16 15 8 7 0

Viewport

0 255

191

0

Viewport X Axis

V
ie

w
po

rt
 Y

 A
xi

s

BG0 Screen

Origin

(X1, Y1)

(X2, Y2)
NTR-06-0180-001-A9 180 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.9 Matrices

6.2.9.1 Manipulating the Current Matrix

MatrixMode: Sets the Matrix Mode
Name: MTX_MODE Address: 0x04000440 Attribute: W Command Code: 0x10

• M[d01–d00] : Matrix mode

This specifies the current matrix on which Matrix commands operate (this classification is called the
Matrix mode).

Position mode and Position and Vector Simultaneous Set mode
NITRO does not use the hardware to make a unit normal vector. Therefore, to obtain correct lighting
effects, you must set a unit vector as the normal in advance, and the directional vector matrix must be an
orthogonal matrix (a matrix that does not change the length of the directional vector). When a model is
transformed, the transformation matrix is usually used for both the position coordinates matrix and the
directional vector matrix. But with NITRO, the directional vector matrix must be maintained as an
orthogonal matrix, so depending on the type of transformation, sometimes the transformation matrix is
used only for the position coordinates matrix.

Let the situation dictate whether to use Position mode or Position and Vector Simultaneous Set mode to
set the Position and Vector simultaneously.

Examples
When rotating a model, usually the mode is set to the Position and Vector Simultaneous Setting and the
MultMatrix command is executed to apply the rotation component of the matrix for both the position
coordinates matrix and the directional vector matrix.

When the Scale command is used for model scaling, the directional vector matrix can be maintained as an
orthogonal matrix, so the correct lighting effect can be obtained. (See the Scale command on page 185.)

When the scale matrix is applied with the MultMatrix command, the directional vector matrix is not
maintained as an orthogonal matrix, and the lighting effect is brighter or darker than the original. Thus, it
would be safer not to use this procedure.

When Position mode is selected, Matrix commands are applied only to the position coordinates matrix, so
the correct lighting effect is obtained even when the scale matrix is applied with the MultMatrix command.
You can also use this mode when you want to apply the rotation matrix only to the position coordinates
matrix, but unnatural effects can arise. For example, sometimes the lighting effect does not change upon
rotation, or a part that is not being illuminated ends up being the brightest.

00 Projection mode ... (For manipulating projection matrices)

01 Position mode ... (For manipulating position coordinate matrices)

10 Position & Vector
Simultaneous Set mode

... (For manipulating position coordinate matrices and
 directional vector matrices)

11 Texture mode ... (For manipulating texture matrices)

31 24 23 16 15 8 7 1 0

M

Matrix Mode
© 2003-2006 Nintendo 181 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
MTX_IDENTITY: Initialize Current Matrix to Unit Matrix
Name: MTX_IDENTITY Address: 0x04000454 Attribute: W Command Code: 0x15

LoadMatrix44: Set 4x4 Matrix to Current Matrix
Name: MTX_LOAD_4x4 Address: 0x04000458 Attribute: W Command Code: 0x16

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• M44 : 4x4 matrix elements m[x] (x = 0 - 15)

The matrix M is set as follows with elements m[0] to m[15]:

LoadMatrix43: Set 4x3 Matrix to Current Matrix
Name: MTX_LOAD_4x3 Address: 0x0400045C Attribute: W Command Code: 0x17

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• M43 : 4x3 matrix elements m[x] (x = 0 - 11)

The matrix M is set as follows with elements m[0] to m[11]:

31 24 23 16 15 8 7 0

S INTEGER_M44 DECIMAL_M44
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

M

m 0[] m 1[] m 2[] m 3[]
m 4[] m 5[] m 6[] m 7[]
m 8[] m 9[] m 10[] m 11[]
m 12[] m 13[] m 14[] m 15[]

=

S INTEGER_M43 DECIMAL_M43
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

M

m 0[] m 1[] m 2[] 0

m 3[] m 4[] m 5[] 0

m 6[] m 7[] m 8[] 0

m 9[] m 10[] m 11[] 1

=

NTR-06-0180-001-A9 182 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
MultMatrix44: Multiply 4x4 Matrix by Current Matrix
Name: MTX_MULT_4x4 Address: 0x04000460 Attribute: W Command Code: 0x18

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• M44 : 4x4 matrix elements m[x] (x = 0 - 15)

The matrix M is set as follows with elements m[0] to m[15]:

If the current matrix is C, then the new current matrix C’ = MC

MultMatrix43: Multiply 4x3 Matrix by Current Matrix
Name: MTX_MULT_4x3 Address: 0x04000464 Attribute: W Command Code: 0x19

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• M43 : 4x3 matrix elements m[x] (x = 0 - 11)

The matrix M is set as follows with elements m[0] to m[11]:

If the current matrix is C, then the new current matrix C’ = MC

S INTEGER_M44 DECIMAL_M44
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

M

m 0[] m 1[] m 2[] m 3[]
m 4[] m 5[] m 6[] m 7[]
m 8[] m 9[] m 10[] m 11[]
m 12[] m 13[] m 14[] m 15[]

=

S INTEGER_M43 DECIMAL_M43
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

M

m 0[] m 1[] m 2[] 0

m 3[] m 4[] m 5[] 0

m 6[] m 7[] m 8[] 0

m 9[] m 10[] m 11[] 1

=

© 2003-2006 Nintendo 183 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
MultMatrix33: Multiply 3x3 Matrix by Current Matrix
Name: MTX_MULT_3x3 Address: 0x04000468 Attribute: W Command Code: 0x1a

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• M33 : 3x3 matrix elements m[x] (x = 0 - 8)

The matrix M is set as follows with elements m[0] to m[8]:

If the current matrix is C, then the new current matrix C’ = MC

Translate: Multiply Translation Matrix by Current Matrix
Name: MTX_TRANS Address: 0x04000470 Attribute: W Command Code: 0x1c

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• TRANSLATE : Translation matrix elements m[x] (x = 0 - 2)

The matrix M is set as follows with elements m[0] to m[2]:

If the current matrix is C, then the new current matrix C’ = MC

S INTEGER_M33 DECIMAL_M33
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

M

m 0[] m 1[] m 2[] 0

m 3[] m 4[] m 5[] 0

m 6[] m 7[] m 8[] 0

0 0 0 1

=

S INTEGER_TRANSLATE DECIMAL_TRANSLATE
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

M

1 0 0 0

0 1 0 0

0 0 1 0

m 0[] m 1[] m 2[] 1

=

NTR-06-0180-001-A9 184 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Scale: Multiply the Scale Matrix by Current Matrix
Name: MTX_SCALE Address: 0x0400046C Attribute: W Command Code: 0x1b

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• SCALE : Scale matrix elements m[x] (x = 0 - 2)

The matrix M is set as follows with elements m[0] to m[2]:

If the current matrix is C, then the new current matrix C’ = MC

The Scale command performs multiplication only on the position coordinates matrix, even when the
matrix mode has been set to Position & Vector Simultaneous Setting mode. (If it were performed on
the directional vector matrix, the direction and length of vectors would change and abnormal lighting
effects would arise.)

S INTEGER_SCALE DECIMAL_SCALE
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

M

m 0[] 0 0 0

0 m 1[] 0 0

0 0 m 2[] 0

0 0 0 1

=

© 2003-2006 Nintendo 185 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.9.2 Matrix Stack
Manipulations are made to the stack of the current matrix.

Because the position coordination matrix stack and the directional vector matrix stack are connected,
manipulations affect both stacks, whether the mode is set to Position mode or Position & Vector
Simultaneous Setting mode.

PushMatrix: Push the Current Matrix on the Stack
Name: MTX_PUSH Address: 0x04000444 Attribute: W Command Code: 0x11

PopMatrix: Pop the Current Matrix from the Stack
Name: MTX_POP Address: 0x04000448 Attribute: W Command Code: 0x12

Signed integer (sign + 5-bit integer)

• NUM[d05–d00] : Specify the number of pops (Can set a value of -30 to 31)

Pops the nth level matrix (as specified by NUM), starting from the position of the stack pointer of the
matrix stack specified by the Matrix mode, and sets it as the current matrix.

When the Matrix mode is set to projection mode, the stack only has 1 level so the value of NUM is
treated as 1, no matter what value has been set.

This command is normally issued outside of the command string that runs from Begin to End, but it can
also be issued between Vertex commands within the Begin to End command string.

In Command string Example 2, the PopMatrix command is issued between Vertex commands to
realize stitching and sprite polygon deformations. Stitching is a type of skinning. Sprite polygons are
polygons displayed in 2D.

Command String
Example 1 PushMatrix→Translate→Begin→Vertex→Vertex→Vertex→End→PopMatrix (1)

Command String
Example 2

PushMatrix→Translate→PushMatrix→Begin→Vertex→PopMatrix (1)→Vertex→
PopMatrix (-1)→Vertex→PopMatrix (1)→Vertex→End→PopMatrix (1)

31 24 23 16 15 8 7 0

S INT

NUM number of pops

31 24 23 16 15 8 7 0
NTR-06-0180-001-A9 186 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
StoreMatrix: Store the Current Matrix in the Specified Stack Position
Name: MTX_STORE Address: 0x0400044C Attribute: W Command Code: 0x13

Unsigned integer (5-bit integer)

• INDEX[d04–d00] : Storage position (Can set a value of 0 to 30)

Stores the matrix specified with matrix mode in the matrix stack in the position specified by INDEX.

When the Matrix mode is set to projection mode, the stack only has 1 level so the value of INDEX is
treated as 0 no matter what value has been set.

The matrix stack pointer moved by the PushMatrix and PopMatrix commands does not move after this
command is issued.

RestoreMatrix: Reads Matrix from Specified Position in Stack
Name: MTX_RESTORE Address: 0x04000450 Attribute: W Command Code: 0x14

Unsigned integer (5-bit integer)

• INDEX[d04–d00] : Read position (Can set a value of 0 to 30)

The value in the position specified by INDEX in the matrix stack is set as the matrix specified by the
Matrix mode.

When the Matrix mode is set to projection mode, the stack only has 1 level so the value of INDEX is
treated as 0 no matter what value has been set.

The matrix stack pointer moved by the PushMatrix and PopMatrix commands does not move after this
command is issued.

This command is normally issued outside of the command string that runs from Begin to End, but it can
also be issued between Vertex commands within the Begin to End command string.

In Command string Example 2, the RestoreMatrix command is issued between Vertex commands to
realize stitching and sprite polygon deformations. Stitching is a type of skinning. Sprite polygons are
polygons displayed in 2D.

Command String
Example 1 StoreMatrix (i)→Translate→Begin→Vertex→Vertex→Vertex→End→ RestoreMatrix (i)

Command String
Example 2

StoreMatrix (i)→Translate→StoreMatrix (i+1)→Begin→Vertex→RestoreMatrix (i)→
Vertex→RestoreMatrix (i+1)→Vertex→End→RestoreMatrix (i)

INDEX
Storage Position

31 24 23 16 15 8 7 4 0

INDEX
Read Position

31 24 23 16 15 8 7 4 05
© 2003-2006 Nintendo 187 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.9.3 Reading the Current Matrix
ClipMatrix_Result: Read the Current Clip Coordinates Matrix

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• m[x] (x = 0–15) : The elements of the current clip coordinates matrix

The current clip coordinates matrix (position coordinate matrix and projection matrix) can be read.

If you want to read the current projection matrix, make the current position coordinates matrix a unit
matrix and read this register.

If you want to read the current position coordinates matrix, make the current projection matrix a unit
matrix and read this register.

To safely read these matrices, confirmation that the Geometry Engine is stopped must occur before
reading.

VectorMatrix: Read the Current Directional Vector Matrix

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

• m[x] (x = 0 - 8) : The elements of the current directional vector matrix

Note: To safely read this matrix, first confirm that the Geometry Engine is stopped.

Name Address Attribute Initial Value

CLIPMTX_RESULT_x (x=0-15)

0x04000640, 0x04000644, 0x04000648, 0x0400064C,
0x04000650, 0x04000654, 0x04000658, 0x0400065C,
0x04000660, 0x04000664, 0x04000668, 0x0400066C,
0x04000670, 0x04000674, 0x04000678, 0x0400067C

R 0x00000000

Name Address Attribute Initial Value

VECMTX_RESULT_x (x =0-8)
0x04000680, 0x04000684, 0x04000688, 0x0400068C,
0x04000690, 0x04000694, 0x04000698, 0x0400069C,

0x040006A0
R 0x00000000

S DECIMAL_m[x]
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

INTEGER_m[x]

CurrentClipCoordinatesMatrix

m 0[] m 1[] m 2[] m 3[]
m 4[] m 5[] m 6[] m 7[]
m 8[] m 9[] m 10[] m 11[]
m 12[] m 13[] m 14[] m 15[]

=

S DECIMAL_m[x]
Sign Integer part Decimal part

31 30 24 23 16 15 12 11 8 7 0

INTEGER_m[x]

CurrentDirectionalVectorMatrix
m 0[] m 1[] m 2[]
m 3[] m 4[] m 5[]
m 6[] m 7[] m 8[]

=

NTR-06-0180-001-A9 188 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.10 Light
NITRO supports only parallel light sources.

LightVector: Set the Light's Directional Vector
Name: LIGHT_VECTOR Address: 0x040004C8 Attribute: W Command Code: 0x32

Signed fixed-point number (sign + 9-bit fractional part)

• LNUM[d31–d30] : Light number

0–3

• X, Y, Z[d29–d20], [d19–d10], [d09–d00] : Directional vector

Coordinate transformation with the directional vector matrix is performed after the settings are made.

The hardware does not perform vector normalization, so set the unit vector.

LightColor: Set the Light Color
Name: LIGHT_COLOR Address: 0x040004CC Attribute: W Command Code: 0x33

• LNUM[d31–d30] : Light number

0–3

• [d14–d00] : Light color

Although OpenGL has light color parameters for diffuse, specular, and ambient light, for NITRO this
has been simplified to a single parameter.

LNUM SZ DECIMAL_Z SY DECIMAL_Y SX DECIMAL_X
Light Directional vector's Z component Directional vector's Y component Directional vector's X component

31 30 29 28 24 23 20 19 18 16 15 10 9 8 7 0

LNUM BLUE GREEN RED
Light Light Color

31 30 24 23 16 15 14 10 9 8 7 5 4 0
© 2003-2006 Nintendo 189 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.11 Material
For objects, the appearance of the texture differs depending on the material on the surface of the object
and the environment in which the object sits.

As shown in Figure 6-15, lighting (the illumination process) uses four material colors (specular reflection color,
diffuse reflection color, ambient reflection color and emission light color) to express the texture of a model.

Figure 6-15 : Material Color Schematic

Diffuse reflection color
This is the color of the object when it is illuminated by the light. Consider this the basic color of the object.

The diffuse reflection color is defined to reflect evenly in all directions, so it is not influenced by the position
of the eye point. As shown in Figure 6-16, it is, however, influenced by the color and the direction of the
light and by the normal of the polygon.

The only influence it has is on the color of the parts of objects that are directly illuminated by the light.

Figure 6-16 : Directional Vector Relational Diagram (Diffuse Reflection Color)

Normal vector N: The unit normal vector of the vertex. (Set with the Normal command)

Light vector L: Normalized vector of parallel light source. (Set with the LightVector command)

AMBIENT: Ambient
Reflection Color

DIFFUSE: Diffuse
Reflection Color

SPECULAR: Specular
Reflection Color

Light
Source

EMISSION: Emission Light Color

Reverse
Direction

Light Vector -L

Vertex

Polygon
Object

Normal Vector N

Light Vector
L

Light
Source
NTR-06-0180-001-A9 190 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Ambient reflection color
This is the color of the object when it is illuminated by ambient light.

Objects are illuminated not only by direct light, but also by light reflecting off of other objects.

This reflected light is called ambient light when it is defined to exist uniformly in the entire scene. Since
ambient light exists uniformly in the entire scene, it influences the color of the entire object.

Diffuse reflection color has strong influence of parts of the object that are illuminated by direct light, but
ambient reflection color has the predominant influence on parts that are shaded.

Specular reflection color
This is the glossy color of the object when it is illuminated by light. This glossiness is called specular highlight.

In optical terms, specular highlight is the reflected light of the light source. Accordingly, the part of the
object where light strikes and reflects straight back to the eye point is the brightest.

Specular highlight is influenced by the color and direction of light, the normal of the polygon and the
position of the eye point. (See Figure 6-17.)

When the eye point shifts the specular highlight moves.

It only has influence on the color of the parts of objects that are directly illuminated by the light, and this
influence corresponds to the eye point.

Figure 6-17 : Directional Vector Relational Diagram (Specular Reflection Color)

Normal vector N: The unit normal vector for the vertex. (Set with the Normal command.)

Line-of-sight vector E: Normalized vector from eye point toward vertex. Taken to be the same as the
negative direction of the z axis in the View coordinate system.

Light vector L: Normalized vector of parallel light source. (Set with the LightVector command.)

Half-angle vector H of L and E: Normalized vector of the sum of the line-of-sight vector and the light vector.

When NITRO performs the calculation for specular reflection shininess, the line-of-sight vector is taken to
be the same as the negative direction of the z axis in the View coordinate system, and it is assumed that
both the light vector and the normal vector will be transformed into the View coordinate system.

Light Vector
L

Line-of-Sight Vector
E

Half-Angle Vector H of L and E

Normal Vector N

Reverse Direction
Half-Angle Vector -H

Polygon
Object

Light
Source

Eye
PointVertex
© 2003-2006 Nintendo 191 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
For this reason, when the View matrix (the LookAt matrix) is applied to the projection matrix, the coordinate
system for the light vector and normal vector differ from the coordinate system for the line-of-sight vector
after the transformation, and the specular reflection result is abnormal.

Accordingly, when the specular reflection color is set to any value other than black (0), the Matrix mode
must be set to the Position & Vector Simultaneous Set mode, and the rotation component of the view
matrix (the LookAt matrix) must be reflected on the directional vector matrix.

When the specular reflection color is set to black, the view matrix can be applied to the projection matrix
because diffusion reflection does not depend on the eye point. In short, you can set the model matrix for
the position coordinates matrix, and the combination of the view matrix and the projection matrix for the
projection matrix.

Emission light color
This is the color of the light that is emitted from the object itself.

Note that this is not treated as light, so it does not illuminate other objects (i.e., it does not influence the
color of other objects).

To achieve this result, you need to create a light source that is the same color as the emission light color
and place it at the same position as the object that you want emitting light.

MaterialColor0: Set the Material's Diffuse Reflection Color and Ambient Reflection Color
Name: DIF_AMB Address: 0x040004C0 Attribute: W Command Code: 0x30

• C[d15]: Vertex color set flag

If diffuse reflection color has been set for the vertex color, it remains valid until the next time the Color,
Normal or MaterialColor0 (vertex color set flag) command is issued and the current vertex color is updated.

Because the vertex color is handled as bits R:G:B = 6:6:6 in the Rendering Engine, the diffuse reflection
color is applied to the upper five bits. When diffuse reflection color is 0, the lower 1 bit is 0, and when the
diffuse reflection color is nonzero, the lower 1 bit is 1.

MaterialColor1: Set the Material's Specular Reflection Color and Emission Color
Name: SPE_EMI Address: 0x040004C4 Attribute: W Command Code: 0x31

• S[d15] : Specular reflection shininess table - enable flag

0 Does not set vertex color

1 Sets the diffuse reflection color as the vertex color

0 Disable

1 Enable

AMBIENT_BLUE AMBIENT_GREEN AMBIENT_RED C DIFFUSE_BLUE DIFFUSE_GREEN DIFFUSE_RED
Ambient reflection color Diffuse reflection color

31 30 26 25 24 23 21 20 16 15 14 10 9 8 7 5 4 0

Vertex

EMISSION_BLUE EMISSION_GREEN EMISSION_RED S SPECULAR_BLUE SPECULAR_GREEN SPECULAR_RED
Emission color Specular reflection color

31 30 26 25 24 23 21 20 16 15 14 10 9 8 7 5 4 0

Shininess
NTR-06-0180-001-A9 192 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Shininess: Set the Specular Reflection Shininess Table
Name: SHININESS Address: 0x0400004D Attribute: W Command Code: 0x34

Unsigned fixed point decimal (8-bit fractional part)

Sets the 8-bit x 128 table for converting the shininess of the specular reflection.

If the specular reflection shininess table-enable flag was set to 1 by the just-issued MaterialColor1
command, the Geometry Engine looks up the table based on the upper 7 bits of Is—the result of the
specular calculation—and converts the shininess of the specular reflection.

This table can be used to adjust the brightness of the specular reflection. (See the "6.2.11.1 Lighting
(Illumination Process)" on page 194 for the computation formula.)

By rewriting the specular reflection shininess table, you can display polygons having a number of different
specular reflection effects inside a single scene.

The specular reflection shininess calculation result Is is obtained from the inner product of the vectors, so
as Figure 6-18 shows, it is less precise near the center of the luster and more precise farther away (A·B =
|A| |B|cosθ). See the "6.2.11.1 Lighting (Illumination Process)" on page 194 for the Is calculation.

Figure 6-18 : Specular Reflection Shininess

Technique
You can achieve special lighting effects by setting non-consecutive values for the specular reflection
shininess table.

SHININESS_n (n=4x+3) SHININESS_n (n=4x+2) SHININESS_n (n=4x+1) SHININESS_n (n=4x+0)
Shininess when ls=n Shininess when ls=n Shininess when ls=n Shininess when ls=n

31 24 23 16 15 8 7 0

θ

cosθ

1.0
© 2003-2006 Nintendo 193 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.11.1 Lighting (Illumination Process)
Lighting (the illumination process) is conducted when the Normal command is issued, and the results of
the calculations are used for the vertex color.

The computations shown below are done on each color component (R, G, B).

Lighting Formulas for the Various Material Colors

L : The light's directional vector

N : Normal vector

H : The vector that is half the sum of L (the light's directional vector) and the line-of-sight vector (the vector
that points in the negative direction of the Z axis.) This is called a half-angle vector because it indicates the
direction halfway between the L and line-of-sight vectors.

θ : The angle between the vector (-H) and the vector (N)

ld : Diffuse reflection shininess

ls : Specular reflection shininess

light : Light color

diffuse_material : Material's diffuse reflection color

ambient_material : Material's ambient reflection color

specular_material : Material's specular reflection color

emission_material : Material's emission color

Material Color Lighting Formulas

Diffuse Reflection Color ld = max[0, –L•N]
D = ld*light*diffuse_material

Ambient Reflection Color A = light*ambient_material

Specular Reflection Color

ls = max[0, cos 2 θ]

(When the specular reflection shininess table is disabled)
S = ls*light*specular_material

(When the specular reflection shininess table is enabled)
S = shininess_table[ls]*light*specular_material

Emission Color E = emission_material
NTR-06-0180-001-A9 194 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Vertex color expressions
The ultimate vertex color is calculated with the following expression using the results of the lighting
calculations conducted on each material color.

C: Vertex color

Di : Diffuse reflection color for light i

Ai : Ambient reflection color for light i

Si : Specular reflection color for light i

E : The color of self-emitted light

When light i is disabled, the corresponding color components (Di, Ai, Si) are not calculated.

The greater the number of lights that are enabled, the greater the load of the vertex color computations
(that is, the greater the load of the Normal command). For this reason, be careful not to enable any more
lights than are needed.

Vertex color when lighting is OFF
Even when lighting is OFF, the vertex color is calculated using the above expressions when the Normal
command is issued. The result in this case is that the vertex color is set to the emission color.

C Di Ai Si+ +[] E+
i 0=

3

∑=
© 2003-2006 Nintendo 195 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.12 Polygon Attributes

PolygonAttr: Set the Polygon-Related Attribute Values
Name: POLYGON_ATTR Address: 0x040004A4 Attribute: W Command Code: 0x29

• [d29–d24] : Polygon ID

The polygon ID is stored in separate attribute buffers for opaque polygons and translucent polygons
when the polygon is being rendered by the Rendering Engine. The stored polygon ID is used when
rendering translucent polygons and shadow polygons and when edge-marking. For details, see "6.3.4
Rasterizing" on page 233.

• [d20–d16] : alpha value

The polygon is called a translucent polygon when 1 ≤ α ≤ 30 and an opaque polygon when α = 31.
When α = 0, the display becomes a wireframe display and the original meaning of α is lost.

• FE[d15] : Fog-enable flag

When fog is enabled, the Rendering Engine performs fog blending.

To learn about fog blending, see "6.3.9 Fog Blending" on page 258.

• DT[d14] : Depth test conditions

When set to 1, another polygon can be pasted on a polygon that has already been rendered (decal
polygon).

1–31 Polygon's opaqueness

0 Wire frame display

0 Disable

1 Enable

0 Rendering when the fragment's depth value is smaller than the depth buffer's depth value.

1 Rendering when the fragment's depth value is equal to the depth buffer's depth value.

FE DT D1 FC XL FR BK L3 L2 L1 L0
Polygon ID Alpha Value

31 29 24 23 20 16 15 14 13 12 11 8 7 6 5 4 3 0

Fog Enable Flag

Depth Test Conditions

FAR Plane Intersecting
Polygon Display Specification

Translucent Polygon Depth
Value Update - Enable Flag

Polygon Rendering
Screen

Polygon Mode

Light Enable Flags
NTR-06-0180-001-A9 196 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• [d13–d12] : Polygon display specification
• D1[d13] : 1-dot polygon rendering specification

This allows control of whether 1-dot polygons are passed to the rendering engine. A 1-dot polygon
is a polygon where the coordinates (x, y) of all the vertices are integrated into a single coordinate
as the results of geometry engine calculations.

When set to 1, 1-dot polygons are always written to polygon list RAM and vertex RAM.

When this is set to 0, the depth value of the 1-dot polygon controls whether to write the polygon to
polygon list RAM and vertex RAM or to discard it.

Set the display boundary depth value of 1-dot polygons with the Disp1DotDepth register.
• FC[d12] : Far plane intersecting polygon display specification

Note that clipping on the far plane increases the load on the Geometry Engine.

• XL[d11] : Translucent polygon depth-value update enable flag

Select whether to update the depth buffer when rendering a polygon with an α value of 1–30.

When this is set to 1, sometimes you can improve on a situation where too much fog is applied in
regions where translucent polygons are being rendered. However, you need to be careful because
sometimes the edge-marking of background is not rendered correctly.

• [d07–d06] : Polygon rendering screen specification

The surface is the plane tracing the vertices counterclockwise.
• FR[d07] : Render front surface

• BK[d06] : Render back surface

If the specified screen is in the screen being displayed when the rendering specification is disabled,
this polygon will not be included in the List RAM.

For quadrilateral polygons, if any of the first three vertices share the same coordinates, duplication will be
detected by the hardware and the polygon is displayed as usual without regard to front or back. Further-
more, when the first three vertices do not overlap but are in a straight line, the straight line is not preserved
due to a problem with precision in internal calculations. In this case, the surface may be determined to be
the front or back according to the camera state. Use the following procedure to avoid this problem.

0 Does not render if becomes a 1-dot polygon

1 Renders even if becomes 1-dot polygon

0 Deletes if intersects the far plane

1 Clips if intersects the far plane

0 Does not update the depth buffer when rendering translucent polygons

1 Updates the depth buffer when rendering translucent polygons

0 Disable

1 Enable

0 Disable

1 Enable
© 2003-2006 Nintendo 197 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• Change the order the vertices are sent
• Have the second coordinate value be the same as the first or third coordinate value (Of the first

three vertices, set 1 and 2 or 2 and 3 to the same value)
• Separate into triangles

When rendering a line segment in which polygon vertex coordinates overlap, front/back determination is
impossible, and therefore it is always rendered, regardless of this flag’s setting.

• PM[d05–d04] : Polygon mode

Modulation mode and decal mode are ways of blending texture color and fragment color.

Toon / Highlight shading is a way to transform with the fragment color table.

Shadow polygon is a feature for applying shadow using the stencil buffer.

For details, see the respective parts in the Rendering Engine "6.3.1 Overview" on page 224.

About Toon/Highlight Shading
Toon and Highlight Shading share use of the same table.

Use the DISP3DCN register to choose either Toon or Highlight.

The setting written to the DISP3DCN register becomes valid when the frame switches, so Toon and
Highlight Shading cannot be mixed in the same drawing frame.

• L3–L0[d03–d00] : Light enable flags

These are separate flags for setting lights 0–3.

00 Modulation mode

01 Decal mode

10 Toon / Highlight shading

11 Shadow polygon

0 Disable (light off)

1 Enable (light on)
NTR-06-0180-001-A9 198 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Where to issue the PolygonAttr command
The values set with the PolygonAttr command become valid when the Begin command is issued. The
values are subsequently used as vertex attributes.

Do not issue the PolygonAttr command between the Begin command and the End command.

Simply setting the light enable flag to enabled in the Begin command does not affect the vertex color.

The vertex color is first affected when lighting (lighting process) is performed with the Normal command
after the light enable flag setting is enabled in the Begin command.

Disp1DotDepth: 1-Dot Polygon Display Boundary Depth Value Register
Name: DISP_1DOT_DEptH Address: 0x04000610 Attribute: W Initial value: 0x7FFF

Fixed-point number (12-bit integer + 3-bit fractional part)

• W coordinates [d14–d00] : Depth value

When the PolygonAttr command’s “1-dot polygon rendering specification flag” is 0, the Geometry
Engine references this register for use as described below:

When the X and Y coordinates of all polygon vertices are transformed into BG screen coordinates
within a range of 1 dot or less, if the smallest W value (the depth value) is larger than this register’s
setting value, polygon data is not written to Polygon List RAM or Vertex RAM (and is not displayed as
a result).

This W value is referenced even during Z buffering.

INTEGER_W DECIMAL_W
W Coordinate

15 14 8 7 0
© 2003-2006 Nintendo 199 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.13 Polygons
BEGIN_VTXS: Declare the Start of the Vertex List

Name: BEGIN_VTXS Address: 0x04000500 Attribute: W Command Code: 0x40

• TYPE[d01–d00] : Primitive type

Polygon strips share vertices, so they consume less Vertex RAM than independent polygons of the
same shape.

The table below shows the relation between drawing and the order in which vertices are issued by the
Vertex command for different types of primitives.

