NITRO Programming Manual

Version 1.57
000000000

CONFIDENTIAL

© 2003-2007 Nintendo NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd., and are protected by Federal copyright law. They may not
be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written
consent of Nintendo.

NTR-06-0180-001-G ii © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Table of Contents

LIS)1 (= 1 P SOOI 1
1.1 SYSEM OULIINEG ...t e e e e e e e e e e e et e e aaeeeessaaareeeaaaaeeas 1
S Pt B | I @ B Tt PP 2
LI V- V1 1Y =T 0 o) YRR 3

LS I T X O I USRS 4
LI B 1T | = | =V R SREPR 4

S S T o 10T S 1Y o SRS 4

I G T 1Y/ o7 o] o 1= RSP 4

LS O N O PRSP EST 4
1.1.8 Wireless COMMUNICALIONS.cciiiiiiiiiie ittt e e st e e e e st e e e st ee e e eneeeeeeeanes 5
1.1.9 Nintendo DS Game Cardcccooiiiiieiiiiiie et e e e e e s nnbae e e e e e 5
T.1.10 DS ACCESSOMIES ...ueiieeiitiiiee e e ittt e e e ettt ee e e e ettt e e e e e taeeeeeaasbeeeeeeaasbeeaeeaanbaeeeeeaanbeeeeeeasneeaeeannees 5

L2 /= o o TV 1 - o 6
1.3 Accessing Devices Connected t0 the SUDProCESSOr.........cooiiiiiiiiiiiiiiiieeee e 8
L S = 1y (0 o 31 1Y (o o [PPSR 8
20t O | I @ 1 To [PRSP 8
1.4.2 AGB Compatibility MOAE.......ccoiiiiiiiiiiee e a e e 8

LIRS T B 1= {1 0 T= (o] [P PP POT PP 8
D22 /=Y o o T RSP 9
D T 4 1= =1 I8 1Y 1= o 4T Y PRSPPI 11
D20 S T 1Y/ = 1o Y. =T 0 o 13

2.2 NITRO Processor's INternal MEMOTYccccuuuiiiiiiiiiiee ettt e e e e e e e ae e e e e e e e e e e e e 17
D TV o N 1 SRRSO 17
222 WOTK RAM ...ttt e e ettt e e e e ettt e e e e be e e e e e annte e e e e enreeeeeenees 29
2.2.3 NO REQISIEIS ..ottt e e e e e e e e e e e e e e e raaaaaeesaaan 31

2.3 Memory Map for Game Card BOOL............coooiiiiiiiiiiieic e a e 32
3 Main Processor Core (ARMO4BE-S)oooiiiiiieiiiiee et e e e e e e e e e e e e e e aeaanes 35
3.1 Protection UNit ...t e e 35
3.2 Tightly Coupled Memory (TCM).......cccuuiiiiieiiiiee et e et e e e e e e e e e e s enanrenneees 36
3.2.1 INSIUCHON TCM ..ot et e e e st e e e et ee e e e e nnteeeeeenes 36
K O - - T O | PSPPSR 36

TR B 07 Tor o TN 1V 1= (o o PRSP 36
3.3.1 INSrUCHON CACREeiiiiiie e 37
3.3.2 Data CaAChEt e e e e e nnees 38
3.3.3 CacCh@ OPEratioNSccceiiiii et e e a e e e e e e 40
3.3.4 Optimizing the CaAChE.........uoiiiiiiiiii et e e ae e e e 41

B VA 1 SN = TV 1 (=T SO R SRR RRRPRP 42
3.4.1 Write Buffer Operationscccuuuiiiiiiiiiii e 43

3.5 ENSUMNG CONBIENCYcuuiiiiiiiiieeeee et e e e e e e e et e e e e e e e e e e e e araee s 43
G TR Tt B A 1 (=X = = Tor Q0 1Y (o o = OO 43
3.5.2 Write-Through MOAEeeeieice e 44

N I 1= o] = PRSP PPP PRSPPI 47
4.1 DISPIaY SYSIEIM ...ttt e e e e e e e e e e e e e e e e aaaaaaas 47
3 T 1 5 TSR SRR 49
4.2.1 LCD Controller SpecifiCationsccccciiiiiiiiiie e 49

4.3 DISPlay StatUS ...t e e e e e e e e e e e e e e e e e aaaaaaaas 51
4.4 DiSPlay CONLIOluuiiiiiiiiiei e e e e e e e e e e e e e e e e e e e ae e e e e e ae b rraaaaaaaaas 54
4.4.1 Top LCD/Bottom LCD Output SWItChINGcceiiiiiiiiiiiiiiiiieeeeee e 54
4.4.2 Display Control of 2D Graphics ENGIN€ Aoooiiiieeeeeeeee e 55
4.4.3 2D Graphics Engine B Display CONtrolSccccoiiiiiiiiiiiiiiiiieieeeee e 57
4.4.4 DiSPlay MOUEScoeiiiii et e e e e e e e e e e e e aaaaaaaaaas 58

4.5 DiISPIAY CAPIUIEuuiiiiiiiiieee et e e e e e e e e e e e e e et e e e e e e e aeeeeeeeeeennarrrrarraaaaaaas 67
© 2003-2007 Nintendo i NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

4.6 MaSter BrightNESS ettt e e e e e e e 71
I B N C v T o] 105 TS UURRPRRRRRN 73
5.1 Controlling the 2D DiSPIAYeeiiiiiiiiiiie ittt e e st ee e e s s e e e e s annaeeeeeanneeens 73
3 = 1 € T SRR 77
oI IR = 1€ 1V o T [SRS 77
IV = 1€ 0o o1 1 (o RSO RR 81
B5.2.3 Character BGcooiiiiiiiie ettt ettt e e et e e e et e e e e e e ae e e e eees 88
5.24 BIiMap BG.. ..o a e 103
IV S T = € o7 (o SRS 105
5.2.6 BG Rotation and Scaling (Affine Transformation)............ccccceeviiiiiiiiiciie e, 106

ST T © | = N PR 109
5.3.1 OBJ Display CONrOl.........cooiiiiiiitiiieeee et e e e e e e e e e 111

ST 20 © 7 1Y SRR 112
5.3.3 Character OBUJccuuiiieiiiiiee e cieee ettt e ettt e e e sttt e e e s et e e e e e ant et e e e e anrtaeaaeearreeeaeaanes 121
5.3.4 BIMap OBJ ... e e e e 128

o S = 7= Vo] (o [(o] o JS PRSPPI 135
TS I 7o) o] gl o= =1 1 1= SRR 136
5.5.1 Standard Palettescoociiiieiiiiiiiee et e e 136
552 Extended Palettes..... ..o 137

5.8 WINAOWS ...ttt ettt e e e e e e e e e e e aa b ee bttt eeeeaeeeee e e e nnnesneeeeeeeeesaannne 142
5.6.1 Precedence of WINAOWScccuuiiiiiiiiiiie ettt e e snee e e e 145

5.7 Color Special EffECESuuuiiiiiiiiiiiie e e 146
TS T V][0T o PP SPPPRR 150
RS B B 1T o] F= 1Y o] 1 Y/ TP PPPPPPRR 151
I 1B N €1 r-To] [Tt J USRS ERTURRRRRRIOt 153
T T B T o= YA 0 o] 1 o PSR 155
N A € 1=Yo 0o 1= (VA =T oo [L= PR 158
G B O AV 1SRRI 158
6.2.2 Coordinate SYSIEMcooiiiiiie e 158
6.2.3 Coordinate Transformations.............occuiiiiiiiiiiee e 159
6.2.4 Projection Transformationsccooiiiiiiiiiiiiiiiieeee e 161
GV ST B =Y o (o I = 01T o o o SRR 163
6.2.6 Geometry COMMANGSccccuiiiiiiiiiiee ettt e e e e e e e e et e e e e e e e e e e e e e aanabeaeees 167
6.2.7 Swapping the Rendering Engine's Reference Data..............cceeeeeeiiiiiiiiiiiiiiiiiiiieee, 178
B.2.8 VIBWPOI ...ttt ettt e e e e e e e e e e e e e e e e e e —————————————————————— 180
02 B |V = {4 o7 S UEUPRRP 181
G20 0 T 1N T o | QSRR 189
02 I |V = =T 4T PSP UPRT 190
6.2.12 POolygon AHFIDULEScooiiiii e 196
2 G T o] Yo o o [OO 200
6.2.14 TeXtUre MapPingcoueuiiiiiiiiieee ettt e e e e e e e e e e e e aeaaeeeeeeeeeaeearaaaarana, 206
G T I =Y SRR 216
G LT = | (USRS 220
6.2.17 Warnings Regarding Calculation Precision...........ccccccccooiiiiiiiiiiiiiiieeeeeeeeeeeeeee, 225
NTR-06-0180-001-G iv © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.3 Rendering ENGINEo it a e e e e e 226

G TRy B O AV Y 1 ST 226

6.3.2 Rendering Methods. ... 228

6.3.3 Initializing the Rendering BUTfErSouiii oo 231

6.3.4 RASIEIIZING ..o e e e 235

TR S T =5 4 (U =T PP EUERRRR 244

B.3.6 AIPNA-TESE ..o e ————————— 258

R I A [o] g F= B =1 1= o o [o P UPP P 258

SRS S B =To (o [V =T (] T [P URPR 259

SR e B wloTo I =] =T o Vo [T T [P UPR 260

6.3.10 ANti-alIaSING ... e e e e e e 264

G TR B = | USRS 267

6.4 2D Graphics Features you can Apply to the 3D Screen after Renderingccccceeeenneen. 268
B.4.1 RASLEN SCIOIl ...eeiiiiiiiie et e e e e st e e e et e e e e st e e e e e anrae e e e aneas 268

6.4.2 Order of Display Priority with @ 2D SCIreen..........cccuiieeiiiiiie e 268

I B T g To [1V S EUEPRURR 269

G S 0o (o g = § =T o1 £ OSSPSR 270

A SRR 273
G T I 0 =Y PR PURPTRPP 279
S I [01 (=Y ¢ (U] o] £ TSSO PO 281
9.1 Interrupt Master Enable Register...... ..o 281

9.2 Interrupt ENable REQISTEN......ooo i 282

9.3 Interrupt ReqUest RegISIEr. .. .cooi i 283

9.4 INterrUPt CAULIONSeeeiiiiiiieeeeeec et e e e e e e e e e e e e e e aaeeeaenanes 284
9.4.1 Clearing IME and IE ..ot e e e e e 284

9.4.2 MUIPIE INTEITUPLS .oeieeiee it e e e eas 284

9.4.3 Interrupt Delays During DMA Operationcccceeoiiiiiieeiiiiiie e 284

9.4.4 Interrupts from ARMY7 ... 284

O oY= Y/ F= T P= o =T o T o | PRSP 285
TO.T SIEEP MOE..... ..ot eeeanbeeaaaaeeas 285
10.2 Controlling Various POWETN SUPPIESceeiiiieiiiiiiiiiieeeeeee e 286
022 TS T T o o RO 286

LK O I = - Vo7 o | | PO 286

02 T 1K SRR 286

O S 1V [To7 o o] To T L= TSRS 286

T0.2.5 SYSEBIM .ot e e e e e e e e 286

LEO I I €Ty T o] o] [TP PSSR 287

T0.3 POWET STALUS ...ttt e e e ettt e e e s et e e e s eatb e e e e s nnteeeeeesseaeeaesareeaesanns 290
10.3.1 Low Battery State........coueeuiiieeieee e 290

10.3.2 DS Open/CloSEd StaAt.......uuuiiiiiiiiiieiei it 290

B oo [T = o] TSRO 291
Tt T YT 1 USRS 291
11.1.1 Number of Calculation CYCIES...........cooiiiiiiieeeeeee e 293

11.2 SQUArE-ROOT UNito e e e e e e e e ae e e e 294
11.2.1 Number of Calculation CYCIES...........cooiiiiiiiieeeeeee e 295

L2 G2) T RPRP 297
2 T [0 o 10T = V£ S 297
12.2 Interrupt Handling for KEY INPUL.........cooiiiiiiiii e 298

G TS Yo T [o USRS RS 299
© 2003-2007 Nintendo \Y NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

13.1 Hardware SpecCifiCations ..ot 300
1311 Data FOMMaAL ..ot e e e e e e e e e e eaaa e s 300

S Tt I O =T o o 1= £SO 302

RS Tt T T /13 =Y RO 302

13.1.4 MaASIEr VOIUME ..ottt e e e e e e e e eeeea e s 303

13.1.5 SOUNA CAPIUIE ...ceeiiiiiiie ettt e e e e e e e e e e e et b e e eeeeaaas 303

S Tt TS T 01T 7 o 1 o PSP SR 303

S Tt T A 7 111 o o T RSP 303

13.2 Sound BIOCK DIi@gramsc.uuiiieiiiiiiie sttt e ettt e e e s et e e e e s st e e e s ataeeeeeennteeeeeesannneeeanes 304

S T2 T @ V7= = | 1S T 11 o o PSSR 304

13.2.2 Channels 0 —3 and Sound Capture 0 = 1coooiiiiiiiiiiiieeeeeee e 305

13.2.3 ChANNEIS 4 - 7. ettt et e et e e et e e e et e e e naree e e e nnaee s 307

13.2.4 Channels 8 - 15 ... ittt e st e e et e e e e et e e e e e e e e e annaeeeas 308

13.2.5 Examples of USING SOUNG..........uuiiiiiiiiiiie et e e e e 309

13.3 NITRO-COMPOSETteeeiiiie ettt et e e e e e e e e e e e et e e e e e aeeaeeeseessabssbereeaaaaeeaaeas 312
13.3.1 NITRO-Composer Playback Method.............cccccooeeiiiiiiiiiiiieeeeee e 312

14 Wireless COMMUNICALIONSiuiiiiee ittt e e e e e e e e e e e et e e e e et e e e e e s nnteeeeeeenteeeeennnes 313
14.1 Hardware SPecCifiCationsccoo i 313
T14.2 WIrelIESS IMANAQGETeeieiiiee ettt e e e e e e ettt et e e e e e e e e e e e nnnneseeeeeeeee e s 313
1421 INEEIMNEE PIAY ... e e e e e e e e e e e e 313

14.2.2 MUI=CArd PIAYooiiiiiiiiii ettt et e e et e e e e s e e e e e nnteeeeesannneeeas 313

14.2.3 SiNGIE-Card PlAyccuviiiiieiiiiiee ettt et e e e e e s e e e e e e e s anneeeas 314

15 TOUCK PANEI ...ttt et e e e e e e e s e ettt e e e e e e e e e e nnnnneeeeeeas 315
15.1 TOUCH Panel STTUCIUIEeviiiiie ettt e e et e e e s st ee e e s snaaeenanes 316

LG\ 1o (o] o] g o] o 1= SPPRRPPPRP 319
17 Real-TIME ClOCK (RTC) ...uiiiiieiiiiiiiee ettt ettt e e st e e e e et e e e e e ettt e e e e e nbeee e e e e nnteeeeeeanteeeeannnes 321
18 Internal FIash MEMOIYccoo oottt e e e e e e e e e e e e e e aaaaaaans 323
18.1 Touch Panel Calibration Data............cccoiiiiiiiiiiiiiiie et e e nneaee e 323
18.2 Owner INformation Data........c..eeiiiiiiiiiee et e e e e e e s anaeee e 323
18.3 NITRO Initial Setting Datauuuiiiiiiiiie e 324
18.4 RTC Operation Information Data.............coooiiiiiiiiiiiiiiieece e 324
APPENdiX A.REGISTEN LiSt.... oo e e e e e e e e e e e e 325
A1 Addresses 0Xx04000000 and HIGherccccooiiiiiiiiiiee e 325
A.2 Addresses 0x04001000 and higher (2D Graphics Engine B-related)...........ccccccceevviiiienennnns 348
A.3 Addresses 0x04100000 and NIGNETcociiiiiiiii it 350
Appendix B.List of VRAM Data Capacitiesccccuriiiiiiiiiiece e 353
Appendix C.Data FOrMALS.............uiiiiiieeee e e e e e e e e e et ae s 355
NTR-06-0180-001-G Vi © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figures
Figure 1-1 : Overall System BIOCK Diagramccccuiiiiiiiiiiee et a e e e 1
Figure 1-2 : ARM9 and ARM7 Overall MemMOry MaPScoceeiiiiiiiiiiieiiee e e e e e e e e e e e e s eee s 7
Figure 2-1 : Transfer Sequence from Main Memory to Work RAM (Basic Cycles)..........cccccoeveivnvnnnnnnn. 14
Figure 2-2 : Transfer Sequence from Main Memory to Work RAM (Worst Case)ccccceeveveivvvnennenn. 14
Figure 2-3 : Transfer Sequence from Work RAM to Main Memory (Basic Cycles)...........ccccvuvvrivreeennnn. 15
Figure 2-4 : Transfer Sequence from Main Memory to VRAM (Basic Cycles)........ccccceveeeeeeieiicccinnrinnee. 15
Figure 2-5 : Transfer Sequence from Main Memory to VRAM (Worst Case)ccceeeeeeeeeeeiieecccvninennen, 16
Figure 2-6 : Transfer Sequence from VRAM to Main Memory (Basic Cycles)......c.ccccccccevveviiiriiriennnnnn. 16
Figure 2-7 : Texture Image SIot MemMOry Mapccccuuiiiiiiiiiie e a e 22
Figure 2-8 : Texture Palette SIot MemMOry Mapcc.uuiiiiiiiiiie e e e 25
Figure 2-9 : BG Extended Palette SIot MemMOry Map........ccoooiiiiiiiiiieiie e 25
Figure 2-10 : OBJ Extended Palette Slot MeMOry Mapccooiiiiiiiiiiiiieecee e 26
Figure 2-11 : Memory Maps for Various Settings of ARM9, ARM7 Shared Internal Work RAM 30
Figure 2-12 : Memory Map for Game Card BOOLcoooeiiiiiiiiiiieeiie e 32
Figure 3-1 : Block Diagram of the Main Processor COrecccuuueiiieiiieeee it 35
Figure 3-2 : Structure and Actions of the Instruction Cacheccccccoee i 38
Figure 3-3 : Structure and Actions of the Data Cacheccoocciiiiiiiiiii e 39
Figure 3-4 : Cache Line State Transitions (Write-Back MOdE)ccooiiiiiiiiiiiiiiiiieeeeeeee e 44
Figure 3-5 : Cache Line State Transitions (Write-Through Mode)coooiiiiiiiiiiiiiiiie e 45
Figure 4-1 : Display System BIOCK Diagramccooiiieiiiiiiiiiiiiiiieeeee e e e e e e e e e e 48
Figure 4-2 : LCD SCaN TIMING ...uuuitiiiiiiiiiiee e e e ettt e e e e e e e e e st e e e e e aaaeaeesesasnsasbsesneeeaaaaeesannsnsreseeees 49
Figure 4-3 : Display Mode Selection (Display Output A Side Only)coooiiiiiiiiiiiiiieeiee e 59
Figure 4-4 : Display Mode Selection (Display Output A Side Only)coooiiiiiiiiiiiiieeiee e 60
Figure 4-5 : Example of Displaying the Bitmap OBJ Results of 3D Rendering.........cccccccoeeevivcciviinnnnnnnen. 62
Figure 4-6 : VRAM Address Map Of the LCD PiXEIScoeeiiiiiiiiiiiiiieieeeeee e 63
Figure 4-7 : Example of the Motion Blur Effect that Uses the Display Captureccoeeeeciiviiiieennn.n. 64
Figure 4-8 : LCD Pixel EVEN/ODD Map of the Main Memory Display FIFO Register..............ccccuvvvnee... 66
Figure 4-9 : LCD Pixel Map of the Capture Data (When the Capture Size is 256 x 192 Dots)................ 69
Figure 5-1 : Out-of-Area Processing Method DifferenCes..........eeviiiiiiiiiiiiiiiiiieeeee e 84
Figure 5-2 : TEXt BG SCrEEN SZEveiiiiiiii ittt e e e e e e e e e e e e e e e e enranreees 86
Figure 5-3 : AffiN€ BG SCrEEN SIZE....cooiiiii ittt e e e e e e e e e e e e e e aareaaeees 87
Figure 5-4 : VRAM Offset for BG Character Data..............ccccuuiiiiiiiiiiiic et 89
Figure 5-5 : VRAM Offset for BG SCreen Dataccciviieiiiiiiiiiiieieeee et 90
Figure 5-6 : 256x256—Dot Address Mapping (TEXt BG).......ccccuuiiiiiiiiiiie e 92
Figure 5-7 : 256x512—Dot Address Mapping (TEXt BG)........ccueiiiiiiiiiiie e 92
Figure 5-8 : 512x256—Dot Address Mapping (TEXt BG).......cccueiiiiiiiiiiie e 93
Figure 5-9 : 512x512-Dot Address Mapping (TEXt BG)........ccuuiiiiiiiiiiie e 93
Figure 5-10 : Character Data Address Mapping (Text BG 16-Color Mode).........cccceeeeviiiieeeeniciiineeeee 94
Figure 5-11 : Character Data Address Mapping (Text BG 256-Color Mode).........ccccceevveveeeiiiiieeeeenen. 95
Figure 5-12 : 128X128-Dot Address Mapping (Affin€ BG)........cccooiiiiie i 97
Figure 5-13 : 256x256—Dot Address Mapping (AffiNe BG)c.ueiiiiiiiiiiie e 97
Figure 5-14 : 512x512-Dot Address Mapping (Affin€ BG)c.ueiieiiiiiiiee e 98
Figure 5-15 : 1024x1024—Dot Address Mapping (Affin€ BG)cooiiiiiiiiiiiiiee e 99
Figure 5-16 : Character Data Address Mapping (Affin€ BG)cceoviiiiiieiiiiiee e 100
Figure 5-17 : Character Data Address Mapping (256-Color x 16-Palette Character BG)..................... 102
Figure 5-18 : OffSet SChEMALICcciviiiie e e e s et e e e e st e e e e e sareeeaeeanes 105
Figure 5-19 : BG Rotation and SCaliNgcuiiiiiiiiiiiee ettt eteeee et e e e s enaeeeeanes 106
Figure 5-20 : OAM Memory Map (Add 0x400h to 2D Graphics Engine B Addresses)cccceeeeenee 112
Figure 5-21 : Affine Transformation of Double-Size OBJ Field...........cccccooiiiiiiieiiiiiiie e 114
Figure 5-22 : Problem of OBJ Wrappingcooiiiiiiiiieee e eeiiiee e sttt e e sttt e e e st eee e s snteeeeesaseaeeeanes 115
Figure 5-23 : OBJ Rotation and SCalingccoiiiiiiiiiiiiiiiiie ettt e e s e e e s sneaeeeanes 120
Figure 5-24 : Character Data Address Mapping (16-Color Mode Character OBJ)c..cceccveeeeennnee. 123
© 2003-2007 Nintendo vii NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