Relation between Drawing and the Order in which the Vertex Command Issues Vertices

Defining the primitive's front surface
The surface is described counterclockwise (v0, v1, v2,... : in order of issued Vertex-group commands).

Figure 6-19 : Order in which the Vertex commands issues vertices

When you want to draw line segments, set the same value for neighboring vertices in the above primitives.
However, because it is not possible to determine the front or back of the line segments, they are always
rendered, even if the polygon attributes specify to disable display. As Figure 6-20 shows, the anti-aliasing
and edge marking features (see the Rendering Engine "6.3.1 Overview" on page 224) work on line
segments as well.

00 Triangle

01 Quadrilateral

10 Triangle Strips

11 Quadrilateral Strips

Triangle Polygon A series of triangles are drawn starting with vertices “v0, v1, and v2” and then vertices “v3,
v4, and v5.”

Quadrilateral Polygon A series of quadrilaterals are drawn starting with vertices “v0, v1, v2, and v3” and then
vertices “v4, v5, v6, and v7.”

Triangle Strips
A series of triangles are draw starting with vertices “v0, v1, and v2,” “v2, v1, and v3” and
then “v2, v3, and v4.” This is the order so that the triangles are drawn in the same direction
on both sides of the surface. (See Figure 6-15.)

Quadrilateral Strips
A series of quadrilaterals are drawn starting with vertices “v0, v1, v3, and v2,” “v2, v3, v5,
and v4” and then “v4, v5, v7, and v6.” This is the order so that the quadrilaterals are drawn
in the same direction on both sides of the surface. (See Figure 6-15.)

TYPE
Type

31 24 23 16 15 8 7 01

v0

v1 v2

v3v0

v1 v2 v1

v0

v3

v2

v5

v4

v7

v6

Triangle Triangle Strips Quad Quad Strips

v3

v4

v1

v2

v0
NTR-06-0180-001-A9 200 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 6-20 : Line segment using sides from a triangle

When you draw quadrilateral polygons in the shapes shown in Figure 6-21, sometimes the results are not
as intended. Be sure to set the vertices so quadrilateral polygons are not drawn in these shapes.

Figure 6-21 : Quadrilateral Polygon shapes that yield unintended shapes

End: Declare the End of the Vertex List
Name: END_VTXS Address: 0x04000504 Attribute: W Command Code: 0x41

Make certain to issue Begin and End commands in pairs.

Color: Directly Set the Vertex Color
Name: COLOR Address: 0x04000480 Attribute: W Command Code: 0x20

The vertex color remains valid until the current vertex color is updated by the next Color command, Normal
command or MaterialColor0 (vertex color set flag) command.

Thus, multiple vertices can share the same vertex color.

Because the vertex color is handled as bits R:G:B = 6:6:6 in the Rendering Engine, the diffuse reflection
color is applied to the upper five bits. When set color value is 0, the lower 1 bit is 0, and when it is nonzero,
the lower 1 bit is 1.

The Color command is usually issued between the Begin and End commands, but it can also be issued
before the Begin command.

Command string
Example 1 Begin→Color→Vertex→Vertex→Vertex→End

Command string
Example 2

Color→Begin→Vertex→Vertex→Vertex→End→Begin→Vertex→Vertex→
Vertex→End

v0
v1

v2

Quadrilateral with
Intersecting Sides

Concave
Quadrilateral

Twisted
Quadrilateral

31 24 23 16 15 8 7 0

BLUE GREEN RED
Color

31 24 23 16 15 14 10 9 8 7 5 4 0
© 2003-2006 Nintendo 201 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Normal: Set the Normal Vector
Name: NORMAL Address: 0x04000484 Attribute: W Command Code: 0x21

Signed fixed-point number (sign + 9-bit fractional part)

Lighting (illumination process) is performed only when the Normal command is executed.

Accordingly, you need to reissue the Normal command after you switch lighting On/Of or change the light
or material parameters in order for the change to be reflected in the vertex color. (See note.)

Further, the hardware does not normalize vectors, so you need to set the unit vector.

The vertex color obtained with the lighting process remains valid until the current vertex color is updated by
the next Color command, Normal command or MaterialColor0 (vertex color set flag) command.

Thus, in actuality multiple vertices can share the same normal vector.

Note: To turn light on or off, after setting in the PolygonAttr command, first enable the set value with the
Begin command, and then issue the Normal command.

Where to issue the Normal command
The Normal command is usually issued between the Begin and End commands, but it can also be issued
before the Begin command.

VTX_16: Set the Vertex Coordinates
Name: VTX_16 Address: 0x0400048C Attribute: W Command Code: 0x23

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

Command string
Example 1 Begin→Normal→Vertex→Vertex→Vertex→End

Command string
Example 2

Normal→Begin→Vertex→Vertex→Vertex→End→Begin→Vertex→Vertex→
Vertex→End

S NZ S NY S

Normal vector’s Z component Normal vector’s Y component Normal vector’s X component

31 30 29 28 24 23 20 19 18 16 15 10 9 8 7 0

NX

SY INT_Y DECIMAL_Y SX INT_X DECIMAL_X
Y Coordinate X Coordinate

31 30 28 27 24 23 16 15 14 12 11 8 7 0

SZ INT_Z DECIMAL_Z
Z Coordinate

31 24 23 16 15 14 12 11 8 7 0
NTR-06-0180-001-A9 202 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
VTX_10: Set the Vertex Coordinates
Name: VTX_10 Address: 0x04000490 Attribute: W Command Code: 0x24

Signed fixed-point number (sign + 3-bit integer + 6-bit fractional part)

VertexXY: Set the Vertex XY Coordinates (for Z Coordinate, Use the Last-Set Data)
Name: VTX_XY Address: 0x04000494 Attribute: W Command Code: 0x25

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

VertexXZ: Set the Vertex XZ Coordinates (for Y Coordinate, Use the Last-Set Data)
Name: VTX_XZ Address: 0x04000498 Attribute: W Command Code: 0x26

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

VertexYZ: Set the Vertex YZ Coordinates (for X Coordinate, Use the Last-Set Data)
Name: VTX_YZ Address: 0x0400049C Attribute: W Command Code: 0x27

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

SZ INT_Z DECIMAL_Z SY INT_Y DECIMAL_Y SX INT_X DECIMAL_X
Z Coordinate Y Coordinate X Coordinate

31 29 28 26 25 24 23 20 19 18 16 15 10 9 8 7 5 0

SY INT_Y DECIMAL_Y SX INT_X DECIMAL_X
Y Coordinate X Coordinate

31 30 28 27 24 23 16 15 14 12 11 8 7 0

SZ INT_Z DECIMAL_Z SX INT_X DECIMAL_X
Z Coordinate X Coordinate

31 30 28 27 24 23 16 15 14 12 11 8 7 0

SZ INT_Z DECIMAL_Z SY INT_Y DECIMAL_Y
Z Coordinate Y Coordinate

31 30 28 27 24 23 16 15 14 12 11 8 7 0
© 2003-2006 Nintendo 203 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
VertexDiff: Set the Difference Value of the Last-Set Data for Vertex Coordinates
Name: VTX_DIFF Address: 0x040004A0 Attribute: W Command Code: 0x28

Signed fixed-point number (sign + 9-bit fractional part)

The value after adding to the last-set vertex value is stored as the 16-bit vertex coordinates.

The VertexDiff command data is sign-extended to 16 bits and added to the prior-set vertex coordinate. The
vertex coordinates (the Vertex-group command's data) are 16 bits in size (sign + 3-bit integer + 12-bit
fractional part), so the data of the VertexDiff command corresponds to the 4th to 12th places of the
fractional part of the vertex coordinates (see Figure 6-22.)

Note: Use caution because an overflow can occur during the addition process.

Figure 6-22 : The Process for Adding the X Coordinate

Items common to all Vertex commands
When Vertex commands are issued, the vertex data that have been transformed into BG screen
coordinates are stored in Vertex RAM. Further, polygon data is stored to Polygon List RAM when the data
for the number of vertices comprising the polygon are processed.

Note: Be sure to issue Vertex commands between the Begin command and the End command and that
there are not too many or too few vertices in the specified primitives.

SZ DECIMAL_Z SY DECIMAL_Y SX DECIMAL_X
Z Coordinate Y Coordinate X Coordinate

31 29 28 24 23 20 19 18 16 15 10 9 8 7 0

SX

15

INT_X DECIMAL_X

14 12 11 8 7 0

SX

15

SX SX SX SX SX SX DECIMAL_X

9 8 7 0

SX DECIMAL_X

9 8 7 0

Expanded to 16 bits

Last-set vertex coordinates

Addition

VertexDiff command data
NTR-06-0180-001-A9 204 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.14 Texture Mapping

TexCoord: Set Texture Coordinates
Name: TEXCOORD Address: 0x04000488 Attribute: W Command Code: 0x22

Signed fixed-point number (sign + 11-bit integer + 4-bit fractional part)

• TEX_T, TEX_S[d31–d16], [d15–d00]: Texture coordinates

As Figure 6-23 shows, the texture coordinates set the coordinates in texture image space, treating the
texel size as 1.0 (4-bit fractional part).

Figure 6-23 : Texture Image Space (For an Image of 1,024x1,024 Texels)

The texture coordinates remain valid until the next TexCoord command resets the current texture
coordinates.

Because of this, the same texture coordinates can be shared by multiple vertices.

Where to issue the TexCoord command

The TexCoord command is normally issued between the Begin command and the End command, but it
can also be issued before the Begin command.

When texture mapping, the Geometry Engine works faster if you issue commands in the order
TexCoord→Normal→Vertex.

Command String
Example 1 Begin→TexCoord→Vertex→Vertex→Vertex→End

Command String
Example 2

TexCoord→Begin→Vertex→Vertex→Vertex→End→Begin→Vertex→Vertex→
Vertex→End

ST INTEGER_T DECIMAL_T SS INTEGER_S DECIMAL_S
T Coordinate S Coordinate

31 30 24 23 16 15 14 8 7 0

0
+2,047.9375

-2,048

+2,047.9375

-2,048 S Axis

T Axis

Texture
Image
© 2003-2006 Nintendo 205 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
TexImageParam: Setting the Texture Parameters
Name: TEXIMAGE_PARAM Address: 0x040004A8 Attribute: W Command Code: 0x2a

• TGEN[d31–d30] : Texture coordinates transformation mode

• TR[d29] : Enable flag for the palette's color0 transparency

When using transparent texels with 4-, 16-, 256-color palette textures, set this bit to “1” so the palette's
color0 can be referenced for the transparent color.

• TEXFMT[d28–d26] : Texture format

00 Do not transform texture coordinates

01 TexCoord source

10 Normal source

11 Vertex source

0 Enable the palette's color0 setting

1 Make appear transparent, regardless
of the palette color0 setting value

0 No texture

1 A3I5 translucent texture

2 4-color palette texture

3 16-color palette texture

4 256-color palette texture

5 4x4 texel compressed texture

6 A5I3 translucent texture

7 Direct texture

T_SIZE S_SIZE FT FS RT RS

Texture Size Texture's Starting Address in VRAM

31 30 29 28 26 25 24 23 20 19 18 17 16 15 8 7 0

Texture Coordinates
Transformation Mode

Enable Flag for Palette
Color 0 Transparency

Texture Format
Flip Repeat
NTR-06-0180-001-A9 206 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• [d25–d20] : Texture size
• T_SIZE, S_SIZE

Selects texture size of 8 x 8 to 1,024 x 1,024.

•[d19–d18] : Flip

Specifies whether to flip the texture image up/down, left/right for mapping when the texture coordinates
pertain to a region beyond the texture size. (See Figures 6-20 and 6-21.) The flip setting is valid only
when repeat has been specified.
• FT[d19] : Flip in direction of T coordinates

• FS[d18] : Flip in direction of S coordinates

• [d17–d16] : Repeat

Specifies whether to repeatedly map the texture image when the texture coordinates pertain to a
region beyond the texture size.
• RT[d17] : Repeat in direction of T coordinates

• RS[d16] : Repeat in direction of S coordinates

• TEX_ADDR[d15–d00] : Texture’s starting address in VRAM

The system references the 3-bit left-shift of the texture’s starting address in VRAM.

0 8 texels

1 16 texels

2 32 texels

3 64 texels

4 128 texels

5 256 texels

6 512 texels

7 1,024 texels

0 Do not flip

1 Flip

0 Do not flip

1 Flip

0 Do not repeat

1 Repeat

0 Do not repeat

1 Repeat
© 2003-2006 Nintendo 207 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Where to issue the TexImageParam command
The TexImageParam command is normally issued before the Begin command, but it can also be issued
between the Begin and End commands. By issuing it during the Begin-End interval you can set different
texture parameters for every polygon inside the Begin-End command string.

Note: A problem causes the previous polygon texture attributes to be overwritten with the parameters
passed by the TexImageParam command according to the process status of the geometry
engine.

Below shows the positions to issue the TexImageParam command.
• Outside the Begin - End interval

TexImageParam;
Begin;

TexCoord;
Vertex;
...

End;

• Within the Begin - End interval with quadrilateral polygons

1. When the command structure for the polygon that has texture changed after the second
polygon changes from TexCoord to Vertex

Begin;
TexImageParam;
First Polygon;
TexImageParam;
Normal; Send the Normal command as a dummy command
Second Polygon;
...

End;

2. When the command structure for the polygon that has texture changed after the second
polygon changes from TexCoord to Normal to Vertex

The problem can be effectively resolved by sending 0xFF (undefined) as the dummy
command in place of the Normal command sent in 1) above. However, when the
TexPlttBase command is send with the TexImageParam command, this problem does
not occur and there is no need to send a dummy command.

• Within the Begin - End interval with triangle polygons

1. When the command structure for the polygon that has texture changed after the second
polygon changes from TexCoord to Vertex

Same as 1) above for quadrilateral polygons.
2. When the command structure for the polygon that has texture changed after the second

polygon changes from TexCoord to Normal to Vertex

No problems occur.
NTR-06-0180-001-A9 208 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• Within the Begin - End interval with triangle and quadrilateral polygons

In this case, always use End once when changing textures. In other words, limit issuing
TexImageParam command to a position before the Vertex command is issued, as shown
below.

Begin;
TexImageParam;
Vertex;
...

End;

• Texture Flip and Repeat Settings (For a Texture Image of 1,024 x 1,024 Texels)

1. When when there is no repeat

Figure 6-24 : Texture Image Space (no repeats)

0

No Repeat

S-Axis

T-Axis
© 2003-2006 Nintendo 209 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
2. Flip settings when there is a repeat

Figure 6-25 : Texture Image Space (with Repeats)

0

No Flip

S-Axis

T-Axis

0

Flip in S-Coordinate Direction

0

Flip in T-Coordinate Direction

0

Flip in S- and T-Coordinate Directions

S-Axis

S-Axis S-Axis

T-Axis

T-Axis T-Axis
NTR-06-0180-001-A9 210 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
TexPlttBase: Set Texture Palette's Base Address
Name: TEXPLTT_BASE Address: 0x040004AC Attribute: W Command Code: 0x2b

• PLTT_BASE[d12–d00] : Specifies the palette's base address

The system references a 2 to 4 bit left shift of the palette’s base address.

The shift volume varies, depending on the texture format (as shown in "Table 6-4 : No. of Geometry
Command Run Cycles & Timing Related to Command Issue (in Command Code Order)" on page 174).

Table 6-5 : PLTT_BASE Values and Shift Volumes

Where to issue the TexPlttBase command
The TexPlttBase command is normally issued before the Begin command, but it can also be issued
between the Begin and End commands. By issuing it between these two commands you can set a different
palette base address for every polygon between the Begin and End commands.

PLTT_BASE
Value

4-color
Palette
Texture

16-color
Palette
Texture

256-color
Palette
Texture

4x4 texels
Compressed

Texture
A3I5 Texture A5I3 Texture

0x0000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000

0x0001 0x00008 0x00010 0x00010 0x00010 0x00010 0x00010

0x0002 0x00010 0x00020 0x00020 0x00020 0x00020 0x00020

0x17FE 0x0BFF0 0x17FE0 0x17FE0 0x17FE0 0x17FE0 0x17FE0

0x17FF 0x0BFF8 0x17FF0 0x17FF0 0x17FF0 0x17FF0 0x17FF0

0x1800 0x0C000 Setting
prohibited

Setting
prohibited

Setting
prohibited

Setting
prohibited

Setting
prohibited

0x1FFE 0x0FFF0 Setting
prohibited

Setting
prohibited

Setting
prohibited

Setting
prohibited

Setting
prohibited

0x1FFF 0x0FFF8 Setting
prohibited

Setting
prohibited

Setting
prohibited

Setting
prohibited

Setting
prohibited

Command String
Example 1

TexPlttBase→Begin→TexCoord→Vertex→TexCoord→Vertex→TexCoord→
Vertex→End

Command String
Example 2

Begin→TexPlttBase→TexCoord→Vertex→TexCoord→Vertex→TexCoord→
Vertex→TexPlttBase→TexCoord→Vertex→TexCoord→Vertex→TexCoord→
Vertex→End

PLTT_BASE
Palette's base address

31 24 23 16 15 12 8 7 0
© 2003-2006 Nintendo 211 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.14.1 Texture Coordinate Transformations
The texture coordinate transformation mode can be switched using the TexImageParam command.

In the three modes described in this section, the values given by the pertinent command are used as the
input coordinates for the calculations.

The values after the coordinate transformation are not meant to be used, so make sure you set the texture
matrix appropriately in advance.

TexCoord source
The texture coordinate transformation is performed using the values set by the TexCoord command as
the input coordinates.

The coordinate transformation is executed when the TexCoord command is issued.

You can produce a simple texture scroll by setting a translation matrix or a rotation matrix for the texture
matrix.

Operation Expressed in Matrix Form

Specific Expression Taking Decimal-Point Position into Account

S' T' R' Q' S T
1
16
------ 1

16

m 0[] m 1[] m 2[] m 3[]
m 4[] m 5[] m 6[] m 7[]
m 8[] m 9[] m 10[] m 11[]
m 12[] m 13[] m 14[] m 15[]

=

S' m 0[] S 12«() m 4[] T 12«() m 8[] 1 12«() m 12[] 1 12«()×+×+×+×{ } 24»=
T' m 1[] S 12«() m 5[] T 12«() m 9[] 1 12«() m 13[] 1 12«()+ +×+×+×{ } 24»=
NTR-06-0180-001-A9 212 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Normal source
The texture coordinate transformation is performed using the values set by the Normal command as the
input coordinates.

The coordinate transformation is executed when the Normal command is issued.

The S and T values set by the immediately-prior TexCoord command are used as the translation
components of the texture coordinates.

You can produce spherical reflection mapping by setting in the texture matrix the result of reading the
current directional vector matrix and multiplying by the scaling matrix that expands the directional vector
space (-1.0 to 1.0) to 1/2 the texture size. When doing this, use the TexCoord command to translate the
origin of the texture coordinate to the center of the spherical texture.

Operation Expressed in Matrix Form

Specific Expression Taking Decimal-Point Position into Account

S' T' R' Q' Nu Nv Nw 1

m 0[] m 1[] m 2[] m 3[]
m 4[] m 5[] m 6[] m 7[]
m 8[] m 9[] m 10[] m 11[]
S T m 14[] m 15[]

=

S' m 0[] Nx 3«()× m 4[] Ny 3«() m 8[] Nz 3«() S 12«() 1 12«()×+×+×+{ } 24»=

T' m 1[] Nx 3«() m 5[] Ny 3«() m 9[] Nz 3«()×+×+× T 12«() 1 12«()×+{ } 24»=
© 2003-2006 Nintendo 213 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Vertex source
The texture coordinate transformation is performed using the values set by a Vertex-group command as
the input coordinates. The coordinate transformation runs when a Vertex-group command is issued.

The S and T values set by the immediately-prior TexCoord command are used as the translation
components of the texture coordinates.

You can produce texture scrolls dependent on the View coordinates by reading the current position
coordinate matrix and setting it to the texture matrix.

Operation Expressed in Matrix Form

Specific Expression Taking Decimal-Point Position into Account

• Decimal point positions between parameters used by texture coordinate transformation
expressions

The parameter formats used in the expressions for calculating texture coordinate transformations are
shown in the following table.

Therefore, to unify texture coordinate transformation calculations to 12-bit fractional parts, the Normal
coordinates could be left-shifted by 3 bits, and the texture coordinates could be left-shifted by 8 bits
before the calculation is applied.

However, as can be seen in “Specific expression taking decimal-point position into account,” texture
coordinates are left-shifted by 12 bits before the expression is applied, and the results that are right-
shifted by 24 bits are taken as the new texture coordinates.

From this it is natural to consider that the texture coordinate transformation is (Sign + 15-bit integer +
0-bit fractional part).

That is, texture coordinate transformation calculations use units of 1/16 texel, rather than units of 1 texel.

• Technical tip

There may be times when you are using polygons to represent 2D graphics and you want the texels to
have 1:1 correspondence with the pixels on the LCD. Because texture sampling proceeds from the
upper left texel, the texture may be off by 1 texel due to such factors as polygon rotation. To prevent
this from happening, use a texture-coordinate transformation to adjust the position from where
sampling starts. For details, see "6.3.5.1.1 Texture Image Sampling" on page 242.

Parameter Name Parameter Format

Texture Matrix m[num] (num = 0-15) Sign + 19-bit integer + 12-bit fractional part

Normal Coordinate Nx, Ny, Nz Sign + 9-bit fractional part

Vertex Coordinate X, Y, Z Sign + 3-bit integer + 12-bit fractional part

Texture Coordinate S, T Sign + 11-bit integer + 4-bit fractional part

S' T' R' Q' X Y Z 1

m 0[] m 1[] m 2[] m 3[]
m 4[] m 5[] m 6[] m 7[]
m 8[] m 9[] m 10[] m 11[]
S T m 14[] m 15[]

=

S' m 0[] X m 4[] Y m 8[] Z S 12«() 1 12«()×+×+×+×{ } 24»=
T' m 1[] X m 5[] Y m 9[] Z T 12«() 1 12«()×+×+×+×{ } 24»=
NTR-06-0180-001-A9 214 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.15 Tests
When the Geometry Engine executes a test-related command (such as the status flag and the result
register value), it updates the test command result.

BoxTest: Test if Cuboid Sits Inside View Volume
Name: BOX_TEST Address: 0x040005C0 Attribute: W Command Code: 0x70

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

Specify the box's standard vertices for the coordinate values.

The result of the Box test is stored in the Geometry Engine Status register (GXSTAT).

• Box Test Contents

Determines whether any of the 6 faces of the box are not completely within the view volume.

Notice that because of this, if the view volume is completely contained within the box, it is considered
out of view.

• Conditions Required to Properly run a Box Test

Conduct the box test with both polygon attribute flags set to 1. If either of the flags is set to 0, the test
results may not be correct.

Keep in mind that overflow may occur when width/height/depth is added to the reference vertices. (The
result of the addition must be greater than or equal to -8.0 and less than 8.0.)

1. Set both of the polygon attribute flags to 1:
• Far plane-intersecting polygon display specification
• 1-dot polygon rendering specification

2. Begin command

3. End command

4. BoxTest command

SY INT_Y DECIMAL_Y SX INT_X DECIMAL_X
Y Coordinate X Coordinate

31 30 28 27 24 23 16 15 14 12 11 8 7 0

SW INT_W DECIMAL_W SZ INT_Z DECIMAL_Z
Width Z Coordinate

31 30 28 27 24 23 16 15 14 12 11 8 7 0

SD INT_D DECIMAL_D SH INT_H DECIMAL_H
Depth Height

31 30 28 27 24 23 16 15 14 12 11 8 7 0
© 2003-2006 Nintendo 215 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
PositionTest: Set the Position Coordinates for the Tests
Name: POS_TEST Address: 0x040005C4 Attribute: W Command Code: 0x71

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

Coordinate transformation is carried out on the position coordinates for the test by the current clip
coordinate matrix.

The results of the Position test (the clip coordinates) are stored in the PositionResult register.

VectorTest: Set the Directional Vector for the Tests
Name: VEC_TEST Address: 0x040005C8 Attribute: W Command Code: 0x72

Signed fixed-point number (sign + 9-bit fractional part)

Coordinate transformation is carried out on the directional vector for the test by the current directional
vector matrix.

The result of the Vector test (the directional vector in the View coordinate space) is stored in the
VectorResult register.

PositionResult: Read the PositionTest Computational Results

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

The clip coordinates values (x, y, z, w) are stored in these registers.

Name Address Attribute Initial Value

POS_RESULT_x (x=X,Y,Z,W) 0x04000620, 0x04000624, 0x04000628, 0x040062C R 0x00000000

SY INT_Y DECIMAL_Y SX INT_X DECIMAL_X
Y Coordinate X Coordinate

31 30 28 27 24 23 16 15 14 12 11 8 7 0

SZ INT_Z DECIMAL_Z
Z Coordinate

31 24 23 16 15 14 12 11 8 7 0

SZ DECIMAL_Z SY DECIMAL_Y SX DECIMAL_X
Z Component Y Component X Component

31 29 28 24 23 20 19 18 16 15 10 9 8 7 0

Sx INTEGER_x DECIMAL_x
Sign Integer Part Decimal Part

31 30 24 23 16 15 12 11 8 7 0
NTR-06-0180-001-A9 216 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
VectorResult: Read the VectorTest Computational Results

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

The directional vector values (x, y, z) of the view coordinate space are stored in these registers.

The read-out computation results are within ±1, so the integer is a sign extension.

Name Address Attribute Initial Value

VEC_RESULT_x (x=X,Y,Z) 0x04000630, 0x04000632, 0x04000634 R 0x0000

Sx INTEGER_x DECIMAL_x
Sign Integer Part Decimal Part

15 8 7 01112
© 2003-2006 Nintendo 217 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.2.16 Status
You can check the status of Polygon List RAM and Vertex RAM using the previously mentioned
DISP3DCNT register.

To check the status of command FIFO and matrix stacks, etc., refer to the GXSTAT register below.

GXSTAT: Geometry Engine Status Register
Name: GXSTAT Address: 0x04000600 Attribute: R/W Initial Value: 0x00000000

• FI[d31–d30] : Conditions for Command FIFO interrupt requests

• B[d27] : Geometry Engine busy flag

If commands or parameters have not been sent, the busy flag goes to the command wait / parameter
wait status with the busy flag set to 0.

When commands or parameters recommence, geometry processing resumes.

When a SwapBuffers command is issued, and no subsequent commands are issued, the geometry
engine busy flag is set to 0 at the completion of a SwapBuffers process, which begins with a V-Blank.
(It is 1 until then.)

This timing occurs 400 cycles (calculated at 33 MHz) after the V-Blank.

If, after the SwapBuffers command is issued, a next command is also issued, the next command is
executed after the completion of the SwapBuffers process, which commences after the V-Blank.

00 Disable Command FIFO interrupt requests

01 Make interrupt request when Command FIFO is less than half full

10 Make interrupt request when Command FIFO is empty

11 Setting prohibited

0 Geometry Engine is stopped

1 Geometry Engine is running

E H F SE SB PJ PV TR TB
Command FIFO Count Matrix Stack Status

31 30 29 27 26 24 23 16 15 12 8 7 1 0

Conditions for Command
FIFO Interrupt Requests

Geometry Engine Busy Flag

Command FIFO Status Test Status

25 14 13
NTR-06-0180-001-A9 218 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• [d26–d24] : Command FIFO status
• E[d26] : Command FIFO empty flag

• H[d25] : Command FIFO under-half flag

• F[d24] : Command FIFO full flag

• [d23–d16] : Command FIFO count value

Can reference the number of commands/amount of data currently stored in Command FIFO.

• [d15–d08] : Matrix stack status
• SE[d15] : Stack error flag

The flag is set to 1 when an overflow or underflow of the matrix stack occurs.

It can be cleared by writing 1.

When referencing the status error flag of matrix stack status, confirm that the PushMatrix and
PopMatrix commands that have been issued have completed by first referencing the matrix stack
busy flag.

• SB[d14] : Matrix stack busy flag
• When referencing PJ and PV matrix stack levels, check this flag to confirm that execution of the

issued PushMatrix or PopMatrix command has completed.

• PJ[d13] : Projection matrix stack level

Can reference the current stack level (0–1)
• PV[d12–d08] : Position and Vector matrix stack level

Can reference the current stack level (0–31)

0 FIFO is not empty

1 FIFO is empty

0 FIFO is at least half full

1 FIFO is less than half full

0 FIFO is not full

1 FIFO is full

0 No stack overflow or underflow

1 Stack overflow or underflow

0 There is no unexecuted PushMatrix, PopMatrix command

1 The PushMatrix, PopMatrix command has been issued and the execution is not yet completed
© 2003-2006 Nintendo 219 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• [d01–d00] : Test status flag
• TR[d01] : Box test result

• TB[d00] : Test busy flag

Can reference the ready/busy status of each test (BoxTest, PositionTest, VectorTest).

LISTRAM_COUNT: Polygon List RAM Count Register
Name: LISTRAM_COUNT Address: 0x04000604 Attribute: R Initial Value: 0x0000

• [d11–d00] : Polygon List RAM counter (Maximum valid value is 0x800)

You can reference the number of opaque polygons + translucent polygons that are currently stored in
Polygon List RAM.

Polygon List RAM has the capacity to hold 2048 polygons, so the maximum valid value is 0x800.

The polygon list RAM counter is cleared ten system clock cycles (33.5MHz) after the V-Blank that
comes immediately after the SwapBuffers command is issued.

VTXRAM_COUNT: Vertex RAM Count Register
Name: VTXRAM_COUNT Address: 0x04000606 Attribute: R Initial Value: 0x0000

• [d12–d00] : Vertex RAM counter (Maximum valid value is 0x1800)

You can reference the number of vertices that are currently stored in Vertex RAM.

Vertex RAM has the capacity to hold 6144 vertices, so the maximum valid value is 0x1800.

The vertex RAM counter is cleared ten system clock cycles (33.5MHz) after the V-Blank that comes
immediately after the SwapBuffers command is issued.