Figure 5-25
Figure 5-26
Figure 5-27
Figure 5-28
Figure 5-29
Figure 5-30
Figure 5-31
Figure 5-32
Figure 5-33
Figure 5-34
Figure 5-35
Figure 5-36
Figure 5-37

Figure 5-38 :

Figure 5-39
Figure 5-40
Figure 5-41
Figure 5-42
Figure 5-43
Figure 5-44
Figure 5-45
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10

Valid Command

Figure 6-11

Valid Command
Figure 6-12 :

Figure 6-13
Figure 6-14

Figure 6-15 :

Figure 6-16
Figure 6-17
Figure 6-18
Figure 6-19

Figure 6-20 :
: Quadrilateral Polygon shapes that yield unintended shapes...........ccccccoecciiieiiiceee e, 201

Figure 6-21

NITRO Programming Manual

: Character Data Address Mapping (256-Color Mode Character OBJ)c..ccccvveeeennes 124
24 B 1V =T o] o] o T PP 125
: 1D Mapping when Character Name Boundary is 32 Bytescccocoveieeiiiiiiee e 126
: 1D Mapping when Character Name Boundary is 128 Bytescccocvveviiiiiieeiiiiieeeens 127
: 2D Map of Bitmap OBJ Data VRAM (128 Horizontal DotS)...........cccvveeeviiiiiieeeiiiiiieeeees 131
: 2D Image Map of Character Name VRAMccuviiiiiiiiiiee et 131
: 2D Map of Bitmap OBJ Data VRAM (256 Horizontal DotS)...........ccccvveeviiiieeeeiiiiieeeeeas 132
: 2D Image Map of Character Name VRAMccuuiiiiiiiiiiee et 132
: 1D Map of VRAM with 8x8-Dot Characterscccueeeeiiiiiiiiiiiiieeeeeeee e, 133
: 1D Map of VRAM with 16x16-Dot Charactersccccoooeiiiiiiiiiiieiiieeeeeeeeeee, 134
1 Backdrop SChemMALIC.......eiiii e 135
: Standard Palette RAM Addresses (Add 0x400h for 2D Graphics Engine B) 136
B Ll 7o) (o) £ G LGB =11 1 (- RSP 136
256 Colors X 1 Paletfec.veeieeiiieiee e 136
: BG Extended Palette MemOry Mapcoooiiiiiiiiiiieieee e 138
: OBJ Extended Palette Slot Memory Mapueeeeiieiiiiiiiiiiiiiiieeeeeee e 141
D Altering @ WINAOW Shapecoiiiiiiiiiiee ettt e e et e e e e eeesenes 144
: Display Priority of Window 0, Window 1, and the OBJ Windowccccvviiieeeennen.n. 145
: Alpha-Blending Display PriOFItYcooiiiiiiiiiiee e 148
: Display Changes According to MOS@IC SiZ€ccociiiiiiiiiiiiiiiiee e 150
B TS o] F= YV 4 o 41 Y2 PR 151
: 3D Graphics Hardware BIOCK Diagram...........ccuuieiiiiiiiree e 153
: Right-Handed Coordinate SyStem............ooiiiiiiiiiii e 158
: Coordinate Transformation FIOW Chartcccoceiiiiiiiii e 160
T Perspective ProjeCtioNSooooiiiiee e 161
- Orthogonal ProjECHIONSuuiiiiiiiiiiee et aa e e 162
: Z-Buffering and W-Buffering (Perspective Projection)...........cccccceeviiiniiiiciiee e 164
: Z-Buffering and W-Buffering (Orthogonal Projection)............ccceeeeieireeniiiiiee e, 166
: Transferring Packed and Non-Packed Commands.............cccveveeeeeiiiiiiiiiiiiiiiiieeeeeeeeee, 168
: Continuous Writing to the Geometry FIFO using STM or STRD Instructions.................... 169
: Case 1: Preventing a Command without Parameters from Being the First
... 170
: Case 2: Preventing a Command without Parameters from Being the First
... 171
When the First Valid Command has no Parameterscccccooviiiiieiiiiine e 172
: Schematic of the Main Geometry Command Processes..........cccocuveeeeeeeeeeeeiiiccccciirveneen. 177
: Size and Position of the VIEWPOrt............oooiiiiii e 180
Material Color SChEMALICcoiiiiiiiie e e s 190
: Directional Vector Relational Diagram (Diffuse Reflection Color)cccceveeiiiiiiennnnns 190
: Directional Vector Relational Diagram (Specular Reflection Color)ccccceevviiiveeennns 191
: Specular Reflection ShiNINESS..........uuviiiiiiiiii e 193
: Order in which the Vertex commands iSSUES VErtiCESccuvvveiiiiiiiie e 200
Line segment using sides from a triangle ..., 201

Figure 6-22 : The Process for Adding the X Coordinateccccceeiiiiiiiiiee i 204
Figure 6-23 : Polygon Clipping Color DiStOrtioNcuuiiieiiiiiiiee e iiiiiie e eeiiiie e et e e e s enieeeeeeanes 205
Figure 6-24 : Texture Image Space (for an Image of 1,024x1,024 TEXEIS) ...ceeevviriireeiiiiiiieee e 206
Figure 6-25 : Texture Image Space (NO REPEALS)........cciiiiuiiiiiiiiiiii e 210
Figure 6-26 : Texture Image Space (With REPEALS)covueiiiiiiiiiiii e 211
Figure 6-27 : BOX t0 BE TESIEAeoiiiiiiieiiie e 216
Figure 6-28 : Release of Shared Vertices Among Connected Polygons (Clip Coordinate System)...... 224
Figure 6-29 : Color Buffer's FIFO OPErationueiiiiiiiiiieiiiiiieee s csiiie ettt et e e e st e e e e e snreeeeeeanes 228
Figure 6-30 : Rendering Engine Blanking Periods........ ..o 229
Figure 6-31 : VRAM Mapping of Clear Images (Texture Image Slots 2 and 3 Shared)...........ccccccce.. 233
NTR-06-0180-001-G Viii © 2003-2007 Nintendo

Released: July 27, 2007

CONFIDENTIAL

Figure 6-32

Figure 6-33 :

Figure 6-34

Figure 6-35:
Figure 6-36 :
Figure 6-37 :
Figure 6-38 :
Figure 6-39 :
Figure 6-40 :

Figure 6-41
Figure 6-42

Figure 6-43 :
Figure 6-44 :
Figure 6-45 :
Figure 6-46 :
Figure 6-47 :
Figure 6-48 :
Figure 6-49 :

Figure 6-50
Figure 10-1
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 15-1
Figure 15-2
Figure 16-1

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

2 Clear IMage OffSEE ..o e e e e e s e e e e e e e ane 234
ShAdOW VOIUME ..ttt rb e et e e sbe e e nnnee s 238

: When Drawing a Shadow Polygon for a Maskccccooeiiiiiei i 239
When Drawing the Shadow Polygon for Renderingcccccovviiiiiie e 239
Technique for Rendering a Shadow on a Translucent Polygoncccccoovvcieeeeiennen. 240
Transformations Using @ TOON Tableoooiiiiiiiiiiiiiie e 241
Texture IMage SamPIiNGocveiii et e e e e e e e e e s neae e e e s 244
Applying an 8x8 texel Texture to an 14-dot Wide Polygon..........coooiiiiiiiiiiiiiiceeeeee, 244
Applying an 8x8 texel Texture to an 8-dot Wide Polygon..........cccccoeiiiiiiiiiiiiiiiieeeen, 245
: Displaying Front and Back Surfaces of an LCDccccceiiiiiiiie i 245
Y L =N T F= T =IR[P 252
Palette Base and Palette Address (4-color palette).........ccccoovuveeieiiiiiiiii e 255
Palette Base and Palette Address (16-Color Palette and 256-Color Palette) 256
Palette Base and Palette Address (4x4 Texel COmpression).........ccccvvveeiiiveeeeeiiiieeeenenns 256
Palette Base and Palette Address (A315, ABI3)......ccooiiiiiiiiiiiiieee e 257
Depth Values and FOG DeNSItYcooiiiiiiiiiiiee e 262
LN g (= 1= o PRSP 265
Final LCD Image Output (Anti-AlESING)oveiiiiiiiee e 266
2 H Offset for @ 3D SUIMACEveiiiiiii e 268
: POWCNT: Graphics Power Control REGIStEr...........coiuiiiiiiiiiiiiee e 287
: Sound Circuit OUtling Diagramc.uuiiiiiiiiiiie e e e et e e e e e snaeeeeenes 299
: Pulse Width Modulation (PWM)........cueiiiieiiiiee ettt e e e e e e sneaeeaenes 303
: Overall Sound BIOCK Diagramoiueiiieiiiiiee ettt e et e e e e e s aneaeeeanes 304
: Channel 0-3 and Sound Capture 0-1 Block Diagramccccceeviiiiiieeeiiiiieeeessiiieee e 305
2 Channel 4-7 BIOCK DiIagram...........coiiuiiiieiiiiiiee e eeiiiee e e st te e e e esteeeeeesstaeee e e snteeeeesanneaeesanes 307
2 Channel 8-15 BIOCK DiIagram..........ccuuiiieiiiiiiie et e et ee e st e e s s e e e s s eeeesnneeeeeanes 308
: Example of Sound Usage (NOIMa)...........coeeiiiiiiiie ettt e eneaeee e 309
: Example of Sound Usage (REVEID)cooiiiiiiiiiie e 310
: Example of Sound Usage (EffECt)eoiiiiiiiiieee e 311
: Comparison of LCD Dot Size and Touch Pen Sizeccoocociiiiiiiiiiiieceeeeeeciee, 316
2 TOUCK Panel STrUCKUIEeeiiiiiie e 317
- Microphone SCheMALICuuuviiiiiiiiiie e 319
iX NTR-06-0180-001-G

Released: July 27, 2007

NITRO Programming Manual

Tables
Table 1-1 : Overview of LCD Screen SpecifiCationNsSeeeiiiiiiiiiiiiiiiiieeee e e e 4
Table 1-2 : Differences in NITRO Consoles by Destination Regioncccoooviiiiiiiiiieiieeee e 8
Table 2-1 : Memory Configuration and SpecifiCationscoooiiiiiiiiiiiieee e 9
Table 2-2 : DMA Transfer Speeds between Internal Work RAM and VRAMcccooiiiiiiiiiieeei e, 9
Table 2-3 : DMA Settings to Function as a Look-Ahead Bufferccccoviiieiiiiei e, 10
Table 2-4 : DMA Transfer Speeds between Main Memory and Internal Work RAMccccvvveeeeeenn. 10
Table 2-5 : DMA Transfer Speeds between Main Memory and VRAMoviiiiiiiiiiiiiiciieieeee e, 10
Table 2-6 : BASIC ACCESS CYCIES......ccci ittt ettt e e e e e s e e e e e e e e e e e e e e e e s e s aereaaaaeeeas 13
Table 2-7 : Inserting Waits According to the Access Start ADdress.........cccccvvveeieeiiiee e, 13
Table 2-8 : Options FOr VRAM USE ...ttt e et e e e e e e e e e e e e st aaeeaaaaeeeas 17
Table 2-9 : VRAM-A and VRAM-B AlIOCALIONSccoiiiiiiiiiiiiieeeee et 27
Table 2-10 : VRAM-C and VRAM-D AlIOCALIONScoiiuuiiiieeiiiiiiie ettt e e e e e e 27
Table 2-11 : VRAM-E AllOCAtIONSoooiiiiiiie ettt e e e e e e e e e e e 27
Table 2-12 : VRAM-F and VRAM-G AllOCALIONScoiiuuiiiiiiiiiiiiie ettt 28
Table 2-13 : VRAM-H AlIOCALIONScoiiiiiteeee ettt e e e e e e e e e e e e s 28
Table 2-14 : VRAM-I AllOCATIONSccoiiiiiiee ettt e et e e e e e e e e e e e e e e e as 28
Table 2-15 : Result of Accessing an Undefined Registerooovviviiiiiiiiiiii e, 31
Table 3-1 : Cache SPECIfiCAtIONS ..o e e e e e e e reeaaaae s 37
Table 3-2 : CaChe OPEratioNS..........ccoii it e e e e e e e e e e e e e e e e e e sereaneeeaaaeeeas 40
Table 3-3 : Access Modes When the Data is Being WIitteneeiiiiiiiiiii e 42
Table 3-4 : Cache Line States (Write-Back MOdE)ccocuuiiiiiiiiiiie e 43
Table 3-5 : Cache Line States (Write-Through MOdE)c..uuiiiiiiiieie e 44
Table 4-1 : Selector and Register Selection FIag Mapceeiiiiiiiiiiiiiiieeeeee e 47
Table 4-2 : LCD CIOCK SPECIfICAtIONSuvviiiiiiiiieiee it e e e e e e e e e e areaeaaaeeeas 49
Table 4-3 : LCD Scan Timing SPecCifiCationsccccocuiiiiiiiiieiie e a e 50
Table 4-4 : Period when Graphics Engines ACCESS MEMOIYccooiiiiciiiiiiiiiicee e 52
Table 4-5 : Overview of the Display Modes (2D Graphics ENging A)ccovviiiiiiiieeeeiiiicceeee e, 58
Table 4-6 : Overview of the Display Modes (2D Graphics ENging B)c.ccvvveeiiiiiieeiiiiiiiieeee e, 58
Table 4-7 : DMA Configuration when Using the Main Memory Display Mode...............cccccvvviivieiieeeeeennn. 65
Table 5-1 : List of BG Modes (2D GraphiCs ENGINE A)eeuiiiiiiiiiiieee ettt ee e e 77
Table 5-2 : List of BG Modes (2D Graphics ENGINg B)uuiiiiiiiiiiiii i a e 78
Table 5-3 : BasiC Features 0f BG TYPES....uuuiiiiiiiiii ittt e e e e e rreeeaaae e 79
Table 5-4 : Specifications fOr BG TYPES ...uuviiiiiiiii e e e e e a e e 80
Table 5-5 : Screen Sizes (2D GraphiCs ENGINE A)......uuuiiiiiiiiiieiiee oottt ee e e e e e e 83
Table 5-6 : Screen Sizes (2D GraphiCs ENGINE B).......cccoiiiiiiiiiiiiiiiie ettt 84
Table 5-7 1 OBUJ OVEIVIEWeeiiiiiiiiiiiee ittt et e e e ettt e e e st e e e s et e e e e aanbe e e e e e e steeeeeansteeeeeenees 109
Table 5-8 : Rendering Cycle Count and Number of OBJ Displayable on One Line.............ccccceeeeenneen. 110
Table 5-9 : OBJ Shape and OBJ Size SEetliNgScccuviiieiiiiiie et 116
Table 5-10 : Character OBUJcccuuuiiiiiiiiiieie ettt et e e e e e e e e e st e e e e s ansbe e e e e aasteeeeeenseeeeeeaneees 118
Table 5-11 1 BitMap OBU......ueeeiiiiiii et e e e e e e ettt e e e e e e e e e e e e e ebaaereeeaaaaaas 118
Table 5-12 : Starting Character Name Boundaries for OBJ Attribute 2ccccoooiiiiiiiiiiiiiiiieeeee, 121
Table 5-13 : Starting Character Name Boundaries for OBJ Attribute 2ccccooiiiiiiiiiiiiiiiieeeeeee, 122
Table 5-14 : Character Name BOUNGANEScooiiiiiiiii ettt e e e 133
Table 5-15 : Palettes and BG TYPES.....ccooiiiiiiiiiieiie ettt e e e e e e e e e e et ra e e e e e e e s 139
Table 5-16 : Color Special EffECLScccuuiiiiiiiiiie e 146
Table 5-17 : Color Special Effects and ProCeSSiNg..........occuuiiieiiiiiiiee e eesiee e siiee e e sniee e 147
Table 6-1 : Capacity of Polygon List RAM and VerteXx RAMoccoiiiiiiiiiiie e 154
Table 6-2 : Geometry Engine SpecCifiCations..........ccuuiiiiiiiiiiie e e 158
Table 6-3 : Geometry Commands (in Command Code Order)cccococuveereiiiiiiieeeeriieeeeeeiiee e 173
Table 6-4 : Number of Geometry Command Run Cycles & Timing Related to Command Issue
(Ll o] 10100 E=TaTe I @7 oTe [N @] o[- o PR 174
Table 6-5 : PLTT_BASE Values and Shift VOIUMESuuuiiiiiiiiiciiieeeeee e 212
NTR-06-0180-001-G X © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Table 6-6 : Vertex RAM Consumed and the Maximum Number of Polygons Stored per Primitive Type..223

Table 6-7 : Rendering Engine Specification LiStccuiiiiiiiiiie e 226
Table 6-8 : Overview of Rendering Enging FEatures..........cc.eoviiiiiiiii i 227
Table 6-9 : Buffes in the Rendering ENGINEooiiiiiiiiie et 228
Table 6-10 : Rendering Engine Timing SpecifiCationsccooiiiiiiiiiiiiiiie e 229
Table 6-11 : Maximum Polygons Rendered per Line and Fill Rate (Calculated Values)....................... 230
Table 6-12 : Texture Blending Equations (100N table)cooiiiiiiiiiiiii e 242
Table 6-13 : Texture Blending Equation (Highlight Shading)........ccc.ceeiiiiiiiiiiii e, 243
Table 6-14 : Texture Blending Equations (Decal MOdE)cvviiiiiiieiiiiiiiee et 246
Table 6-15 : Texture Blending Expressions (Modulation MOde)cccueiieiiiiiiiieeiiiiiee e 247
Table 6-16 : List Of TexXture FOMMALSooiiiiiiiii e 248
Table 6-17 : TeXEl COIOr VAIUESccuuiiiiiiiiiiie ettt ettt ettt e e se e e nee e 251
Table 6-18 : Equation When OL-Blendingooueiiiiiiiii e 258
Table 6-19 : Fog-Blending EQUALIONSueiiiiiiiiiie e ee e 263
Table 6-20 : Anti-aliasing EQUALIONS ... e e 264
Table 6-21 : Anti-Aliasing and Alpha-Blending with @ 2D Surfaceccccceiiiiiiie e 266
Table 7-1 : Processing Details for the Address Update Method ..., 275
Table 7-2 : Register Configuration (STEP 1) ..eeviueiiiieiiiiie e e 276
Table 7-3 : Register Configuration (STEP 3) ..vciiueiiiieiiiiie e e 277
Table 7-4 : ARM9-DMA Parallel Start Category Chart..........ccccoveviiiiiee i 277
Table 10-1 : Conditions for Waking from SIeep MOEc.coveiiiiiiiie it 285
Table 10-2 : Access to Memory and Registers when Clock Signal is Stoppedcccccevviiieeeeennneen. 288
Table 10-3 : Battery State Datacoooiiiiiii e 290
Table 10-4 : DS Opened/Closed State Data.............coooiiiiiiiiiiiiiiiie e 290
Table 11-1 : Calculation Bit Count and Calculation Cycle Count by Divider Mode.............cccccvveennnnee. 293
Table 11-2 : Input Bit and Calculation Cycle Count by Computation Mode...............cccccovvviiieeeneeennnnn. 295
Table 13-1 : Duty Ratio and PSG Rectangular Wave Waveforms...........ccccccoveeiiii e 301
Table 13-2 : Overview of Data Formats and Playable Channelscccccceiiiiiiiiiiicne e 302
Table 13-3 : Switch Input Priority from Channels 1 and 3 to the MiXer..........cccovviiiiiiine e 306
Table 14-1 : Wireless Communications Hardware Specificationsccccceeeeiieeiiiiiiiiiiiiieeeeeeeee, 313
Table 15-1 : Touch Panel INput Data..........ooooiiiiiiiicece e 315
Table 16-1 : Ranges of Possible Settings for Gain and Amplitude Resolutionccccccooviiereeeennee. 319
Table 16-2 : Microphone Input Values when there is N0 Soundcceeeeeiiiiiiiiiiiiiiiiieeeeeeeee, 320
Table 16-3 : Guaranteed Microphone INPUt RANGES.........c.uuiiiiiiiiiiiie e 320
Table 17-1 1 ReaAI-TIME Dat@......coooiiiiiiiee e 321
Table 17-2 : Settings for Alarm 1 and AlAIM 2........ceeiiiii et e e e e e e e s 321
Table 18-1 : Owner INformation Data.........ccoouuiiiiiiiii e 323
Table 18-2 : NITRO Initial Setting Datacooiiiiiiiiiiieeeecee e 324
Table 18-3 : RTC Operation Information Data...............coociiiiiiiiiiiic e 324
© 2003-2007 Nintendo Xi NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G Xii © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Revision History

Version Date Description
Fixed typos in Figure 5-6, Figure 5-15, and Figure 5-26.
1.57 2007/07/12 Added a statement that the power management function for the sound circuitry has
not been disclosed.
Added a detailed figure about boxes that are tested with the BoxTest command of
1.56 2007/05/17 the geometry engine. (The figure numbers after 6-27 also changed because Figure
6-27 was added.)
Changed the term for the headset to the official name “Nintendo DS Series
1.55 2007/04/18 Headset” (including Figure 16-1).
Changed the startup time from power-on of the microphone to 3 seconds.
Added Korea to the destination regions.
1.54 2006/01/09 Corrected error in A315 translucent texture INDEX value.
Added Korean to the language setting for NITRO initial setting data.
Added information regarding color distortion resulting from polygon clipping (the
figure numbers for chapter 6 have been changed due to the addition of figure
1.53 2006/10/20 6.23).
Added supplementary information polygon process cycle count.
152 2006/08/08 Clarified the range of rr?lcrophonellnput values when there is no sound, and the
range of guaranteed microphone input values.
Added to Table 6-4 the fact that the number of run cycles corresponding to each
1.51 2006/06/15 : . . ;
source increases when performing texture coordinate conversion.
Made clarifications that this manual supports the Nintendo DS and Nintendo DS
Lite systems.
Described the differences in the System Oveview LCD on the Nintendo DS and the
Nintendo DS Lite.
Described the difference in the directions of the Upper Screen LCD and the Lower
Screen LCD on the Nintendo DS.
150 2006/03/13 | " Qhanged the area of the 0x01008000 address in Figure 1-2 to a Command TCM
image.
Described the reason for a cartridge return from sleep mode; pak uses a cartridge
interrupt.
Described conditions where the headphones will not generate any sound when the
LCD is OFF.
Described conditions where a DS may not reliably shut down when its LCD is OFF
and the API is used to shut down.
Corrected a description regarding data preload (page 41) because the data
preload feature does not work in ARM946E-S.
In Chapter 16, added a caution regarding variation of microphone input values
1.44 2005/12/19 when there is no sound.
In Chapter 16, added that there is a possibility of noise, due to feedback, when
continuously recording the input from the microphone and playing sounds at the
same time.
» Added that an overflow is generated when performing additions by setting a value
1.43 2005/11/25 . . .
with the BoxTest command in the geometry engine.

© 2003-2007 Nintendo

CONFIDENTIAL

Xiii NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Version Date Description
1.42 2005/9/15 |° Added paragraph in 6.2.16.1 “Reasons for Released Vertices in the Polygon
’ Attribute Settings for Rendering 1-Dot Polygons.”
1.41 2005/07/08 | " I;(g_rs))laced the contents of Figure 13-7, since they were identical to those of Figure

» Added a caution regarding the address of the data TCM in the memory map.

» Added a description regarding the Chinese specification to Chapter 1.

» Changed the address for the DTCM inside the memory map.

» Made corrections to an error in the cycling number of Figure 2-1.

« Clarified that the protection units mentioned in this manual are examples of
configuration.

» Deleted the protection unit configurations for the release version and the debug
version (listed in the NITRO-SDK Function Reference Manual).

» Added cautions for the data cache output.

» Added a supplemental description for the NCNB mode.

140 2005/07/01 » Added that the virtual screen in Figure 5-22 has a size of 512x256.

» Corrected an error in the attributes of the color special effects / change shininess
factor register.

» Corrected an error in the formula for the color value of the texel in Table 6-17.

» Corrected an error in the sound circuit of Figure 13-4, and added a related caution.

» Added a desctiption about individual margins of error for microphone sensitivity.

» Deleted the ROM internal register data in Chapter 19, since the same contents are
now listed in the Nintendo DS Game Card Manual, and added references to that
manual where necessary.

» Added Chinese as one of the configurable languages that can be used in the initial
NITRO configuration data.

» Corrected error in 2-1 (page 12) regarding access cycle (changed “wait” to
“access”).

1.31 2005/04/15 |+ Added notes on page 145 about windows and corrected errors regarding the

window position setting register.

Added note on page 236 about wireframes.

NTR-06-0180-001-G
Released: July 27, 2007

Xiv © 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Version Date

Description

1.30 2005/02/15

Revised expressions that may be misleading in the overview description of RTC.

Added a description for Table 2-1, because it was unclear what was indicated by
the numerical values in the table.

Added 8 bits to Table 2-1 items in the “Read” column under “Bit width which Main
processor can access.”

Added a note regarding the access cycle of a Game Pak on page 12.

Corrected errors in the address and size of ARM7 dedicated internal Work RAM in
Figure 2-11.

Added a note regarding the blank detection flag. (Added Table 4-4 and
renumbered those that follow.)

Corrected the expressions, beginning on page 183, regarding the multiplication of
matrices with Geometry Engine so that they match the names of the determinant
of matrices.

Added an example of application to “Fog Enable Flag” in 3 “Draw the shadow
polygon” for rendering of “Shadow Polygon.”

Added that Sleep Mode is recommended for the power control of LCD Backlight
and LCD.

Added PWM block in sound block diagrams, Figures 13-3 through 13-9.

Added the indications in the sound block diagrams (Figures 13-3 through 13-3) to
show the data precision of the sound circuitry.

Added to a note on page 315 regarding the touch determination flag and data
validity flag of the touch panel.

Corrected the misalignment of the ruled lines in Figure 19-1.

1.22 2004/11/16

Corrected errors in Figures 5-19.

1.21 2004/11/11

Documented the difference between directions of upper and lower LCDs in 1.1.3
“LCD” and 4.2 “LCD.”

Revised description of character base block in 2D graphics engine B of 5.2.2 “BG
Control.”

1.20 2004/11/8

Removed 512x256 settings.
Deleted Figure 5-14 and renumbered subsequent figures.

6.2.7 “Swapping the Rendering Engine’s Reference Data”: Revised the description
of the rendering engine's depth buffering selection flag.

6.3.5.2.1.4 “4x4 Texel Compression Textures”: Added a note.
Corrected numerical error in Figure 6-24.
DMAX control register (x=0-3): Corrected word count.

16 “Microphone”: Explained that noise synched to the V-Blank is superimposed
onto microphone input signals.

Added a note concerning the method of updating DMA addresses.
10.2.3 “LCD”: Added a note.

In general: removed T.B.D. and revised text.

© 2003-2007 Nintendo
CONFIDENTIAL

XV NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Version Date Description

» Deleted “AGB” in the descriptions of cartridges throughout the manual.

» Revised Figures 1-2, 3-2, 3-3, and 3-4 as well as Tables 3-1 and 3-2 in conjunction
with moving the location of the DTCM.

» Changed the Memory Map during Card Boot.
» Corrected Figures 5-29, 5-31, and 5-34.

» Added a note regarding the Start Character Name Boundary in 5.3.3 “Character
OBJ.”

» Corrected errors in Figure 5-28.
» Added Figure 5-29 and revised the subsequent numbering of figures.
* Added a note regarding Geometry FIFO in 6.2.6 “Geometry Commands.”

» Added a note on quadrilateral polygons during drawing specification for the back in
6.2.12 “Polygon Attributes.”

» Added supplemental description for specification of the polygon render plane. Also
replaced Figures 6-34 and 6-35.

» Added a note on the location of TexImageParam in 6.2.14 “Texture Mapping.”
» Changed the shadow polygon attribute to “Render Both Sides.”

» Corrected errors in 6.3.5.2.1.5 regarding A3I5 translucent texture texel data
1.10 2004/9/24 format.

» Added explanation about the DMA bug that occurs when multiple DMA channels
are started in parallel on the ARM9 system bus.

» Deleted “Standby Mode” in 10 “Power Management.”
* Added “LCD” to “Power Controllers” in 10 “Power Management.”

+ Added the “LCDE Bit” to “Graphics Power Save Register” in 10 “Power
Management.”

* Included that battery capacity is 10 — 20% for low battery status in 10 “Power
Management.”

» Changed the mode names in 14 “Wireless Communications.”
+ Deleted the communication times in Table 14-1.

+ Added a note regarding 15 “Touch Panel.”

* Included 80 grams as the force to press in 15 “Touch Panel.”

» Reflected in 17 “Real-time Clock (RTC) the elimination of time notation settings
and the elimination of the PM flag.

» Changed the data contents in 18.2 “Owner Information Data.”

» Reflected in “19 ROM Registration Data” the changes in ROM internal registration
data.

1.00 2004/8/2 Initial release.

NTR-06-0180-001-G XVi © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

About the Notation Used in this Programming Manual

Registers

Detailed classifications are shown at the top of the register, while broader classifications are shown on the
bottom. If text does not fit, then the description is shown below the register, as shown with the “enable flag”
in the example below. Notation such as “d15” is used to refer to a specific bit (in this case the highest-order
bit in a 16-bit register).

Example: NITRO Register
Name: NITRO Address: 0x04000??? Attribute: R'W Initial value: 0x0000

E1 | EO | BLUE GREEN RED

Image mode Color

'

[Enable flag]

Bit lengths

Bit lengths for bytes, half-words, and words are defined as follows:
8-bit: Byte
16-bit: Half-word
32-bit: Word

Endian

NITRO adopts the little-endian method. Therefore, in a 16-bit register, the address for d15—d08 is one
more than the address for d07—d00.

16-bit register Memory map
HEEEEEEEEEEEEE
d15-d08 d07-d00
x+1 d15-d08
X d07-d00
© 2003-2007 Nintendo XVii NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G XViii © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

1 System

1.1 System Outline
The overall NITRO system block diagram is shown in Figure 1-1.
The supported systems are Nintendo DSw and Nintendo DS Lite.
Figure 1-1 : Overall System Block Diagram

NITRO Processor

mm - - - T-—-—--- - VRAM
_ ARMS Core z ! 3D Graphics Engine | A 128KB
|~ Cache | 2 . _ : B: 128KB
|_1BKBD:4KB | | o g F Geometry Engine | C: 128KB
———=——- 1 - 0 | D: 128KB
| TCM I | | E: 64KB
| 1:32KB D:16KB | | [Polygon RAM | [Vertex RAM | ! F: 16KB
| |_52KBx2 72kBx2 | | ¢ ;gﬁg
1 ! v v ' I: 16KB
Interrupt |, o | |
Controller |~ "Il : »(Rendering Engine : A
DVA | o R D __l v
Controller v Bus Switch
LCD A A A Upper
i & » & » | P >
Timer (1111 i Controller i Stggn
Square Root |, f f
Unit -7 2D 2D
. . . . Lower
Graphics Engine A| |Graphics Engine B Screen
Divider <—> LCD
OAM 1 KB OAM 1 KB [
System ROM o Standard Palette 1 KB Standard Palette 1 KB Touch Screen
8KB =
Work [e—> T
RAM € £ e
16KB 5 A
1) 4_)-<_>
Work [I E
RAM (€ @ [« >=
16KB
System ROM | < ARM7 Core
I 16 KB =
<>
AGB Game Pak § WorkRAM | o
Y »
General-use Bus 5 64 KB it * n
Memory Space c TN nterrup
Max. 64 KB > _3*4_‘ €2 Controller T Wireless
AD Bgls)al\ggmory 5 DNVA P < 3 Communication
Max. 32 MB qE, Controller ” —
s < > e AD
E <> Timer “«—> . g Converter \
= | S d om 1
NITRO Game ..3 F oun) Flash
Card <> o ST Memory
= < v 5
A . @
Memory Max. 4 GB I L1 Mixer <> RTC
v L Speaker
PMIC \ 4
Main Memory pc-DC S:und R Speaker
= Converter mp
4AMB Digital Keys & 5 |—C. Mic
Regulator PGA =
© 2003-2007 Nintendo 1 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

1.1.1 NITRO Processor

The NITRO processor is a combined chip that consolidates ARM9 and ARM7 CPU cores with NITRO
features and memory for the 2D and 3D graphics engines.

The specifications of the NITRO processor are as follows:

+ The CMOS Multi CPU

Main processor core

Subprocessor core

« Compatibility

ARMOY46E-S (67.028 MHz)
ARM7TDMI (33.514 MHz)

Switches between NITRO mode and AGB compatibility mode.

* Graphics Engines

2D Graphics Engines A and B

33.514MHz

3D Graphics Engine

Geometry Engine

33.514MHz

Maximum 4 million vertices per second
4 x 4 matrix computation

6-plane clipping

Lighting (4 parallel light sources)
Matrix stack

Texture coordinate conversion

Box culling test

Rendering Engine

33.514MHz

Maximum 120 thousand polygons per second
Maximum 30 million pixels per second
Triangular and quadrilateral rendering

Texture format
4-, 16-, and 256-color palette formats
Bitmap format
4 x 4 texel compression format
Translucent (A315, A513) format

Texture size
8 x 8 to 1024 x1024

Alpha blending
Alpha test

Fog

Toon shading
Edge marking
Anti-aliasing

NTR-06-0180-001-G
Released: July 27, 2007

2 © 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

« Memory

ARM9 : 8 KB (2K x 32 bit)
ARM?7 : 16 KB (4K x 32 bit)

NITRO Processor ARM9, ARM7 shared: 32 KB (8 K x 32 bit)
Internal Work RAM ARM7 dedicated : 64 KB (16 K x 32 bit)

Total of 656 KB
(128 KB + 128 KB + 128 KB + 128 KB + 64 KB + 16 KB + 16 KB + 32 KB + 16 KB)

System Clock 33.514 MHz

System ROM

VRAM

+ LCD Controller (built-in for two LCDs: the upper and lower screens)

Display Size 256 x 192 x RGB dots
Display Colors 262,144 colors (R:G:B = 6:6:6)
Dot Clock 5.586 MHz

+ Sound

ADPCM/PCM 16 channels (up to 6 channels for the PSG sound source and up to 2 channels for noise)
Includes sound capture capabilities (using reverb, etc.).
* Timers
ARM?9 : 16-bit timer x 4
ARM?7 : 16-bit timer x 4
+ DMA
ARMO : 4 channel
ARMY : 4 channel + Sound DMA features
* Accelerator
Divider
Square root unit
+ External Memory Interface

DS Game Card interface, DS accessories interface (AGB compatible)

1.1.2 Main Memory

The main memory is 4 MB (expanded to 8 MB for NITRO debugging) and is connected to the NITRO
processor as an independent chip.

Because the NITRO card bus is not mapped to the CPU address space, applications and data must be
executed after loading them into main memory.

The load speed from the NITRO card bus into main memory is approximately 5.96 MB per second.
The application for ARM9 is transmitted from the NITRO card to main memory by system ROM at startup.
The application for ARM7 is transmitted to the ARM7 exclusive work RAM at startup.

© 2003-2007 Nintendo 3 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

1.1.3 LCD

There are two LCD screens, an upper screen and a lower screen.

An overview of both LCD screen specifications is shown in Table 1-1.

Table 1-1 : Overview of LCD Screen Specifications

Features Details
Nintendo DS Nintendo DS Lite
Display Resolution 256 x 192 dots (Ratio 4:3) Same
DispTa‘;’:ggg;ors 262,144 colors (RGB=6:6:6) Same
Screen Size 3 inches Same
Type Semi-Transparent Reflective Transparent
Can be switched ON and OFF.
Backlight Can be switched ON and OFF :gjt;fézp\j;i::?glt_”cesisﬁg be
configurations.

The top and bottom LCDs have the same specifications, but the directions differ on the Nintendo DS, so
the order of RGB pixel arrays differs.

114 Digital Keys
The digital keys are START, SELECT, the + Keypad, A, B, X, Y, L, and R.

1.1.5 Touch Screen

The entire lower screen LCD is a resistive membrane touch panel that can obtain dot-unit coordinates.

The Nintendo DS system comes equipped with a standard stylus.

1.1.6 Microphone

Either the Nintendo DS Series Headset or a built-in omnidirectional condenser microphone can be used.

Sound input from the microphone can be sampled.

1.1.7 RTC
The RTC handles timekeeping operations.

By means of an alarm feature, the RTC can wake up the DS from Sleep Mode at a specified time.

NTR-06-0180-001-G 4 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

1.1.8 Wireless Communications

The DS includes an on-board wireless communications unit capable of using the 2.4-GHz bandwidth.

The following modes are available:

* Internet Play that allows connections to wireless LAN (IEEE 802.11b/g) access points

* Multi-Card Play that enables communications with up to 16 DS devices

+ Single-Card Play that downloads games from a parent device to child devices that are not equipped
with DS Game Cards

1.1.9 Nintendo DS Game Card

The DS Game Card is a game card with NITRO-exclusive security features.

A backup device can be installed in addition to the ROM.

The DS Game Card connects to the NITRO Processor with an external memory interface. Data transfer
speeds within the DS Game Card can be as fast as 5.96 MB per second.

For more information, refer to the Nintendo DS Game Card Manual.

1.1.10 DS Accessories
Existing AGB Game Paks can be used in the AGB compatibility mode.

For applications in NITRO mode, the DS can access the data inside an AGB Game Pak plugged into the
Game Pak slot on the DS. However, the EEPROM cannot be accessed on an AGB Game Pak that uses
EEPROM in a backup device.

NITRO option paks, which can be used to save data or for sensors, can be used as accessories for NITRO
games.

Note: DMG and CGB Game Paks cannot be used with NITRO.

© 2003-2007 Nintendo 5 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

1.2 Memory Map
The overall memory maps for the ARM9 and ARM7 on the DS are shown in Figure 1-2.

The access attributes for the ARM9 memory space are determined by the configuration of the protection
units.

For more details, see "3.1 Protection Unit" on page 35.

* About the image
A decoder converts the address output by the CPU to a memory address.

Because the decoder does not normally decode all the address bits, when an address that is not
mounted in memory is accessed, it is converted to the address of the memory located closest to the
smallest part of the address. (See the note below.)

Images are regions of the memory map that appear where nothing normally exists (regions differ from
the physical memory).

Even if the address is different on the CPU, the address is the same in memory. Therefore, accessing
an image is the same as accessing the physical memory. Furthermore, when the image region is
larger than the memory size, an image the same size as the physical memory is repeated.

For example, the BG-VRAM physical memory for 2D Graphics Engine A occupies the 512 kilobytes in
the 0x06000000 - 0x0607FFFF section in the Memory Map, but the image region occupies the 1536
KB of the 0x06080000 - 0x061FFFFF section, so there are three images.

Note: For the shared ARM9 and 7 internal Work RAM, the position of the physical memory on the
memory map is shifted.

Normally, physical memory begins at 0x03000000. However, there is an advantage when accessing
with the memory map address because the addresses for ARM7 dedicated Work RAM continue from
those values.

In addition, there are regions of indeterminate data that have no image (see Figure 1-2).

Note: Do not access the indeterminate data.

NTR-06-0180-001-G 6 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figure 1-2 : ARM9 and ARM7 Overall Memory Maps

ARM?9 Overall Memory Map

ARM?7 Overall Memory Map

0x0A010000 0x0A010000
0x0A000000 | DS Accessory RAM (64 KB) 0xO0A000000 | DS Accessory RAM (0-64 KB)
0x08000000 | DS Accessory ROM (32 KB) 0x08000000 | DS Accessory ROM (32 MB)
0x07000800 | OAM Image
0x07000400 | 2D Graphics Engine B OAM (1 KB) 0x07000000 | Indeterminate Data
0x07000000 | 2D Graphics Engine A OAM (1 KB)
0x068A4000 | VRAM Image for LCDC
0x06800000 | VRAM for LCDC (656 KB)
0x06620000 | OBJ-VRAM Image
2D Graphics Engine B
0x06600000 | g j \VRAM (max.128 KB)
0x06440000 | OBJ-VRAM Image
2D Graphics Engine A 0x06040000 | Internal Expanded Work RAM Image
0x06400000 | 5 ; \/RAM (max. 256 KB)
0x06220000 | BG-VRAM Image
2D Graphics Engine B
0x06200000 | g5 \yRAM (max. 128 KB)
0x06080000 | BG-VRAM Image
2D Graphics Engine A
0x06000000 BG-VRAM (max. 512 KB) 006000000 Internal Expanded Work RAM
(max. 256 KB)
0x05000800 | Palette RAM Image
2D Graphics Engine B
0x05000800 | 5, jette RAM for OBJ (512 B)
2D Graphics Engine B
0x05000400 | b\ tte RAM for BG (512 B) _
- , 0x04810000 | Indeterminate Data
0x05000200 2D Graphics Engine A
Palette RAM for OBJ (512 B)
2D Graphics Engine A
0x05000000 | 5, e tte RAM for BG (512 B)
. 0x04808000 | Wireless Communications Wait State 1
0x04000000 | /O Registers (see note) 0x04800000 | Wireless Communications Wait State 0
0x04000000 | I/O Registers (see note)
0x03800000 ARM9, 7 Shared Internal Work RAM 0x03810000 | ARM7 Exclusive Internal Work RAM Image
Image 0x03800000 | ARM7 Exclusive Internal Work RAM (64 KB)
ARM9, 7 Shared Internal Work RAM ARMY7, 9 Shared Internal Work RAM
0x037F8000 (max. 32 KB) 0x037F8000 (max. 32 KB)
0x03000000 | ARM9, 7 Shared Internal Work RAM Image 0x03000000 | ARMY7, 9 Shared Internal Work RAM Image
0x02800000 | Main Memory Image 0x02800000 | Main Memory Image
0x027E0000 | Data TCM (16 KB): Moveable ,
0x02400000 | Main M When E ded) (4 MB
0x02400000 | Main Memory (When Extended) (4 MB) X ain Memory (When Expanded) (4 MB)
0x02000000 | Main M 4 MB
0x02000000 | Main Memory (4 MB) X ain Memory (4 MB)
0x00010400 | Indeterminate Dat
0x01008000 | Instruction TCM Image X nasterminate Zata
0x01000000 | Instruction TCM (32 KB)
0x00000000 | Indeterminate Data 0x00000000 | System ROM (64 KB)

Note: The I/O registers are different on ARM9 and ARM7.
Note: The data TCM can be moved around, so the address in the figure above is just an example.

© 2003-2007 Nintendo
CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

1.3 Accessing Devices Connected to the Subprocessor
On NITRO, you must use the API to access devices connected to the subprocessor.
By using the API, you can access the device, regardless of what state the subprocessor is in.

The following devices connect to the subprocessor: wireless communications, a portion of the digital keys,
the sound, Touch Screen, microphone, RTC, and built-in flash memory.

« Whatis an API?

An Application Program Interface (API) is a group of functions that increase efficiency when
developing applications.

In general, the APl is used in low-level system calls and to control hardware.

Note: Itis possible to access the registers related to the interface with the ARM7 subprocessor in ARM9,
but these registers should not be accessed if using the API.

1.4 Startup Mode

The following modes can be selected from the menu that appears after NITRO starts up.
Startup mode is available only from the menu that appears after NITRO starts up.

Startup mode cannot be switched in the application.

1.41 NITRO Mode

In this mode, all NITRO features are usable.

1.4.2 AGB Compatibility Mode
Of the NITRO processors, the subprocessor starts up at 16.777 MHz as an AGB CPU.

In this mode, the LCD1 screen, the 2D graphics engine, the LCD controller (LCDC), and a part of VRAM
are usable, but the ARM9 and ARM9-related peripheral circuitry, the 3D graphics engine, and the serial
bus are not usable.

In other words, the features not implemented on the AGB are not usable.

Note: When operating in AGB compatibility mode, the serial bus becomes unusable. Therefore, the
wireless communications, Touch Screen, RTC, microphone, and built-in flash memory connected
to that bus are also not usable. In addition, the X Button and Y Button become unusable.

1.5 Destination

As shown in Table 1-2, there are three Nintendo DS system configurations, depending on the destination
market.

Table 1-2 : Differences in NITRO Consoles by Destination Region

Everywhere Except China (Excluding Hong Kong and

LEErEE China and Korea TR Taiwan)
Hiragana. Katakana Adds 2350 Hangul characters | Adds approximately 6700 simplified
Usable 9 ’ : to the character sets found in Chinese characters to the character

Alphabetical, Signed

. . the non-Chinese/non-Korean sets found in the non-Chinese/non-
Alphabetical, Numeric, etc.