0 All of the faces that constitute the box are outside the
view volume

1 Of the 6 faces that constitute the box, part of one of the
faces, or all are inside the view volume

0 Ready

1 Busy

Polygon-List RAM Counter

15 11 8 7 0

Vertex RAM Counter

15 12 8 7 0
NTR-06-0180-001-A9 220 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.2.16.1 Data Storage Capacity of Polygon List RAM and Vertex RAM
1. Polygon List RAM

The 52 KB of Polygon List RAM is divided into an ORDER area of 12 KB followed by a POLYGON
area of 40 KB. The number of polygons that can be stored in these two areas of Polygon List RAM
does not change when polygons are connected, but because connected polygons share vertices, the
same number of polygons consume less memory if they are connected. This is thus an effective way
to economize on Vertex RAM.

No matter how the polygons are drawn, the ORDER area of Polygon List RAM can store 2048
polygons. However, the storage capacity of the POLYGON area varies, depending on the conditions
under which polygons are drawn. In this area, the polygon data comprises a header region of 12 bytes
followed by a vertex index region of 8 or more bytes. Normally, each triangular polygon consumes 8
bytes of the vertex index region, and each quadrilateral polygon consumes 12 bytes. Accordingly, the
maximum number of polygons that can be stored in the POLYGON area calculates out as follows:

(Connected) triangular polygons: 40 KB / (12 byte header + 8 bytes) = 2048 polygons

(Connected) quadrilateral polygons: 40 KB / (12 byte header + 12 bytes) = 1706 polygons

Note that 4 bytes in the vertex index region are consumed each time the number of vertices increases
due to clipping. This means that the total number of polygons that can be stored in the POLYGON area
decreases by one polygon for every five clippings performed on triangular polygons, and for every 6
clippings performed on quadrilateral polygons.

2. Vertex RAM

The 72 KB of Vertex RAM is fully available to store vertex data. Each vertex consumes 12 bytes.

Table 6-6 shows the amount of vertex RAM consumed and the maximum number of polygons that can
be stored for each primitive type.

Table 6-6 : Vertex RAM Consumed and the Maximum Number of Polygons Stored per Primitive Type

Because clipping also consumes Vertex RAM, connect polygons whenever possible as an effective
method to avoid the inability to store subsequent polygons because of Vertex RAM overflow.

a. Why Shared Vertices Are Released During Both Z-buffering and W-buffering

When clipping is performed on connected polygons, the shared vertices between neighboring
polygons are released.

Primitive Type Vertex RAM Consumption Maximum No. of Polygons that Can Be Stored

Triangle Polygon 3 vertices per polygon 2048

Quadrilateral
Polygon 4 vertices per polygon 1536

Connected
Triangle Polygons

First Polygon: 3 vertices
Later Polygons: 1 vertex

6142

However, with 2050 vertices, the Polygon List RAM
maximum of 2048 polygons is reached.

Connected
Quadrilateral

Polygons

First Polygon: 4 vertices
Later Polygons: 2 vertices

3070

However, with 3414 vertices, the Polygon List RAM
maximum of 1706 polygons is reached.
© 2003-2006 Nintendo 221 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
b. Why Shared Vertices Are Released Only During Z-buffering

During Z-buffering, shared vertices are released if the W values (twice the clip-coordinate W
values) stored in Vertex RAM for neighboring connected polygons are such that the W value for
even one vertex of one of the polygons exceeds 16 bits (15 bits in clip coordinates) while not
exceeding 16 bits for any of the vertices of the other polygon. (See Figure 6-26.) This happens
because the Z value and the W value are both stored in Vertex RAM during Z-buffering, so the 24-
bit W value can only be stored with 16-bit precision. What gets stored is either the upper 16 bits or
the lower 16 bits of the 24-bit W value, with the result that differences arise between polygons.
This situation does not arise during W buffering because there’s no need to store the Z value to
vertex RAM during W buffering, so the 24-bit W value of the clip coordinate will be stored as it is,
and the release of shared vertices does not occur.

Figure 6-26 : Release of Shared Vertices Among Connected Polygons (Clip Coordinate System)

z axis: 24-bit W value

To read about n, f, scaleW, 24-bit W values see "6.2.5 Depth Buffering" on page 163.

c. Reasons for Released Vertices in the Polygon Attribute Settings for Rendering 1-Dot
Polygons

If "Do not render 1-dot polygons" is set in the polygon attributes and the polygon's W value
exceeds the value in the 1-dot polygon display boundary depth value register, the vertices shared
among the connected polygons will be released. In this case, whether or not a shared vertex will
be released is decided for each polygon, and therefore, groups of polygons that do not exceed the
value in the 1-dot polygon display boundary depth value register will share vertices, unaltered. To
avoid this, please set "Display 1-dot polygons" in the polygon attributes.

n×scaleWf×scaleW 0x00FFFF

y

z

Range where the upper 16
bits become the w-value

Range where the lower 16
bits become the w-value

Far clip boundary Near clip boundary16 bit boundary

Connected polygons Independent polygons Clipped polygons
NTR-06-0180-001-A9 222 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
4. Memory capacities and the storable number of polygons

The table shows the relationship between the capacity of each memory region and the number of
polygons that can be stored in each region.

F3 : Number of triangular polygons

MF3 : Number of connected triangular polygons

MP3 : Number of primitives of connected triangular polygons

F4 : Number of quadrilateral polygons

MF4 : Number of connected quadrilateral polygons

MP4 : Number of primitives of connected quadrilateral polygons

CLIP : Number of times clipping occurs

DMF3 : Number of times vertices released for connected triangular polygons

DMF4 : Number of times vertices released for connected quadrilateral polygons

5. Summary

The actual number of polygons that are rendered is limited by lesser of the number of polygons that
can be stored in Polygon List RAM and Vertex RAM.

When extensive use is made of polygon strips, Vertex RAM has plenty of space, therefore you can
estimate based on the capacity limitations of Polygon List RAM.

If you make extensive use of polygon strips, even in the unusual situation where every polygon is
clipped once, you can be sure to obtain these numbers of polygons:

triangular polygon strips: 40 KB / (12 + 8 + 4) = 1706 polygons

quadrilateral polygon strips: 40 KB / (12 + 12 + 4) = 1462 polygons

6.2.17 Warnings Regarding Calculation Precision
Although you can specify a 32-bit space for the world coordinate system (sign + 19-bit integer + 12-bit
fractional part) with NITRO, objects on the edges of this 32-bit space may appear distorted and wrapped
because the computational precision of the hardware is also 32 bits. To use the world coordinate system
without problems, keep within a range of 29 bits (sign + 16-bit integer + 12-bit fractional part).

NITRO also has a 24-bit view space (sign 1 bit + 11-bit integer + 12-bit fractional part). Be aware that
objects can appear distorted and wrapped if you specify some other space as the view volume.

Memory Region Relational Expression for Storable No. of Polygons & Memory Capacity

The POLYGON Area of Polygon
List RAM (12+8) x (F3+MF3) + (12+12) x (F4+MF4) + 4 x CLIP <= 40KB

Vertex RAM
(12 x 3) x (F3+MP3+DMF3) + (12 x 1) x (MF3-MP3-DMF3) +
(12 x 4) x (F4+MP4+DMF4) + (12 x 2) x (MF4-MP4-DMF4) +
12 x CLIP <= 72KB
© 2003-2006 Nintendo 223 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3 Rendering Engine
6.3.1 Overview
Table 6-7 lists the rendering engine specifications.

Table 6-7 : Rendering Engine Specification List

Operating frequency 33.514 MHz

Render data Triangles and quadrilaterals

Rendering capacity Maximum 120,000 polygons/sec (60FPS)
Maximum 30 million pixels/sec (60FPS)

Shadow surface
process Switch between Z-value buffering and W-value buffering methods

Shading Gouraud shading

Texture mapping

Perspective correction, modulation/decal
Support for 4x4 texel compression
Support for translucent textures
Flip, Repeat
Image sizes of 8x8 texels to 1024x1024 texels

Other capabilities
(See Table 6-8)

alpha blending, alpha test, anti-aliasing, edge marking, fog, toon shading, highlight
shading, shadow, wireframe, Clear Image
NTR-06-0180-001-A9 224 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Table 6-8 gives an overview of rendering engine features.

Table 6-8 : Overview of Rendering Engine Features

Note: The rendering-related registers have a double-buffer structure, and the contents of each register
are sent to the Rendering Engine at the start of the V-Blank period that begins right after the
SwapBuffers command is issued. Because of this, data can be written to these registers even
during the middle of a frame. The data is not reflected in the image drawn in the frame at the time
of change.

Alpha Blending
Blends the color value stored in the color buffer with the input fragment's color value,
based on the alpha value of that fragment. (These fragments are the fragments after
texture blending.)

Alpha Test
Compares the fragment's alpha value with the reference value set in the register, and
draws only if the fragment's alpha value is larger than this reference value.
(These fragments are the fragments after texture blending.)

Antialiasing Blends the color of the polygon's boundaries with color values of the polygon behind using
the (5-bit width) factor computed based on the shift from the original display position.

Edge Marking
Marks the boundary edges of polygons with different polygon IDs (6-bit) using the polygon
edge-specified color (8 colors). When anti-aliasing is enabled, the edge marking is
followed by anti-aliasing.

Fog

Using the fog density table, the specified fog's color value is blended with the color buffer's
color value. The fog density can be specified in 32 levels, and the value that is applied is
the value that results from linear interpolation with the depth value of the target pixels.
When 3D is displayed in front of a 2D screen, fog can be applied to the 2D screen as well
by using the color buffer.

Toon Shading Can present cartoon-like pictures by steepening the shininess calculation results.

Highlight Shading Can present shininess beyond the texture color.

Shadow Can easily put shadows on even bumpy surfaces by defining the shadow volume.

Wireframe Can draw only the edges of polygons without drawing the surfaces.

Clear Image Can apply Clear Images in VRAM as the initial values for the color buffer's, depth buffer's
and attribute buffer's fog-enable flags.
© 2003-2006 Nintendo 225 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.2 Rendering Methods

6.3.2.1 Line Buffer Rendering
NITRO employs a line buffer method for rendering rather than a frame buffer method. Because of this, line
overflow can occur when too many polygons are layered on a single line to be rendered during the
horizontal period. In order to prevent line overflow from occurring easily, the color buffer operates as FIFO,
holding 48 lines, and the rendering begins from the middle of the V-Blank period, drawing and storing the
line data before display (see Figure 6-27.)

By reading the RDLINES_COUNT register, you can check how many lines at minimum remain in the color
buffer while the frame that has been rendered is displaying. In other words, you cannot confirm whether or
not lines have been dropped but you can determine the risk of this happening.

To read about the RDLINES_COUNT register see "6.3.11 Status" on page 265.

This diagram shows only the FIFO operation. The Rendering Engine is actually reading from and writing to
the color buffer.

Figure 6-27 : Color Buffer's FIFO Operation

6.3.2.2 The Buffers in the Rendering Engine
Table 6-9 shows the buffers in the Rendering Engine that store information about every pixel.

Also refer to "Figure 6-1 : 3D Graphics Hardware Block Diagram" on page 153.

Table 6-9 : The Rendering Engine Buffer

Stencil buffer This buffer holds one line at 1 bit/pixel.
It is used when rendering shadow polygons.

Attribute buffer
This buffer holds two lines at 23 bits/pixel.
This buffer stores the polygon ID and fog enable flag for every pixel.
Polygon IDs are managed separately for opaque polygons and translucent polygons.

Depth buffer This buffer holds two lines of at 24 bits/pixel.
It is used for depth test and fog blending calculations.

Color buffer This buffer holds 48 lines at 23 bits/pixel (R:G:B:A = 6:6:6:5).

Rendering Engine BG0 ScreenColor Buffer
(48 Line FIFO)

Read in Horizontal ScansInterval
s

The rendering period
changes,depending on the number of

polygons on the line.

Rendering
fromBefore the Start

ofScannin
g

Pixel
Color

Pixel
Color
NTR-06-0180-001-A9 226 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.2.3 Blank Periods

The Rendering Engine begins rendering when scanning starts for the LCD's 214th line, and it keeps
rendering until the start of display of the 191st final line. Thus, the Rendering Engine's blank period is the
23 lines from line 191 to 213 (see Figure 6-28).

To safely rewrite data to the VRAM region (texture image and texture palette) referenced by the Rendering
Engine, do so during these 23 lines.

Figure 6-28 : Rendering Engine Blanking Periods

Table 6-10 shows the rendering engine timing specifications.

Table 6-10 : Rendering Engine Timing Specifications

Item Spec Period

Rendering
Period

Number of Horizontal Dots 256 dots 45.8316 μs

Number of Vertical Lines 49+191 lines 15.2533 ms

Total Period
Number of Horizontal Dots 355 dots 63.5556 μs

Number of Vertical Lines 263 lines 16.7151 ms

Blank Period Number of blank Lines 23 lines 1.4618 ms

Scan Cycle V Cycle 59.8261Hz 16.7151 ms

Rendering Period

256 Dots

355 Dots

19
1

Li
ne

s

26
3

Li
ne

s

99 Dots

Rendering Blank Period

Rendering Period

23 Lines

49 Lines

Rendering
Starts

Rendering
Ends

Render Flow
© 2003-2006 Nintendo 227 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.2.4 Number of Polygons that Can Be Drawn with One Line
The Rendering Engine can draw for a period of 355 dots with one line. (See "Table 6-10 : Rendering
Engine Timing Specifications" on page 227).

Each dot involves 6 cycles, but since there is also an overhead of 4 cycles for each line, the number of
cycles that can be used for rendering is (355 x 6) - 4 = 2126 cycles.

In NITRO, the fill rate for even texture-mapped translucent polygons is 1 pixel per cycle, but there is an 8-
cycle overhead every time rendering of a polygon starts.

Given these factors, the minimum guaranteed number of polygons that can be drawn on one line is:

(2126 cycles) / (8 cycles + number of horizontal pixels in polygon).

Excluding the overhead, the per-line fill rate is:

(2126 cycles) - (8 cycles x guaranteed number of polygons drawn with one line).

Note: Using these formulas yields the results shown in Table 6-11.

Table 6-11 : Maximum Polygons Rendered per Line and Fill Rate (Calculated Values)

Because the line buffer is FIFO, the actual number of polygons drawn may be higher.

Number of Horizontal Pixels in the Polygon 8 16 32 64 128 256

Number of Polygons Guaranteed to Be Drawn by One Line 132 88 53 29 15 8

Per-line Fill Rate 1070 1422 1702 1894 2006 2062
NTR-06-0180-001-A9 228 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.3 Initializing the Rendering Buffers

6.3.3.1 Initializing with the Clear Registers

ClearColorAttr: Clear Color Attribute Register
Name: CLEAR_COLOR Address: 0x04000350 Attribute: W Initial value: 0x00000000

• Clear Polygon ID [d29–d24] : Polygon ID initial value

Sets the initial value of the opaque Polygon ID in the Attribute buffer. Whether edge marking is applied
or not is determined by comparing the polygon ID and this Clear Polygon ID in the case of edges that
can be clipped at the edge of the screen.

• α value[d20–d16] : Initial value of α

Sets the initial value of the α value in the Color buffer.

Normally set this to 0 when compositing with 2D.

• F[d15] : Fog enable flag

Sets the initial value of the fog enable flag in the Attribute buffer.

When compositing with the 2D screen, you can use this to control whether or not to apply fog to the
rear plane.

This is effective when you want to clearly display a 2D background.

• Color[d14–d00] : Clear Color RGB values

Sets the Color buffer's initial RGB values.

The Color buffer in the Rendering Engine is (R:G:B = 6:6:6) bits, so the lower 1 bit is treated as 0 when
the Clear Color value is 0, and as 1 when the value is nonzero.

ClearDepth: Clear Depth register
Name: CLEAR_DEptH Address: 0x04000354 Attribute: W Initial value: 0x7FFF

• CLEARDEptH[d14–d00] : Clear Depth value

The Depth buffer in the Rendering Engine is 24 bits/pixel, so the Clear Depth value is used after
shifting 9 bits to the left. The lower 9 bits are treated as 0 except when the Clear Depth value is
0x7FFF, in which case the lower 9 bits are treated as 1.

To read how this differs from the depth value in the different depth buffering methods, see "6.2.5 Depth
Buffering" on page 163.

F BLUE GREEN RED

Clear Polygon ID value Fog Color

31 29 24 23 20 16 15 14 10 9 8 7 5 4 0

α

CLEARDEPTH
Clear Depth Value

15 14 8 7 0
© 2003-2006 Nintendo 229 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.3.2 Initializing with Clear Images
When the Clear Image Enable Flag is set in the 3D Display Control register (DISP3DCNT), the Clear
Images stored in VRAM are used as the initial values of the Color buffer and Depth buffer and the Attribute
buffer's fog enable flag. Even when this feature is used, the value of the CLEAR_COLOR register is still
used for the Attribute buffer's polygon ID.

Use the RAM Bank Control register to assign the VRAM that stores Clear Images to the Clear Image
buffer.

The format for each Clear Image is given below. "Figure 6-29 : VRAM Mapping of Clear Images (Texture
Image Slots 2 and 3 Shared)" on page 231 shows Clear Image VRAM mapping.

Clear Color Image Format

• [d15] : Clear α flag

The actual clear α values are as follows:

• [d14–d00] : Clear Color RGB values

• Sets the Color buffer's RGB initial values.

• The Color buffer in the Rendering Engine is (R:G:B = 6:6:6) bits, so the lower 1 bit is treated as 0 when
the Clear Color value is 0, and as 1 when the value is nonzero.

Clear Depth Image Format

• FOG[d15]: Clear Fog

Sets the initial value of the fog enable flag in the Attribute buffer.

When compositing with the 2D screen, you can use this to control whether or not to apply fog to the
rear plane.

This is effective when you want to clearly display a 2D background.

•[d14–d00] : Clear Depth

To read how this differs from the depth value in the different depth buffering methods, see "6.2.5 Depth
Buffering" on page 163

0 0x00

1 0x1F

A BLUE GREEN RED

Clear Color

15 14 10 9 8 7 5 4 0

Clear Alpha Flag

FOG

Clear Depth

15 8 7 0

Clear Fog

14
NTR-06-0180-001-A9 230 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 6-29 : VRAM Mapping of Clear Images (Texture Image Slots 2 and 3 Shared)

ClearImageOffset: Clear Image Offset Settings Register
Name: CLRIMAGE_OFFSET Address: 0x04000356 Attribute: W Initial value: 0x0000

Can assign offsets to the Clear Images that are read when the rendering buffers are initialized. The image
is wrapped and read if it exceeds the 256x256 data region on screen. Figure 6-30 shows the concept of the
clear image offset.

Dot 0 1 2 3 253 254 255

Line 0 0h 2h 4h 6h 1FAh 1FCh 1FEh

1 200h 202h 204h 206h 3FAh 3FCh 3FEh

2 400h 402h 5FCh 5FEh

3 600h 602h 7FCh 7FEh

4 800h 9FEh

251 1F600h 1F7FEh

252 1F800h 1F802h 1F9FCh 1F9FEh

253 1FA00h 1FA02h 1FBFCh 1FBFEh

254 1FC00h 1FC02h 1FC04h 1FC06h 1FDFAh 1FDFCh 1FDFEh

255 1FE00h 1FE02h 1FE04h 1FE06h 1FFFAh 1FFFCh 1FFFEh

Y Offset X Offset

15 8 7 0
© 2003-2006 Nintendo 231 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 6-30 : Clear Image Offset

256 Dots

256 lines

Y Offset

X Offset

3D Screen
(256×192)

Virtual Screen

Virtual Screen Virtual Screen

Virtual Screen
NTR-06-0180-001-A9 232 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.4 Rasterizing
Rasterization is the process of dividing the polygon surface into pixels and writing them to a buffer. During
rasterization, the Rendering Engine interpolates the pixel colors inside the polygon based on the vertex
colors passed from the Geometry Engine.

The Rendering Engine stores the pixel colors in the Color buffer, and stores each pixel's polygon ID and
fog enable flag in the Attribute buffer. The rendering engine first finishes rendering the opaque polygon that
are in polygon list RAM, and then renders the translucent polygons.

6.3.4.1 Opaque Polygons

An opaque polygon is a polygon with an α value of 31 (α = 31).

• Polygon ID

This is stored in the region for opaque polygon IDs in the Attribute buffer when the polygon is
rendered.

• Fog enable flag

When an opaque polygon is rendered, the fragment's fog enable flag overwrites the Attribute buffer's
fog enable flag.

6.3.4.2 Translucent Polygons

A translucent polygon has either an α value between 1 and 30 (1 ≤ α ≤ 30) or a translucent texture
applied.

Thus, this term also encompasses shadow polygons.

6.3.4.2.1 Polygons with 1 ≤ α ≤ 30

• Polygon ID

This is stored in the region for translucent polygon IDs in the Attribute buffer when the polygon is
rendered.

When different translucent polygons overlap on the screen, a translucent polygon that uses the same
polygon ID as another translucent polygon is not overwritten.

• Fog enable flag

When a translucent polygon is rendered, the fragment's fog enable flag and the Attribute buffer's fog
enable flag are logically ANDed together and the result is written to the Attribute buffer.

This feature can be used to apply fog to everything except specific translucent polygons.
© 2003-2006 Nintendo 233 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.4.2.2 Translucent texture mapped polygons

Translucent texture-mapped polygons (A3I5 and A5I3 textures) are stored in the translucent polygon
region of the polygon list RAM, even if all of the texels are opaque. Therefore, they are rendered after
opaque polygons. Notice that polygon ID and fog enable flag processing differs according to whether the
pixel is opaque (α=31) or translucent (1 ≤ α ≤ 30), and therefore opaque pixels and translucent pixels may
be mixed within a polygon.

• Polygon ID
• Opaque pixels

When rendering polygons, these are stored in the attribute buffer’s opaque polygon ID area.

Therefore they are targeted for edge marking.
• Translucent pixels

When rendering polygons, they are stored in the attribute buffer’s translucent polygon ID area.

If different translucent polygons overlap on the screen, translucent polygons that have the same
polygon ID are not overwritten.

• Fog enable flag
• Opaque pixels

Fragment fog enable flags are overwritten by the attribute buffer’s fog enable flags.
• Translucent pixels

When a translucent polygon is drawn, the fragment's fog enable flag and the Attribute buffer's fog
enable flag are ANDed together and the result is written to the Attribute buffer.

This feature can be used to apply fog to everything except specific translucent polygons.

6.3.4.3 Wireframes

A wireframe is a polygon with an α value of 0 (α = 0). In this case, α does not have its original meaning of
opacity level. Instead, only the outline of the polygon (wireframe) is rendered. If it is clipped, the clipping
boundary (a new side created due to clipping) is also rendered as a wireframe. To render a wireframe as
translucent, map a translucent texture.

Note: The characteristics of the circuit do not permit a wireframe to be drawn semi-transparently.

About the Polygon ID
When the wireframe is rendered, it is stored in the opaque polygon ID region of the attribute buffer. (Only
the polygon ID of the wire is updated).
NTR-06-0180-001-A9 234 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.4.4 Shadow Polygons
Shadow volume is defined as the space that is not illuminated by light because the light has been
obstructed by an object. A shadow, then, can be thought of as something that is generated in the region
where the shadow volume intersects with another object. The polygon used to express a shadow volume
is called a shadow polygon.

You create a shadow image that can be seen from the user’s perspective by creating only a mask image of
the Stencil buffer when rendering the inner side of the shadow volume, and then excluding the mask
region when drawing outside the shadow volume.

Shadow polygons used for masks and rendering can be differentiated by their polygon IDs.

Figure 6-31 shows the concept of shadow polygons. "Figure 6-32 : When Drawing the Shadow Polygon for
the Mask" on page 237 describes rendering shadow polygons for masking. "Figure 6-32 : When Drawing
the Shadow Polygon for the Mask" on page 237 describes rendering shadow polygons for drawing.

The procedure for attaching shadows using shadow polygons is as follows:

Polygon ID Classification

 0 Shadow polygons for masks

 1–63 Shadow polygons for drawing

1. Set rendering order

Because both mask- and draw-shadow polygons must be translucent and must exist in the drawing order (see the
“Cautions” on page 238) set the translucent polygons to manual sort with SwapBuffers and set them to be
rendered in the order they are transmitted to the Geometry Engine.

↓
2. Draw the shadow polygon for the mask

Set the polygon attributes to [Draw only the back surface], [ID = 0], [α = 1 - 30] and [Shadow polygon] and draw the
mask-shadow polygon. The rendering engine does not update the color buffer and creates only the mask images
with 1 set in the stencil buffer.

↓
3. Draw the shadow polygon for rendering

Next, set the polygon attributes to [Draw both surfaces], [ID = 1–63], [α = 1–30] and [Shadow polygon] and draw the
shadow polygons for rendering. The rendering engine first reads the stencil buffer and, if the value is 1, resets it to
0; if the value is 0, the engine attempts to draw to the color buffer.

• Polygon ID

The draw-shadow polygon is drawn at this time only if its ID differs from both the ID of the opaque
polygon and the ID of the translucent polygon in the Attribute buffer. This specification prevents an
object from casting a shadow on itself by setting the same polygon ID for both the object and the
draw-shadow polygon.

When multiple shadows overlap, you can control whether to overlay them or not by setting them to
the same polygon ID.

• Fog Enable Flag

When a shadow polygon is rendered, the results of a logical AND applied to the fragment's fog
enable flag and the Attribute buffer's fog enable flag are written to the Attribute buffer. With this
feature, it is possible to excluded shaded areas from fog.

(Example: A spotlight can be expressed by excluding an area from black fog.)
© 2003-2006 Nintendo 235 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• Shadow Volume

Figure 6-31 : Shadow Volume

• Shadow volume shape

In principle, the shadow volume takes the shape of a closed 3D shape. Note the “Cautions” on
page 238 if you plan to use an open 3D shape in order to reduce the number of polygons.

• Shadow volume direction

To create the shadow of a spherical object, a cylinder-shaped shadow volume is created on the
straight line defined by the light source and the spherical object.

• Shadow volume position

The cylinder-shaped shadow volume is located where it cannot be seen from the light source (a place
not illuminated by the light of the sphere).

• Shadow volume length

The shadow is drawn on the surface of the object that is located inside the shadow volume. Thus, the
length of the shadow volume should be long enough to pass through the surface of the object on which
you want shadow to be drawn.

Light Source

Shadow
Volume

Object that
Casts Shadow

Other Object
(Normal Polygon)

Shadow
NTR-06-0180-001-A9 236 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Stencil buffer calculations
1. When Drawing the Shadow Polygon for the Mask

The value 1 is set to the Stencil buffer when the depth test fails without affecting the Color buffer.

Figure 6-32 : When Drawing the Shadow Polygon for the Mask

2. When Drawing the Shadow Polygon for Rendering

If the Stencil buffer is already 1, it is set to 0. When the depth test succeeds, if the polygon ID in the
attribute does not match the polygon ID of the shadow polygon for rendering, then the polygon is
drawn to the color buffer.

Figure 6-33 : When Drawing the Shadow Polygon for Rendering

As the diagrams illustrate, the shadow is something that is drawn to a portion of one side of the shadow
polygon for rendering. That is why you cannot achieve the effect of directly pasting textures to shadows
when texture mapping.

Depth Test Result Stencil Buffer Color Buffer

Shadow Polygon for
Masking (Outside Surface)

Object that Casts Shadow

Other Object (Normal Polygon)

Set to 1

Depth Test Result Stencil Buffer Color Buffer

Shadow Polygon for
Rendering (Outside Surface)

Object that Casts Shadow

Shadow

Other Object (Normal Polygon)

Not drawn to Color
Buffer if depth test fails

Not Drawn to Color
Buffer if Polygon IDs

are Same

Drawn to Color buffer
if Polygon IDs are Different

Return
 to 0
© 2003-2006 Nintendo 237 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Cautions
1. Order for rendering shadow polygons

To create a single shadow, you must draw the necessary shadow polygon for the mask and then
follow that with the shadow polygon for rendering. If you draw a collection of shadow polygons for the
mask and then draw the corresponding collection of shadow polygons for rendering, shadows may not
be created in the intended regions.

Correct rendering string:

Shadow volume for mask 1 → Shadow volume for rendering 1 →
Shadow volume for mask 2 → Shadow volume for rendering 2

2. Shadow volumes with open shapes

When the shadow volume takes the shape of an open 3D shape, a region that has a shadow polygon
for rendering but not a shadow polygon for the mask may be generated, and results in the creation of
an incorrect shadow.

Note that when a shadow volume gets clipped it takes on an open shape.

Technique
By following the procedure below, you can create scenes where shadows are cast on translucent
polygons. (However, this technique requires more shadow polygons.)

1. Opaque polygon →
2. Shadow polygon (shadow on opaque polygon) →
3. Translucent polygon on which shadow is cast (update depth buffer) →
4. Shadow polygon (shadow on translucent polygon / polygon ID is same as that of step 2) →
5. Translucent polygon on which shadow is not cast.

Figure 6-34 shows a schematic representation.

Figure 6-34 : Technique for rendering a shadow on a translucent polygon

Light
Source

Opaque Polygon

Translucent
Polygon
NTR-06-0180-001-A9 238 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.4.5 Toon Shading/Highlight Shading

ToonTable: Toon Table Register

This register is used for toon shading and highlight shading.

In toon shading and highlight shading, the fragment color R value is treated as the brightness, and this R
value (upper 5 bits) is used as the index to reference RGB values from the toon table.

Figure 6-35 : Transformations using a Toon Table

Name Address Attribute Initial Value

TOON_TABLE_x (x=0–15)

0x04000380, 0x04000384, 0x04000388, 0x0400038C,
0x04000390, 0x04000394, 0x04000398, 0x0400039C,
0x040003A0, 0x040003A4, 0x040003A8, 0x040003AC,
0x040003B0, 0x040003B4, 0x040003B8, 0x040003BC

W 0x00000000

BLUE n1 GREEN n1 RED n1 BLUE n0 GREEN n0 RED n0
RGB transformation values when brightness n1=2x+1 RGB transformation values when brightness n0=2x

31 30 26 25 24 23 21 20 16 15 14 10 9 8 7 5 4 0

15 Bit x 32

Toon Table

Upper 5 Bits of Rs
(0 - 31 Index) (Rs', Gs', Bs')
© 2003-2006 Nintendo 239 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.4.5.1 Toon Shading

The fragment color R value is treated as the brightness, and this R value (the upper 5 bits) is used as the
index to reference RGB values from the toon table to set the new fragment colors.