Banner Font

systems Korean systems
Configurable | Japanese, English, French, | Japanese, English, French, English, French, German, Italian,
Languages German, ltalian, Spanish German, Spanish, Korean Spanish, Chinese

Caution: Applications made specifically for China will not function in Nintendo DS systems sold in regions
outside of China.

NTR-06-0180-001-G 8 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

2 Memory

NITRO Programming Manual

Table 2-1 shows the configuration and specifications of the memory built into NITRO.

Table 2-1 : Memory Configuration and Specifications

Memory Type

DS Accessory RAM

(SRAM, flash memory, etc.)

DS Accessory ROM

(ROM, flash memory, etc.)

OAM

VRAM
Palette RAM
1/0 Registers

Internal Work RAM

Main Memory

System ROM

TCM/Cache

Bit Width that Bit Width that
Allows DMA Allows Main
Access
Access Processor Access
Cycle
Read Write Read Write
1st 6-18
16 ond 4-6 16/32 16/32 8/16/32 16/32
32 1 16/32 16/32 8/16/32 16/32
16 1 16/32 16/32 8/16/32 16/32
16 1 16/32 16/32 8/16/32 16/32
32 1 16/32 16/32 8/16/32 | 8/16/32
32 1 16/32 16/32 8/16/32 | 8/16/32
16 | 1StROIWA L 432 | 1632 | 1632 | 8/16/32
32 1 - - 8/16/32 -
32 Yo - - 8/16/32 | 8/16/32

The values given for the number of access cycles correspond to a bus frequency of 33.514 MHz.

Furthermore, these values are for when memory is accessed in a bit width that is equal to or less than the
bus width. When memory is accessed in a bit width that is larger than the bus width, the number of access
cycles is limited to the bit width divided by the bus width.

Note:

than the AGB access cycle, data cannot be correctly read and written.

+ Transfer speeds between memories

Because the access cycle in NITRO Mode when accessing AGB Game PAK EEPROM is shorter

DMA transfer speeds between memories can be calculated from the bus width and the access cycle
values shown in Table 2-1. Table 2-2 shows an example of DMA transfers between Internal Work RAM

and VRAM.

Table 2-2 : DMA Transfer Speeds between Internal Work RAM and VRAM

DMA Transfer Bit

Transfer Memory

From Internal Work

Count

CyclesUsed CyclesUsed Total Number
for Reading

for Writing

of Cycles

Transfer Speed
(MB/sec)

RAM to VRAM

From VRAM to

Internal Work RAM

© 2003-2007 Nintendo
CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

* Main memory transfer speeds

Main memory can function as a look-ahead buffer by setting DMA for reading as shown in Table 2-3.

Table 2-3 : DMA Settings to Function as a Look-Ahead Buffer

Property to Set

Transfer Bit Count

Set Value

32 bits

How to Update Source Address

Increment

Destination Address

Not main memory

Capable of holding 16 bits, the look-ahead buffer reads from main memory while data is being written

to the destination memory.

Table 2-4 and Table 2-5 show the DMA transfer speeds between main memory and internal Work
RAM, and between main memory and VRAM. The asterisk (*) denotes a shortening of the total
number of cycles due to the look-ahead buffer. For more details about the look-ahead buffer, see

"2.1.1 Main Memory" on page 13.

Table 2-4 : DMA Transfer Speeds between Main Memory and Internal Work RAM

DMA
Transfer Bit
Count

Transfer Memory

Cycles Used CyclesUsed

for Reading for Writing

Total
Number of
Cycles

Transfer Speed

(MB/sec)

1st5 1st 6

16 1 2nd- 31.96
From Main Memory to 2nd- 1 2nd- 2
Internal Work RAM 1st 6 1st 7

32 2nd- 2 1 % 2nd- 2 2nd- 63.92

16 1 1st4 1st5 2nd- 31.96
From Internal Work RAM to 2nd- 1 2nd- 2
Main Memory 1st 5 1st 6

32 1 o SR 2nd- 42.62

Table 2-5 : DMA Transfer Speeds between Main Memory and VRAM

DMA
Transfer Bit
Count

Transfer Memory

Cycles Used
for Reading

Cycles Used
for Writing

Total Number
of Cycles

Transfer Speed
(MB/sec)

1st5 1st 6

16 1 2nd- 31.96
From Main Memory to 2nd- 1 2nd- 2
VRAM 1506 ois

32 2nd- 2 2 ‘< ond- 3 2nd- 42.62
1st 4 1st 5

16 1 2nd- 21.31
From VRAM to Main 2nd- 1 2nd- 2
Memory 1st5 1st7

32 2 2nd- 2 2nd- 4 2nd- 21.31

Transfer speeds by the CPU tend to be slower than calculated because the actual transfer speed is

related to the time it takes to execute commands and get to the bus.

NTR-06-0180-001-G
Released: July 27, 2007

10

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

2.1 External Memory

DS accessory refers to the hardware for the AGB-compatible 32-pin Game Pak slot. DS Game Card refers
to the hardware for the DS Game Card slot.

EXMEMCNT: External Memory Control Register

Name: EXMEMCNT Address: 0x04000204 Attribute: R'W Initial Value: 0x0000
15 14 11 8 7 6 5 4 3 2 1 0
EP | IFM | | MP | | | cP | pPH [ROM2| ROM 1st RAM

Main Memory Game Card DS Accessory

* [d15, d14]: Main Memory: Settings related to main memory
» EP[d15]: Select the CPU priority

This defines which CPU has priority when ARM9 and ARM7 access main memory at the same time.

ARMO priority

ARM?Y priority

+ IFM[d14]: Interface mode switch flag

Asynchronous mode
(this setting prohibited)

Synchronous mode

Note: You must set this to Synchronous mode.

* [d11]: Setting for the DS Game Card
+ MP[d11]: Select the CPU with access rights

ARM9

ARM7

» [d07—d00]: Setting for DS accessories
* CP[d07]: Select the CPU with access rights

ARM9

ARM7

* PHI[d06-d05]: PHI terminal-output control
This is for supplying the clock from NITRO when the DS accessory has a special chip.

You should normally set this to 00 (Low-level output).

(11] Low-level output

01 4.19-MHz clock output

10 8.38-MHz clock output

11 16.76-MHz clock output

© 2003-2007 Nintendo 11 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

+ ROMI[d04]: ROM 2nd access cycle control *

6 cycles

4 cycles

+ ROMI[d03—-d02]: ROM 1st access cycle control *

00 10 cycles

01 8 cycles

10 6 cycles

1 18 cycles

* RAM[d00-d01]: RAM-region access cycle control *

10 cycles

8 cycles

6 cycles

18 cycles

* Access Cycles:

The system clock frequency of NITRO is twice that of AGB, and the access cycles can be calculated
as follows:

(Wait cycle of AGB Game Pak access + 1) * 2

For example, if the ROM access with AGB is 3-1 access, it will be 8-4 access with NITRO. However,
unlike AGB, NITRO has only one address space that can be set to access cycles. There is a possibility
that a device that cannot access with the same cycles as that of AGB mask ROM may be mounted.
Check the specifications for memory before setting it.

Operations for cycles set shorter than the memory specifications are not guaranteed.

NTR-06-0180-001-G 12 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

211 Main Memory

2111 Look-Ahead Buffer

A look-ahead buffer is implemented as the interface to main memory. This look-ahead buffer is shared by
ARM9 DMA and ARM7 DMA.

When a 32-bit DMA transfer is conducted from a source address in main memory to a destination address
other than main memory, the write time to the destination address is used to read the next data in 16-bit
units. This method enables 32-bit reads to be conducted in a single read cycle.

Note that the look-ahead buffer cannot be used for other types of access, such as reading by the CPU or a
16-bit DMA transfer.

21.1.2 Burst Mode
In Burst mode, the sequential access of a half-word (16-bit width) is conducted in one cycle.

Table 2-6 shows the basic access cycles for random access and sequential access in Burst mode.

Table 2-6 : Basic Access Cycles

Write

Random 5 cycles 4 cycles

Sequential 1 cycle 1 cycle

2.1.1.21 Burst Access Conditions
In Burst mode, sequential access is called burst access.

Burst access is used during DMA transfer when either the source or the destination address is the main
memory and the address update method for main memory is set to increment.

Because DMA transfers from main memory to main memory are all first accesses, routing through internal
RAM provides fast transfer speeds.

In addition, burst access is also used when continuous transfers using LDM or STM instructions are
executed.

21.1.2.2 Conditions for Inserting Waits
When a span of 236 half-words occurs, a wait of three cycles, called a termination, is inserted.

When the address is defined from 0 in units of 16 half-words, waits are also inserted if access starts from
address 13, 14, or 15, as shown in Table 2-7 (a maximum of 3 waits are inserted). Processes are thus
more efficient if data are located from a 4 half-word boundary (8-byte boundary).

Table 2-7 : Inserting Waits According to the Access Start Address

First Cycle
13 14 15 wait 16 17 18 19 20
14 15 wait wait 16 17 18 19 20
15 wait wait wait 16 17 18 19 20
© 2003-2007 Nintendo 13 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

2.1.1.2.3 Main Memory DMA Transfer Cycles

2.1.1.2.3.1 32-Bit DMA Transfer Cycle from Main Memory to Work RAM

Because main memory has a 16-bit bus and Work RAM has a 32-bit bus, data read in half-word units is
written in word units. While writing in word units, the look-ahead buffer reads more half-word data.
Transfers to the geometry command FIFO are the same as transfers to Work RAM.

» Basic Cycles

Figure 2-1 shows the basic cycles of the transfer sequence from main memory to Work RAM.
Figure 2-1 : Transfer Sequence from Main Memory to Work RAM (Basic Cycles)

236LR 239LR|239HR

« Worst Case

Depending on the main memory address where access starts, a wait known as a termination may
occur. In these cases, the access immediately after the termination becomes the first access.

Figure 2-2 shows the worst-case transfer sequence from main memory to Work RAM.
Figure 2-2 : Transfer Sequence from Main Memory to Work RAM (Worst Case)

7 8 9 10 11 12 13
T T T

wait wait wait wait

4W

2LR | 2HR 4HR | 5LR | 5HR 7HR | 8LR
wait Wait
T Termination
nLR Reads the lower 16 bits of the nth 32-bit data
nHR Reads the upper 16 bits of the nth 32-bit data
nW Writes the nth 32-bit data
NTR-06-0180-001-G 14 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

2.1.1.2.3.2 Cycles for 32-bit DMA Transfers from Work RAM to Main Memory
Figure 2-3 shows the basic cycles of the transfer sequence from Work RAM to main memory.

Figure 2-3 : Transfer Sequence from Work RAM to Main Memory (Basic Cycles)

Cycles

1 2 3 4
Work

Main

wait wait wait
Memory

EI Wait

nR Reads the nth 32-bit data

nLW | Writes the lower 16 bits of the nth 32-bit data

nHW | Writes the upper 16 bits of the nth 32-bit data

2.1.1.2.3.3 Cycles for 32-bit DMA Transfers from Main Memory to VRAM

Because main memory and VRAM both have a 16-bit-width bus, data read in half-word units is written in
half-word units. While writing in half-word units, the look-ahead buffer reads more data from main memory.

« Basic Cycle
Figure 2-4 shows the basic cycles of the transfer sequence from main memory to VRAM.
Figure 2-4 : Transfer Sequence from Main Memory to VRAM (Basic Cycles)

Cycles 10 11 12 13

1 2 3 4
oo EIET

Main
memory

wait wait wait wait

« Worst Case

According to the main memory address where access starts, a wait known as a termination may occur.
In these cases, the access immediately after the termination becomes the first access.

© 2003-2007 Nintendo 15 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 2-5 shows the worst-case transfer sequence from main memory to VRAM.
Figure 2-5 : Transfer Sequence from Main Memory to VRAM (Worst Case)

Cycles

Main

wait wait wait wait wait wait wait wait
Memory

15 16 17 18 19 20 21 22 23 24 25

a2

‘ 4HR

VENE Wait
T Termination

nLR | Reads the lower 16 bits of the nth 32-bit data

nHR | Reads the upper 16 bits of the nth 32-bit data

nLW | Writes the lower 16 bits of the nth 32-bit data

nHW | Writes the upper 16 bits of the nth 32-bit data

2.1.1.2.3.4 Cycles for 32-bit DMA Transfers from VRAM to Main Memory
Figure 2-6 shows the basic cycles of the transfer sequence from VRAM to main memory.
Figure 2-6 : Transfer Sequence from VRAM to Main Memory (Basic Cycles)
0 o 9 |

RA 1LR | 1HR 2LR | 2HR

3 3 3 LW | 1HW 2LW | 2HW

VENE Wait
nLR | Reads the lower 16 bits of the nth 32-bit data

nHR | Reads the upper 16 bits of the nth 32-bit data

nLW | Writes the lower 16 bits of the nth 32-bit data

nHW | Writes the upper 16 bits of the nth 32-bit data

NTR-06-0180-001-G 16 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

2.2 NITRO Processor's Internal Memory
221 VRAM

VRAM (A to I) does not have a fixed use, so it can be assigned for each application in the ways that make
the most efficient use of memory resources. This ability is called VRAM bank control. Do not switch banks
during access to VRAM.

Table 2-8 shows the options for VRAM use.

Table 2-8 : Options for VRAM Use

BG-VRAM X X X X X X

OBJ-VRAM X X X X

2D Graphics

Engine A BG Extended

Palette Slot

OBJ Extended
Palette Slot

BG-VRAM X X X

OBJ-VRAM X X

2D Graphics
Engine B

BG Extended
Palette Slot

OBJ Extended
Palette Slot

Texture Image
3D Graphics Slot
(Rendering
Engine) Texture Palette
Slot

(BG is screen data or character data. OBJ is character data.)

Memory assigned to LCDC, ARM7, BG-VRAM, and OBJ-VRAM is also mapped to the ARM9 bus,
enabling memory to be read and written by ARM9. Memory assigned to the extended palette and texture
slots is not mapped to the ARM9 bus.

Note 1: LCDC: The LCD controller (LCDC) handles this region. VRAM A to D can be used as memory for
holding bitmap data during VRAM display mode and it can also be set as memory for writing bit-
map data during captures. (For details, see "4.4.4.2 VRAM Display Mode" on page 63 and "4.5

Display Capture" on page 67.)

© 2003-2007 Nintendo 17 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

VRAM assigned to LCDC is uniquely mapped to the ARM9 bus. (When all A-to-l of VRAM is
assigned to LCDC, it is mapped in a contiguous region of the ARM9 bus.) Because there is no
access from the CPU when VRAM is allocated to the Extended Palette slot or the Texture Image/
Palette slot, you need to temporarily set data in LCDC to write data.

Note 2: BG-VRAM: This region stores BG screen data, character data, and bitmap data. Up to 512 KB for
2D Graphics Engine A or up to 128 KB for 2D Graphics Engine B can be assigned for this purpose.

Note 3: OBJ-VRAM: This region stores OBJ character data and bitmap data. Up to 256 KB for 2D Graph-
ics Engine A or up to 128 KB for 2D Graphics Engine B can be assigned for this purpose.

Note 4: Extended palette slots: This memory space is the property of the 2D graphics engine, which refer-
ences color data when BG and OBJ are displayed. The slots are not mapped in the CPU's memory
space.

Note 5: Texture image slot and texture palette slot: This memory space is the property of the rendering
engine inside the 3D graphics engine. The rendering engine references texel colors when textures
are blended. The slots are not mapped in CPU memory space.

NTR-06-0180-001-G 18 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

VRAMCNT: RAM Bank Control Register 0

NITRO Programming Manual

Name: VRAMCNT Address: 0x04000240 Attribute: W Initial Value: 0x00000000

31 28 27 26 24|23 20 19 18 16|15 12 11 9 8|7 4 3 10

E| | |OFS| MST E| | |OFS| MST E| | |OFS| |MST E| | |OFS| |MST
VRAM-D VRAM-C VRAM-B VRAM-A

+ VRAM-D, VRAM-C

- E[d31][d23] Enable flag

Disable

Enable

* OFS[d28-d27][d20—d19]: Allocated addresses (Allocated to the addresses shown below
according to the MST: Allocation options)

1. When MST = 000
Allocated to LCDC and also mapped to ARM9 memory space

VRAM-C

0x06840000-0x0685FFFF

VRAM-D

0x06860000-0x0687FFFF

2. When MST = 001
Allocated to 2D Graphics Engine A's BG and also mapped to ARM9 memory space

00 0x06000000-0x0601FFFF

01 0x06020000-0x0603FFFF

10 0x06040000-0x0605FFFF

11 0x06060000-0x0607FFFF

3. When MST =010

Mapped to ARM7 memory space, so not mapped to ARM9 memory space

00 0x06000000-0x0601FFFF

01 0x06020000-0x0603FFFF

10

Setting prohibited

Setting prohibited

© 2003-2007 Nintendo
CONFIDENTIAL

19

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

4. When MST =011
Allocated to texture image slot, but not mapped to ARM9 memory space

(See the texture image slot memory map in Figure 2-7.)

00 Texture image slot 0

01 Texture image slot 1

10 Texture image slot 2 (clear color image)

11 Texture image slot 3 (clear depth image)

5. When MST =100

Mapped to the following ARM9 memory spaces, no matter what the setting

A3V B 0x06200000-0x0621FFFF

A"\ EP I 0x06600000-0x0661FFFF

* MST[d26—d24][d18—d16]: Allocation options

000 Allocate to LCDC

001 Allocate to 2D Graphic Engine A's BG

010 Allocate to ARM7

011 Allocate to 3D rendering engine's texture image

For VRAM-C: Allocate to 2D Graphic Engine B's BG

100 For VRAM-D: Allocate to 2D Graphic Engine B's OBJ

101-111 Setting prohibited

Note: Although VRAM-C and VRAM-D can be allocated to the ARM7 subprocessor, to ensure that
the subprocessor API operates correctly, do not change the register settings.
+ VRAM-B, VRAM-A
» E[d15][d07]: Enable flag

Disable

Enable

+ OFS[d12—-d11][d04—d03]: Allocated addresses (Allocated to the addresses shown below
according to the MST: Allocation options)

1. When MST =00
Allocated to LCDC and also mapped to ARM9 memory space

A" BN 0x06800000-0x0681FFFF

V0B 0x06820000-0x0683FFFF

NTR-06-0180-001-G 20 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

2. When MST = 01
Allocated to the 2D Graphic Engine A 's BG and also mapped to the ARM9 memory space

00 0x06000000-0x0601FFFF

01 0x06020000-0x0603FFFF

10 0x06040000-0x0605FFFF

11 0x06060000-0x0607FFFF

3. When MST =10
Allocated to the 2D Graphic Engine A's OBJ and also mapped to the ARM9 memory space

00 0x06400000-0x0641FFFF

01 0x06420000-0x0643FFFF

10 Setting prohibited

1 Setting prohibited

4. When MST =11
Allocated to the texture image slot, but not mapped to ARM9 memory space

(See the texture image slot memory map in "Eigure 2-7 : Texture Image Slot Memory Map" on
page 22.)

00 Texture image slot 0

01 Texture image slot 1

10 Texture image slot 2 (clear color image)

11 Texture image slot 3 (clear depth image)

* MST[d09—-d08][d01-d00]: Allocation options

(11] Allocated to the LCDC

01 Allocated to the 2D Graphic Engine A's BG

10 Allocated to the 2D Graphic Engine A's OBJ

1 Allocated to the 3D rendering engine's texture image

Operation is not guaranteed when multiple VRAM blocks are mapped to the same address or
assigned to the same slot.

© 2003-2007 Nintendo 21 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Texture image slots are memory-mapped in the rendering engine as in Figure 2-7.

Figure 2-7 : Texture Image Slot Memory Map

0x00080000
Slot 3
0x00060000 (clear depth image)
Slot 2
0x00040000 (clear color image)
0x00020000 Slot 1
0x00000000 Slot 0

Texture image Slot 2 and Slot 3 also works as a clear image buffer to initialize the rendering buffer.
(Read about initializing with a clear image in "6.3.3 Initializing the Rendering Buffers" on page 231).

NTR-06-0180-001-G
Released: July 27, 2007

22

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

WVRAMCNT: RAM Bank Control Register 1

Name: WVRAMCNT Address: 0x04000244 Attribute: W Initial value: 0x00000000
31 24123 20 19 18 16(15 12 11 10 817 2 0
| | | | | [eank|e| | [ors| msT JE| | |ors| wmst || | [| | msT
WRAM VRAM-G VRAM-F VRAM-E

+ VRAM-G, VRAM-F
. E[d23][d15]: Enable flag

Disable

Enable

* OFS[d20-d19][d12—d11]: Allocated addresses (Allocated to the addresses shown below according to
the MST: Allocation options)

1. When MST = 000
Allocated to LCDC and also mapped to ARM9 memory space

A" E 3 0x06890000-0x06893FFF

A3V B el 0x06894000-0x06897FFF

2. When MST = 001
Allocated to the 2D Graphic Engine A's BG and also mapped to ARM9 memory space

([0x06000000-0x06003FFF
(EE 0x06004000-0x06007FFF
[\ 0x06010000-0x06013FFF
([E 0x06014000-0x06017FFF

3. When MST =010
Allocated to the 2D Graphic Engine A's OBJ and also mapped to ARM9 memory space

0x06400000-0x06403FFF

0x06404000-0x06407FFF

0x06410000-0x06413FFF

0x06414000-0x06417FFF

00
01
10
11

© 2003-2007 Nintendo 23 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

4. When MST =011
Allocated to the texture palette slot, but not mapped to ARM9 memory space.

(See the texture palette slot memory map in "Eigure 2-8 : Texture Palette Slot Memory Map" on
page 25)

(11] Texture palette slot 0

01 Texture palette slot 1

10 Texture palette slot 4

1 Texture palette slot 5

5. When MST =100

Allocated to the 2D Graphic Engine A's BG extended palette slot, but not mapped to ARM9
memory space.

(See the BG extended palette slot memory map in "Eigure 2-9 : BG Extended Palette Slot Memory

Map" on page 25)

00 2D Graphic Engine A BG extended palette slots 0-1

01 2D Graphic Engine A BG extended palette slots 2-3

10 Setting prohibited

11 Setting prohibited

6. When MST = 101

Allocated to the 2D Graphic Engine A's OBJ extended palette slot, but not mapped to ARM9
memory space.

The lower 8 KB are allocated to the slot, but the upper 8 KB are invalidated.

See the OBJ extended palette slot memory map in "Figure 2-10 : OBJ Extended Palette Slot
Memory Map" on page 26.