The texture color and the post-table-reference fragment color both have (R5:G5:B5 = 5:5:5) number of bits,
so before the texture-blending computation is conducted, the following formulas are used to expand the
number of bits to (R6:G6:B6 = 6:6:6).

Texture mapping involves the same equations used in Modulation mode, except that the toon table-
transformed values are used for the fragment colors (see Table 6-12).

Table 6-12 : Texture Blending Equations (toon table)

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)

(Rt, Gt, Bt, At) : Texture color expanded to (R:G:B = 6:6:6) bits

(Rs, Gs, Bs, As) : Fragment color

(Rs’, Gs’, Bs’) : Fragment color expanded to (R:G:B = 6:6:6) bits after table conversion

Note: The toon table is referenced for fragment colors shared by all toon shading polygons. If you want
every toon shading polygon to have different colors, then use textures to color even monochrome
polygons.

Using ambient reflection color and emission color to raise the minimum value of the fragment color
R value also narrows the effective range of R, and this coarsens the gradation of toon shading.
Because material color looses its meaning when toon shading, we recommend that you use only
diffusion reflection color so as to retain gradation.

R6 = R5 << 1 (When R5 is 0)

R6 = (R5 << 1) + 1 (When R5 is nonzero)

Type of Texture Translucent Texture Non-translucent Texture

Texture
Blending
Equations

R = { (Rt+1) x (Rs’+1) -1} / 64
G = { (Gt+1) x (Gs’+1) -1} / 64
B = { (Bt+1) x (Bs’+1) -1} / 64
A = { (At+1) x (As+1) -1} / 64

R = { (Rt+1) x (Rs’+1) -1} / 64
G = { (Gt+1) x (Gs’+1) -1} / 64
B = { (Bt+1) x (Bs’+1) -1} / 64
A = At x As
NTR-06-0180-001-A9 240 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.4.5.2 Highlight Shading

The fragment color R value is treated as the brightness, and this R value (the upper 5 bits) is used as the
index to reference RGB values (color offset values) from the toon table to add to the fragment color.

The texture color and the post-table-reference fragment color both have (R5:G5:B5 = 5:5:5) number of bits,
so before the texture-blending computation is conducted, the following formulas are used to extend the
number of bits to (R6:G6:B6 = 6:6:6).

When texture mapping, a color offset value is added to texture colors whose RGB values have each been
modulated by the fragment color’s R (see Table 6-13). This can produce an effect like the texture is being
highlighted (emitting a color brighter than the texture's own color).

Table 6-13 : Texture Blending Equation (Highlight Shading)

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)

(Rt, Gt, Bt, At) : Texture color extended to (R:G:B = 6:6:6) bits

(Rs, Gs, Bs, As) : Fragment color

(Rs’, Gs’, Bs’) : Fragment color extended to (R:G:B = 6:6:6) bits after table conversion

Note: Because a color offset is being added, sometimes the hue of the fragment color changes.

R6 = R5 << 1 (When R5 is 0)

R6 = (R5 << 1) + 1 (When R5 is nonzero)

Texture Type Translucent Texture Non-translucent Texture

Texture
Blending
Equations

R = min[63, { (Rt+1) x (Rs+1) -1} / 64 + Rs’]
G = min[63, { (Gt+1) x (Rs+1) -1} / 64 + Gs’]
B = min[63, { (Bt+1) x (Rs+1) -1} / 64 + Bs’]
A = { (At+1) x (As+1) -1} / 32

R = min[31, { (Rt+1) x (Rs+1) -1} / 64 + Rs’]
G = min[31, { (Gt+1) x (Rs+1) -1} / 64 + Gs’]
B = min[31, { (Bt+1) x (Rs+1) -1} / 64 + Bs’]
A = At x As
© 2003-2006 Nintendo 241 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.5 Textures

6.3.5.1 Texture Blending
The Rendering Engine interpolates the texture coordinates corresponding to each pixel inside the polygon
using the texture settings (flip/repeat) passed by the Geometry Engine, the vertex texture coordinates and
the w value.

The process of blending texel color with the color of each pixel of the polygon is called texture blending.
The mode for this texture blending can be set to either Decal or Modulation using the PolygonAttr register.

6.3.5.1.1 Texture Image Sampling

In NITRO, the texture image is sampled by interpolating, from each vertex’s texture coordinates, texture
coordinates that correspond to the top-left of each pixel in a polygon (see Figure 6-36).

Figure 6-36 : Texture Image Sampling

For example, if a polygon has 8x8 textures applied to it and its display width is 14 dots, pixel and texel
correspondence are as shown on the left in Figure 6-37.

If a polygon is turned front to back like this, the texel / pixel correspondence slips.

In the diagram on the right side of Figure 6-37, texel 0 appears at the left edge (if the texture is not H-
flipped it is omitted) and on the right edge texel 0 is only sampled once.

Figure 6-37 : When an 8x8 texel Texture Is Applied to an 14-dot Wide Polygon

Polygon

Vertex 1
(Texture Coordinate 1)

Vertex 4
(Texture Coordinate 4)

Vertex 2
(Texture Coordinate 2)

Vertex 3
(Texture Coordinate 3)

Texture Coordinate Texture Coordinate

Texture Coordinate

Geometry Engine Rendering Engine

Texture Coordinate

Texture Coordinate 1 Texture Coordinate 4

8 Texels

14 Pixels

7 00 1 2 3 4 5 6 7

0 1 2 3 4 5 6 70 1 2 4 5 6

Texture Coordinate 1 Texture Coordinate 4

8 Texels

14 Pixels

7 00 1 2 3 4 5 6 7

0 1234567 012456
NTR-06-0180-001-A9 242 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
If a polygon has 8x8 textures applied to it and its display width is 8 dots, pixel and texel correspondence
are as shown in Figure 6-38.

Figure 6-38 : When an 8x8 texel Texture Is Applied to an 8-dot Wide Polygon

When using polygons for 2D displays such as OBJ or BG, texels and pixels have a one to one
correspondence. However, in a case such as this, when rendering a polygon that is mapped with an 8x8
texel texture on 8x8 pixels of an LCD, the front and back surfaces are displayed as shown in Figure 6-39.

Figure 6-39 : Displaying Front and Back Surfaces of an LCD

Texture Coordinate 1 Texture Coordinate 4

8 Texels

8 Texels

7 00 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Texture Coordinate 1 Texture Coordinate 4

8 Texels

8 Texels

7 00 1 2 3 4 5 6 7

0 1234567

Front Surface

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

00 01020304050607

10 11121314151617

20 21222324252627

30 31323334353637

40 41424344454647

50 51525354555657

60 61626364656667

70 71727374757677

00 01020304050607

10 11121314151617

20 21222324252627

30 31323334353637

40 41424344454647

50 51525354555657

60 61626364656667

70 71727374757677

Horizontal Reflection of Polygons

180 Degree Rotation
90 Degree Clockwise Rotation

(270 Degrees Counterclockwise)
270 Degree Clockwise Rotation
(90 Degrees Counterclockwise)

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

00

01

02

03

04

05

06

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

50

51

52

53

54

55

56

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

Vertical Reflection of Polygons
© 2003-2006 Nintendo 243 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.5.1.2 Decal Mode

Depending on the texture's α value, either the result of Gouraud shading of the vertex color created by the
lighting process (fragment color), or the texture's color value is displayed.

For translucent textures, blending is done with the texture's α value.

Table 6-14 shows the texture blending expression used in decal mode.

The texture color has (R5:G5:B5 = 5:5:5) number of bits, so before the texture-blending computation is
conducted, the following formulas are used to expand the number of bits to (R6:G6:B6 = 6:6:6).

Table 6-14 : Texture Blending Equations (decal mode)

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)

(Rt, Gt, Bt, At) : Texture color expanded to (R:G:B = 6:6:6) bits

(Rs, Gs, Bs, As) : Fragment color

R6 = R5 << 1 (When R5 is 0)

R6 = (R5 << 1) + 1 (When R5 is nonzero)

Texture Type Translucent Texture Non-translucent Texture

Texture
Blending
Equations

R = {At x Rt + (31 - At) Rs} / 32
G = {At x Gt + (31 - At) Gs} / 32
B = {At x Bt + (31 - At) Bs} / 32
A = As

Handling exceptions:
When At = 0,
 (R, G, B, A) = (Rs, Gs, Bs, As) is used.
When At =31,
 (R, G, B, A) = (Rt, Gt, Bt, As) is used.

R = At x Rt + (1 - At) Rs
G = At x Gt + (1 - At) Gs
B = At x Bt + (1 - At) Bs
A = As
NTR-06-0180-001-A9 244 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.5.1.3 Modulation Mode

The result of the Gouraud shading of the vertex color (fragment color) created by the lighting process is
modulated by the texture's color value and displayed.

Table 6-15 shows the texture blending expressions used in modulation mode.

The texture color's fragment color has (R5:G5:B5 = 5:5:5) number of bits, so before the texture-blending
computation is conducted, the following formulas are used to expand the number of bits to
(R6:G6:B6 = 6:6:6).

Table 6-15 : Texture Blending expressions (modulation mode)

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)

(Rt, Gt, Bt, At) : Texture color expanded to (R:G:B = 6:6:6) bits

(Rs, Gs, Bs, As) : Fragment color

R6 = R5 << 1 (When R5 is 0)

R6 = (R5 << 1) + 1 (When R5 is nonzero)

Type of Texture Translucent Texture Non-translucent Texture

Texture
Blending
Equations

R = { (Rt+1) x (Rs+1) -1} / 32
G = { (Gt+1) x (Gs+1) -1} / 32
B = { (Bt+1) x (Bs+1) -1} / 32
A = { (At+1) x (As+1) -1} / 32

R = { (Rt+1) x (Rs+1) -1} / 32
G = { (Gt+1) x (Gs+1) -1} / 32
B = { (Bt+1) x (Bs+1) -1} / 32
A = At x As
© 2003-2006 Nintendo 245 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.5.2 Texture Formats
NITRO can handle seven different texture formats. Table 6-16 lists the texture formats.

Table 6-16 : List of Texture Formats

Note: Palette Base Boundary is the amount by which the address is increased when the palette base is
increased by 1 by the TexPlttBase command

6.3.5.2.1 Texture Images

The Rendering Engine references the texture image slot's texture image in the format specified by the
TexImageParam command. The texture image is composed of texel data.

6.3.5.2.1.1 4-Color Palette Textures

Texel Data Format

• T7–T0 : Texel Data

Specifies the texture color palette color number (0–3)

Display Texture

Format Number of Selectable
Colors for 1 Texel

Palette
Base

Boundary (see
note)

α Value
Bits

Number of Bits per
Texel

4-Color Palette Texture 4 0x08 0 2

16-Color Palette Texture 16 0x10 0 4

256-Color Palette Texture 256 0x10 0 8

4x4 Texel
Compressed Texture

4
(every 4x4 texels) 0x10 0

3
 (Includes palette index

data)

A3I5 Translucent Texture 32 0x10 3 8

A5I3 Translucent Texture 8 0x10 5 8

Direct Color Texture 32,768 Palette not
used 1 16

T0 T1 T2 T3 T4 T5 T6 T7

T7 T6 T5 T4 T3 T2 T1 T0
8 Texels of Data (2 bits / texel)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NTR-06-0180-001-A9 246 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.5.2.1.2 16 Color Palette Textures

Texel Data Format

• T3–T0 : Texel Data

Specifies the texture color palette color number (0–15)

Display Texture

6.3.5.2.1.3 256-Color Palette Textures

Texel Data Format

• T1–T0 : Texel Data

Specifies the texture color palette color number (0–255)

Display Texture

T0 T1 T2 T3

T0 T1

T3 T2 T1 T0
4 Texels of Data (4 bits / texel)

15 12 11 8 7 4 3 0

T1 T0
2 Texels of Data (8 bits / texel)

15 8 7 0
© 2003-2006 Nintendo 247 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.5.2.1.4 4x4 Texel Compression Textures

This format can obtain the compression effect by dividing the image into 4x4 pixel blocks, and then
converting them to images with palettes with 2-bit indexes.

Texel Data Format

• T33–T00 : Texel Data

Specifies the color number (0–3)

Display Texture

T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

T33 T32 T31 T30 T23 T22 T21 T20 T13 T12 T11 T10 T03 T02 T01 T00
4 x 4 Texels of Data (2 bits / texel)

31 24 23 16 15 8 7 0
NTR-06-0180-001-A9 248 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
 Palette Index Data Format

• Palette settings
• A : 3 colors / 4 colors setting flag

• PTY : Palette type selection flag

• Palette address

The address of the texture palette slot where color data is stored is specified in units of 2 colors (units
of 4 bytes).

Color 0 is the color located at the texture palette slot address calculated as follows:

(The value set by the TexPlttBase command x 0x10) + (the palette address setting value x 4)

The texel color value RGB components are calculated as shown in Table 6-17.

Table 6-17 : Texel Color Values

One set of palette index data is associated with each 4x4 texel (see "Figure 6-40 : Texture Image Slots" on
page 250).

0 3 colors + Transparent mode
(Color 3 is transparent color)

 1 4-color mode

0 4-color palettes
(Four palettes for each 4x4 texels)

1 Linear interpolation 4-color palettes (Two palettes for each
4x4 texels)

PTY=0

PTY=0

A=0

Color 0[5:0]:(Palette 0[4:0]==0) ? (Palette 0[4:0] x 2) : (Palette 0[4:0] x 2 + 1)
Color 1[5:0]:(Palette 1[4:0]==0) ? (Palette 1[4:0] x 2) : (Palette 1[4:0] x 2 + 1)
Color 2[5:0]:(Palette 2[4:0]==0) ? (Palette 2[4:0] x 2) : (Palette 2[4:0] x 2 + 1)
Color 3[5:0]:Transparent Color

A=1

Color 0[5:0]:(Palette 0[4:0]==0) ? (Palette 0[4:0] x 2) : (Palette 0[4:0] x 2 + 1)
Color 1[5:0]:(Palette 1[4:0]==0) ? (Palette 1[4:0] x 2) : (Palette 1[4:0] x 2 + 1)
Color 2[5:0]:(Palette 2[4:0]==0) ? (Palette 2[4:0] x 2) : (Palette 2[4:0] x 2 + 1)
Color 3[5:0]:(Palette 3[4:0]==0) ? (Palette 3[4:0] x 2) : (Palette 3[4:0] x 2 + 1)

PTY=1

A=0

Color 0[5:0]:Palette 0[4:0] x 2
Color 1[5:0]:Palette 1[4:0] x 2
Color 2[5:0]:Palette 0[4:0] + Palette 1[4:0]
Color 3[5:0]:Transparent Color

A=1

Color 0[5:0]:Palette 0[4:0] x 2
Color 1[5:0]:Palette 1[4:0] x 2
Color 2[5:0]:(Palette 0[4:0] x 5 + Palette 1[4:0] x 3) / 4
Color 3[5:0]:(Palette 0[4:0] x 3 + Palette 1[4:0] x 5) / 4

A PTY
Palette Settings Palette Address

15 14 13 8 7 0
© 2003-2006 Nintendo 249 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Texture image slots
In 4x4 texel compression mode, the texture image data and the texture palette index data should be
mapped as follows:

• Texel data

Map to texture image slots 0 and 2.

• Texture palette index data

Map to texture image slot 1.

• Correspondence between texel data and texture palette index data

The texture palette index data which corresponds to the 4x4 texel data in the TIDAa address of texture
image slot 0 should be placed in the (TIDAa/2) address of texture image slot 1.

The texture palette index data which corresponds to the 4x4 texel data in the TIDAb address of texture
image slot 2 should be placed in the (0x10000 + (TIDAb/2)) address of texture image slot 1. (See
Figure 6-40.)

Each 4x4 texel is associated with one set of texture palette index data. Individual texel colors take the
color of the address (the texture color palette slot) specified by the texture palette index data as 0, and
use the color number’s color designated by the texel data.

Figure 6-40 : Texture Image Slots

Note: Texture data is placed in slot 0 and slot 2. Because the address jumps, it is not possible to
reference 1024x1024. In 4x4 texel compressed texture mode, use a texture size that is no larger
than 1024x512.

Texture
Image Data

0x10000+(TIAb /2)

Texture Image Slot 0

The Texture Palette
Index Data of Slot 0

The texture Palette
Index Data of Slot 2

Texture Image Slot 1 Texture Image Slot 2

0x00000

0x20000

0x00000

0x20000

0x00000

0x20000

Texture
Image Data

TIAb

TIAa/2

0x10000

TIAa
NTR-06-0180-001-A9 250 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.5.2.1.5 A3I5 Translucent Textures

Texel Data Format

• T1–T0 : Texel Data
• ALPHA : α-value

Specifies degree of transparency for the texel. 0 is transparent.

The α−value is used in the rendering engine extended in 5 bits as shown in the table below.

(5-bit α = {(3 bit α << 2) + (3 bit α >> 1)})

• INDEX : Color number

Specifies the color number (0–7) of the texture color palette

Display Texture

6.3.5.2.1.6 A5I3 Translucent Textures

Texel Data Format

• T1–T0 : Texel Data
• ALPHA : α-value

Specifies degree of transparency for the texel. 0 is transparent.
• INDEX : Color number

Specifies the color number (0–7) of the texture color palette

Display Texture

3 bit α 0 1 2 3 4 5 6 7

5 bit α 0 4 9 13 18 22 27 31

T0 T1

T0 T1

ALPHA INDEX ALPHA INDEX

T1 T0

15 8 7 01213 5 4

ALPHA INDEX ALPHA INDEX
T1 T0

15 11 10 8 7 3 2 0
© 2003-2006 Nintendo 251 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.5.2.1.7 Direct Color Textures

Texel Data Format

• T0 : Texel Data

Directly configures texel color. The texture color palette is not used.

Display Texture

T0

ALPHA BLUE GREEN RED
T0

15 14 10 9 8 7 5 4 0
NTR-06-0180-001-A9 252 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.5.2.2 Texture Palette

The texture palette slot stores the texture color data.

Texture Color Data Format

The texture format determines the way in which texture color palettes are referenced. (The texture formats
are: 4 color, 16 color, 256 color, 4x4 compressed texel, A3I5, and A5I3.)

Generally what is referenced is the color number for the color determined by the texel data from the palette
specified by the texture palette base. However, when the texture is a 4x4 compressed texel-format texture,
the palette is specified by setting the palette address in addition to the texture palette base. See Figure 6-41
to Figure 6-44 for details on the palette base for each texture color palette and palette address mapping.

Figure 6-41 : Palette Base and Palette Address (4-color palette)

TEX_COLOR_BLUE TEX_COLOR_GREEN TEX_COLOR_RED
Color

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Color 0

Color 1

Color 2

Color 3

Color 0

Color 1

Unreferenced Region

0x00000

0x00008

0x0FFF8

0x10000

0x18000

Palette Base 0x0000

Palette Base 0x1FFF

Color 2

Color 3

4-Color Palette Texture

Color 0

Color 1

Color 2

Color 3
0x00010

Palette Base 0x0001
© 2003-2006 Nintendo 253 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 6-42 : Palette Base and Palette Address (16-color palette, 256-color palette)

Figure 6-43 : Palette Base and Palette Address (4x4 texel compression)

Color 0

Color 0

Color 1

Color 14

Color 15

0x00000

0x00020

0x17FE0

0x18000

Palette Base 0x0000

Palette Base 0x17FEColor 0

Color 1

Color 14

Color 15

Color 0

Color 1

Color 254

Color 255

0x00000

0x00200

0x17E00

0x18000

Palette Base 0x0000

Palette Base 0x17E0Color 0

Color 1

Color 254

Color 255

16-Color Palette Texture 256-Color Palette Texture

Color 0

Color 1

Color 14

Color 15
0x00040

Palette Base 0x0002

Color 2

Color 2

Palette Base 0x0020

4×4 Texel Compressed Texture

0x00000 Palette Base 0x0000Color 0

Color Data

Color 0

Color 1

Color 0

Color 1

Color 2

Color 3

0x00010 Color Data Palette Base 0x0001

PB*0x10 + PAx*4 Palette Base PAx

PB*0x00010 Color Data Palette Base PB

Palette Base PAyPB*0x10 + PAy*4

0x18000

With a 4-color palette

With linearly interpolated
4-color palette
NTR-06-0180-001-A9 254 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
For a 4x4 compressed texel-format texture, the palette address is set by the palette base and the palette
address. Color numbers 0 to 3 are referenced for a four-color palette, but only color numbers 0 and 1 are
referenced for a linear interpolated four-color palette. The remaining two colors applied to the texels are
calculated from Color 0 and Color 1.

Even for a four-color palette, transparent is used without referencing Color 3 when the mode is set to
Three Colors + Transparent.

Figure 6-44 : Palette Base and Palette Address (A3I5, A5I3)

Color 0

Color 1

Color 30

0x00000

0x00040

0x18000

Palette Base 0x0000

Color 1

Color 30

Color 31

Color 0

0x00080

Palette Base 0x0004

Color 1

Color 30

Color 31

Color 31

Color 0

A3I5 Texture

Color 0

Color 1

Color 7

0x00000

0x00010

0x17FF0

0x18000

Palette Base 0x0000

Palette Base 0x17FFColor 0

Color 1

Color 0

Color 1

0x00020

Palette Base 0x0001

Color 7

Palette Base 0x0001Color 0

Color 7

Color 1

Color 7

A5I3 Texture

0x17FC0 Palette Base 0x17FC
© 2003-2006 Nintendo 255 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.6 Alpha-Test
After texture blending, the fragment's alpha value is compared with the value set in the AlphaReference
register. Rendering does not occur when the alpha value is less than this reference value.

AlphaReference: Alpha-Test Comparison Value Register
Name: ALPHA_TEST_REF Address: 0x04000340 Attribute: W Initial value: 0x0000

• ALPHA_REFERENCE[d04–d00] : α-Test comparison value

When α-Test is set to ON, pixels that have an α value below this specified value are not drawn.

• Wireframe display polygons

Setting α = 0 in the polygon attributes displays polygons as wireframes—α no longer retains its
original meaning.

If translucent textures are unmapped, the wireframe section actually has an α value of 31.

Therefore, if the α test reference level is set when the α test is ON, when displaying a wireframe, it is
displayed for any reference value other than 31.

6.3.7 Alpha-Blending
The specifications call for the Rendering Engine to perform alpha-blending by first creating the 3D screen
before alpha-blending with the 2D screen. alpha-blending with the 2D screen is performed using the 2D
graphics color special effect functions.

You can control the Rendering Engine's alpha-blending process by setting the DISP3DCNT register's
α-blending enable flag on/off.

Table 6-18 shows the equation used when alpha blending.

Table 6-18 : Equation when α-blending

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)

(Rb, Gb, Bb, Ab) : Color buffer's color

(Rs, Gs, Bs, As) : Fragment color

α-Blending Enable Flag Calculations for Newly Stored Data in Color Buffer

When ON

R = {(As + 1) x Rs + (31 - As) x Rb} / 32
G = {(As + 1) x Gs + (31 - As) x Gb} / 32
B = {(As + 1) x Bs + (31 - As) x Bb} / 32
A = max[As, Ab]

Handling exceptions:
When As = 0, (R, G, B, A) = (Rb, Gb, Bb, max[As, Ab]) is used.
When As = 31 or Ab = 0, (R, G, B, A) = (Rs, Gs, Bs, max[As, Ab]) is used.

When OFF

When As = 0
 (R, G, B, A) = (Rb, Gb, Bb, Ab)
When As is non-zero
 (R, G, B, A) = (Rs, Gs, Bs, As)

ALPHA_REFERENCE

-Test Comparison Value

15 8 7 4 0

α

NTR-06-0180-001-A9 256 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.7.1 3D Alpha-blending

The color buffer's color value and the fragment's color value are blended based on the fragment's α value,
and the result is then written back to the color buffer.

6.3.7.2 2D and 3D Alpha-Blending Preprocess
In the 3D alpha-blending process described above, the color buffer's alpha value is updated only when it is
smaller than the fragment's alpha value. This specification is set in order to approximate the alpha value in
regions where translucent polygons overlap when alpha-blending 2D and 3D.

When the color buffer's alpha value is 0 and translucent polygons are drawn, the fragment's color is written
to the color buffer without any alpha-blending.

You can thus achieve a more natural composite with the 2D screen by using ClearColor to zero-clear the
color buffer's alpha value, as the ClearColor's RGB values are not blended.

Refer to "6.4.4.1 Alpha-Blending with the 2D Screen" on page 268 for details on this subject.

6.3.8 Edge Marking
Edge marking is a feature for outlining the edges of opaque polygons with different polygon IDs in the
Attribute buffer. You can control this feature by setting the DISP3DCNT register's edge-marking enable
flag on/off.

The colors that are used in edge marking are the 8 colors that are selected using the upper 3 bits of the
polygon ID as an index.

EdgeColor: Edge Color Register

• [d30–d16], [d14–d00] : Edge marking colors

Specifies the eight colors to employ for edge marking.

If a polygon is clipped, edge marking is also applied to the clipping boundary (a new edge created by
clipping)

Also, a comparison to clear polygon ID is made at the edge of the screen.

Therefore, concerning new edges created by clipping, if the clear polygon ID and the polygon ID are
the same, edge marking is not applied.

Note: Edge marking of opaque polygons in the background behind translucent polygons sometimes
does not work correctly when the PolygonAttr command has set the Translucent Polygon
Depth Value Update-enable flag to 1 (because the Depth buffer's value is referenced when
determining edge marking.

Name Address Attribute Initial Value

EDGE_COLOR_x (x =0-3) 0x04000330, 0x04000334, 0x04000338, 0x0400033C W 0x00000000

BLUE n1 GREEN n1 RED n1 BLUE n0 GREEN n0 RED n0
Edge marking color when polygon ID (n1)=2x+1 Edge marking color when polygon ID (n)=2x

31 30 26 25 24 23 21 20 16 15 14 10 9 8 7 5 4 0
© 2003-2006 Nintendo 257 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.9 Fog Blending
Fog blending is the process of blending each pixel color with fog color in proportion to the depth value. The
fog-blending process can create a fog effect on the screen, hiding from the player the far-plane clipping
and rejection processes that do not arise in the natural world. You can control this feature by setting the
DISP3DCNT register's fog enable flag on/off.

6.3.9.1 3D Fog
In OpenGL, the fog process is done on each polygon when it is drawn. But with NITRO, the fog process is
performed on the color buffer where all polygons have been drawn, after the edge marking process.

Because of this specification, you can produce effects where fog is applied to everywhere except a
specified region. However, applying fog to regions where translucent polygons are rendered can produce
unnatural effects. If this happens, use the PolygonAttr command to set the Translucent Polygon Depth
Value Update-enable Flag for visual approximation.

Note: If you update the depth value you must also conduct a Z sort or else some parts inside regions
where translucent polygons overlap may not get rendered.

FogColor: Fog Color Register
Name: FOG_COLOR Address: 0x04000358 Attribute: W Initial value: 0x00000000

This specifies the fog color.

When compositing with the 2D screen's background, you can achieve the effect of the object dissolving
into the 2D screen if you set the fog α value to 0. This effect appears more natural if you set the Fog mode
of the 3D Display Control register (DISP3DCNT) to Fog Blending Using only the Pixel’s α Value.

FogOffset: Fog Offset Register
Name: FOG_OFFSET Address: 0x0400035C Attribute: W Initial value: 0x0000

• FOG_OFFSET[d14–d00] : Fog offset

Sets the depth value that is the basis for fog density calculations.

The fog density for pixels that have an upper 15-bit depth value nearer than (fog offset + (0x400 >> fog
shift)) is fixed to the fog density table's DENSITY0 value. The fog density for pixels that have a depth
value farther than (fog offset + (0x400 >> fog shift) x 32) is fixed to DENSITY31.

The fog shift is a value set by the DISP3DCNT register (the 3D Display Control register).

If the depth value is within the two areas mentioned above, the fog density is the value that results
from linear interpolation of two elements in the fog table.

Because the depth value differs depending on the method of depth buffering (Z buffering or W
buffering), the way in which fog is applied also differs. In short, the fog density depends on the depth-
value curve to the z value of the View coordinates. To learn more about this relationship, see "6.2.5
Depth Buffering" on page 163. The method for depth buffering is selected using the Geometry
Engine's SwapBuffers command.

FOG_ALPHA FOG_BLUE FOG_GREEN FOG_RED

Fog Value Fog Color

31 24 23 20 16 15 14 10 9 8 7 5 4 0

α

FOG_OFFSET
Fog Offset

15 14 8 7 0
NTR-06-0180-001-A9 258 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
FogTable: Fog Density Table Register

Specifies a 32-level fog density table.

The fog density for each pixel is the value that results from linear interpolation of the corresponding depth
buffer value. You can thus approximate any fog density curve (see "Figure 6-45 : Depth Values and Fog
Density" on page 260).

6.3.9.1.1 Fog Density Equations

Assume that F_IVL = (0x400 >> FOG_SHIFT) and that f(i) is the ith parameter in the fog density table.
Then the fog density and the upper 15-bit depth value (Zd) have the following relationship:

1. When 0x0000 ≤ Zd ≤ (FOG_OFFSET + F_IVL – 1)

Fog density f = f (0)
2. When (FOG_OFFSET + F_IVL x i) ≤ Zd ≤ (FOG_OFFSET + F_IVL x (i + 1) - 1) (i = 1–31)

Fog density f =

3. When FOG_OFFSET + F_IVL x 32 ≤ Zd ≤ 0x7FFF

Fog density f = f (31)

Name Address Attribute Initial Value

FOG_TABLE_x (x=0-7) 0x04000360, 0x04000364, 0x04000368, 0x0400036C,
0x04000370, 0x04000374, 0x04000378, 0x0400037C W 0x00000000

DENSITY n3 DENSITY n2 DENSITY n1 DENSITY n0
Fog Density n3=4x+3 Fog Density n2=4x+2 Fog Density n1=4x+1 Fog Density n0=4x

31 30 24 23 22 16 15 14 8 7 6 0

)1(
_

)}__({)}1()({
−+

×+−×−−
= if

IVLF
iIVLFOFFSETFOGZdififf
© 2003-2006 Nintendo 259 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 6-45 : Depth Values and Fog Density

The fog shift is set by the DISP3DCNT register (the 3D Display Control register).