* MST[d18-d16][d10—d08]: Allocation options

000 Allocated to the LCDC

001 Allocated to the 2D Graphic Engine A's BG

010 Allocated to the 2D Graphic Engine A's OBJ

011 Allocated to the 3D Rendering Engine’s texture palette

100 Allocated to the 2D Graphic Engine A's BG extended palette

101 Allocated to the 2D Graphic Engine A's OBJ extended palette

(HUBN KK Setting prohibited

NTR-06-0180-001-G 24 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

+ VRAM-E
« E[d07]: Enable flag

Disable

Enable

* MST[d02-d00]: Allocation options

000 Allocated to the LCDC

001 Allocated to the 2D Graphic Engine A's BG

010 Allocated to the 2D Graphic Engine A's OBJ

011 Allocated to the 3D Rendering Engine’s texture palette

100 Allocated to the 2D Graphic Engine A's BG extended palette

(B EER Setting prohibited

Note: VRAM-E mapping is fixed according to the MST settings shown below. (The offset cannot be

changed.)

ARM9 addresses 0x06880000-0x0688FFFF

ARM9 addresses 0x06000000-0x0600FFFF

ARM9 addresses 0x06400000-0x0640FFFF

Texture palette slots 0-3

BG extended palette slots 0-3 (only the lower 32 KB)

The texture palette slots are mapped in the Rendering Engine (see Figure 2-8) when VRAM blocks E, F,

and G are assigned. The BG palette slots are mapped as shown in Figure 2-9.

Figure 2-8 : Texture Palette Slot Memory Map

0x00018000

0x00014000 Slot 5
0x00010000 Slot 4
0x0000C000 Slot 3
0x00008000 Slot 2
0x00004000 Slot 1
0x00000000 Slot 0

Figure 2-9 : BG Extended Palette Slot Memory Map

0x00008000

0x00006000 Slot 3

0x00004000 Slot 2

0x00002000 Slot 1

0x00000000 Slot 0
© 2003-2007 Nintendo 25

CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Figure 2-10 shows the memory map when VRAM-F and -G are allocated to the OBJ extended palette.
Figure 2-10 : OBJ Extended Palette Slot Memory Map

0x00004000
0x00002000 Slot 1
0x00000000 Slot 0

Proper operation is not guaranteed when multiple VRAM blocks are mapped to the same address or
assigned to the same slot.

VRAM_HI_CNT: RAM Bank Control Register 2

Name: VRAM_HI_CNT Address: 0x04000248 Attribute: W Initial value: 0x0000
15 10 9 8 7 2 1 0
e [[[| [[wt Je[[[| [[ws

VRAM-I VRAM-H

+ VRAM-I, VRAM-H
- E[d15][d07]: Enable flag

Disable

Enable

* MST[d09—-d08][d01-d00]: Allocation options
+ For VRAM-H

Allocated to LCDC
Mapped to main processor addresses 0x06898000-0x0689FFFF

Allocated to 2D Graphics Engine B's BG
Mapped to main processor addresses 0x06200000-0x06207FFF

Allocated to 2D Graphics Engine B's BG extended palette
Mapped to slots 0-3

Setting prohibited

* For VRAM-I

00 Allocated to LCDC
Mapped to main processor addresses 0x068A0000-0x068A3FFFF

01 Allocated to 2D Graphics Engine B's BG
Mapped to main processor addresses 0x06208000-0x0620BFFF

10 Allocated to 2D Graphics Engine B's OBJ
Mapped to main processor addresses 0x06600000-0x06603FFF

1 Allocated to 2D Graphics Engine B's OBJ extended palette
Mapped to slots 0-1

Table 2-9 through Table 2-14 show the addresses allocated to the various VRAM blocks for the given MST
and OFS bits.

NTR-06-0180-001-G 26 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Table 2-9 : VRAM-A and VRAM-B Allocations

Allocation

ARM9

VRAM-A: 0x06800000-0x0681FFFF
VRAM-B: 0x06820000-0x0683FFFF

2D Graphics
Engine A

2D Graphics
Engine A

Texture Image

BG-VRAM BG-VRAM BG-VRAM BG-VRAM
(0x0B000000- | (0x06020000- | (0x0B040000- | (Ox06060000-
Ox0B01FFFF) | O0x0603FFFF) | Ox0BO5FFFF) | 0x0807FFFF)
OBJ-VRAM AT
(0x06400000- (0x06420000- Setting prohibited
Ox0B41FFFF) | 0x0643FFFF)
Slot 0 Slot 1 Slot 2 Slot 3

(clear image)

Table 2-10 : VRAM-C and VRAM-D Allocations

(0] 333
Allocation

ARM9

VRAM-C: 0x06840000-0x0685FFFF

VRAM-D: 0x06860000-0x0687FFFF

2D Graphics
Engine A

ARM7

Texture Image

BG-VRAM BG-VRAM BG-VRAM BG-VRAM
(0x06000000- (0x06020000- (0x06040000- (0x06060000-
0x0601FFFF) 0x0603FFFF) 0x0605FFFF) 0x0607FFFF)

ARM7 ARM7
0x06000000- 0x06020000- Setting prohibited
0x0601FFFF 0x0603FFFF

Slot 0 Slot 1 Slot 2 Slot 3

(clear image)

2D Graphics
Engine B

VRAM-C: BG-VRAM (0x06200000-0x0621FFFF)
VRAM-D: OBJ-VRAM (0x06600000-0x0661FFFF)

Setting
Prohibited

Setting prohibited

Allocation
ARM9
2D Graphics Engine A
2D Graphics Engine A
Texture Palette

2D Graphics Engine A

Setting Prohibited

© 2003-2007 Nintendo
CONFIDENTIAL

Table 2-11 : VRAM-E Allocations

0x06880000-0x0688FFFF

Address

BG-VRAM (0x06000000-0x0600FFFF)

OBJ-VRAM (0x06400000-0x0640FFFF)

Texture palette slot 0-3

BG extended palette slots 0-3 (only the lower 32 KB are valid)

Setting prohibited

27

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Table 2-12 : VRAM-F and VRAM-G Allocations

Allocation

ARM9

VRAM-F: 0x06890000-0x06893FFF
VRAM-G: 0x06894000-0x06897FFF

BG-VRAM BG-VRAM BG-VRAM BG-VRAM
2D Graphics Engine A (0x06000000- (0x06004000- (0x06010000- (0x06014000-
0x06003FFF) 0x06007FFF) 0x06013FFF) 0x06017FFF)
OBJ-VRAM OBJ-VRAM OBJ-VRAM OBJ-VRAM
2D Graphics Engine A (0x06400000- (0x06404000- (0x06410000- (0x06414000-
0x06403FFF) 0x06407FFF) 0x06413FFF) 0x06417FFF)
Texture Palette Slot 0 Slot 1 Slot 4 Slot 5
- - BG extended BG extended : o
2D Graphics Engine A palette slots 0-1 palette slots 2-3 Setting prohibited

2D Graphics Engine A OBJ extended palette slot O (only lower 8 KB are valid)

Setting Prohibited
Setting prohibited
Setting Prohibited

Table 2-13 : VRAM-H Allocations
Allocation Address

ARM9 0x06898000-0x0689FFFF

2D Graphics Engine B BG-VRAM (0x06200000-0x06207FFF)

2D Graphics Engine B BG extended palette slots 0-3

Setting Prohibited Setting prohibited

Table 2-14 : VRAM-I Allocations
Allocation Address

0x068A0000-0x068A3FFFF

ARM9

2D Graphics Engine B BG-VRAM (0x06208000-0x0620BFFF)

2D Graphics Engine B OBJ-VRAM (0x06600000-0x06603FFF)

OBJ extended palette slots 0-1

2D Graphics Engine B

NTR-06-0180-001-G 28
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

2.2.2

Work RAM

NITRO Programming Manual

Work RAM does not have a fixed use, so it can be assigned for each application in ways that make the
most efficient use of memory resources. This ability is called WRAM bank control.

Be sure not to switch banks while Work RAM is being accessed.

WVRAMCNT: RAM Bank Control Register 1

Name: WWVRAMCNT Address: 0x04000244 Attribute: W Initial value: 0x00000000
31 25 2423 20 19 18 16(15 12 11 10 8 2 0
| | | | | [eank|e| [[oFs| msT [E] | |oFs| wsT | | | | wsT
WRAM VRAM-G VRAM-F VRAM-E

+ WRAM

* BANK]|d25-d24]: Bank Specification
Selects whether to allocate 16 KB x 2 blocks to ARM9 or ARM?7.

Figure 2-11 shows the memory maps for each value setting.

32KB

None

16KB (Block1)

16KB (Block0)

16KB (Block0)

16KB (Block1)

None

32KB

Note:

© 2003-2007 Nintendo

CONFIDENTIAL

29

Though you can change the Work RAM settings, to ensure that the subprocessor API operates
correctly, do not change the register settings.

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Figure 2-11 : Memory Maps for Various Settings of ARM9, ARM7 Shared Internal Work RAM

ARM9 Memory Map
Allocation for Entire Region (32KB)

ARMY7 Memory Map

No Allocation

0x04000000 | I/O registers

Image of ARM9, ARM7 shared

internal Work RAM
0x03800000

ARM9, ARM7 shared internal
0x037F8000 | Work RAM (32KB)

Image of ARM9, ARM7 shared
0x03000000 internal Work RAM
0x02400000 | Main memory image

0x04000000 | I/O registers

Image of ARM7 dedicated
0x03810000 | internal Work RAM

ARM?Y dedicated internal
0x03800000 | Work RAM (64KB)

Image of ARM7 dedicated

internal Work RAM (32KB)
0x03000000
0x02400000 | Main memory image

Block 1 Allocation (16KB)

Block 0 Allocation (16KB)

0x04000000 1/O registers

Image of ARM9, ARM7 shared

internal Work RAM (block 1)
0x03800000

ARM9, ARM7 shared internal Work
0x037FCO000 | RAM (block 1: 16KB)

Image of ARM9, ARM7 shared internal
0x03000000 Work RAM (block 1)
0x02400000 Main memory image

0x04000000 1/O registers

Image of ARM7 dedicated
0x03810000 internal Work RAM

ARMY7 dedicated internal
0x03800000 Work RAM (64KB)

Image of ARM9, ARM7 shared internal
0x037FCO000 | Work RAM (block 0: 16KB)

Image of ARM9, ARM7 shared internal
0x03000000 Work RAM (block 0)
0x02400000 Main memory image

Block 0 Allocation (16KB)

Block 1 Allocation (16KB)

0x04000000 I/O registers

Image of ARM9, ARM7 shared internal

Work RAM (block 0)
0x03800000

ARM9, ARM7 shared internal Work
0x037FC000 | RAM (block 0: 16KB)

Image of ARM9, ARM7 shared
0x03000000 | internal Work RAM (block 0)
0x02400000 Main memory image

0x04000000 1/0 registers

Image of ARM7 dedicated
0x03810000 internal Work RAM

ARMY7 dedicated internal
0x03800000 Work RAM (64KB)

Image of ARM9, ARM7 shared internal
0x037FC000 | Work RAM (block 1: 16KB)

Image of ARM 9, ARM7 shared
0x03000000 internal Work RAM (block 1)
0x02400000 Main memory image

No Allocation

Allocation for Entire Region (32KB)

0x04000000 | I/O registers
Indeterminate data

0x03000000

0x02400000 | Main memory image

0x04000000 | I/O registers

Image of ARM7 dedicated
0x03810000 |[internal Work RAM

ARMY7 dedicated internal
0x03800000 Work RAM (64KB)

ARM9, ARM7 shared internal
0x037F8000 | Work RAM (32KB)

Image of ARM9, ARM7 shared
0x03000000 [internal Work RAM
0x02400000 | Main memory image

NTR-06-0180-001-G
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

2.2.3 1/0 Registers

See the appendices to learn about the mapping for each I/O register.

* Accessing undefined registers
Table 2-15 shows the behaviors that occur when an undefined address is accessed in the I/O register

regions.
Table 2-15 : Result of Accessing an Undefined Register
Access Destination
Undefined Register Invalid ALL zero
© 2003-2007 Nintendo 31 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

23

NITRO Programming Manual

Memory Map for Game Card Boot

Figure 2-12 shows the memory map when the system boots from a Game Card.

Figure 2-12 : Memory Map for Game Card Boot

Device Map ROM Image NITRO Memory Map
Data Binary
0x0380_F000 —x
ARMY7 Overlay T
Module 2 ARM7
Bootable
ARM?7 Resident Region
Module 92 KB
Game
Region ARM?7 Resident X037F_8000 JL
Module CPU Internal Work RAM Iy
I
0x027F_FF80 o Can load to
ROM Registration Data only one
0X027F_FEQQ ffessssressss IOIVIIIVY
NITRO Setting Data .
0X027F_FC8 ... |
v
0x023F_F000
0x0228_0000
ARM9 Resident ARM7
0x0000_8000 Module AW Bootable
Secure Bootable 25669122
Region ARM9 Resident Region i the
16 KB . 2.5MB
~Encrypted Region 2 KB Module 3.99 MB
0x0000_4000
Header Non-load Region
Region
ROM Registration Data Encrypted Region 2 KB

0x0000_0000

0x0200_0000

Main Memory

The following are details about the regions shown in the memory map:

* Resident Module:
Loaded at application startup time.
* Overlay Module:
Loaded by the application itself.
+ Data Binary
Loaded by the application itself.
Not linked; loaded by referencing FAT.

NTR-06-0180-001-G 32
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

* The Header Region:

Stores the ROM registration data. This data is loaded into the System region of main memory at boot
time.

Cannot be reloaded after application startup.

(After the Game Code is determined) Provides a binary file called a ROM header template for each
application.

* The Secure Region:

Stores the starting part of the ARM9 Resident Module. This is loaded at boot time to the address in
main memory specified by the registration data in ROM.

Must be located within the first 64 KB from the start of main memory, for security reasons.
Decodes the first 2 KB, an encrypted region, when loaded.

To be specific, the encrypted system call library is linked to the start when the ARM9 resident
module is created.

Because this cannot be reloaded after application startup, only the . text and . rodata sections
should be located in the secure region. Otherwise, you cannot perform a software reset.

* The Game Region:

Loads (at boot time) the part of the ARM9 Resident Module that follows the security region and the
ARM?7 Resident Module to the address specified by the registration data in ROM.

Set the bootable size for ARM9 so that it does not exceed 2.5 MB from the beginning of main memory.
For ARM7, the bootable region should not exceed 256 KB within the 3.99 MB region from the
beginning of main memory or should not exceed 92 KB from the beginning of the CPU internal work
RAM.

This region is always read-enabled. Load the Overlay Module and Data Binary as needed with the
application.

* The NITRO Settings Data:
Contains owner information and other data, stored in internal flash memory.
If this data is available, it is loaded by the IPL to address 0x027F_FCB80 at startup.
For details about the data structure, see Chapter "18 Internal Flash Memory" on page 323.

Note: Refer to the Nintendo DS Game Card Manual for the ROM Internal Registration Data.

© 2003-2007 Nintendo 33 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 34 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

3 Main Processor Core (ARM946E-S)

Figure 3-1 is a block diagram of the main processor core.

Figure 3-1 : Block Diagram of the Main Processor Core

. IRQ
Main Processor
A 4
i Data
Instruction TCM Tou
32KB “«—> —P
16KB
ARMO946E-S
Core

Instruction Cache Data Cache
8KB 4KB

Protection Unit Protection
Unit

Interrupt DMA
Interface Unit | Write Buffer Controller Controller

I i

ARM9 Bus 101

I Subprocessor I

| FIFO |<—> 4—>| External Memory Interface
ARM7TDMI
Core L Main Memory
DS Game Card
DS Accessory

3.1 Protection Unit

The Protection Unit protects memory by configuring the read/write attributes and enabling/disabling the
use of the cache and Write buffers in each protection region.

Up to eight memory regions can be configured from the 4 GB of background (the entire address space
accessible from the CPU). Protection regions with higher region numbers have higher priority. (If regions
have duplicate protection region settings, the setting with the higher protection region number is given
priority.) Each protection region can be configured separately to enable/disable the cache and Write
buffers and allow/disallow reading/writing.

* Debug Version and Release Version

In addition to the production version of NITRO, there is a debug version that comes with the main
memory expanded to 8 MB. Though part of the additional 4 MB of main memory is used as the
debugger region, the remainder can be used during application development. Because the debug and
release versions of NITRO have different memory structures, the Protection Unit settings are also
different.

© 2003-2007 Nintendo 35 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

3.2 Tightly Coupled Memory (TCM)

TCM is high-speed memory that is directly connected to the ARM9 core. It can be used as independent
Work RAM. Because TCM does not use the ARM9 bus, ARM9 can use TCM to conduct processes even
while the ARM9 bus is being used (such as by DMA).

As a result, TCM can boost performance by storing frequently used programs and data that you want to
access during DMA transfers.

There are two types of TCM: one for instructions and one for data. Note that TCM cannot be accessed via
DMA.

3.21 Instruction TCM

This is 32 KB of high-speed memory, mapped from ARM9 address 0x01000000.

Instruction TCM is a good place to hold fast-running programs or programs for which you want to fix the
operation clock count. Examples include graphic libraries and routines that branch on interrupts.

Because Instruction TCM does not require the ARM9 bus while fetching instructions, Instruction TCM is
also an effective place to store programs you want to execute while DMA is using the ARM9 bus.
Examples include routines that generate display lists and computation routines.

You can store data in Instruction TCM memory also, but stalls occur when data access collides with
instruction fetches.

3.2.2 Data TCM

This is 16 KB of high-speed memory. Data TCM can be set to any address location in the memory map.

Data TCM is a good place to store data for fast reading and writing. Examples include stacks and
frequently accessed tables.

Because Data TCM does not require the ARM9 bus during access, Data TCM can be used for creating the
next display list even while the current display list is being transferred via DMA from main memory to the
geometry engine.

However, transfers from TCM must be conducted via the ARM9 core. In addition, instructions cannot be
placed in Data TCM. But that means there is no stalling of data access due to collisions with instruction
fetches.

3.3 Cache Memory

When the ARM9 bus references memory, it takes 32 bytes of data from that vicinity (the data in a range
corresponding to the upper 27 bits of the referenced address) and loads that data into the cache so the
data is accessible at the fast speeds of cache memory the next time that range is referenced.

If the ARM9 hits data that is in the cache, the data can be read quickly.

If the ARM9 does not hit data in the cache, the contents of memory are read in units of cache lines (line
fetching). During this process, the contents of the cache lines are replaced according to the replacement
algorithm.

Note that the Protection Unit must be enabled to use the cache.

Table 3-1 lists the specifications for the cache.

NTR-06-0180-001-G 36 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Table 3-1 : Cache Specifications

Capacity

Instruction cache: 8 KB
Data cache: 4 KB

Configuration

4-way set associative method

Cache Line

8 words (32 bytes)

Write-miss Operation

Read-allocate method (see note 1)

Replacement
Algorithm

Can choose either round-robin (see note 2) or pseudo-random
(see note 3)

Bus Snoop Feature
(see note 4)

None

Other Features
(Instruction Cache)

Lockdown
Instruction prefetch

Other Features
(Data Cache)

Lockdown
Write-through mode / Write-back mode

Note 1: Read-allocate methods

In this method, when there is a write miss, the write is performed only for the memory (or for the
Write buffer, if it is enabled). Data is not loaded to the cache. (For the Write-allocation method, a
write miss is handled as a write hit after data is loaded into the cache.)

Note 2: Round-robin (recommended)
In this method, cache lines are replaced in order. Performance is stable in the worst-case scenario.
Note 3: Pseudo-random

In this method, cache lines are replaced randomly. This increases peak-time performance, but
lowers worst-case performance.

Note 4: Bus Snoop feature

By monitoring the bus, this feature detects whether another processor or DMA writes to the memory
region stored in the cache. Because the ARM946E-S does not have this feature, you must be careful
that there is coherency between memory and cache. (See "3.5 Ensuring Coherency"” on page 43.)

3.3.1

This is 8 KB of high-speed memory, dedicated to instruction code.

Instruction Cache

The ARMS9 bus is not used during cache hits, so a program in the Instruction cache can run even when a
non-ARM9 bus master (DMA or subprocessor) has possession of the ARM9 bus.

3.31.1

When the ARM9 bus fetches instruction code from memory, the Instruction Cache Controller extracts the
Index bit and TAG bit from the memory addresses and compares the contents of TAG RAM in the nth
cache line (defined by the Index number) with the TAG bit at that memory address. Because the
ARMBO946E-S cache has a four-set structure, the comparison is made on four cache lines. If the comparison
finds a match for any of these four cache lines and the valid bit is enabled, it is determined that the cache
line contains the targeted instruction code (a hit). If not, it is considered a miss.

Determining Hits and Misses

For a cache hit, the intended instruction code in Data RAM is identified from the address' Word or Byte and
can be accessed quickly. For a miss, the cache lines are fetched from memory via the ARM9 bus.

Figure 3-2 shows the structure and actions of the Instruction cache.

© 2003-2007 Nintendo 37
CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Figure 3-2 : Structure and Actions of the Instruction Cache

(Sets 0 to 3 have the same architecture)

Set 3
Set 2
Set 1
Set 0 TAG RAM Instruction Code RAM
TAG | Flag | WordO | Word1 [seeeee | Word7
Line 0
Line 1
£ Line 2
° .
] .
CD .
(0} .
45 .
|
Line 62
Line 63
VY)
[T
/—bl Comparator | Instruction Code |
Valid - ‘l’
Instruction Code Selector f
A
Hit / Miss Fetch-Width Data
N
\ AN 4:
- A Y r }gr—g
31 24|23 1615 11{10 8|7 4 211 0
TAG Index Word Byte
Address

Address of instruction that ARM9 will fetch

About Instruction Cache TAG RAM

« TAG

The upper 21 bits of the memory address of the data in the cache line are stored here.

 Flag

Generated from the valid bit, which indicates whether cache lines are enabled or disabled.

3.3.2

Data Cache

This is 4 KB of high-speed memory. It is data-only.

The ARMS9 bus is not used during cache hits, so the data in this cache can be accessed even when a non-
ARMS9 bus master (DMA or subprocessor) has possession of the ARM9 bus.