Fog Offset 0x400 >>
Fog Offset Beyond

0

127
Fo

g
D

en
si

ty

Depth Value

Fog Table No.

0 1 2 30 31

0
0 - 1

Linear
Interpolation

1 - 2
Linear

Interpolation
0 3130- 31 Linear

Interpolation

0

NTR-06-0180-001-A9 260 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Table 6-19 shows the fog blending expressions.

Table 6-19 : Fog Blending Equations

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)

(Rf, Gf, Bf, Af) : Fog color

(Rs, Gs, Bs, As) : Color in the color buffer after edge marking

6.3.9.2 Fog Preprocessing for 2D

If fog is disabled, then the region where the color buffer's α value is zero-cleared is treated as an alpha
cut-out region when compositing with the 2D screen, and from this region you can see the unmodified
color of the 2D screen in the background. (See "6.4 2D Graphics Features You Can Apply to the 3D
Screen After Rendering" on page 266.)

If, on the other hand, fog is enabled, then this otherwise transparent region is also subject to fog blending
and the color buffer value is updated. After that, the 2D color special effect feature (2D and 3D alpha-
blending) can work to alpha-blend the color buffer and the 2D screen, so fog is also applied to the 2D
screen in the background seen from this region.

In this way, 2D fog blending is conducted via 2D and 3D alpha-blending. (See "6.3.7.2 2D and 3D Alpha-
Blending Preprocess" on page 257.)

Fog Mode Fog Blending with Pixel's Color and α Value Fog Blending only with Pixel's α Value

Fog
Blending
Equations

R = { f x Rf + (128 - f) x Rs} / 128
G = { f x Gf + (128 - f) x Gs } / 128
B = { f x Bf + (128 - f) x Bs } / 128
A = { f x Af + (128 - f) x As } / 128

Handling exceptions:
When f = 127,
(R, G, B, A) = (Rf, Gf, Bf, Af) is used

R = Rs
G = Gs
B = Bs
A = { f x Af + (128 - f) x As } / 128

Handling exceptions:
When f = 127, A = Af is used
© 2003-2006 Nintendo 261 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.3.10 Anti-aliasing
The anti-aliasing feature blends an edge section in the front buffer with the color in the back color buffer.
The front color buffer holds the rendered results of the front-most polygon; the back buffer stores the
rendered results of all polygons (including clear colors) that are behind the front-most polygon. Anti-
aliasing is only applied to the edges of opaque polygons. Anti-aliasing uses the α value that is newly
written into the color buffer as a blending factor when alpha-blending with 2D. Therefore, even a 2D
background exhibits the anti-aliasing effect.

Table 6-20 shows the anti-aliasing equations.

Figure 6-46 illustrates the concept of anti-aliasing. Figure 6-47 shows the edge that is output to the LCD.

Table 6-20 : Anti-aliasing Equations

(RA, GA, BA, AA) : Color Newly stored in color buffer (fractional parts resulting from calculations are
truncated)

(R1, G1, B1, 31) : Color in the front color buffer (alpha = 31 since the anti-aliasing target is an opaque
polygon)

(R2, G2, B2, A2) : Color in the back color buffer

AC : Anti-aliasing factor (5 bits)

The anti-aliasing factor is applied proportionately to the surface area of the pixel occupied by the polygon.

Anti-aliasing Equations

A2 at least 1

RA = { (AC + 1) x R1 + (31 – AC) x R2 } / 32
GA = { (AC + 1) x G1 + (31 – AC) x G2 } / 32
BA = { (AC + 1) x B1 + (31 – AC) x B2 } / 32
AA = { (AC + 1) x 31 + (31 – AC) x A2 } / 32

A2 = 0

RA = R1
GA = G1
BA = B1
AA = { (AC + 1) x 31 } / 32
NTR-06-0180-001-A9 262 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 6-46 : The Concept of Anti-aliasing

Anti-Aliasing

α-Blending with 2D Surface

LCD

Front Color Buffer Back Color Buffer

Clear Color

Front Polygon

Rear Polygon

2D Surface Color of the Second Target Screen

Color with anti-aliasing of RGB

2D Surface of Second Target Screen

When Clear α is 0 When Clear α is 1 or greater

or
© 2003-2006 Nintendo 263 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Figure 6-47 : Final LCD Image Output (Anti-Aliasing)

Figure 6-47 shows the visual image. Table 6-21 shows the actual RGB results

Table 6-21 : Anti-Aliasing and Alpha-Blending with a 2D Surface

Because the interior of a polygon is opaque (alpha = 31), there is no alpha-blending with the 2D.
Therefore, this case is omitted.

Table 6-21 shows, when A2 is 0, anti-aliasing is applied only to alpha values. RGB color is written to the
color buffer as-is, with no blending.

In this case, do alpha-blending with the 2D surface and reflect this in RGB. (The alpha value from anti-
aliasing is applied to alpha-blending.

A2
α Blending

with 2D
Surface

Anti-aliasing Results
(RGBA)

Result of α Blending with 2D Surface
(RGB)

Edge Background Edge Background

0 No (R1, G1, B1, AA) (R2, G2, B2, 0) (R1, G1, B1) Color of 2D surface

0 Yes (R1, G1, B1, AA) (R2, G2, B2, 0)
α-blended color of (R1, G1, B1)
and 2D surface
(α-blending factor AA)

Color of 2D surface

1 or
More No (RA, GA, BA, AA) (R2, G2, B2, A2) (RA, GA, BA) (R2, G2, B2)

1 or
More Yes (RA, GA, BA, AA) (R2, G2, B2, A2)

α-blended color of (RA, GA, BA)
and 2D surface
(α-blending factor AA)

α-blended result of (R2,
G2, B2) and 2D surface
(α-blending factor A2)

No α-Blending with 2D α-Blending with 2D

Clear α is 0

Clear α is 1 or
greater
NTR-06-0180-001-A9 264 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.3.11 Status

Rendered Line Count Register
Name: RDLINES_COUNT Address: 0x04000320 Attribute: R Initial value: 0x0000

• RENDERED_LINES_MIN[d05–d00] : Minimum value for number of rendered lines (0–46)

Use this to check the minimum number of lines in the color buffer during display of the previous frame.
This register is updated during every V cycle. The color buffer holds 48 lines, but 2 lines are the current
buffer, so the largest count-value for this register is 46. You cannot confirm from this value whether or
not lines have overflowed, but you can determine the risk of this happening. To determine whether or
not lines have overflowed, check the Color Buffer Underflow Flag of the 3D Display Control register
(DISP3DCNT).

Note: When the counter hits 0, there is a risk that the Rendering Engine will fail to draw lines (that is,
lines will overflow). When the counter approaches 0, reduce the load on the Rendering Engine
by, for example, reducing the number of polygons sent to the Geometry Engine.

A Comparison of Rendering Buffer Methods
• Normal frame-buffer method

In this method, there are two or three frame buffers for rendering and display, and the buffers are
swapped during the V-Blank period immediately after drawing is completed. If there are more
rendering polygons and pixels than the rendering engine can process, the frame rate drops due to
rendering delays.

• The FIFO line buffer method adopted by NITRO

In this method, drawing and display involve the same FIFO. This FIFO has the capacity to hold 48 lines
of color data. During display, data is read from FIFO in sync with the timing of the LCD. Data for the
horizontal direction is read with the dot clock, while data for the vertical direction is read in the
horizontal scanning interval (355 dot clocks). If there are more polygons and pixels for the line to be
drawn than the Rendering Engine can process, then the display is corrupted because the Rendering
Engine could not render it in time.

RENDERED_LINES_MIN
Minimum value for number of rendered lines

15 8 7 5 0
© 2003-2006 Nintendo 265 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.4 2D Graphics Features You Can Apply to the 3D Screen After Rendering
In NITRO, the 3D screen is displayed as BG0 after it has been rendered, rather than being displayed
directly on the LCD. This enables certain 2D graphic features to also be applied and displayed on the LCD.
To read the basic specifications for 2D graphics see "5 2D Graphics" on page 73.

6.4.1 Raster scroll
Unlike 2D screens, 3D screens cannot be scrolled vertically. However they can be scrolled horizontally.

BG0 Offset Settings Register
Name: BG0OFS Address: 0x04000010 Attribute: W Initial value: 0x0000

Signed fixed-point number (sign + 8-bit integer)

• H[d08–d00] : H offset

Changes the starting position of display in the horizontal direction.

Unlike for 2D screens, d08 here is the sign bit, and the offset value can be set in the range of -256 to
+256.

Portions of the display screen that go beyond the screen because of horizontal scrolling become
transparent. (See Figure 6-48.)

Figure 6-48 : H Offset for a 3D Surface

6.4.2 Order of Display Priority With 2D Screen

BG0 Control Register
Name: BG0CNT (x=0, 1) Address: 0x04000008 Attribute: R / W Initial value: 0x0000

By adjusting the display priority you can place the 2D screen either in front or behind the 3D screen.

See the diagram in "5.9 Display Priority" on page 151.

SH INTEGER_H
H Offset

15 8 7 0

H Offset

Transparent Display

Display Image

3D BG0 Screen

Order of Priority

15 8 7 1 0
NTR-06-0180-001-A9 266 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.4.3 Windows
You can apply windows to BG0 of the 3D screen.

Window Position Settings Register
Name: WINxH (x=0, 1) Address: 0x04000040, 0x04000042 Attribute: W Initial value: 0x0000

Name: WINxV (x=0, 1) Address: 0x04000044, 0x04000046 Attribute: W Initial value: 0x0000

Window Inside Control Register
Name: WININ Address: 0x04000048 Attribute: R / W Initial value: 0x0000

Window Outside Control Register
Name: WINOUT Address: 0x0400004A Attribute: R / W Initial value: 0x0000

If the 3D screen has highest priority, then α-blending is always enabled, regardless of the setting for the
Window Control register's color effect enable flag.

Window's upper-left X coordinate Window's lower-right X coordinate

15 8 7 0

Window's upper-left Y coordinate Window's lower-right Y coordinate

15 8 7 0

EFCT OBJ BG3 BG2 BG1 BG0 EFCT OBJ BG3 BG2 BG1 BG0
Window 1 Inside Window 0 Inside

15 8 7 0

EFCT OBJ BG3 BG2 BG1 BG0 EFCT OBJ BG3 BG2 BG1 BG0
OBJ Window Inside Window (0, 1 and OBJ Window) Outside

15 8 7 0
© 2003-2006 Nintendo 267 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
6.4.4 Color Effects
For details on each register parameter see the Color Special Effects Register below.

6.4.4.1 Alpha-Blending with the 2D Screen

The α-blending feature of the 2D color effects is used for post-processing after the 2D and 3D α-blending
process and the 2D fog process. To read about preprocessing, see "6.3.7.2 2D and 3D Alpha-Blending
Preprocess" on page 257 and "6.3.9.2 Fog Preprocessing for 2D" on page 261.

Color Effect Control Register
Name: BLDCNT Address: 0x04000050 Attribute: R / W Initial value: 0x0000

• [d07–d06] : Selected effect

Perform alpha-blending by setting [d07] to 0 and [d06] to 1.

The process involved when alpha-blending the 3D screen and the 2D screen differs depending on the
relative priority of the two screens. When the 2D screen is the 1st target screen, the value set in the
BLDALPHA register is used for alpha-blending, as per the specifications. However, when the 3D
screen is the 1st target screen, then alpha-blending with the 2nd target screen is performed using the
alpha value that is being rendered to the color buffer (that is, alpha-blending is done in units of pixels).

Note: Any part with a color buffer alpha-value of 0 is handled in the same way as a 2D cut-out region and
thus is not subjected to alpha-blending. Any part with a color buffer alpha-value of 1 or more is
subjected to alpha-blending.

Color Special Effect / Alpha-Blending Factors Register
Name: BLDALPHA Address: 0x04000052 Attribute: R / W Initial value: 0x0000

The factors used for the alpha-blending process are set by EVA and EVB in the BLDALPHA register.
(EVA, EVB values that are 16 or above are treated as 16.)

BD OBJ BG3 BG2 BG1 BG0 0 1 BD OBJ BG3 BG2 BG1 BG0
Second Target Screen Selected Effect First Target Screen

15 13 8 7 6 5 0

EVB EVA

15 12 8 7 4 0
NTR-06-0180-001-A9 268 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
6.4.4.2 Shininess Up/Down

Color Effect Control Register
Name: BLDCNT Address: 0x04000050 Attribute: R / W Initial value: 0x0000

• [d07–d06] : Color special effect selection

Perform a process to change the shininess by setting [d07] to 1.

When [d06] is set to 0, the shininess is increased. When [d06] is set to 1, the shininess is decreased.

All zeros must be set for the 2nd target screen.

Color Special Effect / Change Shininess Factor Register
Name: BLDY Address: 0x04000054 Attribute: W Initial value: 0x0000

The factor used for changing the shininess is set by EVY in the BLDY register. (EVY values that are 16 or
above are treated as 16.)

BD OBJ BG3 BG2 BG1 BG0 1 BD OBJ BG3 BG2 BG1 BG0
Second Target Screen Selected Effect First Target Screen

15 13 8 7 6 5 0

EVY

15 8 7 0
© 2003-2006 Nintendo 269 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 270 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
7 DMA
DMA is a high-speed data transfer method that bypasses the CPU. It is controlled by the DMA Controller.
The ARM9 bus has four DMA channels (DMA0 - 3). (The ARM7 bus also has four channels).

The highest priority channel is DMA0, followed by DMA1, DMA2, and DMA3, in order of priority.

If a higher-priority DMA is activated while a lower-priority DMA is executing, the lower-priority DMA pauses
and the higher-priority DMA is executed. After the higher-priority DMA is finished, the lower-priority DMA
resumes execution. Because DMA execution can be paused, consider giving higher priority to DMA
transfers that must finish within a limited time frame.

However, when the CPU is operating with DMA, RAM outside the TCM or cache cannot be accessed.

Therefore, in the interval until the DMA finishes, an interrupt is delayed when processing anything other
than TCM.

DMAxSAD: DMAx Source Address Registers (x = 0 - 3)

DMAxDAD: DMAx Destination Address Registers (x = 0 - 3)

Name Address Attribute Initial Value

DMAxSAD (x =0 - 3) 0x040000B0, 0x040000BC, 0x040000C8, 0x040000D4 R/W 0x00000000

Name Address Attribute Initial Value

DMAxDAD (x =0 - 3) 0x040000B4, 0x040000C0, 0x040000CC ,0x040000D8 R/W 0x00000000

DMA Source Address

31 27 24 23 16 15 8 7 0

DMA Destination Address

31 27 24 23 16 15 8 7 0
© 2003-2006 Nintendo 271 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
DMAxCNT: DMAx Control Registers (x=0 to 3)

• E[d31]: DMA enable flag

• I[d30]: Interrupt request enable flag

• MODE[d29–d27]: Options for DMA start mode

• SB[d26]: Transfer bit count selection

Name Address Attribute Initial Value

DMAxCNT (x =0 - 3) 0x040000B8,0x040000C4,0x040000D0,0x040000DC R/W 0x00000000

0 Disable

1 Enable

0 Disable

1 Enable

000 Start immediately

001 Start at V-Blank

010 Start at H-Blank
(DMA does not start during an H-Blank within a V-Blank period)

011 Synchronize to start with display
(that is, synchronized to start as each horizontal line is drawn)

100 Main memory display

101 DS Game Card

110 DS Accessory

111 Geometry Command FIFO

0 16 bits

1 32 bits

E I MODE SB CM SAR DAR
Start Mode Word Count

31 30 29 27 26 25 24 23 22 21 16 15 8 7 0

Enable Flag

Interrupt Request
Enable Flag

Transfer Bit Width

Repeat Mode

Source Address Update Method

Destination Address Update Method

20
NTR-06-0180-001-A9 272 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
• CM[d25]: Repeat mode selected flag

• SAR[d24–d23]: Options to update source address

• DAR[d22–d21]: Options to update destination address

• WORD_COUNT[d20–d00]: Word count
Specifies the number of transfers.

• Repeat mode

When the DMA repeat mode is on, DMA starts automatically each time the start mode conditions
occur.

If the repeat mode is not set, DMA stops when the transfer of the word count volume is complete.

To cancel repeat mode, set the DMA enable flag to 0, as described in Step 2 in the procedure below.

• Address update method

The details of processing the address update method are shown in Table 7-1.

Table 7-1 : Processing Details for the Address Update Method

Note: Setting the address update method to fixed or decrement is prohibited if the source or destination
is set to Game Pak space. This is because the hardware does not support it.

0 Not Repeat mode

1 Repeat mode

00 Increment

01 Decrement

10 Fixed

11 Setting prohibited

00 Increment

01 Decrement

10 Fixed

11 Increment/reload

Address Update Method Process

Increment The address value increases one unit with each transfer

Decrement The address value decreases one unit with each transfer

Fixed The address stays fixed

Increment/Reload Increments for each transfer, then returns to the transfer’s starting
address when the transfer of the word count is done
© 2003-2006 Nintendo 273 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• DMA Start Mode

Main Memory Display Start Mode

Do not set the DMA source address to any memory region outside of main memory in Main Memory
Display Mode. Also, be sure to set the transfer bit mode to 32-bit and the word count value to 4.

Geometry Command FIFO Start Mode

When the Geometry Command FIFO becomes less than half full, DMA starts and 112 words (see the
procedure below) are transferred. The process repeats until the volume transferred reaches the word
count value.

Note: If commands have been packed, the number of words sent in each repetition equals the num-
ber of words before unpacking.

• Procedures to Start and Stop DMA

1. When starting DMA

A delay of 2 cycles of the system clock (33.514 Mhz) occurs from the time the DMA enable flag is
set until the time DMA starts. If any of the DMA-related registers are accessed during this period,
DMA might not operate correctly. To prevent a DMA problem during this period, run another
process, such as inserting a dummy Load command. (The main processor executes a Load
command in ½ cycle of the system clock, so you would need to insert two or more Load
commands to the same register.)

2. When stopping DMA

DMA begins when the signal that serves as the start trigger is issued. If the CPU disables DMA at
the same time the start trigger is issued, DMA could lock up. Therefore, be sure to disable DMA at
least 4 cycles after the start trigger.
1. When the DMA repeat feature is off

Because the DMA stops automatically after it is executed once, do not forcibly clear the DMA
enable flag. Instead, wait for the flag to become 0.

2. When the DMA repeat feature is on

Be sure to clear the DMA enable flag with the CPU at least 4 cycles after the signal that serves
as the DMA start trigger. For example, you can safely stop DMA using the interrupt generated
when DMA ends, clearing the DMA enable flag before the next start trigger is issued.

If you cannot use this method, then stop DMA using the procedure described below.
3. Stopping DMA in H-Blank or V-Blank auto-start mode

During a V-Blank period, DMA is stopped and the start trigger is not issued, so you can safely clear
the DMA enable flag at that time. If you cannot use this method, follow the procedure below:

Step 1: Write 16 bits to the DMA control register (see Table 7-2).

Table 7-2 : Register Configuration (Step 1)

Setting Content

DMA Enable Flag 1 (Enable)

DMA Start Timing 00 (Start Immediately mode)

DMA Repeat Mode 0 (Disable Repeat Mode)

Other Bits Do not change
NTR-06-0180-001-A9 274 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Step 2: Carry out the process for more than four cycles.

Example: 3 NOP or 1 LDR instruction) + 1st cycle of STR instruction from Step 3 = 4 cycles

The actual writing by the STR instruction occurs in the 2nd cycle.

Step 3: Write 16 bits to the DMA control register, then stop the DMA (see Table 7-3).

Table 7-3 : Register Configuration (Step 3)

Note: DMA may run one extra time in Step 1.

Cautions regarding starting multiple, parallel DMA channels in the ARM9 System Bus
When ARM946E-S starts accessing regions that cannot be accessed in a single system cycle (33.514
MHZ), such as main memory or DS accessories, an ARM9-DMA with a lower priority (Auto) starts at the
same time, and the automatic startup of ARM9-DMA with a higher priority occurs immediately afterwards,
the DMA with higher priority runs out of control. This condition does not exist on ARM7 because the
system bus specifications differ.

Workaround

Of the DMA Parallel Start Categories shown in Table 7-4, items in Category 3 must not be used together. In
addition, start DMA from TCM. However, V-Blank start and H-Blank start can be used together.

Table 7-4 : ARM9-DMA Parallel Start Category Chart

Setting Content

DMA Enable Flag 0 (Disable)

DMA Start Timing 00 (Start Immediately mode)

DMA Repeat Mode 0 (Disable Repeat Mode)

Other Bits Do not change

DMA Parallel Start Category Number DMA Description

1 Start immediately

2 Geometry Command FIFO (Normal)

3

Geometry Command FIFO (Auto Start)
V-Blank Start (can use with H-Blank Start)
H-Blank Start (can use with V-Blank Start or with multiple H-Starts)
Display Synchronization
Main Memory Display
Game Card
DS Accessory
© 2003-2006 Nintendo 275 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 276 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
8 Timer
The ARM9 bus side of NITRO comes equipped with a 4-channel, 16-bit timer.

When the timer is enabled, the Count Register counts up according to the prescaler (frequency divider)
cycle specified with the Control Register.

An interrupt can be generated when the Count Register overflows.

If the Count Register overflows, the value set when the count began is loaded, and the count starts over.

TM0CNT_L: Timer 0 Count Register
Name: TM0CNT_L Address: 0x04000100 Attribute: R/W Initial Value: 0x0000

• [d15–d00]: Timer 0 Counter

TM0CNT_H: Timer 0 Control Register
Name: TM0CNT_H Address: 0x04000102 Attribute: R/W Initial Value: 0x0000

• [d07–d00]: Timer 0 Control
• E[d07]: Timer 0 Enable Flag

• I[d06]: Interrupt Request Enable Flag

• PS[d01–d00]: Prescaler Selection Flag

0 Disable

1 Enable

0 Disable

1 Enable

00 System Clock (33.514 Mhz)

01 1/64 of System Clock

10 1/256 of System Clock

11 1/1024 of System Clock

Timer 0 Counter

15 8 7 0

E I PS

Prescaler

15 8 7 6 1 0
© 2003-2006 Nintendo 277 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
TMxCNT_L: Timer x Count Register (x = 1 – 3)
Name: TMxCNT_L (x =1–3) Address: 0x04000104,0x04000108,0x0400010C Attribute: R/W Initial Value: 0x0000

• [d15–d00]: Timer x Counter

TMxCNT_H: Timer x Control Register (x = 1 – 3)
Name: TMxCNT_H (x =1–3) Address: 0x04000106,0x0400010A,0x0400010E Attribute: R/W Initial Value: 0x0000

• [d07–d00]: Timer x Control
• E[d07]: Timer x Enable Flag

• I[d06]: Interrupt Request Enable Flag

• CH[d02]: Multistage Counter Selection Flag

• PS[d01–d00]: Prescaler Selection Flag

0 Disable

1 Enable

0 Disable

1 Enable

0 According to Prescaler setting

1 Counts up when timer (x-1) overflows
regardless of Prescaler setting

00 System Clock (33.514Mhz)

01 1/64 of System Clock

10 1/256 of System Clock

11 1/1024 of System Clock

Timer x Counter

15 8 7 0

E I CH PS
Multi-
Stage Prescaler

15 8 7 6 2 1 0
NTR-06-0180-001-A9 278 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
9 Interrupts
This chapter describes the hardware interrupts for the ARM9 main processor.

When an interrupt request signal occurs from each piece of hardware, the bit that supports the interrupt
request register is set and, if interrupts are enabled, the CPU is informed of the interrupt occurrence.

Each hardware interrupt request signal can be disabled individually via the interrupt enable register.

9.1 The Interrupt Master Enable Register
This register can disable registers as a whole and it configures whether to disable all registers or to enable
the interrupt enable register settings.

IME: Interrupt Master Enable Register
Name: IME Address: 0x04000208 Attribute: R/W Initial Value: 0x0000

• IME[d00]: Interrupt Master Enable Flag

0 Disable all interrupts

1 Enable the Interrupt Enable Register settings

IME

15 8 7 0
© 2003-2006 Nintendo 279 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
9.2 The Interrupt Enable Register
Each hardware interrupt request can be disabled individually.

Setting each bit enables interrupt requests from the corresponding hardware. Conversely, interrupt
requests from corresponding hardware are disabled when the bit is reset.

IE: Interrupt Enable Register
Name: IE Address: 0x04000210 Attribute: R/W Initial Value: 0x00000000

• GF[d21]: Geometry Command FIFO Interrupt Permission Flag
For more information, see "6.2.16 Status" on page 218.

• MI[d20]: NITRO Card IREQ_MC Interrupt Permission Flag
• MC[d19]: NITRO Card Data Transfer Completion Interrupt Permission Flag
• IFN[d18]: ARM9 – ARM7 FIFO Not Empty Interrupt Permission Flag
• IFE[d17]: ARM9 – ARM7 FIFO Empty Interrupt Permission Flag
• A7[d16]: ARM7 Interrupt Permission Flag
• I/D[d13]: DS Accessory IREQ/DREQ Interrupt Permission Flag
• K[d12]: Key Interrupt Permission Flag

For more information, see "12.2 Interrupt Handling for Key Input" on page 296.
• D3[d11]: DMA3 Interrupt Permission Flag
• D2[d10]: DMA2 Interrupt Permission Flag
• D1[d09]: DMA1 Interrupt Permission Flag
• D0[d08]: DMA0 Interrupt Permission Flag

For more information, see Chapter 7.
• T3[d06]: Timer 3 Interrupt Permission Flag
• T2[d05]: Timer 2 Interrupt Permission Flag
• T1[d04]: Timer 1 Interrupt Permission Flag
• T0[d03]: Timer 0 Interrupt Permission Flag

For more information, see Chapter 8.
• VE[d02]: V-Counter Match Interrupt Permission Flag
• HB[d01]: H-Blank Interrupt Permission Flag
• VB[d00]: V-Blank Interrupt Permission Flag

For more information, see "4.3 Display Status" on page 51.

GF MI MC IFN IFE A7 I/D K D3 D2 D1 D0 T3 T2 T1 T0 VE HB VB

DMA Timer LCD

31 24 23 21 20 19 18 17 16 15 13 12 11 8 7 6 3 2 0

Geometry Command FIFO

Game Card

ARM9 - ARM7 FIFO

ARM7
DS Accessory

Key
NTR-06-0180-001-A9 280 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
9.3 The Interrupt Request Register
When an interrupt request from a hardware component occurs, the corresponding bit for the hardware
component is set in the interrupt request register.

Also, if 1 is written to the bit where the interrupt request flag is set, the interrupt request flag is reset.

IF: Interrupt Request Register
Name: IF Address: 0x04000214 Attribute: R/W Initial Value: 0x00000000

• GF[d21]: Geometry Command FIFO Interrupt Request Flag
For more information, see "6.2.16 Status" on page 218.

• MI[d20]: NITRO Card IREQ_MC Interrupt Request Flag
• MC[d19]: NITRO Card Data Transfer Completion Interrupt Request Flag
• IFN[d18]: ARM9 – ARM7 FIFO Not Empty Interrupt Request Flag
• IFE[d17]: ARM9 – ARM7 FIFO Empty Interrupt Request Flag
• A7[d16]: ARM7 Interrupt Request Flag
• I/D[d13]: DS Accessory IREQ/DREQ Interrupt Request Flag
• K[d12]: Key Interrupt Request Flag

For more information, see "12.2 Interrupt Handling for Key Input" on page 296.
• D3[d11]: DMA3 Interrupt Request Flag
• D2[d10]: DMA2 Interrupt Request Flag
• D1[d09]: DMA1 Interrupt Request Flag
• D0[d08]: DMA0 Interrupt Request Flag

For more information, see Chapter 7.
• T3[d06]: Timer 3 Interrupt Request Flag
• T2[d05]: Timer 2 Interrupt Request Flag
• T1[d04]: Timer 1 Interrupt Request Flag
• T0[d03]: Timer 0 Interrupt Request Flag

For more information, see Chapter 8.
• VE[d02]: V-Counter Match Interrupt Request Flag
• HB[d01]: H-Blank Interrupt Request Flag
• VB[d00]: V-Blank Interrupt Request Flag

For more information, see "4.3 Display Status" on page 51.

GF MI MC IFN IFE A7 I/D K D3 D2 D1 D0 T3 T2 T1 T0 VE HB VB

DMA Timer LCD

31 24 23 21 20 19 18 17 16 15 13 12 11 8 7 6 3 2 0

Geometry Command FIFO

Game Card

ARM9 - ARM7 FIFO

ARM7
DS Accessory

Key
© 2003-2006 Nintendo 281 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
9.4 Interrupt Cautions

9.4.1 Clearing IME and IE
Even while the command to clear all flags in the IME and IE registers is executing, relevant interrupts are
generated.

When clearing the IE flags, be sure to clear IME first to avoid inconsistencies in interrupt checks.

9.4.2 Multiple Interrupts
If clearing the IME and an interrupt occur at the same time, multiple interrupts are not accepted during that
interrupt. Therefore, you must set the IME after clearing the IME during the interrupt routine.

9.4.3 Interrupt Delays During DMA Operation
The CPU cannot access RAM other than the TCM or cache RAM during DMA operations.

Therefore, during the interval until the DMA stops, the interrupt is delayed when performing interrupt
handling on anything other than TCM.

9.4.4 Interrupts from ARM7
The A7, IFE, and IFN interrupts are for use by the subprocessor and the subprocessor API for
communications.

The subprocessor API does not operate properly if these interrupts are disabled or if the interrupt request
is reset.
NTR-06-0180-001-A9 282 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
10 Power Management
The Power Management API can be used by the application to put the NITRO into Sleep mode, to control
power to various circuits, to check for the low-battery state, and to check whether the DS is open or closed.

10.1 Sleep Mode
The application can use the Power Management API to put the NITRO into Sleep mode. In Sleep mode, all
circuits in the NITRO Processor stop. Power to the LCD and the sound is turned off, so there is nothing
displayed and no sounds are played. However, the data in the NITRO Processor internal memory and in
main memory are retained.

The Power LED blinks slowly in Sleep mode. In NITRO mode, a fully charged battery lasts about two
weeks (when in NITRO Mode) in Sleep mode.

Table 10-1 shows the factors that cause the NITRO to waken from Sleep mode, and the timing with which
this happens.