NTR-06-0180-001-G
Released: July 27, 2007

38

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

3.3.21 Determining Hits and Misses

When ARM9 loads data into memory, the Data Cache Controller extracts the Index bit and TAG bit from
the memory address and compares the contents of TAG RAM in the nth cache line (defined by the index
number) with the TAG bit at the memory address. The ARM946E-S cache has a four-set structure, so the
comparison is made on four cache lines. If the comparison finds a match for any of these four cache lines
and the valid bit is enabled, it is determined that the cache line contains the targeted data (hit). If not, it is

considered a miss.
For a cache hit, the targeted data in data RAM is identified from the address' Word and Byte and can be
quickly accessed. For a miss, the data is accessed from memory via the ARM9 bus.

Figure 3-3 shows the structure and actions of the Data cache.
Figure 3-3 : Structure and Actions of the Data Cache

(Sets 0 to 3 have the same architecture)

Set 3

Set 2

Set 1

Set 0 TAG RAM Data RAM
TAG | Flag | WordO | Word1 [eeeeee | Word7

A
[
o}
o)
N

Line Selector

Line 30
Line 31

>

H_) L J
T

(—>| Comparator | | Data |

)

Valid
| Data Selector f
\L A
Hit / Miss Access-Width Data

31 2423 16|15 10]9 8|7 5|4 2({1 0
TAG Index Word Byte

Address

Address of data that ARM9 will read/write
(Differs from Instruction cache in that the Index is 5 bits)

39 NTR-06-0180-001-G

© 2003-2007 Nintendo
Released: July 27, 2007

CONFIDENTIAL

NITRO Programming Manual

About Data Cache TAG RAM
« TAG

The upper 22 bits of the memory address of the data in the cache line are stored here.
* Flag

Consists of the valid bit, which indicates whether cache lines are enabled or disabled, the dirty bit for
the first half of the line, and the dirty bit for the second half of the line, which indicate whether the
contents of the cache and memory are the same.

When the contents of the cache match those in memory, the cache is said to be clean. When the
contents do not match, the cache is dirty.

The dirty bits are used only in write-back mode. To read more about this mode, see "3.4 Write Buffer"
on page 42.

The dirty bits are referenced when the contents of a line are to be written back to memory. If the flag is
dirty, a write-back occurs. If the flag is clean, no write-back occurs (because it is unnecessary).

3.33 Cache Operations

Table 3-2 shows the operations conducted on the cache. Some operations act on the entire cache, while
other operations act on specified cache sets, specified cache lines, or a particular cache line specified by a
memory address.

Table 3-2 : Cache Operations

Overall Direct Operations - Enable/plsable - Enable/plsable
- Invalidate - Invalidate
Direct Operations on Sets - Lockdown - Lockdown
- Clean

Direct Operations on Lines - Clean & Invalidate

- Prefetch

Operations on Cache Lines - Clean
Corresponding to Memory - Invalidate
Addresses . - Clean & Invalidate
- Invalidate

The Clean, Invalidate, and Clean & Invalidate operations can cause changes in the usage state of cache.
To read more about these changes, see "3.5 Ensuring Coherency" on page 43.

About Each Operation
* Clean

Writes back dirty data in the cache to memory. The data remains in the cache. If the Write buffer is
enabled, the actual write back to memory is delayed.

* Invalidate

Invalidates the data in the cache. The next time this memory region is read, a read miss occurs and a
line fetch from memory to the cache is performed. The data moved into the cache by the line fetch is
treated as valid.

« Clean & Invalidate

Writes back dirty data in the cache to memory and invalidates the data in the cache. As a result, the
next time this memory region is accessed, the data will be line-fetched from memory to the cache.

Caution: If the write buffer (refer to "3.4 Write Buffer" on page 42 for details) is full and the Clean &
Invalidate command is issued, caches that are already clean will not be invalidated.

NTR-06-0180-001-G 40 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

* Instruction Prefetch (prefetch)

Takes instruction code that has not yet been fetched by the program and preloads it into the Instruction
cache. It uses coprocessor instructions.

¢ Lockdown

By locking down one set of cache, no line in that set can be replaced by line fetches and the whole set
can be used as a block of Work RAM. However, this reduces the cache region by the same amount
and increases the miss rate.

+ Enable/Disable
When using the cache, in addition to enabling the cache, you must also enable the Protection Unit.

You can enable/disable the Instruction cache and the Data cache for each protection region. To read about
protection regions and their settings, see "3.1 Protection Unit" on page 35.

Caution: Data Preload (preload) is a feature that preloads data that has not been accessed by the
program and normally operates by using the PLD instruction. However, due to ARM946E-S
specifications, no operation will be performed even when a PLD instruction is recognized.
Therefore, the data preload feature does not work with ARM946E-S.

3.34 Optimizing the Cache

The cache uses the memory reference locality of most programs to accelerate memory access.
Temporal locality The high probability that data, once referenced, will be referenced again soon.
Spatial locality The high probability that data near referenced data will also be referenced.

Programs with a higher reference locality have higher cache hit rates and faster average access speeds.

Depending on how a program is pieced together, you can manually increase the reference locality to some
extent. For example, when constructing a loop to handle a two-dimensional (or higher) array, you can
boost the spatial locality of the array by handling addresses in consecutive order.

Examples:

for(j=0; j<0x100; j++) { for(1i=0; 1<0x100; i++) {
for(i=0; 1<0x100; i++) { for(j=0; j<0x100; j++) {
RESULT += TESTI[i, J]; RESULT += TESTI[i, J];

} }

In loop example A, the TEST array is referenced every 0x100 addresses inside the loop, so there is no
cache hit during the first iteration. Lines are fetched one after another in the first iteration. However,
because the capacity of the Data cache is 32 lines x 4 sets for a total of 128 lines (0x80 lines), the entire
loop does not fit in the Data cache, and hits occur only half the time in the second and subsequent
iterations.

In contrast, in loop example B, the TEST array is referenced in the same order as the addresses inside the
loop, enabling the maximum hit rate.

© 2003-2007 Nintendo 41 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

3.4 Write Buffer
The Write buffer is 32 bytes x 16 layers of FIFO memory that integrates addresses and data.

The type of entry is determined by the address/data flag. Address entries have an appended data size.

Writing data to the high-speed Write buffer instead of memory keeps ARM9 from stalling during the write
process. However, ARM9 will stall when writing to the Write buffer when it is full.

When the Protection Unit is enabled, you can select among the access modes shown in Table 3-3 for
writing data. The selection is made by configuring the Data cache and the Write buffer for each protection
region as shown.

To read more about protection regions, see "3.1 Protection Unit" on page 35.

Table 3-3 : Access Modes When the Data is Being Written

. g NCNB mode?
Disable Disable
! I (Data cache and Write buffer are both disabled)
. NCB mode
Dsbe Hilel3 (Data cache disabled; Write buffer enabled)
Enable DisableP Write-through mode
Enable Enable Write-back mode

a. In NCNB mode, the contents of the write buffer are output when writing and are accessed ahead of the Write
buffer output when reading.
b. In write-through mode, the Write buffer is disabled, but it is used.

+ Write-back mode (recommended)

If there is a hit during the data write, data is written only to the cache and not to the Write buffer.
Therefore, the contents of the cache may not be the same as in memory, but writing is fast.

A Clean operation must be performed in order for the data rewritten by the CPU to be reflected in
memory.

Further, when a read-miss occurs while the cache is full and the cache lines to be emptied by the
replacement algorithm are dirty, they are written back to the Write buffer.

* Write-through mode

If there is a hit during the data write, the data is written to the Write buffer at the same time that it is
written to the cache. Therefore, the cache line does not become dirty as a result of writing to ARM9,
but writing is slow.

Further, if the cache is full when a read-miss occurs, the replacement algorithm overwrites the cache
line.

In both of these modes, data is written only to the Write buffer when a write-miss occurs.

Also, if a line is being fetched, the contents of the Write buffer are discharged first to maintain data
coherency.

Note: Be careful about the access width of memory when writing in write-through mode. (For example,
you cannot use an access width of 8 bits with VRAM.) To read about the access width for each
memory type, see "2 Memory" on page 9.

To read about cache state transitions and control in either of these modes, see "3.5 Ensuring
Coherency" on page 43.

NTR-06-0180-001-G 42 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

3.41 Write Buffer Operations
« Wait for the Write buffer to empty
The ARM9 bus can stall until all data in the Write buffer is written to memory.
Use this operation to make certain that all content rewritten by the CPU is reflected in memory.

Note that this operation is not necessary when data is written to 1/O registers or other regions where
cache and buffers are disabled, because in these cases, the CPU stops until the Write buffer is empty.

To read why this operation is necessary in other cases, see "3.5 Ensuring Coherency" on page 43.

3.5 Ensuring Coherency

Be careful when using the cache to make sure no inconsistencies arise between the contents of the cache
and memory.

The cache state is managed in each cache line by the flag in TAG RAM.

This flag includes one valid bit and two dirty bits. The dirty bits indicate the state of the first half and second
half of the cache line. All three bits are used for the Data cache in the write-back mode, but only the valid
bit is used in the write-through mode or for the Instruction cache.

3.51 Write-Back Mode

Table 3-4 shows how the flag states define the cache line state in write-back mode.

Table 3-4 : Cache Line States (Write-Back Mode)

Dirty 1 1 Cache line is valid, contents differ from memory
Clean 1 0 Cache line is valid, contents match memory
Invalid 0 * Cache line is invalid

Operations Managed Automatically by the Cache Controller

As shown in Figure 3-4, read misses/hits and write misses/hits on access from the ARM9 as well as state
transitions by the replacement algorithm are performed automatically.

When the replacement algorithm replaces valid but dirty lines, the lines are first written back to memory (or
to the Write buffer, if enabled). Because the process is actually conducted on the first and second halves of
the line, and not on the entire line, the volume of data written back can be 0, 16, or 32 bytes.

Operations that Must be Managed by the User

Because the ARM946E-S lacks the bus snoop feature, when cached memory is accessed by a bus master
other than ARM9 (such as the subprocessor or DMA), the cache lines must be operated manually.

When data are written to memory by a bus master other than ARM9, invalidate the appropriate cache
lines.

Also, when memory is read by a bus master other than ARM9, you should clean the cache line beforehand
and perform the Wait for the Write buffer to empty operation.

© 2003-2007 Nintendo 43 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 3-4 : Cache Line State Transitions (Write-Back Mode)

Line Fetch due to
Read Miss

- Read Hit
- Replace using the

Write Miss } . Replacement Algorithm
..\~ Invalidate
Invalid : - Clean
- Clean & Invalidate
- Replace using the
Wiitelback Using Replacement Algorithm
another Bus Master - Clean
- Invalidate Write Hit

- Clean & Invalidate

4 - Read Hit
- Write Hit

Example
» If the program in main memory is overwritten by an overlay, etc.

Invalidate the Instruction cache in the appropriate region.

3.5.2 Write-Through Mode

Table 3-5 shows how the flag states define the cache line state in write-through mode.

Table 3-5 : Cache Line States (Write-Through Mode)

Clean 1 * Cache line is valid, contents match memory

Invalid 0 * Cache line is invalid

Operations Managed Automatically by the Cache Controller

As shown in Figure 3-5, read misses/hits and write misses/hits for access from the ARM9 as well as state
transitions by the replacement algorithm are performed automatically.

Operations that Must be Managed by the User

Because the ARM946E-S lacks the bus snoop feature, when cached memory is accessed by a bus master
other than ARM9 (such as the subprocessor, DMA, etc.), the cache lines must be operated manually.

When data are written to memory by a bus master other than ARM9, you should invalidate the appropriate
cache lines.

Also, when memory is read by a bus master other than ARM9, perform the Wait for the Write buffer to
empty operation.

NTR-06-0180-001-G 44 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figure 3-5 : Cache Line State Transitions (Write-Through Mode)

- Line Fetch due - Read Hit
o to Read Miss - Write Hit
- Wiite Miss N - Replace Using the
Invalid), ’(Clean Replacement Algorithm

N\

- Invalidate

Example
« If the program in main memory is overwritten by an overlay, etc.

Invalidate the Instruction cache in the appropriate region.

© 2003-2007 Nintendo 45 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 46 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

4 Display

4.1 Display System

The display system block diagram is shown in "Figure 4-1 : Display System Block Diagram" on page 48.

Each selector in the block diagram can be controlled using the register selection flags in Table 4-1.
Table 4-1 : Selector and Register Selection Flag Map
Selector Name Register Name Flag Name

SEL DISP DISPCNT Display mode selection

SEL BGO DISPCNT 2D/3D display selection for BGO

SEL DISP VRAM (Is]Siz{el\1) Display VRAM Selection

SEL A DISPCAPCNT Capture source A selection

SEL B DISPCAPCNT Capture source B selection

SEL CAP DISPCAPCNT Capture mode selection

S BT VAV DISPCAPCNT Capture data write destination VRAM selection

SEL LCD POWCNT LCD output destination switch

After selecting the graphics display, VRAM display, or main memory display using SEL DISP, the image
output becomes Image Output A.

Similarly, the image output of the 2D graphics engine B becomes Image Output B.

Image Outputs A and B each go through Master Brightness Up/Down A and B, respectively, and become
the Display Output A and Display Output B that are sent to the LCD.

When finally output to the LCD, these display outputs cannot be layered.

Choose one of the following:

» Send Display Output A to the Upper Screen LCD and send Display Output B to the Lower Screen LCD
» Send Display Output A to the Lower Screen LCD and send Display Output B to the Upper Screen LCD
For games that require only one LCD, disable the LCD display you do not use.

For further details, see "10 Power Management" on page 285.

Image Output A allows you to blend and display 2D graphics and 3D graphics in the graphics display.

See "4 Display" on page 47 for information on the hardware block for 3D image creation.

© 2003-2007 Nintendo 47 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 4-1 : Display System Block Diagram

H H
' ©BJ 0 Logic
: <| |
1 BG3 gl 3
0 T 0
0 2D Graphics &i H Memory
’ : BG2 e I \
] Engine A .3 a2 P >
H 2| ¢ Selector
H BG1 %) H
. -5]
(o]
[} ° [}
: 5| 4
0 BGO 0
[] []
: 3D Graphics :
] Engine 0
’ N
0]
[] []
4 Graphics Display :

<
c
3
BENE
== o
o)
m 2 \
o> 2 >
< = <
’ 0 = m | &
' ' d|ls|o
: = = o @ | >
(o)) © ©
o § 0 o] = | o
: | Rl
[] % [] P
0 al| e
0 ol]
. m| e
] n)
' ‘ al»
:VRAMDlspIay s 3
0]
H DMA | Main Memory | ¢
H A
H Main Memory ——— p.oojay FIFO [8 ® >/
: .
0
® Main Memory Display H
‘........-..................... m
c
g
OBJ @ %-
2 =)
BG3 - 3 @
2D Graphi gL AE 4
raphics o = | =
Engine B %8 P> 2|3
5 & 31513
56 £33
B 3| 8=
3 o |2 |2
BGO > é’
E
NTR-06-0180-001-G 48 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

4.2 LCD
The specifications for the two LCD controllers included on the DS are shown below.

The top and bottom LCDs have the same specifications, but the directions differ on the Nintendo DS. So,
the order of RGB pixel arrays differs.

4.2.1 LCD Controller Specifications

The LCD clock specifications of the LCD controller are shown in Table 4-2, the LCD scan timing is shown
in Figure 4-2, and the specifications for the LCD scan timing are shown in "Table 4-3 : LCD Scan Timing

Specifications" on page 50.

Table 4-2 : LCD Clock Specifications

LCD Clock Frequency (time)
(29.838293 ns)

Image Processing Clock 33.513982 Mhz

Dot Clock 5.585664 Mhz (179.029757 ns) (see note)

Note: The Dot Clock is 1/6 of the Image Processing Clock.

Figure 4-2 : LCD Scan Timing

355 dots
K—————— 256 dots)I(99 dots——
g
= Display Screen H-Blank
o2
g
®
&
3]
£ V-Blank
L
© 2003-2007 Nintendo 49 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

Display
Screen Size

Total Dot
Count

Blanking

Scan Cycle

NITRO Programming Manual

Table 4-3 : LCD Scan Timing Specifications

Item
Horizontal Dot Count
Vertical Line Count
Horizontal Dot Count
Vertical Line Count
H-Blank Dot Count
V-Blank Line Count
H-Cycle
V-Cycle

Spec Period Reference: AGB Value

256 dots 45.8316 ps 240 dots (57.221 ps)
192 lines 12.2027 ms 160 lines (11.749 ms)
355 dots 63.5556 ps 308 dots (73.433 ps)
263 lines 16.7151 ms 228 lines (16.743 ms)

99 dots 17.7239 ps 68 dots (16.212 ps)

71 lines 45124 ms 68 lines (4.994 ms)
15.7343 KHz 63.5556 us 13.618 KHz (73.443 ps)
59.8261 Hz 16.7151 ms 59.727 Hz (16.743 ms)

The V-Blank cycle for the 3D rendering engine consists of 23 lines: 191-213
Rendering Engine" on page 226.

NTR-06-0180-001-G
Released: July 27, 2007

50

. For details, see "6.3

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

4.3 Display Status

DISPSTAT: Display Status Register
Name: DISPSTAT Address: 0x04000004 Attribute: R'W

15 8

5 3

Initial value: 0x0000

2 0

VC7 | VC6 | VC5 | VC4 | VC3 | VC2 | VC1 | vco | ves

val | HBI | VBI

LYC | HBLK | VBLK

V-Counter Match Setting Values

Status Flags

e [d15—d07] : V-Counter Match Setting Values

Interrupt Request
Enable Flags

Note that VC8 is located in dO7 (for compatibility with AGB). Values between 0 and 262 can be set.
Proper operation is not guaranteed for a value of 263 or higher.

* [d05-d03] : Interrupt Request Enable Flags

* VQI[dO5] : V-Counter match interrupt request enable flag

Disable

Enable

« HBI[d04] : H-Blank interrupt request enable flag

Disable

Enable

When enabled, H-Blank interrupts are permitted with the Interrupt Enable Register (IE). H-Blank
interrupts can be made during the display interval, and also during any of the 263 vertical lines
(Line 0 — 262) on the LCD, including V-Blank intervals.

* VBI[d03] : V-Blank interrupt request enable flag

Disable

Enable

+ [d02—d00] : Status Flag
* LYC[d02] : V-Counter match detection flag

Outside a matching interval

During a matching interval

+ HBLKJ[d01] : H-Blank detection flag

Outside H-Blank interval

During H-Blank interval

* VBLK][dO0O] : V-Blank detection flag

Outside V-Blank interval

During V-Blank interval

© 2003-2007 Nintendo 51
CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Note: V-Blank detection flag is set to 1 at the moment it reaches Line 192 and is set to 0 when it reaches
Line 262. This is because the OBJ rendering circuitry accesses OBJ-VRAM and OAM starting at
Line 262, which is one line before the actual display. In addition, the timing that ends access to
OBJ-VRAM and OAM depends on whether the OBJ process is performed during H-Blank. On the
other hand, BG-VRAM, BG Palette RAM, and OBJ Palette RAM begin access at Line 0 and end at
Line 191. This is summarized in Table 4-4.

Table 4-4 : Period when Graphics Engines Access Memory

Memory Accessed by Graphics Engines V-Counter Value

Access period when OBJ render- | Perform OBJ process during H-Blank |0-191, 262
ing circuitry accesses OBJ-VRAM

Does not perform OBJ process during

and OAM H-Blank 0-190, 262

Access period when rendering circuitry accesses BG-VRAM, BG Palette 0-191

RAM, and OBJ Palette RAM

(Reference) Period when the V-Blank deflection flag becomes 1 192-261
NTR-06-0180-001-G 52 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

VCOUNT: V-Counter Register

Name: VCOUNT Address: 0x04000006 Attribute: R/W Initial value: 0x0000

15

8 7 0

V8 v7|va|v5|v4|v3|v2|v1|v0

V-Counter Values

[d08-d00] : V-Counter Values

Unlike the bit arrangement of the V-Counter Match Setting Values in the DISPSTAT register, these bits
are in a normal arrangement.
1. When reading values
Can read which of the LCD's total 263 lines is currently displayed. The readout value is between 0
and 262.
If the readout value is between 0 and 191, images are being drawn. If the value is between 192
and 262, it is a V-Blank period.
To learn about the LCD's display timing, see "4.2 LCD" on page 49.
2. When writing values
Written values are reflected when the hardware's V-Counter is updated.
By using this register, you can synchronize all NITRO V cycles by adjusting the V-count value
when communicating among multiple DS devices.
Confirm that the current value of the V-Counter is between 202 and 212 and write values only
between 202 and 212. Proper operation of the 3D engine is not guaranteed when writing values
outside this range.
Note: When there is a conflict between the access to the display circuit VRAM and the access to VRAM
from the CPU, the display circuit VRAM takes precedence.
Because the dot clock of the LCD controller is 1/6 of a cycle of the image processing clock and the
system clock, the timing for the LCD controller to access the VRAM is once every six cycles.
With this timing, when simultaneously accessing from the CPU, the CPU access must wait for one
cycle.
© 2003-2007 Nintendo 53 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

44 Display Control
441 Top LCD/Bottom LCD Output Switching

POWCNT: Power Control Register

Name: POWCNT Address: 0x04000304 Attributes: R/W Initial Value: 0x0000
15 9 8 7 3 2 1 0
DSEL 2DGB GE RE |2DGA | MDE

-

LCD Output Destination
Switching Flag

+ DSEL[d15] : LCD Output Switching Flag

Send Display Output A to the Lower Screen LCD
Send Display Output B to the Upper Screen LCD

Send Display Output A to the Upper Screen LCD
Send Display Output B to the Lower Screen LCD

You can switch the LCD output destination with no delay by configuring the Power Control Register.

NTR-06-0180-001-G 54
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

4.4.2 Display Control of 2D Graphics Engine A

DISPCNT: Display Control Register

Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial value: 0x00000000
31 24|23 19 18 17 16|15 8|7 3 0
oleg] | | | | loHm| cH | | |ow|wi|wo| o [B3]B2[B1[BO BM [cH | |

Ext. OBJ Window Display BG Mode
¢

Display Mode 2D/3D Display
Selection for BGO
Display VRAM
OBJ Mapping

OBJ Process During Mode
H-Blank Period

2D Display

BG Character Forced Blank

Base Offset

BG Screen
Base Offset

Extended Palette

+ [d19—d18] : Display VRAM
Selects the VRAM block to display when in VRAM Display Mode (see “[d17—d16] : Display mode”).

00 VRAM-A

01 VRAM-B

10 VRAM-C

1 VRAM-D

* [d17-d16] : Display mode

When the Display mode is OFF, 2D/3D graphics, VRAM display, and main memory display are not
selected and appear white.