Table 10-1 : Conditions for Waking from Sleep Mode

Note: When waking from Sleep mode, do not play sounds for the first 15 ms, which is the time for the
sound to recover from the power-off state.

Conditions for Waking Timing

NITRO Is Opened When the NITRO is opened

RTC Alarm Feature When the alarm reaches the set time

DS Game Card
DS Accessory When a Game Card or DS accessory is accidentally removed

Key Entry When a previously specified key (with the exception of X or Y)
is pressed
© 2003-2006 Nintendo 283 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
10.2 Controlling Various Power Supplies
The Power Management API can be used to control the power supply to the sound circuitry, LCD
backlight, LCD, microphone, system, and graphics.

10.2.1 Sound
The power supply to the sound circuitry can be controlled using the Power Management API. When the
application is not playing sounds, the Power Management API can be used to turn power off to the sound
circuitry to reduce battery consumption.

Note: Do not play sounds for the first 15ms, which is the time it takes for the sound circuitry to recover
from the power-off state.

10.2.2 LCD Backlight
The Power Management API can be used to control the power supply to the backlight of the upper screen
and the backlight of the lower screen separately. When the application is using only one LCD screen, the
power can be turned off to the screen that is not being used to reduce battery consumption.

When no game is being played and the system is not standing by for wireless, if you choose not to display
on either LCD and to turn off power to the LCD backlight in consideration of battery life, we suggest that
you move to Sleep Mode, which more effectively reduces power consumption.

10.2.3 LCD
The Power Management API can be used to control power supply to both the upper and lower screen
LCDs. Furthermore, the LCD backlight can be turned off regardless of the LCD backlight settings. How-
ever, the LCD backlight settings are preserved.

When there is no display on the LCD screen, such as when the application is waiting for wireless commu-
nication, battery consumption can be controlled by turning of the power supply to the LCD.

When the system is not standing by for wireless, if you choose to turn off power to the LCD in consideration
of battery life, we suggest that you move to Sleep Mode, which more effectively reduces power consump-
tion.

Note: Although the power supply to the LCD can be directly controlled with the graphics power control
register mentioned below, the LCD circuitry may be damaged according to when the LCD is turned
ON/OFF. Therefore, directly changing the register value is prohibited. When manipulating the
power supply to the LCD, always use the API.

When the LCD is turned OFF, the power supply to the sound amp is also turned off. Therefore the
speaker will not function. However, sound will come from the headphones, because the head-
phone amp is not effected.

10.2.4 Microphone
When using the microphone, power must be turned on to the PMIC’s programmable gain amplifier (PGA).
The Power Management API can be used to control power to the PGA.

Note: Do not use the microphone for 500 ms after power to the microphone is turned on.

10.2.5 System
The Power Management API can be used to turn off the NITRO’s system power (shut-down).
NTR-06-0180-001-A9 284 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
10.2.6 Graphics
Power consumption can be reduced by: controlling the clock supply to the circuits of the geometry engine,
the rendering engine, and the 2D graphics engine; and disabling circuits that are not being used.

Figure 10-1 : POWCNT: Graphics Power Control Register
Name: POWCNT Address: 0x04000304 Attribute: R/W Initial value: 0x0000

• 2DGB[d09] : 2D Graphics Engine B Enable Flag

Used to reduce power consumption when the 2D Graphics Engine B is not being used.

• GE[d03] : Geometry Engine Enable Flag

When the geometry engine is enabled, issue the SwapBuffers command once.

• RE[d02] : Rendering Engine Enable Flag

If the rendering engine is enabled, issue the SwapBuffers command once.

• 2DGA[d01] : 2D Graphics Engine A Enable Flag

Used to reduce power consumption when only 3D graphics are being used.

0 Disable

1 Enable

0 Disable

1 Enable

0 Disable

1 Enable

0 Disable

1 Enable

09 8 7 3 2 115
DSEL 2DGB GE RE 2DGA LCDE

2D Graphics Engine A
Enable Flag

Rendering Engine
Enable Flag

Geometry Engine
Enable Flag

2D Graphics Engine B
Enable Flag

Enable Flag for both LCDs
© 2003-2006 Nintendo 285 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• LCDE[d00] : Enable Flag for Both LCDs (Use Prohibited)

When disabled, both the clock supply to the main and sub LCD controllers and the power supply to the
main and sub LCDs are stopped.

Note: Use the API to enable/disable the LCDs. Be careful not to change this bit when writing data
to other bits.

0 Disable

1 Enable
NTR-06-0180-001-A9 286 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
The memory addresses and registers to which the clock signal is stopped when each flag is
disabled:

• When the 2D Graphics Engine A is disabled:

0x04000008 - 0x0400004D

0x04000050 - 0x04000055

2D Graphics Engine A’s OAM and palette RAM

• When the 2D Graphics Engine B is disabled:

0x04001008 - 0x0400104d

0x04001050 - 0x04001055

2D Graphics Engine B’s OAM and palette RAM

• When the Geometry Engine is disabled:

0x04000400 - 0x04000473

0x04000480 - 0x040004AF

0x040004C0 - 0x040004D3

0x04000500 - 0x04000507

0x04000540 - 0x04000543

0x04000580 - 0x04000583

0x040005C0 - 0x040005CB

0x04000600 - 0x04000607

0x04000610 - 0x04000611

0x04000620 - 0x04000635

0x04000640 - 0x040006A3

• When the Rendering Engine is disabled:

0x04000320 - 0x04000321

0x04000330 - 0x04000341

0x04000350 - 0x0400035D

0x04000360 - 0x040003BF

Table 10-2 shows the behavior that occurs when there is access to memory and registers to which the
clock signal has been stopped.

Table 10-2 : Access to Memory and Registers when Clock Signal Is Stopped

Write Read

Memory Invalid ALL zero

Registers Invalid Read-enabled
© 2003-2006 Nintendo 287 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
10.3 Power Status

10.3.1 Low Battery State
When the remaining charge in the battery drops below 10-20%, the low battery state is entered and the
Power LED becomes red. The Power Management API can be used to read the battery state data and
check for the low-battery state (see Table 10-3). The amount of charge left in the battery when the power
LED changes to red is only rough indication due to individual differences in the NITRO system, batteries,
application, and environmental temperature.

Table 10-3 : Battery state data

Details about PMIC status data:

• Low Battery State Flag

0 : Battery still has a charge

1 : Battery is low

10.3.2 DS Open/Closed State
The Power Management API can be used to read the status data shown in Table 10-4 to check whether
the DS is open or closed.

Table 10-4 : DS Opened/Closed State Data

Details about DS open/closed status data:

• DS Opened/Closed State Flag

0 : DS is open

1 : DS is closed

Data Type Data Content

Battery State Low battery state flag (0 – 1)

Data Type Data Content

Device Opened/Closed
State DS Opened/Closed State Flag (0 – 1)
NTR-06-0180-001-A9 288 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
11 Accelerators
NITRO contains both divider and square-root computation accelerators.

11.1 Divider
Shown below are the Divider Data setting register for the Divider and the Control Register that specifies
the Divider mode and indicates the Divider state.

Divider Data (Numerator, Denominator, Quotient, Remainder) Registers

Signed integer (sign + 63-bit integer part)

DIVCNT: Divider Control Register
Name: DIVCNT Address: 0x04000280 Attribute: R/W Initial value: 0x0000

• BUSY[d15]: Busy Flag

• DIV0[d14]: Divide by zero error flag

Name Address Attribute Initial Value Comment

DIV_NUMER 0x04000290 R/W 0x00000000_00000000 Numerator

DIV_DENOM 0x04000298 R/W 0x00000000_00000000 Denominator

DIV_RESULT 0x040002a0 R/W 0x00000000_00000000 Quotient

DIVREM_RESULT 0x040002a8 R/W 0x00000000_00000000 Remainder

0 Divider is ready

1 Divider is busy

0 There is no divide by zero error

1 There is a divide by zero error

Divider Data Lower Word

31 24 23 16 15 8 7 0

Divider Data Upper Word

31 24 23 16 15 8 7 0

BUSY DIV0 MODE

Busy Division
by Zero Division Mode

15 14 8 7 1 0
© 2003-2006 Nintendo 289 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
• MODE[d01–d00]: Divider Mode

Note: Regardless of the Divider Mode, the Division by Zero Error flag is enabled only when all 64
bits of the denominator (DIV_DENOM) are zero.

For this reason, set all of the upper 32 bits of the denominator (DIV_DENOM) to 0 even when
the Divider Mode is 32-bit/32-bit or 64-bit/32-bit.

If the upper 32 bits of the denominator (DIV_DENOM) are not set to 0, the Division by Zero
Error flag will not function properly.

00 32-bit (DIV_NUMER)/32-bit (DIV_DENOM)
quotient 32-bit (DIV_RESULT), remainder 32-bit (DIVREM_RESULT)

01 64-bit (DIV_NUMER)/32-bit (DIV_DENOM)
quotient 64-bit (DIV_RESULT), remainder 32-bit (DIVREM_RESULT)

10 64-bit (DIV_NUMER)/64-bit (DIV_DENOM)
quotient 64-bit (DIV_RESULT), remainder 64-bit (DIVREM_RESULT)

11 Setting prohibited
NTR-06-0180-001-A9 290 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
11.1.1 Number of Calculation Cycles
After writing to the Divider Data Registers, the DIVCNT register's busy flag is set during the cycles shown
in Table 11-1, according to the Divider Mode. When the busy flag has been cleared, you can find the
calculation result by reading the register that stores the result.

Table 11-1 : Calculation Bit Count and Calculation Cycle Count by Divider Mode

Divider
Mode Calculation Bit Count Calculation

Cycle Count

00 32 bits (DIV_NUMER)/32 bits(DIV_DENOM)
Quotient 32 bits (DIV_RESULT), Remainder 32 bits (DIVREM_RESULT) 18 cycles

01 64 bits (DIV_NUMER)/32 bits (DIV_DENOM)
Quotient 64 bits (DIV_RESULT), Remainder 32 bits (DIVREM_RESULT) 34 cycles

10 64 bits (DIV_NUMER)/64 bits (DIV_DENOM)
Quotient 64 bits (DIV_RESULT), Remainder 64 bits (DIVREM_RESULT) 34 cycles
© 2003-2006 Nintendo 291 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
11.2 Square-Root Unit
The control registers that indicate the states of the square root calculator data register, calculation result
register, calculation mode, and the square root calculator are shown below.

SQRT_PARAM: SQRT Data Register
Name: SQRT_PARAM Address: 0x040002B8 Attribute: R/W Initial value: 0x00000000_00000000

Unsigned integer (64-bit integer part)

SQRT_RESULT: SQRT Calculation Result Register
Name: SQRT_RESULT Address: 0x040002B4 Attribute: R/W Initial value: 0x00000000

SQRTCNT: SQRT Control Register
Name: SQRTCNT Address: 0x040002B0 Attribute: R/W Initial value: 0x0000

• BUSY[d15]: Busy Flag

• MODE[d00]: SQRT Computation Mode

0 Square root calculator ready

1 Square root calculator busy

0 32-bit input

1 64-bit input

SQRT Data Lower Word

31 24 23 16 15 8 7 0

SQRT Data Upper Word

31 24 23 16 15 8 7 0

SQRT Calculation Results Data

31 24 23 16 15 8 7 0

BUSY MODE

Busy Mode

15 8 7 0
NTR-06-0180-001-A9 292 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
11.2.1 Number of Calculation Cycles
The SQRTCNT register's busy flag is set during the cycles shown in Table 11-2, according to the
Computation Mode after writing to the Data Registers. When the busy flag has been cleared, you can find
the calculation result by reading the register that stores the result.

Table 11-2 : Input Bit and Calculation Cycle Count by Computation Mode

SQRT
Computation

Mode
Input Bit Count Calculation Cycle

Count

0 32-bit input 13 cycles

1 64-bit input 13 cycles
© 2003-2006 Nintendo 293 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 294 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
12 Keys
NITRO has A, B, L, R, +Control Pad, START, SELECT, X, and Y digital keys.

12.1 Input Keys
The status of the A, B, L, R, +Control Pad, START, and SELECT keys can be verified by reading the key
input register (KEYINPUT) and checking the status of each bit. Because the X and Y keys are connected
to the subprocessor, an API must be used to check the input status of these keys. The application can
read all key data without regard for subprocessor operations when this API is used.

KEYINPUT: Key Input Register
Name: KEYINPUT Address: 0x04000130 Attribute: R Default Value: 0x0000

• [d09–d00]: Key Input

Note: ON-OFF may be repeated multiple times in a short time even if the user presses a key only once.
To prevent a button from being pressed twice (chattering), allow an interval between readings of
the key data (around 1 frame each). The input status of the X and Y keys cannot be read directly
from the register.

0 Key is being pressed

1 Key is not being pressed

L R DOWN UP LEFT RIGHT START SEL B A
Key Input

15 9 8 7 0
© 2003-2006 Nintendo 295 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
12.2 Interrupt Handling for Key Input
Key input from the A, B, L, R, +Control Pad, START, and SELECT keys can generate interrupts. The key
control register (KEYCNT) can be used to specify the key combinations and conditions for which interrupts
can be generated.

KEYCNT: Key Control Register
Name: KEYCNT Address: 0x04000132 Attribute: R/W Default Value: 0x0000

• LOGIC[d15] : Logic Specification Flag

• INTR[d14] : Interrupt Request Enable Flag

• [d09–d00] : Key Selection

Note: Interrupt handling cannot be specified for X or Y key input.

0 Detects if any of the specified keys was pressed

1 Detects if all of the specified keys were pressed

0 Disable

1 Enable

0 Key is not specified

1 Key is specified

LOGIC INTR L R DOWN UP LEFT RIGHT START SEL B A
Logic Interrupt Key Selection

15 9 8 7 0

Interrupt Request
Enable Flag

Logic Specification Flag
NTR-06-0180-001-A9 296 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
13 Sound
NITRO contains a sound circuit that enables the processing of 16-channels of simultaneous sound
generation, two sound capture devices that can write the output from a specific channel or a mixer to
memory, left and right speakers that can output sound, and a headphone output jack.

Since the subprocessor carries out the sequence processing and the sound generation processing, there
will be no heavy burden on the main processor even when sound processing is performed.

The sound circuit is illustrated in Figure 13-1.

Figure 13-1 : The Sound Circuit Outline Diagram

Le
ft

Am
p

Left Speaker

Right
Speaker

Headphone
Jack

Le
ft

M
ix

er

Channel 0

Channel 1

Channel 14

Channel 15

Waveform Data

Waveform Data

Waveform Data

Waveform Data

R
ig

ht
 A

m
p

R
ig

ht
 M

ix
er

Maximum of 16
channels can be
used concurrently
© 2003-2006 Nintendo 297 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
13.1 Hardware Specifications
The specifications for the included sound circuit hardware are as follows.

13.1.1 Data Format
8bitPCM, 16bitPCM, IMA-ADPCM, PSG rectangular waveforms, and noise can be used as formats for
waveform data.

The 8bitPCM, 16bitPCM, and IMA-ADPCM data formats, as well as descriptions of PSG rectangular
waveforms and noise are shown below.

13.1.1.1 8bitPCM Data Format
The 8bitPCM data format is shown below.

8bitPCM Data Format

13.1.1.2 16bitPCM Data Format
The 16bitPCM data format is shown below.

16bitPCM Data Format

Data 3 Data 2 Data 1 Data 0

31 24 23 16 15 8 7 0

Data 1 Data 0

31 24 23 16 15 8 7 0
NTR-06-0180-001-A9 298 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
13.1.1.3 IMA-ADPCM Data Format
The header and data parts of the IMA-ADPCM data format are shown below.

IMA-ADPCM Header Format (First 32 bits)

IMA-ADPCM Data Format (From the 33rd bit)

Note: When repeatedly playing the ADPCM with the repeat feature, set the repeat pointer to the address
of the data section rather than that of the header section.

Also, if the repeat pointer is altered after starting playback on ADPCM, normal repeat play is not
possible.

Be sure to stop playback before making changes to the repeat pointer.

13.1.1.4 PSG Rectangular Waveforms
The Programmable Sound Generator (PSG) creates tones by altering the frequency of the output
rectangular waveform (square waves) and the duty ratio.

The duty ratios of the PSG rectangular waveforms used on NITRO can be altered as shown in Table 13-1.

Table 13-1 : Duty Ratio and PSG Rectangular Wave Waveforms

13.1.1.5 Noise
Noise has no configurable items.

Noise can be used to generate white noise on a channel designated for noise.

Table Index Initial Value Initial Value

31 24 23 22 16 15 8 7 0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

31 24 23 16 15 8 7 0

Duty Ratio Waveform

12.5%

25.0%

62.5%

75.0%

37.5%

50.0%

87.5%
© 2003-2006 Nintendo 299 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
13.1.2 Channels
Waveform data can be played simultaneously from sixteen channels.

However, PSG rectangular waveforms can be played on only six specific channels and noise can be
played on only two specific channels of the sixteen channels.

The volume, pitch, and pan (orientation) can be configured for each channel.

The playable channels for each format are shown in Table 13-2.

Table 13-2 : An Overview of Data Formats and Playable Channels

13.1.3 Mixer
NITRO comes equipped with both left and right mixers.

The sampling frequency of the mixer is 1.04876 MHz with an amplitude resolution of 24 bits, but the
sampling frequency after mixing with PWM modulation is 32.768 kHz with an amplitude resolution of 10
bits.

PWM is an abbreviation of Pulse Width Modulation. As "Figure 13-2 : Pulse Width Modulation (PWM)" on
page 301 shows, PWM converts the amplitude of a fixed-interval pulse to a duty ratio and then outputs it.

The stronger the amplitude, the higher the duty ratio it is converted to.

Data Format Playable Channels

8bitPCM

Can be played on all channels from 0 to 15.16bitPCM

ADPCM

PSG Rectangular
Waveform

Can be played on Channels 8 to 13.
8bitPCM, 16bitPCM, and ADPCM cannot be played
simultaneously on a channel that is playing a PSG rectangular
waveform.

Noise
Can be played on Channels 14 to 15.
8bitPCM, 16bitPCM, and ADPCM cannot be played
simultaneously on a channel that is playing noise.
NTR-06-0180-001-A9 300 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Figure 13-2 : Pulse Width Modulation (PWM)

13.1.4 Master Volume
The speaker output can be adjusted in 128 steps (from 0 to 127) via the master volume.

13.1.5 Sound Capture
There are two built-in sound capture devices on NITRO that allow output waveform data to be written to
memory.

Output from the left mixer or output from channel 0 can be written to memory with sound capture 0.

Output from the right mixer or output from channel 2 can be written to memory with sound capture 1.

The sampling frequency can be set up to 1.04876 MHz. The amplitude resolution can also be set from 8
bits to 16 bits.

13.1.6 Power Control
Turning off power to the sound circuit can reduce battery consumption when not using sound.

When restoring the power supply to the sound circuit (coming out of sleep mode, etc.), do not output any
sound during the 15 milliseconds it takes the sound circuit to recover.

For more details about controlling power to the sound circuit, see Chapter 10.

13.1.7 Cautions
Playing waveform data with a high sampling rate, or playing sound whose pitch is higher than the original
data because of fast-forwarding, leads to more frequent DMA transfers.

If DMA transfers occur frequently, they affect the main processor processes as well as subprocessor
processes, such as wireless communications and the microphone.

Am
pl

itu
de

 R
es

ol
ut

io
n

Sampling Frequency

PWMInput Waveform Data (Sound Composite) Output Waveform Data
© 2003-2006 Nintendo 301 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
13.2 Sound Block Diagrams
This section shows the block diagrams for the NITRO sound circuits.

13.2.1 Overall Sound
The block diagram for the overall sound circuit is shown in Figure 13-3.

Figure 13-3 : The Overall Sound Block Diagram

Channel 8 (ADPCM/PCM/PSG Square Wave)

Channel 9 (ADPCM/PCM/PSG Square Wave)

Channel 10 (ADPCM/PCM/PSG Square Wave)

Channel 11 (ADPCM/PCM/PSG Square Wave)

Channel 12 (ADPCM/PCM/PSG Square Wave)

Channel 13 (ADPCM/PCM/PSG Square Wave)

Channel 14 (ADPCM/PCM/Noise)

Channel 15 (ADPCM/PCM/Noise)

Channel 0 (ADPCM/PCM)

Channel 1 (ADPCM/PCM)

Channel 2 (ADPCM/PCM)

Channel 3 (ADPCM/PCM)

Channel 4 (ADPCM/PCM)

Channel 5 (ADPCM/PCM)

Channel 6 (ADPCM/PCM)

Channel 7 (ADPCM/PCM) M
ix

er

M
as

te
r V

ol
um

e

Subprocessor
(ARM7)

Work RAM
64 KB

A
R

M
7

Bu
s

Sound Capture 0

Sound Capture 1

Sound
DMA

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

ARM9 Shared
Work RAM
16 KB×2

Ex
te

rn
al

 M
em

or
y

In
te

rfa
ce

Main
Memory

4 MB

Logic

Memory

NITRO
Game Card

PWM
NTR-06-0180-001-A9 302 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
13.2.2 Channels 0 – 3 and Sound Capture 0 - 1
The block diagram for channels 0 to 3 and sound capture 0 and 1 is shown in Figure 13-4.

Figure 13-4 : The Channel 0-3 and Sound Capture 0-1 Block Diagram

ADPCM
PCM

Timer

FIFO Pan
0

Capture

Timer

FIFO

ADPCM
PCMFIFO

Channel 0

Sound Capture 0

Pan
1

ADPCM
PCM

Timer

FIFO Pan
2

Capture

Timer

FIFO

ADPCM
PCMFIFO

Channel 2

Sound Capture 1

Pan
3

Channel 1

Channel 3

Sound
DMA

Subprocessor Bus

P
W
M

L

P
W
M

R

S 3 _RS 1 _R

S 2 _P

S 3 _Q

S 1 _R

S 2 _P

S 3 _R

S 3 _Q

Add

Add

Add

Add

Pan
0

Pan
2

Vo
lu

m
e

Vo
lu

m
e

V
ol

um
e

Vo
lu

m
e

S
el

ec
to

r 1
Se

le
ct

or
 0

M
ix

er
M

ix
er

Se
le

ct
or

 A

M
as

te
r V

ol
um

e

S
el

ec
to

r B

M
as

te
r V

ol
um

e

© 2003-2006 Nintendo 303 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Caution 1: The switches before and after the pan blocks of channels 1 and 3 are always circuits
connected to selectors A and B of the final-step output selection. Therefore, when channels 1
or 3 are selected as final-step outputs, sound will be output. Be aware of this when you do not
want to output any sound.

Caution 2: The input signal to the mixer from the pan blocks of channels 1 and 3 is determined by the pri-
ority shown on Table 13-3. When channels 1 and 3 are set to bypass to the final-step output,
the added channels are input to the mixer. Even if the output of that mixer is configured to be
captured, channels 1 and 3 will not be input to the mixer (the switch immediately after the pan
block will connect to GND, and the mixer input will always be 0 in this case only). As a result,
there will be no reverb. Be aware that reverb using both the mixer and adder is not possible
when channels 1 and 3 are set to bypass to the final-step output. If you are considering Cau-
tion 3 below, it is recommended that you use only the mixer.

Table 13-3 : Switch Input Priority from Channels 1 and 3 to the Mixer

Caution 3: There is a fault in the logic (preliminary to selector 0 and 1) for capturing the channel adder
output. The following situations can occur:

• When adding channels 0 and 1 along with channels 2 and 3, if an overflow occurs in either
of the addition results, sign-inverted data will be output.

• When adding channels 0 and 1 along with channels 2 and 3, if the signs of channels 0 and
1 and channels 2 and 3 are each negative, the capture data will be forcibly converted to
the maximum negative value.

Noise will be output in the sounds from these results. To deal with these faults, make sure that the addition
data does not become saturated when using the adder, and that the values for the channels 0-1 and
channels 2-3 do not both become negative when not using the adder.

Priority Mixer Input Switch State

High 0 Input (Connected to GND) Sound Final-Step Output
Bypass Configuration

Pan 0 along with Pan 2 Channel Addition and
Capture Configuration

Low Pan 1 along with Pan 3 Normal Configuration
NTR-06-0180-001-A9 304 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
13.2.3 Channels 4 - 7
The block diagram for channels 4 to 7 is shown in Figure 13-5.

Figure 13-5 : The Channel 4-7 Block Diagram

ADPCM
PCM

Timer

V
ol

um
e

FIFO Pan

Channel 4

M
ix

er L

ADPCM
PCM

Timer

V
ol

um
e

FIFO Pan

ADPCM
PCM

Timer

Vo
lu

m
e

FIFO Pan

ADPCM
PCM

Timer

Vo
lu

m
e

FIFO Pan
M

ix
er R

Sound
DMA

Subprocessor Bus

Channel 5

Channel 6

Channel 7

P
W
M

M
as

te
r V

ol
um

e
M

as
te

r V
ol

um
e

P
W
M

© 2003-2006 Nintendo 305 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
13.2.4 Channels 8 - 15
The block diagram for channels 8 to 15 is shown in Figure 13-6. PSG rectangular waveforms can be
played on channels 8 to 13. Noise can be played on channels 14 and 15.

Figure 13-6 : The Channel 8-15 Block Diagram

ADPCM
PCM

Timer

Vo
lu

m
e

FIFO

Pan

Channel 8

M
ix

er L

M
ix

er R

Sound
DMA

Subprocessor Bus

Se
le

ct
or

PSG Square Wave
Generation Circuit

ADPCM
PCM

V
ol

um
e

FIFO

Pan

Se
le

ct
or

PSG Square Wave
Generation Circuit

ADPCM
PCM

Timer

Vo
lu

m
e

FIFO

Pan

Se
le

ct
or

Noise
Generation

Circuit

ADPCM
PCM

Timer

V
ol

um
e

FIFO

Pan

S
el

ec
to

r

Noise
Generation

Circuit

Timer

Channel 13

Channel 14

Channel 15

M
as

te
r V

ol
um

e
M

as
te

r V
ol

um
e

P
W
M

P
W
M

NTR-06-0180-001-A9 306 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual

L

13.2.5 Examples of Using Sound
Examples of normal sound, a reverb effect using sound capture circuitry, and using the sound circuitry for
sound effects are shown in the figures below.

13.2.5.1 Normal Use Example
Under normal use, the sound waveform data read from main memory is played on each channel, and then
is output to the speaker via the mixer.

An example of a sound circuit under normal use is shown in Figure 13-7. Red numbers shown in
Figure 13-7 indicate the bit count of data at the time of block input/output.

Figure 13-7 : An Example of Sound Usage (Normal)

Subprocessor Bus

FIFO ADPCM
PCM

Timer

Pan
0

Add

CaptureFIFO

Channel 0

FIFO ADPCM
PCM

Channel 1

Timer

Sound Capture 0

Pan
1

Add

S2_P

S 3_Q

S 3_RS 1_R

To R

(Right Side Omitted)

Subprocessor
(ARM 7)

Work RAM
64 KB

Sound Waveform Data

Sound
DMA

Main Memory
4 MB

P
C
M

16
20 27 24

28

16 1028

Pan
0

Vo
lu

m
e

V
ol

um
e

S
el

ec
to

r 0

Se
le

ct
or

 A

M
as

te
r v

ol
um

eM
ix

er
© 2003-2006 Nintendo 307 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual

L①

W
rti

e
ca

pt
ur

e
da

ta
13.2.5.2 Reverb Example
A reverb effect (echo) can be achieved using the sound capture feature.

Use sound capture to store the output from the mixer in Work RAM. A reverb effect results from playing the
stored sound data on a channel and outputting it to the speakers via the mixer.

An example of sound circuit usage during reverb is shown in Figure 13-8. Red numbers shown in
Figure 13-8 indicate the bit count of data at the time of block input/output.

In the example, Channel 1 is used for the reverb effect.

Figure 13-8 : An Example of Sound Usage (Reverb)

Subprocessor Bus

FIFO ADPCM
PCM

Timer

Pan
0

Add

Capture

Channel 0

ADPCM
PCM

Channel 1

Timer

Sound Capture 0

Pan
1

Add

S2_P

S 3_Q

S 3_RS1_R

To R
Right Side Omitted

Subprocessor
(ARM 7)

Sound Waveform Data

Main Memory
4 MB

FIFO

FIFO

Sound
DMA

Work RAM
64 KB

② Read Capture Data

Capture Data

P
W
M

16

24

28

28
16

101628

Pan
0

V
ol

um
e

V
ol

um
e

S
el

ec
to

r 0

M
ix

er

Se
le

ct
or

 A

M
as

te
r V

ol
um

e

NTR-06-0180-001-A9 308 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual

L①

W
rit

e
ca

pt
ur

e
da

ta
13.2.5.3 Effect Example
Data can be modified before outputting the sound by using the sound capture feature.

Store the captured data in Work RAM; after modifying the data using the subprocessor, output the data
from a channel.

A sound effect example is shown in Figure 13-9. Red numbers shown in Figure 13-9 indicate the bit count
of data at the time of block input/output.

In the example, Channel 1 is used for the effect.

Figure 13-9 : An Example of Sound Usage (Effect)

Subprocessor Bus

FIFO ADPCM
PCM

Timer

Pan
0

Add

Capture

Channel 0

ADPCM
PCM

Channel 1

Timer

Sound Capture 0

Add

S 2 _P

S 3 _Q

S 3 _RS 1 _R

To R

(Right Side Omitted)

Sound Waveform Data

Main Memory
4 MB

FIFO

FIFO

Sound
DMA

Work RAM
64 KB

③Read Processed Data

Capture Data

Subprocessor
(ARM 7)

②Process

P
W
M

16

28

28

16

16 1028

Pan
1

Pan
0

V
ol

um
e

V
ol

um
e

S
el

ec
to

r 0

M
ix

er

S
el

ec
to

r A

M
as

te
r v

ol
um

e

© 2003-2006 Nintendo 309 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
13.3 NITRO-Composer
There is no need to be concerned with the subprocessor operations when using the NITRO-Composer.

The NITRO-Composer allows easy playback of even complicated sounds, such as BGM.

13.3.1 The NITRO-Composer Playback Method
There are three playback methods: sequence playback, waveform playback, and stream playback.

13.3.1.1 Sequence Playback
Sequence playback plays a variety of combined sounds, such as BGM and sound effects.

A maximum of sixteen sequences can be played simultaneously.