Graphics display mode displays both 2D and 3D graphics.
VRAM display mode displays the bitmap data stored in VRAM.
Main memory display mode displays the bitmap data stored in main memory (requires a DMA setting).

For details, see the appropriate sections.

Display OFF

Graphics Display

VRAM Display

Main Memory Display

© 2003-2007 Nintendo 55 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

« [d07] : 2D Display Forced Blank

The 2D graphics display is forcibly halted by the CPU. Because 2D display is halted, 3D graphics
using BGO are not displayed either.

During a forced blank, the 2D graphics circuitry does not access VRAM, and the LCD screen is white.
However, even during a forced blank, the internal HV synchronization counter continues to run.

If the forced-blank setting is changed from ON to OFF during a display period of the internal HV
synchronization counter, the effect takes place immediately; if it is changed from OFF to ON, the
switch takes place at the start after three lines.

+ [dO3] : 2D/3D Display Selection for BGO
This bit determines whether to use one of the BG screens (BGO0) for 2D graphics or for 3D graphics.

When 3D graphics are selected, the 2D graphics features for BGO are limited and the specifications for
color special effects change. See "6.4 2D Graphics Features you can Apply to the 3D Screen after

Rendering" on page 268.

Display 2D graphics

Display 3D graphics

+ Other bits
The bits in the DISPCNT register not covered above are explained in the following sections:
Bits related to the display control of 2D graphics features are explained in "5 2D Graphics" on page 73.
Bits related to BG are explained in "5.2 BG" on page 77.
Bits related to OBJ are explained in "5.3 OBJ" on page 109.

NTR-06-0180-001-G 56 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

44.3 2D Graphics Engine B Display Controls

DB_DISPCNT: Display Control Register 1

Name: DB_DISPCNT Address: 0x04001000 Attributes: R/W Initial Value: 0x00000000
31 24123 16(15 817 0
o [Bc OH CH ow|w1|wo| o [B3[B2[B1[BO BM [CH | |
Window Display BG Mode
Extended OBJ Process During Display Mode OBJ Mapping
Palette H-Blank Period Mode
Extended Object 2D Display

Forced Blank

* [d16] : Display Mode

Display OFF

Display ON

« [d07] : 2D Display Forced Blank
This forcibly stops the 2D graphics engine circuit using the CPU.

During a forced blank, the 2D graphics circuit does not access the VRAM, and the LCD screen
appears white.

However, the internal HV synchronization counter runs even during a forced blank.

If the internal HV counter changes a forced blank during the display interval, the ON/OFF switches
immediately after configuration when going from ON to OFF or switches from the top after three lines
when going from OFF to ON.

© 2003-2007 Nintendo 57 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

444 Display Modes

As indicated in Table 4-5, on the Display Output A side (the 2D Graphics Engine A), there are modes that
display the bitmap data in the VRAM and main memory in addition to the mode that displays the images
generated by the graphics circuit.

Table 4-5 : Overview of the Display Modes (2D Graphics Engine A)

Features

Display Mode

. Display
Display Mode Size 3D Character BitmapBG OBJ

Number
Display BG Display Display Display

Display OFF - - - - - -

Graphics Display 256x192 60 fps X X

VRAM Display 256x192 60 fps

x| X | X

Main Memory Display | 256x192 60 fps

As indicated in Table 4-6, on the Display Output B side (the 2D graphics engine B), the only mode
selection is graphics display ON or OFF.

Table 4-6 : Overview of the Display Modes (2D Graphics Engine B)

Feature
Display Mode
Number

. Display Frame
Display Mode Size Rate Character Bitmap BG OoBJ
BG Display Display Display

Display OFF - - - - -

Graphics Display 256x192 | 60 fps X X X

"Eigure 4-3 : Display Mode Selection (Display Output A Side Only)" on page 59 is a simplified version of
the display mode for Display Output A in "Eigure 4-1 : Display System Block Diagram" on page 48.

NTR-06-0180-001-G 58 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figure 4-3 : Display Mode Selection (Display Output A Side Only)

DISPCNT Register
Display Mode Selection

pecscans

Graphics Display

2D Graphics
Engine A

3D Graphics
Engine

peccsccscscacana,

VRAM Display

VRAM

pecccscccccnccns

Main Memory Display

Main Memory

© 2003-2007 Nintendo
CONFIDENTIAL

59

SEL DISP

Master Brightness Up / Down

Output

Selector

Logic

Memory

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

4441 Graphics Display Mode

This mode displays images generated with the 2D and 3D graphics features.

See "Figure 4-1 : Display System Block Diagram" on page 48 for information about the entire display
system.

To read about the various graphic features, see "5 2D Graphics" on page 73 and "6 3D Graphics" on page 153.
¢ Graphics display mode — Example 1

The example in Figure 4-4 shows how the results of 3D rendering are layered with the 2D screen and
displayed.

Although 3D display is handled as the BGO screen, the 2D graphics features of BGO are limited, and the
color special effect specifications have changed. See "6.4 2D Graphics Features you can Apply to the 3D
Screen after Rendering" on page 268.

Figure 4-4 : Display Mode Selection (Display Output A Side Only)

OBJ _ DISPCNT Register
§ Display Mode Selection
g
2D Screen S »
O =
(BG + OBJ) o9 ® ,\
2
BG1 ©
=2 H
= '
"] :
>
©
-
DISPCNT Register
3D Screen 2D/3D Display
Selection for BGO
Graphics Display E
- - E c
: g
H [a)
. A, 4 5
H H o
» n (2]
: 2} @ Output
ponenoeecnes i : ot—» £
' . <
: Capture : > o
spmand om
? Ak 5
Opng® ‘ :
H =
P Q09 :
, obtb — s
H 4 ° > Selector
{VRAM Display '
[8 p—— .
Logic
;) :
E é ¢ > Memory
{Main Memory Displa :
{ y Display : 4
NTR-06-0180-001-G 60 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

¢ Graphics display mode — Example 2

In the example shown in "Figure 4-5 : Example of Displaying the Bitmap OBJ Results of 3D Rendering
on page 62, the results of 3D rendering are pasted in a bitmap OBJ and displayed.

The rendering engine's clear alpha value is set to 0, and the 3D rendering result is captured. Then, in
the next frame, the VRAM is assigned to a bitmap OBJ, according to the value of the RAM Bank
Control register. This enables the 3D rendering result to be displayed as an OBJ.

At this moment in the sequence, alpha value segments that remain 0 in the 3D alpha-blending process
are transparent. (See "6.3.7 Alpha-Blending" on page 258 for the capture feature and the rendering
engine.)

In this example, double buffering occurs by alternately assigning VRAM-A and VRAM-B to LCDC and
OBJ-VRAM.

© 2003-2007 Nintendo 61 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 4-5 : Example of Displaying the Bitmap OBJ Results of 3D Rendering

> > OBJ — DISPCNT Register
S Display Mode Selection
o
3
2D Screen S
(8G + OBJ) 338 D
T &
c W
BG1 ©
()]
c
o
>
©
-
DISPCNT Register
3D Screen 2D/3D Display
Selection for BGO

Graphics Display

DISPCAPCNT Register
DISPCAPCNT Register Capture Source A Selection
Selection of VRAM to write capture data

DISPCAPCNT Register
Capture Mode Selection

Capture |«

/ SELCAP '\

o
o c
................... (a] s
— o
. % Q
< é SEL B "\ =)
5\ DISPCAPCNT Re |s_ter A @ Output
Q) Capture Source B Selection) o
00 =
2
m
L VRAM-A | >\ fol
128KB 3
=
----- > vraws | %
A 128KB g
& ¢ >
VRAM-C =
""""" P o2ske [P
n
femccccaccncee »| VRAM-D Selector
128kB [> / DISPCNT Register
VRAM Display Display VRAM Selection
Logic
) DMA | Main Memo
Main Memory > Display FIFg -@ >/
Main Memory Display Memory
NTR-06-0180-001-G 62 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

4442 VRAM Display Mode

When the DISPCNT register is set for VRAM display mode, one frame of bitmap data stored in a VRAM
block is shown from the start of the next display. The DISPCNT register can specify which VRAM block to
use.

VRAM is displayed using a different system than the 2D circuitry and the 3D circuitry, so when the mode is
set to VRAM display mode, images can be created by the graphics circuitry and captured to VRAM at the
same time that images are being displayed. (See "Eigure 4-1 : Display System Block Diagram" on page
48).

You can specify the same VRAM block for display and for capturing images.

For details about capturing images, see "4.5 Display Capture" on page 67.

The pixel data format for VRAM display mode is shown below.
VRAM Display Mode Data Format

15 14 10 9 8 | 7 5 4 0
BLUE | GREEN | RED
Pixel Color Data

Figure 4-6 shows the VRAM address map of the LCD pixels.
Figure 4-6 : VRAM Address Map of the LCD Pixels

Dot 0 1 2 3 253 254] 255

Line 0 oh 2h 4h en| 1FAh| 1Fch| 1FEh
1| 200n| 202n| 204n| 20en| 3FAh| 3FCh| 3FEh
2| ao0on| 402n| | [5FCh| S5FEh
3| eoon| eo2n| | [7FCh| 7FEn
4] soon| || | 9FEh
187| 17e00n| | | [177FEh
188| 17800n| 178020 | | 179FCh | 179FEh
189| 17A00n | 178020 | | T 17BFCh | 17BFER
190| 17coon | 17co2n | 17cosn| 17coen| 17DFAh | 17DFCh | 17DFER
191| 17E00h | 17E02h | 17E04nh | 17E06H| 17FFAh | 17FFCh | 17FFER

* VRAM display mode - Example

In "Figure 4-7 : Example of the Motion Blur Effect that Uses the Display Capture" on page 64, the
image created by the graphic circuitry is put into VRAM using the capture feature, and then the image
is displayed with the mode set to VRAM Display. When the image is captured, a motion blur effect is
achieved by blending with the display-use VRAM.

© 2003-2007 Nintendo 63 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 4-7 : Example of the Motion Blur Effect that Uses the Display Capture

OBJ DISPCNT Register
Display Mode Selection

2DS
(86+06)
et

Effects
,—

BG2
BG1

Layering and Color Special

BGO

DISPCNT Register
2D/3D Display

3D Screen .
Selection for BGO

Graphics Display

. DISPCAPCNT R r
DISPCAPCNT Reglster Capture Source A Selection

Selection of VRAM to write captured data

DISPCAPCNT Register
Capture Mode Selection

<

Blending

o
@
___________________ a
< -
|
7

Capture

/. SELCAP '\
A

DISPCAPCNT Register
Capture Source B Selection >

L VRAM-A AN
128k [P

VRAM-B
""" Pl ske [P

Output

Master Brightness Up/Down

SEL VRAM
[
A 4

VRAM-C
""""" P 2ake [P

VRAM-D
128KB

Selector

DISPCNT Register
Display VRAM Selection

:
;
<

VRAM Display

Logic

. DMA Main Memo|
Main Memory p===--===- ™| Display FIFG R /

Memory

Main Memory Display

NTR-06-0180-001-G 64 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

4443 Main Memory Display Mode

This mode enables the display of bitmap data held in main memory. When the DISPCNT register is set to
main memory display mode, the data held in the main memory display FIFO is transferred to the LCD
module at the beginning of the next display. A data request is sent to DMA for every data transfer.

There is a four-layer FIFO between the main memory display FIFO register and the LCD module, and the
LCD module takes four words at a time. For this reason, you should write four layers of data at a time to the
main memory display FIFO register.

To be more specific, after setting the DMA transfer bit width to 32 bits and the word count to 4, set the DMA

startup mode to main memory display mode. For this mode, be sure to set the DMA source address to the
main memory region.

Table 4-7 shows the DMA configuration when using the main memory display mode.

Table 4-7 : DMA Configuration when Using the Main Memory Display Mode

Setting

Source Address Main memory

Transfer Bit Width 32 bits

Word Count 4

For details about the DMA configuration, see "7 DMA" on page 273.

Data from main memory is displayed using a system other than the 2D and 3D circuitry, so when the mode
is set to main memory display, images can be created by the graphics circuitry and captured to VRAM at
the same time that images are being displayed. (See "Figure 4-1 : Display System Block Diagram" on page
48.)

Main Memory Display FIFO Register

Name: DISP_MMEM_FIFO Address: 0x04000068 Attribute: R/W Initial value: 0x00000000
31 30 26 25 2423 21 20 16|15 14 109 8|7 5 4 0
| BLUE | GReEN | RED BLUE | GREEN | RED
oDD EVEN

"Figure 4-8 : LCD Pixel EVEN/ODD Map of the Main Memory Display FIFO Register" on page 66 shows
the LCD pixel EVEN/ODD map of the main memory display FIFO register.

© 2003-2007 Nintendo 65 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

Figure 4-8 : LCD Pixel EVEN/ODD Map of the Main Memory Display FIFO Register

NITRO Programming Manual

Dot 0 1 2 3
Line0O| EVEN ODD| EVEN ODD
1 EVEN ODD| EVEN ODD
2(EVEN ODD
3| EVEN ODD
4| EVEN
187 | EVEN
188 | EVEN ODD
189 | EVEN ODD
190| EVEN ODD| EVEN ODD
191 EVEN ODD| EVEN ODD
NTR-06-0180-001-G

Released: July 27, 2007

66

253 254 255
ODD| EVEN ODD
ODD| EVEN ODD
EVEN ODD

EVEN ODD

ODD

ODD

EVEN ODD

EVEN ODD

ODD| EVEN ODD
ODD| EVEN ODD

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

4.5 Display Capture

This feature enables 2D and 3D graphics and image output from VRAM and main memory to be read into
VRAM.

Only the image output on the Display Output A side (the 2D graphics engine) can be captured.

It also enables images from two sources to be blended, and then captured.

DISPCAPCNT: Display Capture Control Register

Name: DISPCAPCNT Address: 0x04000064 Attribute: R/W Initial value: 0x00000000
31 30 29 27 26 25 24|23 21 20 19 18 17 16|15 12 8|7 4 0
E | [B]A HEEE [[[] [[[]
MOD COFS| SRC WSIZE | WOFS | DEST EVB EVA

Lo —o

Capture VRAM Selection for Blending Factor on

Source Write Destination RAM Display Side

Selection

Capture Source VRAM Write Address Offset Blending Factor on
Address Offset Graphics Display Side
Capture Mode Capture Data Write Size

Capture Enable Flag

+ E[d31] : Display Capture Enable Flag

When the flag is set to 1, one screen of data is captured from the next 0 line, and then the flag is set to 0.

Disable

Enable

*+ MODI[d30-d29] : Capture Mode

00 Capture data from source A

01 Capture data from source B

10

1 from sources A and B

Capture the result of blending data

© 2003-2007 Nintendo 67 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

* COFS[d27-d26] : Read Address Offset for Capture Data Source VRAM
Invalid in VRAM display mode.

If the offset exceeds 0x20000 during reading, the reading continues after wrapping to address
0x00000.

00 0x00000

01 0x08000

10 0x10000

11 0x18000

* SRC[d25-d24] : Capture Data Source Selection

VRAM

Main Memory

Graphics display screen (after 3D/2D blending)

3D screen

+ WSIZE[d21-d20] : Capture Size

Specifies the size when writing the capture data. With RAM captures, one line is always read as a
256-dot image, so you cannot blend and then capture (see Capture mode above) when the setting is
128x128 dots.

00 128x128 dots (0x08000 bytes)
01 256x64 dots (0x08000 bytes)

10 256x128 dots (0x10000 bytes)
11 256x192 dots (0x18000 bytes)

+ WOFS[d19-d18] : Address Offset for Capture Data Write

This can specify the offset value for the address where data is written in the specified VRAM. If the
offset exceeds 0x20000 during writing, the writing continues after wrapping to address 0x00000.

00 0x00000

01 0x08000

10 0x10000

11 0x18000

NTR-06-0180-001-G 68 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

DEST[d17—-d16] : Capture Data Write Destination VRAM Selection
The write destination VRAM must be allocated to the LCDC.

00 VRAM-A

01 VRAM-B

10

VRAM-C

1

VRAM-D

EVB[d12-d08], EVA[d04—-d00] : Blending Factors

Sets the blending factors for capture sources A and B. See below for the calculation method.

In VRAM display mode, you can set the same VRAM block for display VRAM and for writing the

captured image data.

Capture Data Format

15 14 10 9 8 | 7 5 4 0
A BLUE | GREEN | RED
o Pixel Color Data

Although 3D graphics are output in R:G:B=6:6:6 color, because capture occurs in R:G:B=5:5:5 color

(employing the upper 5 bits), the image gradient becomes a little coarse.

Figure 4-9 shows the LCD pixel map of the captured data when the capture size is 256 x 192 dots.
Figure 4-9 : LCD Pixel Map of the Capture Data (When the Capture Size is 256 x 192 Dots)

Dot 0 1 2 3
Line 0 Oh 2h 4h 6h
1 200h 202h 204h 206h
2 400h 402h
3 600h 602h
4 800h
187 | 17600h
188 | 17800h | 17802h
189 | 17A00h | 17A02h
190 | 17C00h [17C02h | 17C04h | 17C06h
191 | 17EO00h | 17E02h | 17E04h | 17E06h

© 2003-2007 Nintendo
CONFIDENTIAL

69

253 254 255
1FAh 1FCh 1FEh
3FAh 3FCh 3FEh

5FCh 5FEh

7FCh 7FEh

9FEh

177FEh

179FCh | 179FEh

17BFCh | 17BFEh

17DFAh [17DFCh | 17DFEh
17FFAh [17FFCh | 17FFEh

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

¢ How to calculate data to write

1.

For data captured from source A:
CAP =Ca

Capture source A's alpha value is used for the alpha value.

2. For data captured from source B:

CAP =Cb

Capture source B's alpha value is used for the alpha value
3. For capturing data blended from sources A and B:
Cax Aax EVA)+\Cbx Abx EVB
cap)+ ()
16

The alpha value is 1 when EVA is non-zero and capture source A's alpha value is 1, or when EVB
is non-zero and capture source B's alpha value is 1. In all other circumstances, the alpha value is
0.

CAP: The color to write (calculation results are rounded to the nearest integer)

Ca: A's capture source data color, EVA: Blending factor for A

Cb: B's capture source data color, EVB: Blending factor for B

Aa: A's alpha value: A's capture source alpha value.
Determined as shown below.

Capture Source A 3D Screen Alpha
Selection Value
0
Ab: alpha value of B: alpha value of B's capture source
Note: When a conflict occurs between access to the display circuit VRAM and access to VRAM from the
CPU, the display circuit VRAM access takes precedence.
Because the dot clock of the LCD controller is 1/6 of a cycle of the image processing clock and the
system clock, the timing for the LCD controller to access the VRAM is once every six cycles.
If the VRAM of the capture is being displayed while display capturing, the frequency at which the
display circuit accesses the VRAM is doubled, and the VRAM is accessed with a timing of once
every three cycles.
With this timing, when simultaneously accessing from the CPU, the CPU access must wait one
cycle.
NTR-06-0180-001-G 70 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

4.6 Master Brightness

The brightness up/down process for Image Output A is handled by the configuration of the
MASTER_BRIGHT register, while the brightness up/down process for Image Output B is handled by the
configuration of the DB_MASTER_BRIGHT register.

MASTER_BRIGHT: Master Brightness Up/Down Register

Name: MASTER _BRIGHT Address: 0x0400006C Attribute: RI'W Initial value: 0x0000
15 14 4 0
E_MOD E_VALUE
Mode Factor

DB_MASTER_BRIGHT: Master Brightness Up/Down B Register

Name: DB_ MASTER BRIGHT Address: 0x0400106C Attribute: R‘'W Initial value: 0x0000
15 14 4 0
E_MOD E_VALUE
Mode Factor

The MASTER_BRIGHT and DB_ MASTER_BRIGHT registers share identical configuration details.
+ E_MOD [d15-d14] : Mode

Sets the mode for processing brightness up/down.

Setting Process

00 No change in brightness

01 Increase brightness

10 Decrease brightness

1 Setting prohibited

 E_VALUE [d04-d00] : Factor

Sets the factors as calculated below.

1. Brightness up computation
Rout = Rin + (63 — Rin) x (E_VALUE/16)
Gout = Gin + (63 — Gin) x (E_VALUE/16)
Bout = Bin + (63 — Bin) x (E_VALUE/16)

2. Brightness down computation
Rout = Rin — Rin x (E_VALUE/16)
Gout = Gin — Gin x (E_VALUE/16)
Bout = Bin — Bin x (E_VALUE/16)

The result of the Brightness Up and Down computation (Rout, Gout, and Bout) is rounded to the
nearest integer.

© 2003-2007 Nintendo 71 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 72 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5 2D Graphics

NITRO has two 2D graphics engines: 2D Graphics Engine A and 2D Graphics Engine B. 2D Graphics
Engine A can use 3D Graphics BG and large-screen 256-color Bitmap BG, but 2D Graphics Engine B
cannot. In the following sections, 2D Graphics Engine A is sometimes referred to as 2D_A and 2D
Graphics Engine B as 2D_B. Where register names differ for 2D Graphics Engine A and 2D Graphics
Engine B, the register name for 2D Graphics Engine B is given inside square brackets [].

5.1 Controlling the 2D Display

The display for each 2D graphics feature can be controlled and turned on or off independently. Control
register settings differ for 2D Graphics Engine A and 2D Graphics Engine B.

DISPCNT: Display Control Register (2D Graphics Engine A)

Name: DISPCNT Address: 0x04000000 Attribute: RIW Initial Value: 0x00000000

31 24|23 1615 13 12 8|7 0

olgg] | | | | |oHleM cH | | Jow|wi|wo| o |B3|B2[B1[BO BM [cH | |
Ext. OBJ Window Display . BG Mode

Display Mode BGO 2D/3D
Display Selection
Display VRAM
OBJ Mapping

OBJ Processing Mode
during H-Blank Period

2D Display
BG Character Base Forced Blank
Offset

BG Screen Base
Offset

Extended Palette

* [d15—d13] : Window Display Enable Flag

See "5.6 Windows" on page 142 to read about the window features.
« OW[d15] : OBJ Window Display Enable Flag

0 Disable display

1 Enable display

To display the OBJ Window requires enabling both the OBJ Window Display Enable Flag and the OBJ
Display Enable Flag.

W1 [d14] : Window 1 Display Enable Flag

0 Disable display
1 Enable display
© 2003-2007 Nintendo 73 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

WO [d13] : Window 0 Display Enable Flag

NITRO Programming Manual

0

Disable display

1

Enable display

* [d12—d08] : Display Selection Flag
+ 0O[d12] : OBJ Display Enable Flag

0 Disable display
1 Enable display
+ B3 [d11] : BG3 Display Enable Flag
0 Disable display
1 Enable display
+ B2[d10] : BG2 Display Enable Flag
0 Disable display
1 Enable display
+ B1[d09] : BG1 Display Enable Flag
0 Disable display
1 Enable display
+ B0 [d08] : BGO Display Enable Flag
0 Disable display
1 Enable display

NTR-06-0180-001-G

Released: July 27, 2007

74

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

DB_DISPCNT: Display Control Register 1 (2D Graphics Engine B)

Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W Initial Value: 0x00000000
31 24123 16|15 13 12 8(7 0
o[BG OH CH ow|w1|wo| o [B3[B2[B1[BO BM [cH | |
Window Display BG Mode
Extended Palette Extended OBJ OBJ Mapping
Mode
OBJ Processing Display Mode 2D Display
during H-Blank Period Forced Blank

* [d15—d13] : Window Display Enable Flag

See "5.6 Windows" on page 142 to read about the window features.
+ OW [d15] : OBJ Window Display Enable Flag

0 Disable display

1 Enable display

To display the OBJ Window requires enabling both the OBJ Window Display Enable Flag and the OBJ
Display Enable Flag.

+ W1 [d14] : Window 1 Display Enable Flag

0 Disable display

1 Enable display

WO [d13] : Window 0 Display Enable Flag

0 Disable display

1 Enable display

* [d12—d08] : Display Selection Flag
*+ 0O[d12] : OBJ Display Enable Flag

0 Disable display

1 Enable display

+ B3[d11] : BG3 Display Enable Flag

0 Disable display

1 Enable display

+ B2[d10]: BG2 Display Enable Flag

0 Disable display
1 Enable display
© 2003-2007 Nintendo 75 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

+ B1[d09]: BG1 Display Enable Flag

0 Disable display

1 Enable display

+ B0 [d08] : BGO Display Enable Flag

0 Disable display
1 Enable display
NTR-06-0180-001-G 76 © 2003-2007 Nintendo
CONFIDENTIAL

Released: July 27, 2007

5.2 BG

5.2.1

BG Mode

NITRO Programming Manual

The BG modes that can be set for 2D Graphics Engine A and 2D Graphics Engine B are different.

5.21.1

2D Graphics Engine A

With 2D Graphics Engine A, BGO can be displayed as either 2D or 3D. In addition, Large-Screen
256-Color Bitmap BG can be selected as the BG type for BG2.

DISPCNT: Display Control Register (2D Graphics Engine A)

Name: DISPCNT

Address: 0x04000000

Attribute: R/'W

Initial Value: 0x00000000

BG Character Base
Offset

BG Screen Base
Offset

Extended Palette

[d02—d00] : BG Mode

Forced Blank

31 24(23 16|15 817 2 0
olgg] | | | | loHM cH | | | Jow]w1]wo[o [B3[B2[B1]BO BM [cH | |
Ext. OBJ Window Display BG Mode
4 L 4 4 T
Display Mode BGO 2D/3D
Display Selection
Display VRAM
OBJ Mapping
OBJ Processing Mode
during H-Blank Period
2D Display

These bits set the BG mode number. The BG mode selects the BG types that can be used. See Table
5-1 for a list of BG modes for 2D Graphics Engine A.

The DISPCNT register can be used to select either Text BG or 3D BG as the BG type for BG0. See "6
3D Graphics" on page 153 for details on 3D BG display.

Table 5-1: List of BG Modes (2D Graphics Engine A)

BG Mode Number BGO BG1 BG2 BG3
0 Text BG/3D BG Text BG Text BG Text BG
1 Text BG/3D BG Text BG Text BG Affine BG
2 Text BG/3D BG Text BG Affine BG Affine BG
3 Text BG/3D BG Text BG Text BG Affine Extended BG
4 Text BG/3D BG Text BG Affine BG Affine Extended BG
5 Text BG/3D BG Text BG Affine Extended BG Affine Extended BG
Large-Screen
6 3D BG o 256-(?0?; :ﬁn(:gp BG o
7 Prohibited Setting
© 2003-2007 Nintendo 77 NTR-06-0180-001-G

CONFIDENTIAL

Released: July 27, 2007

5.2.1.2

2D Graphics Engine B

NITRO Programming Manual

DB_DISPCNT: Display Control Register 1 (2D Graphics Engine B)

Name: DB_DISPCNT

Address: 0x04001000

Attribute: RIW

Initial Value: 0x00000000

+ [d02—-d00] : BG Mode

31 24123 16|15 817 2 0
o [Bc OH CH ow|w1|wo| o [B3[B2[B1[BO BM [cH | |
T Window Display x BG Mode
Extended Palette Extended OBJ OBJ Mapping
Mode
OBJ Processing Display Mode 2D Display
during H-Blank Period Forced Blank

These bits set the BG mode number. The BG mode selects the BG types that can be used. See Table
5-2 for a list of BG modes for 2D Graphics Engine B.

Note:

Unlike 2D Graphics Engine A, Large-screen 256-Color Bitmap BG cannot be set as the BG

type for BG2. Furthermore, 3D BG display cannot be set as the BG type for BGO.

Table 5-2 : List of BG Modes (2D Graphics Engine B)

BG Mode Number BGO BG1 BG2 BG3

0 Text BG Text BG Text BG Text BG

1 Text BG Text BG Text BG Affine BG

2 Text BG Text BG Affine BG Affine BG

3 Text BG Text BG Text BG Affine Extended BG
4 Text BG Text BG Affine BG Affine Extended BG
5 Text BG Text BG Affine Extended BG Affine Extended BG
6 Prohibited Setting

7 Prohibited Setting

NTR-06-0180-001-G
Released: July 27, 2007

78

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

5.21.3 Basic Features for Each Type of BG

Each BG type has its own special features as described in Table 5-3.

Table 5-3 : Basic Features of BG Types

BG Type Features

This type can display images generated by the 3D graphics engine.
3D BG It can be displayed with other BG screens according to alpha-blending and priority settings.
2D Graphics Engine B cannot use this type.

This type is a character format BG.
Text BG Text BG is the only BG type that can handle characters defined in 16 colors and control
VRAM consumption, but it cannot accommodate affine transformations.

This type is the character format BG that can accommodate affine transformations.

SHigelEr It cannot perform character-unit processes (such as HV Flips).

Three types are available:
* Character BG that can use 256 colors x 16 palettes
» 256-Color Bitmap BG
» Direct Color Bitmap BG that can specify color directly

Affine Extended BG

This type is the Large-Screen Bitmap BG.

Large-Screen Because one screen makes full use of the maximum capacity of BG-VRAM (512 KB), it
256-Color Bitmap BG | cannot be used together with other BGs. However, it can be used together with a 3D screen.
2D Graphics Engine B cannot use this type.

© 2003-2007 Nintendo 79 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.21.4

The specifications for the different types of BG are shown in Table 5-4.

Specifications for Different BG Types

Table 5-4 : Specifications for BG Types

Category Character BG Bitmap BG
BG Type Affine Extended BG Large-
. Screen 256-
3DBG Text BG Affine BG 256-Color x Direct Color
256-Color .
Specs 16 Palettes Color Bitmap BG
256x256 128x128 128x128 128x128 128x128
Screen Size 256x192 512x256 256x256 256x256 256x256 | 256x256 512x1,024
256x512 512x512 512x512 512x256 | 512x256 1,024x512
512x512 | 1,024x1,024 | 1,024x1,024 | 512x512 | 512x512
Specifiable
Character Count T 1,024 256 1,024 T T T
Number of 16/16
262,144 256/1 256/1 256/16 256/1 32,768 256/1
Colors/Palettes
256/16
Affine X X X X X
HV Flip X X
H Scroll X X X X X X X
V Scroll X X X X X X
Mosaic X X X X X X
Fade-in/Fade-out X X X X X X X
Alpha Blending X X X X X X X
Priority X X X X X X X

Note 1: 2D Graphics Engine B cannot set 3D BG and Large-Screen 256-Color Bitmap BG as BG types.

Note 2: Because the allocation of BG-VRAM to 2D Graphics Engine B is limited, the following settings can-
not be used:

+ 256-Color Bitmap: 512x512
» Direct Color Bitmap: 512x256 and 512x512

© 2003-2007 Nintendo
CONFIDENTIAL

NTR-06-0180-001-G 80
Released: July 27, 2007

5.2.2

BG Control

NITRO Programming Manual

There are four BG control registers that correspond to the number of BG screens. With 2D Graphics
Engine A, the BG screens are controlled with the BGOCNT, BG1CNT, BG2CNT, and BG3CNT
registers.With 2D Graphics Engine B, the BG screens are controlled with the DB_BGOCNT, DB_BG1CNT,
DB_BG2CNT, and DB_BG3CNT registers.

Note:

2D Graphics Engine A and 2D Graphics Engine B use different register names as well as different

methods to calculate base address values for BG screen data and BG character data.

BGx(x=0, 1) Control Regis

Name Address Attribute Initial Value
(2D_A) BGXCNT(x=0, 1) 0x04000008, 0x0400000A R/W 0x0000
(2D_B) DB_BGXCNT(x=0, 1) 0x04001008, 0x0400100A R/W 0x0000
15 14 13 12 8 7 6 5 2 1 0
| SB4 | SB3 | SB2 | SB1 | SBo | cM CB3 | CB2 | CB1 | CBO
Screen Base Block Character Base Block Priority

BG Extended Palette
Slot Selection

Mosaic

Screen Size

Color Mode

* [d15—d14]: Screen Size

Screen Size Uenlee
Settings Screen Size Screen Data Size
00 256x256 2 KB
01 512x256 4 KB
10 256x512 4 KB
11 512x512 8 KB

+ [d13] : BG Extended Palette Slot Selection

This bit specifies the Extended Palette Slot Number used when BG extended palettes are enabled.
The settings differ for BGO and BG1. Extended palettes are enabled/disabled with the DISPCNT
[DB_DISPCNT] register. See "2.2.1 VRAM" on page 17 for more information on the palette slot

memory map.

1. BGOCNT [DB_BGOCNT]

0 Slot 0

1 Slot 2
2. BG1CNT [DB_BG1CNT]

0 Slot 1

1 Slot 3

© 2003-2007 Nintendo
CONFIDENTIAL

81

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

+ SB4-SBO0 [d12-d08] : Screen Base Block

These bits specify (in 2-KB units) the starting block in VRAM where screen data is stored. When
screen data is actually referenced, the starting address is calculated as follows.

2D Graphics Engine A

The starting address is the sum of the DISPCNT register's screen base offset value with a 64-KB offset
and the screen base block with a 2-KB offset.

(screen base offset x 0x10000) + (screen base block x 0x800)
2D Graphics Engine B
The starting address is the screen base block with a 2-KB offset.
(screen base block x 0x800)
+ CM[dO7] : Color Mode

This bit specifies whether the screen data references BG character data in 16-color or 256-color

format.
0 16-color mode
1 256-color mode

* [d06] : Mosaic

This bit controls whether the mosaic process for BG is on or off. Set the mosaic size with the MOSAIC
[DB_MOSAIC] register.

+ CB3-CBO0 [d05—d02] : Character Base Block

These bits specify (in 16-KB units) the starting block in VRAM for storing character data. When
character data is actually referenced, the starting address is calculated as follows.

2D Graphics Engine A

The starting address is the sum of the DISPCNT register's character base offset value with a 64-KB
offset and the character base block with a 16-KB offset.

(character base offset x 0x10000) + (character base block x 0x4000)
2D Graphics Engine B
The starting address is the character base block with a 16-KB offset.
(character base block x 0x4000)
+ [d01-d00] : Priority

The default order of priority among the BG screens is BGO > BG1 > BG2 > BG3 (when priority settings
are the same). However, this order can be changed. Priorities of 0 (highest) to 3 (lowest) can be set.
Be careful of the pixel specifications to which color special effects are applied when changing BG
priorities.

NTR-06-0180-001-G 82 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

BGx(x=2, 3) Control Register

Name Address Attribute Initial Value
(2D_A) BGXCNT(x=2, 3) 0x0400000C, 0x0400000E R/W 0x0000
(2D_B) DB_BGxXCNT(x=2, 3) 0x0400100C, 0x0400100E R/W 0x0000
15 14 13 12 8 7 6 5 2 1 0
| sB4 | sB3 | sB2 | sB1 | sBo | cm ce3 | ce2 | cB1 | cBo
Screen Base Block Character Base Block Priority
Out-of-Area Mosaic
Processing
Screen Size Color Mode Extended BG Type Selection
(only for Extended BG)

The bit definitions for Color Mode, Mosaic, Character Base Block, and Priority are the same as for the BGx
(x=0, 1) Control Registers described above. BG2 uses Extended Palette Slot 2 and BG3 uses Extended
Palette Slot 3 when extended palettes are enabled. The extended palette numbers used by BG2 and BG3
cannot be changed. The extended palettes can be enabled/disabled with the DISPCNT [DB_DISPCNT]
register.

* [d15—d14]: Screen Size

The screen sizes that can be configured depend on the BG type and are described in Table 5-5 and
"Table 5-6 : Screen Sizes (2D Graphics Engine B)" on page 84.

Note: 2D Graphics Engine A and 2D Graphics Engine B accommodate different combinations of
screen sizes and BG types that can be configured. 2D Graphics Engine B cannot set Large-
Screen 256-Color Bitmap BG as the BG type. In addition, because a maximum of 128 KB of
BG-VRAM can be allocated to 2D Graphics Engine B, screen sizes exceeding 128 KB are pro-

hibited.
Table 5-5 : Screen Sizes (2D Graphics Engine A)
Affine Extended BG
Screen Size . 256-Col 16 I ERE R
Settings Text BG Affine BG -P:I:t:: "| 256-Color | Direct-Color Bzifn::g’(";
- : i
Character BG Bitmap BG Bitmap BG
00 256x256 128x128 128x128 128x128 128x128 512x1024
(2 KB) (256 bytes) (512 bytes) <16 KB > <32 KB > <512 KB >
01 512x256 256x256 256x256 256x256 256x256 1024x512
(4 KB) (1 KB) (2 KB) <64 KB > <128 KB > <512 KB >
10 256x512 512x512 512x512 512x256 512x256 .
(4 KB) (4 KB) (8 KB) <128 KB> | <256 KB >
1" 512x512 1024x1024 1024x1024 512x512 512x512 .
(8 KB) (16 KB) (32 KB) <256 KB> | <512 KB>

Note: The screen size is enclosed in parentheses () and the bitmap data size in angle brackets <>.

© 2003-2007 Nintendo 83 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Table 5-6 : Screen Sizes (2D Graphics Engine B)

Affine Extended BG
Screen Size .) _
Settings e 3 Affine BG | 256-Colorx 16 256-Color | Direct-Color
el Bitmap BG | Bitmap BG
Character BG P P
00 256x256 128x128 128x128 128x128 128x128
(2 KB) (256 bytes) (512 bytes) <16 KB > <32 KB >
01 512x256 256x256 256x256 256x256 256x256
(4 KB) (1 KB) (2 KB) <64 KB > <128 KB >
10 256x512 512x512 512x512 512x256 Prohibited
(4 KB) (4 KB) (8 KB) <128 KB > Setting
1 512x512 1024x1024 1024x1024 Prohibited Prohibited
(8 KB) (16 KB) (32 KB) Setting Setting
Note: The screen size is enclosed in parentheses () and the bitmap data size in angle brackets <>.

[d13] : Out-of-Area Processing

This bit selects either to make out-of-area regions transparent or to wrap around and display when the
BG screen does not lie entirely within the display screen because of affine transformations.

0

Transparent display

1

Wraparound display

The difference between the two Out-of-Area processing methods is shown in Figure 5-1.

Figure 5-1 : Out-of-Area Processing Method Differences

Transparent Display of Out-of-Area Part

Wraparound Display of Out-of-Area Part

Display /,,,\,/\’9 Display 777~ /"’\’/7? ",
Screen Screen W (o)
4//7“ ,/”?o 4// ®

SB4-SB0 [d12—d08] : Screen Base Block

Calculation of the base address for the screen base block differs according to the BG mode.

1. Character BG

These bits specify (in 2-KB units) the starting block in VRAM where screen data is stored. When
screen data is actually referenced, the starting address is calculated as follows.

NTR-06-0180-001-G

Released: July 27, 2007

84

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

2D Graphics Engine A

The starting address is the sum of the DISPCNT register's screen base offset value with a 64-KB
offset and the value of the screen base block with a 2-KB offset.

(screen base offset x 0x10000) + (screen base block x 0x800)
2D Graphics Engine B
The starting address is the screen base block with a 2-KB offset.
(screen base block x 0x800)
2. 256-Color Bitmap BG and Direct Color Bitmap BG

These bits specify (in 16-KB units) the offset address in BG-VRAM where the bitmap data is
stored. Because there is no relation to the screen base offset value in the DISPCNT register, the
same calculation for the BG bitmap data starting address is used for both 2D Graphics Engine A
and 2D Graphics Engine B.

2D Graphics Engine A and 2D Graphics Engine B
(screen base block x 0x4000)
3. Large-Screen 256-Color Bitmap BG
The screen base block value is invalid for 2D Graphics Engine A.
The BG mode cannot be set to large-screen 256-color bitmap BG for 2D Graphics Engine B.
+ [dO7, dO2] : Affine Extended BG Type Selection (only with Affine Extended BG)

CM CBO Affine Extended BG Type
0 (See note) 256-color x 16-palette Character BG
1 0 256-color bitmap BG
1 1 Direct-color bitmap BG

Note: When CM = 0, a unique 256-color x 16-palette Character BG is used and CB3-CBO are han-
dled as normal character base blocks.

© 2003-2007 Nintendo 85 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

5.2.2.1

5.2.2.1.1

NITRO Programming Manual

Screen Sizes and Display Screens

Text BG

Text BG screen sizes are shown in Figure 5-2.

Screen Size 256 X 256

Figure 5-2 : Text BG Screen Size

Screen 0
(256 x 256)

Screen 0
(256 x 256)

Display
Screen
(256 x 192)

Screen 0
(256 x 256)

Screen 0
(256 x 256)

Screen Size 256 X 512

Screen 0
(256 x 256)

Screen 0
(256 x 256)

Display
Screen
(256 x 192)

Screen 1
(256 x 256)

Screen 1
(256 x 256)

NTR-06-0180-001-G
Released: July 27, 2007

86

Screen Size 512 x 256

Screen 0
(256 x 256)

Screen 1
(256 x 256)

Display
Screen
(256 x 192)

Screen 0
(256 % 256)

Screen 1
(256 x 256)

Screen Size 512 x 512

Screen 0 Screen 1
(256 x 256) (256 x 256) Screen 0
(256 x 256)
Display
Screen
(256 x 192)
Screen 2
Screen 2 Screen 3 (256 % 256)
(256 x 256) (256 x 256)
Screen 0 Screen 1 Screen 0
(256 x 256) (256 x 256) (256 x 256)

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

5.2.21.2 Affine BG

Affine BG screen sizes are shown in Figure 5-3.
Figure 5-3 : Affine BG Screen Size

Screen Size 128 x 128 Screen Size 256 x 256
Screen 0 I i Scn;:;cren 0 Screen 0 Screen 0
(128 x 128) Display or
|| Screen | Transparent (256 x 256) Transparent
(256 x 192)
Display
E E Screen
(256 x 192)
Screen 0 Screen 0
or or
Transparent { Transparent

Screen Size 512x 512

Screen Size 1024 x 1024
Screen 0 Screen 0
(512x512) or Transparent
Display
Screen
Bk Screen 0
Screen 0 or
(1024 x1024) Transparent
Screen 0 Screen 0
or Transparent or Transparent
Display
Screen
Screen 0 (256 % 192)
or Transparent {
i \
Screen 0
or Transparent
© 2003-2007 Nintendo 87 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.2.3 Character BG

For character BG, BG screen composition elements are treated as characters of 8 x 8 dots (8x8-dot).
Accordingly, character data is required to display the BG. In addition, character index data for each 8x8-dot
unit is required; this character index data is called screen data.

Note: 2D Graphics Engine B differs from 2D Graphics Engine A in that there are no settings for the BG
screen base offset and BG character base offset.

Display Control Register

Name: DISPCNT Address: 0x04000000 Attribute: R/'W Initial Value: 0x00000000

31 29 2726 24|23 16|15 8|7 0

olgg| | | | | |oHleM cH | | low|wi|wo| o [B3]B2[B1[BO BM [CH | |
Ext. OBJ Window Display o BG Mode

Display Mode BGO 2D/3D
Display Selection
Display VRAM
OBJ Mapping

OBJ Processing Mode
during H-Blank Period

2D Display
Forced Blank

BG Character Base
Offset

BG Screen Base
Offset

Extended Palette

o [d29-d27] : BG Screen Base Offset
These bits offset (in 64-KB units) the base address of the screen data set with the BG Control Register.
Accordingly, the base address of the BG screen data is calculated as follows:
The value set in the BG Control Register + (BG screen base offset x 0x10000)
An arbitrary base address can be specified from a maximum 512 KB of BG-VRAM space.
* [d26—d24] : BG Character Base Offset
These bits offset (in 64-KB units) the base address of the screen data set with the BG Control Register.
Accordingly, the base address of the BG character data is calculated as follows:
The value set in the BG Control Register + (BG character base offset x 0x10000)

An arbitrary base address can be specified from a maximum 512 KB of BG-VRAM space.

NTR-06-0180-001-G 88 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

5.2.3.1

NITRO Programming Manual

VRAM Maps of BG Data

Character BG requires both BG screen data and BG character data. Store both the BG screen data and

the BG character data in VRAM that was allocated to BG-VRAM by the RAM Bank Control Register. BG-
VRAM can be assigned up to a maximum of 512 KB with 2D Graphics Engine A and up to a maximum of
128 KB with 2D Graphics Engine B.

1. BG Character Data

With 2D Graphics Engine A, the starting address for referencing BG character data can be set by
specifying the DISPCNT register's character base offset and the BG Control register's character base
block. With 2D Graphics Engine B, there is no setting for character base offset. The VRAM offset for

BG character data is shown in Figure 5-4.

The volume of data depends on the amount of registered character data and the format (Color Mode:

256 or 16 colors).

Figure 5-4 : VRAM Offset for BG Character Data

0x80000

Base Offset in VRAM

0x70000

Base Offset 7

0x60000

Base Offset 6

0x50000

Base Offset 5

0x40000

Base Offset 4

0x30000

Base Offset 3

0x20000

Base Offset 2

0x10000

Base Offset 1

0x00000

Base