For example, during playback of a BGM that has one sequence assigned to it, up to fifteen sound effects
can be played simultaneously.

A variety of parameters for each sequence, such as tempo and volume, can be individually controlled on
the application side.

13.3.1.2 Waveform Playback
Waveform playback is a method for direct playback of waveform data.

It can play back waveform data, etc., that has been sampled with a microphone.

13.3.1.3 Stream Playback
Stream playback plays back long sequences, such as movie soundtracks.

Waveform data can be played back while the data stored on the NITRO card is sequentially loaded.
NTR-06-0180-001-A9 310 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
14 Wireless Communications
NITRO contains hardware for wireless communications using the 2.4 GHz band.

14.1 Hardware Specifications
The hardware specifications for wireless communications are shown in Table 14-1.

Table 14-1 : Wireless Communications Hardware Specifications

Note: When communications is used, power consumption also increases, so the battery will be
consumed more quickly. Accordingly, when not using communication, put the unit in the STOP
state using the wireless communications API.

The wireless adapter for Game Boy Advance cannot be used to communicate with NITRO.

Other devices may cause interference, making communications difficult. To avoid this, make the
communications packet size as small as possible.

14.2 Wireless Manager
By calling the wireless manager API, you can control the wireless system without worrying about the
operation of the subprocessor.

The unit can use Internet Play, Multi-Card Play, and Single-Card Play.

14.2.1 Internet Play
In this mode, the unit can connect to the Internet using a wireless LAN (IEEE802.11b/g) access point.

Item Description

Band Used 2.4 GHz band

Communications
Protocol

IEEE802.11 (Internet Play)
Nintendo’s proprietary protocol (Multi-Card Play)
Nintendo’s proprietary protocol (DS Single-Card Play)

Security WEP40 bit/128 bit compatible

Wireless Channels 13 channels

Communications
Speed 1 Mbps or 2 Mbps

Communications
Range

10-30 meters
This can change dramatically, depending on the environment and
orientation of the unit.

MAC Address Unique for each DS and thus can be used for identification.

Interfering Devices
Devices that use the 2.4 GHz band (cordless phones, microwave ovens,
the wireless adapter for Game Boy Advance, WaveBird, other WiFi
devices, etc.)
© 2003-2006 Nintendo 311 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
14.2.2 Multi-Card Play
This mode allows wireless communication between a maximum of 16 DS devices.

Because it uses NITRO’s proprietary communications method, data units can be exchanged in less than
one frame.

In Multi-Card Play, the maximum communications data size is 512 bytes.

14.2.3 Single-Card Play
This mode allows a child device without a NITRO card to download a game from a parent device with a
NITRO card.

If the parent device sends data with a header that includes address information, the child device’s system
ROM stores the data in the region specified by the header.

This mode uses Nintendo’s proprietary protocol.
NTR-06-0180-001-A9 312 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
15 Touch Panel
The lower screen includes a resistive-membrane touch panel that allows coordinates to be obtained in dot
units. Although the touch panel can be operated with a finger, a touch pen with a 1.0 mm tip (see "Figure
15-1 : Comparison of LCD Dot Size and Touch Pen Size" on page 314) is included with the NITRO as
standard equipment.

The application can use the touch panel without regard for subprocessor operations when using the touch
panel API. To overcome the differences in the coordinate position data on the API side, the calibration data
stored in internal flash memory must be read with the IPL correction program and set with the API before
using the touch panel.

The touch panel input data shown in Table 15-1 can be read with this API. The API reads in two ways:
auto-sampling that reads four times per frame and request sampling that reads in real time in response to
a request. When a request for a read is generated with request sampling, an interval of at least 4.17 msec
must be maintained between requests to ensure a correct reading.

Table 15-1 : Touch Panel Input Data

The details for input data for the touch panel are shown below.

• x-coordinate, y-coordinate

x-coordinate : 0 - 255 (dots)
y-coordinate : 0 - 191 (dots)

• Touch Determination Flag

0 : The touch panel is not being touched
1 : The touch panel is being touched

• Data Validity Flag

00 : Both the x-coordinate and y-coordinate are valid
01 : The x-coordinate is invalid
10 : The y-coordinate is invalid
11 : Both the x-coordinate and y-coordinate are invalid

Note: Structurally, the resistive-membrane touch panel can detect coordinates for only one location at a
time. Therefore, if multiple locations are touched at the same time, the coordinates for each point
cannot be detected. When the included stylus is used, the touch panel must be pressed down with
a force of at least 80 g for the location to be detected. In some cases, the touch pen may not be
able to depress areas within four dots of the screen edge as a result of built-in error between the
touch panel and the DS and limitations due to the shape of the touch pen’s tip.

Data Type Data Description

Touch Panel Input Data
x coordinate (8 bit), y coordinate (8 bit)
Touch Determination Flag (1 bit)
Data Validity Flag (2 bit)
© 2003-2006 Nintendo 313 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
There are occasions when irregular coordinate data is read immediately after the screen is
touched or immediately after removing the touch pen from the screen. In these cases (in particular
when operating a button displayed on screen), have the application use coordinates that are read
in with the same value continually as valid data for processing. Note that the touch determination
flag and the data validity flag are independent of each other, and that there may be a situation
where even though invalid data was stored the touch panel is being touched. For example, there
may be some cases where invalid data is stored while drawing a figure with a single stroke. In
such cases, rather than determining that the user removed the touch pen from the touch panel,
make the determination by reading the touch determination flag.

Figure 15-1 : Comparison of LCD Dot Size and Touch Pen Size

15.1 Touch Panel Structure
The construction of the resistive-membrane touch panel is illustrated in Figure 15-2.

Normally, the space formed between the upper and lower films, each of which is coated with a transparent
conducting membrane (ITO membrane: indium tin oxide), prevents current from being conducted. When a
finger or stylus presses on the panel, the pressure causes the upper and lower films to touch and conduct
current. The dot spacers prevent erroneous input and the NITRO from being continuously on.

Figure 15-2 : Touch Panel Structure

ITO
Membrane

Upper Film

Lower Film Dot Spacers
Upper and lower ITO membranes
touch and conduct current.
NTR-06-0180-001-A9 314 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
16 Microphone
NITRO is equipped with an omnidirectional condenser microphone that can be used for audio sampling. In
addition, the user can switch to a NITRO-dedicated headset (planned for future development). In terms of
sentitivity, individual variances in microphones can be as much as double depending on the console.
Figure 16-1 shows a schematic of the microphone.

Figure 16-1 : Microphone Schematic

In preparation for audio sampling, the gain for audio picked up by the microphone can be adjusted to 4
levels using the programmable gain amplifier (PGA). If the audio input is low and the sampling resolution is
low or if the audio input is loud, you can adjust the gain to balance the amplitude resolution. The amplitude
resolution for audio sampling can be set to 8 or 12 bits.

The range of possible settings for gain and amplitude resolution are indicated in Table 16-1.

Table 16-1 : Ranges of Possible Settings for Gain and Amplitude Resolution

To use the microphone, power must be supplied to the PGA. For instructions on supplying power to the
PGA, see Chapter 10.

The microphone can be used without regard for subprocessor operations when the microphone API is
used. The sampling rates that can be specified range from several kHz to 32 kHz. However, the sampling
rates for normal operation depend on the status of subprocessor use. The recording time depends on the
memory size and sampling rate provided by the application.

The 60-Hz noise that is synched to the V-Blank is superimposed on the microphone input. However, this
frequency is very low and the noise level is sufficiently low compared to audio input. Therefore, this will not
cause a problem as audible sound.

Note: Wireless communication and sound processing also use the subprocessor. Therefore, if the
microphone is used at the same time as these features, specify a sampling rate that takes into
account the load on the subprocessor. In addition, the same serial bus is used to read touch panel
data, access the internal flash memory, and control the PMIC. If the microphone is used at the
same time as these features, ensure that conflicts do not occur. Do not use the microphone for 500
milliseconds after the power is turned on.

Data Type Data Description

Gain 4 levels: 20x, 40x, 80x, and 160x
Default is 40x (API specifications)

Amplitude Resolution
8- or 12-bit
If 8-bit is used, one byte is used for one item of sampling data
If 12-bit is used, two bytes are used for one item of sampling data

Serial

Internal
Microphone

PGA

Power Management IC
(PMIC)

AD ConverterSubprocessor

Touch Panel IC NITRO
Headset

Input
Switch
© 2003-2006 Nintendo 315 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
A microphone input value, while there is no sound, will have individual differences in the range as shown in
Table 16-2. Therefore, if the criteria for determining whether there is microphone input is set within this
range, some systems may determine that there is microphone input even when there is no input from the
microphone. Use appropriate caution.

Table 16-2 : Microphone Input Value When there is No Sound

There may be noise, due to feedback, and incorrect playback on some systems if sound input from the
microphone is recorded and played back at the same time. Use appropriate caution.

Amplitude
Resolution

Microphone Input Value

Minimum Value Maximum Value

8 bit 102 155

12 bit 1632 2480
NTR-06-0180-001-A9 316 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
17 Real-Time Clock (RTC)
The DS has an internal Real-Time Clock (RTC). Time is kept by means of an auto-calendar feature that
extends through 2099 and accounts for leap years. The maximum error for the clock is ±4 seconds/day.

The time is set on the following occasions.

1. When the power is turned on for the first time after the unit is purchased.
2. When the power is turned on after changing the battery.
3. When the unit is restarted after the batteries have been drained (unit has been sitting for several

months with no charge in the batteries).
4. When the date and time are set from the boot menu.

The RTC can be used without regard for subprocessor operations when the RTC API is used. The
real-time data shown in Table 17-1 can be read with this API.

Table 17-1 : Real-Time Data

In addition, two types of alarm functions are provided. By setting the alarm from the application and
engaging sleep mode, the unit can be awakened from sleep mode at a specified time. For information on
sleep mode, see the section titled Power Management (cross-reference). The API can be used to read and
write the following settings for Alarm 1 and Alarm 2.

Table 17-2 : Settings for Alarm 1 and Alarm 2

Note: Real-time data cannot be written from the application to the RTC.

Data Type Data Description

Real-Time Data

Year (00 - 99), month (01 - 12), date (01 - 31), day (00 - 06),
hours (00 - 23), minutes (00 - 59), seconds (00 - 59)

Each value is stored as a binary coded decimal (BCD) value.

Data Type Data Description

Alarm 1
 and

Alarm 2

Day (00 - 06), hour (00 - 23), minutes (00 - 59)

Separate settings for alarms 1 and 2 can be specified.
Each value is stored as a binary coded decimal (BCD) value.
Day, hour, and time can be enabled or disabled.

Example: The alarm can be set to activate at the same time every day by disabling
the day setting.
© 2003-2006 Nintendo 317 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 318 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
18 Internal Flash Memory
The NITRO has internal flash memory to store touch panel calibration data, owner information, the NITRO
initial setting data, and RTC operation information data. The internal flash memory is dedicated memory for
the storage of NITRO setting data; the application cannot write to the internal flash memory.

18.1 Touch Panel Calibration Data
This calibration data is used to compensate for the variation in coordinate positioning data between
individual touch panels. If an application uses the touch panel, the touch panel must be set by reading the
calibration data with the API.

18.2 Owner Information Data
The owner information data stores information about the owner of the DS. Using the API, the owner
information in Table 18-1 can be read.

Table 18-1 : Owner Information Data

The details of the owner information data are shown below.

• User ID (Nickname)

Nickname string : Maximum of 10 Unicode (UTF16) characters (20 bytes). No termination code.

String length : Nickname string length (2 bytes).

• User Color (Favorite color)

0-15 : Selected from a set of 16 colors determined by IPL. (RGB values are enclosed by parentheses.)
0: GRAY (12,16,19) 1: BROWN (23, 9, 0)
2: RED (31, 0, 3) 3: PINK (31,17,31)
4: ORANGE (31,18, 0) 5: YELLOW (30,28, 0)
6: LIME GREEN (21,31, 0) 7: GREEN (0,31, 0)
8: DARK GREEN (0,20, 7) 9: SEA GREEN (9,27,17)
10: TURQUOISE (6,23,30) 11: BLUE (0,11,30)
12: DARK BLUE (0, 0,18) 13: PURPLE (17, 0,26)
14: VIOLET (26, 0,29) 15: MAGENTA (31, 0,18)

• Birthday (month and day) (Each is stored as a binary-coded decimal number.)

Month (1 byte) : Month of birth (01-12)

Day (1 byte) : Day of birth (01-31)

• Comment

A comment of two lines of a maximum of 23 characters each (23 bytes x 2 = 46 bytes) using Unicode
(UTF16).

Data Type Data Contents

Owner Information Data User ID (22 bytes), User color (1 byte), Birthday
(2 bytes), Comment (46 bytes)
© 2003-2006 Nintendo 319 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
18.3 NITRO Initial Setting Data
The NITRO initial setting data stores which LCD screen is used in AGB mode and the language setting.

Using the API, the NITRO initial setting data in Table 18-2 can be read.

Table 18-2 : NITRO Initial Setting Data

The details of the NITRO initial setting data are shown below:

• LCD screen used in AGB mode

0 : Upper Screen

1 : Lower Screen

• Language setting

0 : Japanese

1 : English

2 : French

3 : German

4 : Italian

5 : Spanish

6 : Chinese

18.4 RTC Operation Information Data
When setting the real-time clock (RTC), the difference in seconds with the initial data is set. This
information can be used to determine if the user has changed the RTC data.

Using the API, the RTC operation information data in Table 18-3 can be read.

Table 18-3 : RTC Operation Information Data

Data Type Data Content

NITRO Initial Setting Data The LCD screen used in AGB mode (2 bytes) and
the language setting (4 bytes)

Data Type Data Content

RTC Operation Information Data
RTC offset value.
This value changes each time the RTC setting is
changed.
NTR-06-0180-001-A9 320 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Appendix A. Register List

A.1 Addresses 0x04000000 and higher

Address
Offset

ARM9
Register Name Page Description

0x000
DISPCNT 55 2D Graphics Engine A display control

0x002
0x004 DISPSTAT 51 Display status
0x006 VCOUNT 53 V count comparison
0x008 BG0CNT 81 2D Graphics Engine A BG0 control
0x00a BG1CNT 81 2D Graphics Engine A BG1 control
0x00c BG2CNT 83 2DGraphics Engine A BG2 control
0x00e BG3CNT 83 2D Graphics Engine A BG3 control
0x010 BG0HOFS 105 2D Graphics Engine A BG0 display H offset
0x012 BG0VOFS 105 2D Graphics Engine A BG0 display V offset
0x014 BG1HOFS 105 2D Graphics Engine A BG1 display H offset
0x016 BG1VOFS 105 2D Graphics Engine A BG1 display V offset
0x018 BG2HOFS 105 2D Graphics Engine A BG2 display H offset
0x01a BG2VOFS 105 2D Graphics Engine A BG2 display V offset
0x01c BG3HOFS 105 2D Graphics Engine A BG3 display H offset
0x01e BG3VOFS 105 2D Graphics Engine A BG3 display V offset

0x020 BG2PA 108
2D Graphics Engine A BG2 affine transformation
parameters (same line X-direction reference shift
dx)

0x022 BG2PB 108
2D Graphics Engine A BG2 affine transformation
parameters (next line X-direction reference shift
dmx)

0x024 BG2PC 108
2D Graphics Engine A BG2 affine transformation
parameters (same line Y-direction reference shift
dy)

0x026 BG2PD 108
2D Graphics Engine A BG2 affine transformation
parameters (next line Y-direction reference shift
dmy)

0x028
BG2X 107 2D Graphics Engine A BG2 reference start point

(x coordinate)0x02a
0x02c

BG2Y 107 2D Graphics Engine A BG2 reference start point
(y coordinate)0x02e

0x030 BG3PA 108
2D Graphics Engine A BG3 affine transformation
parameters (same line X-direction reference shift
dx)

0x032 BG3PB 108
2D Graphics Engine A BG3 affine transformation
parameters (next line X-direction reference shift
dmx)
© 2003-2006 Nintendo 321 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x034 BG3PC 108
2D Graphics Engine A BG3 affine transformation
parameters (same line Y-direction reference shift
dy)

0x036 BG3PD 108
2D Graphics Engine A BG3 affine transformation
parameters (next line Y-direction reference shift
dmy)

0x038
BG3X 107 2D Graphics Engine A BG3 reference start point

(x coordinate)0x03a
0x03c

BG3Y 107 2D Graphics Engine A BG3 reference start point
(y coordinate)0x03e

Address
Offset

ARM9
Register Name Page Description
NTR-06-0180-001-A9 322 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
Register Name Page Description

0x040 WIN0H 143 2D Graphics Engine A window 0 H size
0x042 WIN1H 143 2D Graphics Engine A window 1 H size
0x044 WIN0V 143 2D Graphics Engine A window 0 V size
0x046 WIN1V 143 2D Graphics Engine A window 1 V size
0x048 WININ 142 2D Graphics Engine A window inside
0x04a WINOUT 142 2D Graphics Engine A window outside
0x04c MOSAIC 150 2D Graphics Engine A mosaic size
0x04e
0x050 BLDCNT 146 2D Graphics Engine A color special effects
0x052 BLDALPHA 148 2D Graphics Engine A alpha blending factor
0x054 BLDY 149 2D Graphics Engine A brightness change factor
0x056
0x058
0x05a
0x05c
0x05e
0x060 DISP3DCNT 155 3D display control
0x062
0x064

DISPCAPCNT 67 Display capture
0x066
0x068

DISP_MMEM_FIFO 65 Main memory display FIFO
0x06a
0x06c MASTER_BRIGHT 71 Image output A master brightness
0x06e
0x070
0x072
0x074
0x076
0x078
0x07a
0x07c
0x07e
0x080
0x082
0x084
0x086
0x088
0x08a
© 2003-2006 Nintendo 323 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x08c
0x08e
0x090
0x092
0x094
0x096
0x098
0x09a
0x09c
0x09e

Address
Offset

ARM9
Register Name Page Description
NTR-06-0180-001-A9 324 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
Register Name Page Explanation

0x0a0
0x0a2
0x0a4
0x0a6
0x0a8
0x0aa
0x0ac
0x0ae
0x0b0

DMA0SAD 271 DMA0 source address
0x0b2
0x0b4

DMA0DAD 271 DMA0 destination address
0x0b6
0x0b8

DMA0CNT 272 DMA0 control
0x0ba
0x0bc

DMA1SAD 271 DMA1 source address
0x0be
0x0c0

DMA1DAD 271 DMA1 destination address
0x0c2
0x0c4

DMA1CNT 272 DMA1 control
0x0c6
0x0c8

DMA2SAD 271 DMA2 source address
0x0ca
0x0cc

DMA2DAD 271 DMA2 destination address
0x0ce
0x0d0

DMA2CNT 272 DMA2 control
0x0d2
0x0d4

DMA3SAD 271 DMA3 source address
0x0d6
0x0d8

DMA3DAD 271 DMA3 destination address
0x0da
0x0dc

DMA3CNT 272 DMA3 control
0x0de
0x0e0
0x0e2
0x0e4
0x0e6
0x0e8
0x0ea
© 2003-2006 Nintendo 325 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x0ec
0x0ee
0x0f0
0x0f2
0x0f4
0x0f6
0x0f8
0x0fa
0x0fc
0x0fe

Address
Offset

ARM9
Register Name Page Explanation
NTR-06-0180-001-A9 326 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
Register Name Page Explanation

0x100 TM0CNT_L 277 Timer 0 counter
0x102 TM0CNT_H 277 Timer 0 control
0x104 TM1CNT_L 278 Timer 1 counter
0x106 TM1CNT_H 278 Timer 1 control
0x108 TM2CNT_L 278 Timer 2 counter
0x10a TM2CNT_H 278 Timer 2 control
0x10c TM3CNT_L 278 Timer 3 counter
0x10e TM3CNT_H 278 Timer 3 control
0x110
0x112
0x114
0x116
0x118
0x11a
0x11c
0x11e
0x120
0x122
0x124
0x126
0x128
0x12a
0x12c
0x12e
0x130 KEYINPUT 295 Key input
0x132 KEYCNT 296 Key control
0x134
0x136
0x138
0x13a
0x13c
0x13e
0x140
0x142
0x144
0x146
0x148
0x14a
© 2003-2006 Nintendo 327 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x14c
0x14e
0x150
0x152
0x154
0x156
0x158
0x15a
0x15c
0x15e

Address
Offset

ARM9
Register Name Page Explanation
NTR-06-0180-001-A9 328 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x160
0x162
0x164
0x166
0x168
0x16a
0x16c
0x16e
0x170
0x172
0x174
0x176
0x178
0x17a
0x17c
0x17e
0x180
0x182
0x184
0x186
0x188
0x18a
0x18c
0x18e
0x190
0x192
0x194
0x196
0x198
0x19a
0x19c
0x19e
0x1a0
0x1a2
0x1a4
0x1a6
0x1a8
0x1aa
© 2003-2006 Nintendo 329 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x1ac
0x1ae
0x1b0
0x1b2
0x1b4
0x1b6
0x1b8
0x1ba
0x1bc
0x1be

Address
Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 330 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x1c0
0x1c2
0x1c4
0x1c6
0x1c8
0x1ca
0x1cc
0x1ce
0x1d0
0x1d2
0x1d4
0x1d6
0x1d8
0x1da
0x1dc
0x1de
0x1e0
0x1e2
0x1e4
0x1e6
0x1e8
0x1ea
0x1ec
0x1ee
0x1f0
0x1f2
0x1f4
0x1f6
0x1f8
0x1fa
0x1fc
0x1fe
0x200
0x202
0x204 EXMEMCNT 11 External memory control
0x206
0x208 IME 279 Interrupt master flag
0x20a
© 2003-2006 Nintendo 331 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x20c
0x20e
0x210

IE 280 Interrupt enable flag
0x212
0x214

IF 281 Interrupt request flag
0x216
0x218
0x21a
0x21c
0x21e

Address
Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 332 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x220
0x222
0x224
0x226
0x228
0x22a
0x22c
0x22e
0x230
0x232
0x234
0x236
0x238
0x23a
0x23c
0x23e
0x240

VRAMCNT 19 RAM bank control 0
0x242
0x244

WVRAMCNT 23 RAM bank control 1
0x246
0x248 VRAM_HI_CNT 26 RAM bank control 2
0x24a
0x24c
0x24e
0x250
0x252
0x254
0x256
0x258
0x25a
0x25c
0x25e
0x260
0x262
0x264
0x266
0x268
0x26a
© 2003-2006 Nintendo 333 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x26c
0x26e

Address
Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 334 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x270
0x272
0x274
0x276
0x278
0x27a
0x27c
0x27e
0x280 DIVCNT 289 Divider control
0x282
0x284
0x286
0x288
0x28a
0x28c
0x28e
0x290

DIV_NUMER 289 Dividend
0x292
0x294
0x296
0x298

DIV_DENOM 289 Divisor
0x29a
0x29c
0x29e
0x2a0

DIV_RESULT 289 Result
0x2a2
0x2a4
0x2a6
0x2a8

DIVREM_RESULT 289 Remainder
0x2aa
0x2ac
0x2ae
0x2b0 SQRTCNT 292 Square root unit control
0x2b2
0x2b4

SQRT_RESULT 292 Square root unit result
0x2b6
© 2003-2006 Nintendo 335 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x2b8

SQRT_PARAM 292 Square root unit data
0x2ba
0x2bc
0x2be
0x2c0
0x2c2
0x2c4
0x2c6
0x2c8
0x2ca
0x2cc
0x2ce

Address
Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 336 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x2d0
0x2d2
0x2d4
0x2d6
0x2d8
0x2da
0x2dc
0x2de
0x2e0
0x2e2
0x2e4
0x2e6
0x2e8
0x2ea
0x2ec
0x2ee
0x2f0
0x2f2
0x2f4
0x2f6
0x2f8
0x2fa
0x2fc
0x2fe
0x300
0x302
0x304 POWCNT 54 Power control
0x306
0x308
0x30a
0x30c
0x30e
0x310
0x312
0x314
0x316
0x318
0x31a
© 2003-2006 Nintendo 337 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x31c
0x31e

Address
Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 338 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x320 RDLINES_COUNT 265 Rendering minimum fill
0x322
0x324
0x326
0x328
0x32a
0x32c
0x32e

0x330 EDGE_COLOR_0_L 257 Edge marking color
(Polygon ID’s 3 upper bits are 000)

0x332 EDGE_COLOR_0_H 257 Edge marking color
(Polygon ID’s 3 upper bits are 001)

0x334 EDGE_COLOR_1_L 257 Edge marking color
(Polygon ID’s 3 upper bits are 010)

0x336 EDGE_COLOR_1_H 257 Edge marking color
(Polygon ID’s 3 upper bits are 011)

0x338 EDGE_COLOR_2_L 257 Edge marking color
(Polygon ID’s 3 upper bits are 100)

0x33a EDGE_COLOR_2_H 257 Edge marking color
(Polygon ID’s 3 upper bits are 101)

0x33c EDGE_COLOR_3_L 257 Edge marking color
(Polygon ID’s 3 upper bits are 110)

0x33e EDGE_COLOR_3_H 257 Edge marking color
(Polygon ID’s 3 upper bits are 111)

0x340 ALPHA_TEST_REF 256 Alpha test
0x342
0x344
0x346
0x348
0x34a
0x34c
0x34e
0x350

CLEAR_COLOR 229 Color buffer initial value
0x352
0x354 CLEAR_DEptH 229 Depth buffer initial value
0x356 CLRIMAGE_OFFSET 231 Clear image offset
© 2003-2006 Nintendo 339 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x358
FOG_COLOR 258 Fog color

0x35a
0x35c FOG_OFFSET 258 Fog offset
0x35e
0x360 FOG_TABLE_0_L 259 Fog density table (0, 1)
0x362 FOG_TABLE_0_H 259 Fog density table (2, 3)
0x364 FOG_TABLE_1_L 259 Fog density table (4, 5)
0x366 FOG_TABLE_1_H 259 Fog density table (6, 7)
0x368 FOG_TABLE_2_L 259 Fog density table (8, 9)
0x36a FOG_TABLE_2_H 259 Fog density table (10, 11)
0x36c FOG_TABLE_3_L 259 Fog density table (12, 13)
0x36e FOG_TABLE_3_H 259 Fog density table (14, 15)
0x370 FOG_TABLE_4_L 259 Fog density table (16, 17)
0x372 FOG_TABLE_4_H 259 Fog density table (18, 19)
0x374 FOG_TABLE_5_L 259 Fog density table (20, 21)
0x376 FOG_TABLE_5_H 259 Fog density table (22, 23)
0x378 FOG_TABLE_6_L 259 Fog density table (24, 25)
0x37a FOG_TABLE_6_H 259 Fog density table (26, 27)
0x37c FOG_TABLE_7_L 259 Fog density table (28, 29)
0x37e FOG_TABLE_7_H 259 Fog density table (30, 31)

0x380 TOON_TABLE_0_L 239 Toon table (RGB conversion value when brightness
is 0)

0x382 TOON_TABLE_0_H 239 Toon table (RGB conversion value when brightness
is 1)

0x384 TOON_TABLE_1_L 239 Toon table (RGB conversion value when brightness
is 2)

0x386 TOON_TABLE_1_H 239 Toon table (RGB conversion value when brightness
is 3)

0x388 TOON_TABLE_2_L 239 Toon table (RGB conversion value when brightness
is 4)

0x38a TOON_TABLE_2_H 239 Toon table (RGB conversion value when brightness
is 5)

0x38c TOON_TABLE_3_L 239 Toon table (RGB conversion value when brightness
is 6)

0x38e TOON_TABLE_3_H 239 Toon table (RGB conversion value when brightness
is 7)

0x390 TOON_TABLE_4_L 239 Toon table (RGB conversion value when brightness
is 8)

0x392 TOON_TABLE_4_H 239 Toon table (RGB conversion value when brightness
is 9)
NTR-06-0180-001-A9 340 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
0x394 TOON_TABLE_5_L 239 Toon table (RGB conversion value when brightness
is 10)

0x396 TOON_TABLE_5_H 239 Toon table (RGB conversion value when brightness
is 11)

0x398 TOON_TABLE_6_L 239 Toon table (RGB conversion value when brightness
is 12)

0x39a TOON_TABLE_6_H 239 Toon table (RGB conversion value when brightness
is 13)

0x39c TOON_TABLE_7_L 239 Toon table (RGB conversion value when brightness
is 14)

0x39e TOON_TABLE_7_H 239 Toon table (RGB conversion value when brightness
is 15)

0x3a0 TOON_TABLE_8_L 239 Toon table (RGB conversion value when brightness
is 16)

0x3a2 TOON_TABLE_8_H 239 Toon table (RGB conversion value when brightness
is 17)

0x3a4 TOON_TABLE_9_L 239 Toon table (RGB conversion value when brightness
is 18)

0x3a6 TOON_TABLE_9_H 239 Toon table (RGB conversion value when brightness
is 19)

0x3a8 TOON_TABLE_10_L 239 Toon table (RGB conversion value when brightness
is 20)

0x3aa TOON_TABLE_10_H 239 Toon table (RGB conversion value when brightness
is 21)

0x3ac TOON_TABLE_11_L 239 Toon table (RGB conversion value when brightness
is 22)

0x3ae TOON_TABLE_11_H 239 Toon table (RGB conversion value when brightness
is 23)

0x3b0 TOON_TABLE_12_L 239 Toon table (RGB conversion value when brightness
is 24)

0x3b2 TOON_TABLE_12_H 239 Toon table (RGB conversion value when brightness
is 25)

0x3b4 TOON_TABLE_13_L 239 Toon table (RGB conversion value when brightness
is 26)

0x3b6 TOON_TABLE_13_H 239 Toon table (RGB conversion value when brightness
is 27)

0x3b8 TOON_TABLE_14_L 239 Toon table (RGB conversion value when brightness
is 28)

0x3ba TOON_TABLE_14_H 239 Toon table (RGB conversion value when brightness
is 29)

0x3bc TOON_TABLE_15_L 239 Toon table (RGB conversion value when brightness
is 30)

0x3be TOON_TABLE_15_H 239 Toon table (RGB conversion value when brightness
is 31)

Address
Offset

ARM9
 Register Name Page Explanation
© 2003-2006 Nintendo 341 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x3c0
0x3c2
0x3c4
0x3c6
0x3c8
0x3ca
0x3cc
0x3ce
0x3d0
0x3d2
0x3d4
0x3d6
0x3d8
0x3da
0x3dc
0x3de
0x3e0
0x3e2
0x3e4
0x3e6
0x3e8
0x3ea
0x3ec
0x3ee
0x3f0
0x3f2
0x3f4
0x3f6
0x3f8
0x3fa
0x3fc
0x3fe
NTR-06-0180-001-A9 342 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
 Offset

ARM9
 Register Name Page Explanation

0x400
GXFIFO 168 Geometry command FIFO

0x402
0x404

GXFIFO image

0x406
0x408
0x40a
0x40c
0x40e
0x410
0x412
0x414
0x416
0x418
0x41a
0x41c
0x41e
0x420
0x422
0x424
0x426
0x428
0x42a
0x42c
0x42e
0x430
0x432
0x434
0x436
0x438
0x43a
0x43c
0x43e
© 2003-2006 Nintendo 343 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x440
MTX_MODE 181 Current matrix mode setting

0x442
0x444

MTX_PUSH 186 Push current matrix onto the stack
0x446
0x448

MTX_POP 186 Pop current matrix from the stack
0x44a
0x44c

MTX_STORE 187 Store current matrix in specified position in the
stack0x44e

0x450
MTX_RESTORE 187 Read matrix from specified position in the stack

0x452
0x454

MTX_IDENTITY 182 Initialize unit matrix
0x456
0x458

MTX_LOAD_4x4 182 Set 4x4 matrix
0x45a
0x45c

MTX_LOAD_4x3 183 Set 4x3 matrix
0x45e
0x460

MTX_MULT_4x4 183 Multiply by 4x4 matrix
0x462
0x464

MTX_MULT_4x3 183 Multiply by 4x3 matrix
0x466
0x468

MTX_MULT_3x3 184 Multiply by 3x3 matrix
0x46a
0x46c

MTX_SCALE 185 Multiply by the Scale matrix
0x46e
0x470

MTX_TRANS 184 Multiply by the Translation matrix
0x472
0x474
0x476
0x478
0x47a
0x47c
0x47e
NTR-06-0180-001-A9 344 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x480
COLOR 201 Vertex color

0x482
0x484

NORMAL 202 Normal vector
0x486
0x488

TEXCOORD 205 Texture coordinates
0x48a
0x48c

VTX_16 202 Vertex coordinates
0x48e
0x490

VTX_10 203 Vertex coordinates
0x492
0x494

VTX_XY 203 Vertex XY coordinates
0x496
0x498

VTX_XZ 203 Vertex XZ coordinates
0x49a
0x49c

VTX_YZ 203 Vertex YZ coordinates
0x49e
0x4a0

VTX_DIFF 204 Vertex coordinates difference value specification
0x4a2
0x4a4

POLYGON_ATTR 196 Polygon-related attribute values
0x4a6
0x4a8

TEXIMAGE_PARAM 206 Texture parameters
0x4aa
0x4ac

TEXPLTT_BASE 211 Texture palette base address
0x4ae
0x4b0
0x4b2
0x4b4
0x4b6
0x4b8
0x4ba
0x4bc
0x4be
0x4c0

DIF_AMB 192 Material’s diffuse and ambient colors
0x4c2
0x4c4

SPE_EMI 192 Material’s specular reflection and emitted light
colors0x4c6

0x4c8
LIGHT_VECTOR 189 Light direction vector

0x4ca
© 2003-2006 Nintendo 345 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x4cc
LIGHT_COLOR 189 Light color

0x4ce
0x4d0

SHININESS 193 Specular reflection shininess table
0x4d2
0x4d4
0x4d6
0x4d8
0x4da
0x4dc
0x4de

Address
Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 346 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
 Offset

ARM9
 Register Name Page Explanation

0x4e0
0x4e2
0x4e4
0x4e6
0x4e8
0x4ea
0x4ec
0x4ee
0x4f0
0x4f2
0x4f4
0x4f6
0x4f8
0x4fa
0x4fc
0x4fe
0x500

BEGIN_VTXS 200 Vertex list start
0x502
0x504

END_VTXS 201 Vertex list end
0x506
0x508
0x50a
0x50c
0x50e
0x510
0x512
0x514
0x516
0x518
0x51a
0x51c
0x51e
0x520
0x522
0x524
0x526
0x528
0x52a
© 2003-2006 Nintendo 347 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x52c
0x52e
0x530
0x532
0x534
0x536
0x538
0x53a
0x53c
0x53e

Address
 Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 348 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
 Offset

ARM9
 Register Name Page Explanation

0x540
SWAP_BUFFERS 178 Swap data group

0x542
0x544
0x546
0x548
0x54a
0x54c
0x54e
0x550
0x552
0x554
0x556
0x558
0x55a
0x55c
0x55e
0x560
0x562
0x564
0x566
0x568
0x56a
0x56c
0x56e
0x570
0x572
0x574
0x576
0x578
0x57a
0x57c
0x57e
0x580

VIEWPORT 180 Viewport
0x582
0x584
0x586
0x588
0x58a
© 2003-2006 Nintendo 349 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x58c
0x58e
0x590
0x592
0x594
0x596
0x598
0x59a
0x59c
0x59e

Address
 Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 350 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
 Offset

ARM9
 Register Name Page Explanation

0x5a0
0x5a2
0x5a4
0x5a6
0x5a8
0x5aa
0x5ac
0x5ae
0x5b0
0x5b2
0x5b4
0x5b6
0x5b8
0x5ba
0x5bc
0x5be
0x5c0

BOX_TEST 215 Box test
0x5c2
0x5c4

POS_TEST 216 Position coordinate test
0x5c6
0x5c8

VEC_TEST 216 Direction vector test
0x5ca
0x5cc
0x5ce
0x5d0
0x5d2
0x5d4
0x5d6
0x5d8
0x5da
0x5dc
0x5de
0x5e0
0x5e2
0x5e4
0x5e6
0x5e8
0x5ea
© 2003-2006 Nintendo 351 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x5ec
0x5ee
0x5f0
0x5f2
0x5f4
0x5f6
0x5f8
0x5fa
0x5fc
0x5fe

Address
 Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 352 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x600
GXSTAT 218 Geometry engine status

0x602
0x604 LISTRAM_COUNT 220 Polygon list RAM count
0x606 VTXRAM_COUNT 220 Vertex RAM count
0x608
0x60a
0x60c
0x60e
0x610 DISP_1DOT_DEptH 199 1-dot polygon display boundary depth value
0x612
0x614
0x616
0x618
0x61a
0x61c
0x61e
0x620

POS_RESULT_X 216 Result of position coordinate test (clip coordinate X
component)0x622

0x624
POS_RESULT_Y 216 Result of position coordinate test (clip coordinate Y

component)0x626
0x628

POS_RESULT_Z 216 Result of position coordinate test (clip coordinate Z
component)0x62a

0x62c
POS_RESULT_W 216 Result of position coordinate test (clip coordinate

W component)0x62e
0x630 VEC_RESULT_X 217 Result of direction vector test (X component)
0x632 VEC_RESULT_Y 217 Result of direction vector test (Y component)
0x634 VEC_RESULT_Z 217 Result of direction vector test (Z component)
0x636
0x638
0x63a
0x63c
0x63e
© 2003-2006 Nintendo 353 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Address
 Offset

ARM9
 Register Name Page Explanation

0x640
CLIPMTX_RESULT_0 188 Current clip coordinate matrix (element m0)

0x642
0x644

CLIPMTX_RESULT_1 188 Current clip coordinate matrix (element m1)
0x646
0x648

CLIPMTX_RESULT_2 188 Current clip coordinate matrix (element m2)
0x64a
0x64c

CLIPMTX_RESULT_3 188 Current clip coordinate matrix (element m3)
0x64e
0x650

CLIPMTX_RESULT_4 188 Current clip coordinate matrix (element m4)
0x652
0x654

CLIPMTX_RESULT_5 188 Current clip coordinate matrix (element m5)
0x656
0x658

CLIPMTX_RESULT_6 188 Current clip coordinate matrix (element m6)
0x65a
0x65c

CLIPMTX_RESULT_7 188 Current clip coordinate matrix (element m7)
0x65e
0x660

CLIPMTX_RESULT_8 188 Current clip coordinate matrix (element m8)
0x662
0x664

CLIPMTX_RESULT_9 188 Current clip coordinate matrix (element m9)
0x666
0x668

CLIPMTX_RESULT_10 188 Current clip coordinate matrix (element m10)
0x66a
0x66c

CLIPMTX_RESULT_11 188 Current clip coordinate matrix (element m11)
0x66e
0x670

CLIPMTX_RESULT_12 188 Current clip coordinate matrix (element m12)
0x672
0x674

CLIPMTX_RESULT_13 188 Current clip coordinate matrix (element m13)
0x676
0x678

CLIPMTX_RESULT_14 188 Current clip coordinate matrix (element m14)
0x67a
0x67c

CLIPMTX_RESULT_15 188 Current clip coordinate matrix (element m15)
0x67e
NTR-06-0180-001-A9 354 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x680
VECMTX_RESULT_0 188 Current direction vector matrix (element m0)

0x682
0x684

VECMTX_RESULT_1 188 Current direction vector matrix (element m1)
0x686
0x688

VECMTX_RESULT_2 188 Current direction vector matrix (element m2)
0x68a
0x68c

VECMTX_RESULT_3 188 Current direction vector matrix (element m3)
0x68e
0x690

VECMTX_RESULT_4 188 Current direction vector matrix (element m4)
0x692
0x694

VECMTX_RESULT_5 188 Current direction vector matrix (element m5)
0x696
0x698

VECMTX_RESULT_6 188 Current direction vector matrix (element m6)
0x69a
0x69c

VECMTX_RESULT_7 188 Current direction vector matrix (element m7)
0x69e
0x6a0

VECMTX_RESULT_8 188 Current direction vector matrix (element m8)
0x6a2
0x6a4
0x6a6
0x6a8
0x6aa
0x6ac
0x6ae
0x6b0
0x6b2
0x6b4
0x6b6
0x6b8
0x6ba
0x6bc
0x6be
0x6c0
0x6c2
0x6c4
0x6c6
0x6c8
0x6ca
© 2003-2006 Nintendo 355 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x6cc
0x6ce
0x6d0
0x6d2
0x6d4
0x6d6
0x6d8
0x6da
0x6dc
0x6de

Address
Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 356 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
 Offset

ARM9
 Register Name Page Explanation

0x6e0
0x6e2
0x6e4
0x6e6
0x6e8
0x6ea
0x6ec
0x6ee
0x6f0
0x6f2
0x6f4
0x6f6
0x6f8
0x6fa
0x6fc
0x6fe
© 2003-2006 Nintendo 357 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
A.2 Addresses 0x04001000 and higher (2D Graphics Engine B-related)

Address
 Offset

ARM9
 Register Name Page Explanation

0x000
DB_DISPCNT 57 2D Graphics Engine B display control

0x002
0x004
0x006
0x008 DB_BG0CNT 81 2D Graphics Engine B BG0 control
0x00a DB_BG1CNT 81 2D Graphics Engine B BG1 control
0x00c DB_BG2CNT 83 2D Graphics Engine B BG2 control
0x00e DB_BG3CNT 83 2D Graphics Engine B BG3 control
0x010 DB_BG0HOFS 105 2D Graphics Engine B BG0 display H offset
0x012 DB_BG0VOFS 105 2D Graphics Engine B BG0 display V offset
0x014 DB_BG1HOFS 105 2D Graphics Engine B BG1 display H offset
0x016 DB_BG1VOFS 105 2D Graphics Engine B BG1 display V offset
0x018 DB_BG2HOFS 105 2D Graphics Engine B BG2 display H offset
0x01a DB_BG2VOFS 105 2D Graphics Engine B BG2 display V offset
0x01c DB_BG3HOFS 105 2D Graphics Engine B BG3 display H offset
0x01e DB_BG3VOFS 105 2D Graphics Engine B BG3 display V offset

0x020 DB_BG2PA 108
2D Graphics Engine B BG2 affine transformation
parameters (same line X-direction reference shift
dx)

0x022 DB_BG2PB 108
2D Graphics Engine B BG2 affine transformation
parameters (next line X-direction reference shift
dmx)

0x024 DB_BG2PC 108
2D Graphics Engine B BG2 affine transformation
parameters (same line Y-direction reference shift
dy)

0x026 DB_BG2PD 108
2D Graphics Engine B BG2 affine transformation
parameters (next line Y-direction reference shift
dmy)

0x028
DB_BG2X 107 2D Graphics Engine B BG2 reference start point

(x coordinate)0x02a
0x02c

DB_BG2Y 107 2D Graphics Engine B BG2 reference start point
(y coordinate)0x02e

0x030 DB_BG3PA 108
2D Graphics Engine B BG3 affine transformation
parameters (same line X-direction reference shift
dx)

0x032 DB_BG3PB 108
2D Graphics Engine B BG3 affine transformation
parameters (next line X-direction reference shift
dmx)
NTR-06-0180-001-A9 358 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
0x034 DB_BG3PC 108
2D Graphics Engine B BG3 affine transformation
parameters (same line Y-direction reference shift
dy)

0x036 DB_BG3PD 108
2D Graphics Engine B BG3 affine transformation
parameters (next line Y-direction reference shift
dmy)

0x038
DB_BG3X 107 2D Graphics Engine B BG3 reference start point

(x coordinate)0x03a
0x03c

DB_BG3Y 107 2D Graphics Engine B BG3 reference start point
(y coordinate)0x03e

Address
 Offset

ARM9
 Register Name Page Explanation
© 2003-2006 Nintendo 359 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Address
Offset

ARM9
 Register Name Page Explanation

0x040 DB_WIN0H 143 2D Graphics Engine B window 0H size
0x042 DB_WIN1H 143 2D Graphics Engine B window 1H size
0x044 DB_WIN0V 143 2D Graphics Engine B window 0V size
0x046 DB_WIN1V 143 2D Graphics Engine B window 1V size
0x048 DB_WININ 142 2D Graphics Engine B window inside
0x04a DB_WINOUT 142 2D Graphics Engine B window outside
0x04c DB_MOSAIC 150 2D Graphics Engine B mosaic size
0x04e
0x050 DB_BLDCNT 146 2D Graphics Engine B color special effects
0x052 DB_BLDALPHA 148 2D Graphics Engine B alpha blending factor

0x054 DB_BLDY 149 2D Graphics Engine B brightness conversion
factor

0x056
0x058
0x05a
0x05c
0x05e
0x060
0x062
0x064
0x066
0x068
0x06a
0x06c DB_MASTER_BRIGHT 71 Image output B master brightness
NTR-06-0180-001-A9 360 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
A.3 Addresses 0x04100000 and higher

Address
 Offset

ARM9
 Register Name Page Explanation

0x000
0x002
0x004
0x006
0x008
0x00a
0x00c
0x00e
0x010
0x012
0x014
0x016
0x018
0x01a
0x01c
0x01e
0x020
0x022
0x024
0x026
0x028
0x02a
0x02c
0x02e
0x030
0x032
0x034
0x036
0x038
0x03a
0x03c
0x03e
0x040
0x042
0x044
0x046
0x048
© 2003-2006 Nintendo 361 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
0x04a
0x04c
0x04e
0x050
0x052
0x054
0x056
0x058
0x05a
0x05c
0x05e

Address
 Offset

ARM9
 Register Name Page Explanation
NTR-06-0180-001-A9 362 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Address
 Offset

ARM9
 Register Name Page Explanation

0x060

0x062

0x064

0x066

0x068

0x06a

0x06c

0x06e

0x070

0x072

0x074

0x076

0x078

0x07a

0x07c

0x07e
© 2003-2006 Nintendo 363 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 364 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual

024
x
024

X

X

X

X

6K

2K

X

X

X

X

X

X

6K

2K

X

X

X

X

6K

8K

6K)
Appendix B. List of VRAM Data Capacities
(Data capacity unit: bytes)

X: Outside of specifications

—: Omitted

Bold: Maximum value

(): The maximum data value exceeds the RAM capacity. Therefore the maximum usable RAM capacity is
specified.

Size

Format

8
x
8

16
x

16

32
x

32

64
x

64

128
x

128

256
x

192

256
x

256

512
x

256

512
x

512

1024
x

 512

1

1

16-Color Character 32 128 512 2K X X X X X X

256-Color Character 64 256 1K 4K X X X X X X

Direct Color Bitmap OBJ 128 512 2K 8K X X X X X X

Normal Character BG Screen X X X X X X 2K 4K 8K X

Rotated Character BG Screen X X X X 256 X 1K X 4K X 1

Extended/Rotated Character
BG Screen X X X X 512 X 2K X 8K X 3

256-Color Bitmap BG X X X X 16K X 64K 128K 256K X

Large Screen 256-Color
Bitmap BG X X X X X X X X X 512K

Direct Color Bitmap BG X X X X 32K X 128K 256K 512K X

Clear Color Image X X X X X 96K X X X X

Clear Depth Image X X X X X 96K X X X X

Display Capture X X X X 32K 96K X X X X

4-Color Texture 16 64 256 1K 4K — 16K — 64K — 25

16-Color Texture 32 128 512 2K 8K — 32K — 128K — 51

256-Color Texture 64 256 1K 4K 16K — 64K — 256K 512K

A3I5 Translucent Texture 64 256 1K 4K 16K — 64K — 256K 512K

A5I3 Translucent Texture 64 256 1K 4K 16K — 64K — 256K 512K

Direct Color Texture 128 512 2K 8K 32K — 128K — 512K X

Compressed Texture Image 16 64 256 1K 4K — 16K — 64K — 25

Compressed Texture Index 8 32 128 512 2K — 8K — 32K — 12

Maximum No. of Compressed
Texture Interpolation Palettes 16 64 256 1K 4K — 16K — 64K (96K) (9
© 2003-2006 Nintendo 365 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 366 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual

0

Appendix C. Data Formats
BG, OBJ Character Data

Bitmap OBJ

BG Screen Data

Bitmap BG Data

Palette Data

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

16-color Character P3 P2 P1 P0

256-color Character P1 P0

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct Color Bitmap
OBJ

ALP
HA BLUE GREEN RED

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Normal Character BG
Screen Palette Vflip Hflip Character name

Rotate Character BG
Screen Character name

Expand/rotate
Character BG Screen Palette Vflip Hflip Character name

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

256-color Bitmap BG Color No.

Large Screen
256-color Bitmap BG Color No.

Direct Color Bitmap
BG

ALP
HA BLUE GREEN RED

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

BG, OBJ Palette Color - BLUE GREEN RED
© 2003-2006 Nintendo 367 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
Other Graphics Function Data

Texture Data

Compressed Texture Data (Note: 32-bit notation)

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Clear Color Image ALP
HA BLUE GREEN RED

Clear Depth Image FOG
Integer portion Fractional

portion

Clear depth

Display Capture ALP
HA BLUE GREEN RED

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4-color Texture T0

16-color Texture T0

256-color Texture T0

A5I3 Translucent
Texture ALPHA INDEX

A3I5 Translucent
Texture ALPHA INDEX

Direct Color Texture ALP
HA BLUE GREEN RED

31
Format

d

Compressed texture
image T33

Compressed texture
index

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T32 T31 T30 T23 T22 T21 T20 T13 T12 T11 T10 T03 T02 T01 T00

3/4 T Palette Address
NTR-06-0180-001-A9 368 © 2003-2006 Nintendo
Released: January 4, 2006

NITRO Programming Manual
Texture Palette Data

OAM Data

Sound Data

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Texture palette color - BLUE GREEN RED

d
Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCM 8 bit Data 0

PCM16 bit Data 0

ADPCM Data 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Format

d

OBJ attribute 0

OBJ attribute 1

Form

OBJ attribute 2

Affine transformation
parameter PA

Affine transformation
parameter PB

Affine transformation
parameter PC

Decimal part

Size

Palette Number

Sign

Color
mode Mosaic OBJ mode Double

size

Rotation
 /

Scaling
y-Coordinate

V-flip H-flip
Affine transformation parameter number

x-Coordinate

Order of
Priority Character name

Integer part

Distance in x direction for same line

Affine transformation
parameter PD

Decimal partSign Integer part

Distance in in x direction for next line

Decimal partSign Integer part

Distance in in y direction for same line

Decimal partSign Integer part

Distance in in y direction for next line
© 2003-2006 Nintendo 369 NTR-06-0180-001-A9
Released: January 4, 2006

NITRO Programming Manual
NTR-06-0180-001-A9 370 © 2003-2006 Nintendo
Released: January 4, 2006

	Table of Contents
	Figures
	Tables
	1 System
	1.1 System Outline
	1.1.1 NITRO Processor
	1.1.2 Main Memory
	1.1.3 LCD
	1.1.4 Digital Keys
	1.1.5 Touch Screen
	1.1.6 Microphone
	1.1.7 RTC
	1.1.8 Wireless Communications
	1.1.9 Nintendo DS Game Card
	1.1.10 DS Accessories

	1.2 Memory Map
	1.3 Accessing Devices Connected to the Subprocessor
	1.4 Startup Mode
	1.4.1 NITRO Mode
	1.4.2 AGB Compatibility Mode

	1.5 Destination

	2 Memory
	2.1 External Memory
	2.1.1 Main Memory
	2.1.1.1 Look-Ahead Buffer
	2.1.1.2 Burst Mode

	2.2 The NITRO Processor's Internal Memory
	2.2.1 VRAM
	2.2.2 Work RAM
	2.2.3 I/O Registers

	2.3 Memory Map for Game Card Boot

	3 The Main Processor Core (ARM946E-S)
	3.1 The Protection Unit
	3.2 Tightly Coupled Memory (TCM)
	3.2.1 Instruction TCM
	3.2.2 Data TCM

	3.3 Cache Memory
	3.3.1 Instruction Cache
	3.3.1.1 Determining Hits and Misses

	3.3.2 The Data Cache
	3.3.2.1 Determining Hits and Misses

	3.3.3 Cache Operations
	3.3.4 Optimizing the Cache

	3.4 Write Buffer
	3.4.1 Write Buffer Operations

	3.5 Ensuring Coherency
	3.5.1 Write-Back Mode
	3.5.2 Write-Through Mode

	4 Display
	4.1 Display System
	4.2 LCD
	4.2.1 LCD Controller Specifications

	4.3 Display Status
	4.4 Display Control
	4.4.1 Top LCD/Bottom LCD Output Switching
	4.4.2 Display Control of 2D Graphics Engine A
	4.4.3 2D Graphics Engine B Display Controls
	4.4.4 Display Modes
	4.4.4.1 Graphics Display Mode
	4.4.4.2 VRAM Display Mode
	4.4.4.3 Main Memory Display Mode

	4.5 Display Capture
	4.6 Master Brightness

	5 2D Graphics
	5.1 Controlling the 2D Display
	5.2 BG
	5.2.1 BG Mode
	5.2.1.1 2D Graphics Engine A
	5.2.1.2 2D Graphics Engine B
	5.2.1.3 Basic Features for Each Type of BG
	5.2.1.4 Specifications for Different BG Types

	5.2.2 BG Control
	5.2.2.1 Screen Sizes and Display Screens

	5.2.3 Character BG
	5.2.3.1 VRAM Maps of BG Data
	5.2.3.2 Text BG
	5.2.3.3 Affine BG
	5.2.3.4 256-Color x 16-Palette Character BG (Affine Extended BG)

	5.2.4 Bitmap BG
	5.2.4.1 256-Color Bitmap BG (Affine Extended BG)
	5.2.4.2 Direct-Color Bitmap BG (Affine Extended BG)
	5.2.4.3 Large-Screen 256-Color Bitmap BG

	5.2.5 BG Scroll
	5.2.6 BG Rotation and Scaling (Affine Transformation)

	5.3 OBJ
	5.3.1 OBJ Display Control
	5.3.2 OAM
	5.3.2.1 Memory Map
	5.3.2.2 OAM Data Format
	5.3.2.3 OBJ Rotation and Scaling (Affine Transformation)

	5.3.3 Character OBJ
	5.3.3.1 Character Data Format
	5.3.3.2 Mapping Modes for Character OBJ Data

	5.3.4 Bitmap OBJ
	5.3.4.1 Bitmap OBJ Data
	5.3.4.2 Blending with BG
	5.3.4.3 Mapping Modes for Bitmap OBJ Data

	5.4 Backdrop
	5.5 Color Palettes
	5.5.1 Standard Palettes
	5.5.2 Extended Palettes
	5.5.2.1 BG Extended Palettes
	5.5.2.2 OBJ Extended Palettes

	5.6 Windows
	5.6.1 The Precedence of Windows

	5.7 Color Special Effects
	5.8 Mosaic
	5.9 Display Priority

	6 3D Graphics
	6.1 3D Display Control
	6.2 Geometry Engine
	6.2.1 Overview
	6.2.2 The coordinate system
	6.2.3 Coordinate Transformations
	6.2.4 Projection Transformations
	6.2.5 Depth Buffering
	6.2.6 Geometry Commands
	6.2.7 Swapping the Rendering Engine's Reference Data
	6.2.8 Viewport
	6.2.9 Matrices
	6.2.9.1 Manipulating the Current Matrix
	6.2.9.2 Matrix Stack
	6.2.9.3 Reading the Current Matrix

	6.2.10 Light
	6.2.11 Material
	6.2.11.1 Lighting (Illumination Process)

	6.2.12 Polygon Attributes
	6.2.13 Polygons
	6.2.14 Texture Mapping
	6.2.14.1 Texture Coordinate Transformations

	6.2.15 Tests
	6.2.16 Status
	6.2.16.1 Data Storage Capacity of Polygon List RAM and Vertex RAM

	6.2.17 Warnings Regarding Calculation Precision

	6.3 Rendering Engine
	6.3.1 Overview
	6.3.2 Rendering Methods
	6.3.2.1 Line Buffer Rendering
	6.3.2.2 The Buffers in the Rendering Engine
	6.3.2.3 Blank Periods
	6.3.2.4 Number of Polygons that Can Be Drawn with One Line

	6.3.3 Initializing the Rendering Buffers
	6.3.3.1 Initializing with the Clear Registers
	6.3.3.2 Initializing with Clear Images

	6.3.4 Rasterizing
	6.3.4.1 Opaque Polygons
	6.3.4.2 Translucent Polygons
	6.3.4.3 Wireframes
	6.3.4.4 Shadow Polygons
	6.3.4.5 Toon Shading/Highlight Shading

	6.3.5 Textures
	6.3.5.1 Texture Blending
	6.3.5.2 Texture Formats

	6.3.6 Alpha-Test
	6.3.7 Alpha-Blending
	6.3.7.1 3D Alpha-blending
	6.3.7.2 2D and 3D Alpha-Blending Preprocess

	6.3.8 Edge Marking
	6.3.9 Fog Blending
	6.3.9.1 3D Fog
	6.3.9.2 Fog Preprocessing for 2D

	6.3.10 Anti-aliasing
	6.3.11 Status

	6.4 2D Graphics Features You Can Apply to the 3D Screen After Rendering
	6.4.1 Raster scroll
	6.4.2 Order of Display Priority With 2D Screen
	6.4.3 Windows
	6.4.4 Color Effects
	6.4.4.1 Alpha-Blending with the 2D Screen
	6.4.4.2 Shininess Up/Down

	7 DMA
	8 Timer
	9 Interrupts
	9.1 The Interrupt Master Enable Register
	9.2 The Interrupt Enable Register
	9.3 The Interrupt Request Register
	9.4 Interrupt Cautions
	9.4.1 Clearing IME and IE
	9.4.2 Multiple Interrupts
	9.4.3 Interrupt Delays During DMA Operation
	9.4.4 Interrupts from ARM7

	10 Power Management
	10.1 Sleep Mode
	10.2 Controlling Various Power Supplies
	10.2.1 Sound
	10.2.2 LCD Backlight
	10.2.3 LCD
	10.2.4 Microphone
	10.2.5 System
	10.2.6 Graphics

	10.3 Power Status
	10.3.1 Low Battery State
	10.3.2 DS Open/Closed State

	11 Accelerators
	11.1 Divider
	11.1.1 Number of Calculation Cycles

	11.2 Square-Root Unit
	11.2.1 Number of Calculation Cycles

	12 Keys
	12.1 Input Keys
	12.2 Interrupt Handling for Key Input

	13 Sound
	13.1 Hardware Specifications
	13.1.1 Data Format
	13.1.1.1 8bitPCM Data Format
	13.1.1.2 16bitPCM Data Format
	13.1.1.3 IMA-ADPCM Data Format
	13.1.1.4 PSG Rectangular Waveforms
	13.1.1.5 Noise

	13.1.2 Channels
	13.1.3 Mixer
	13.1.4 Master Volume
	13.1.5 Sound Capture
	13.1.6 Power Control
	13.1.7 Cautions

	13.2 Sound Block Diagrams
	13.2.1 Overall Sound
	13.2.2 Channels 0 - 3 and Sound Capture 0 - 1
	13.2.3 Channels 4 - 7
	13.2.4 Channels 8 - 15
	13.2.5 Examples of Using Sound
	13.2.5.1 Normal Use Example
	13.2.5.2 Reverb Example
	13.2.5.3 Effect Example

	13.3 NITRO-Composer
	13.3.1 The NITRO-Composer Playback Method
	13.3.1.1 Sequence Playback
	13.3.1.2 Waveform Playback
	13.3.1.3 Stream Playback

	14 Wireless Communications
	14.1 Hardware Specifications
	14.2 Wireless Manager
	14.2.1 Internet Play
	14.2.2 Multi-Card Play
	14.2.3 Single-Card Play

	15 Touch Panel
	15.1 Touch Panel Structure

	16 Microphone
	17 Real-Time Clock (RTC)
	18 Internal Flash Memory
	18.1 Touch Panel Calibration Data
	18.2 Owner Information Data
	18.3 NITRO Initial Setting Data
	18.4 RTC Operation Information Data

	Appendix A. Register List
	A.1 Addresses 0x04000000 and higher
	A.2 Addresses 0x04001000 and higher (2D Graphics Engine B-related)
	A.3 Addresses 0x04100000 and higher

	Appendix B. List of VRAM Data Capacities
	Appendix C. Data Formats

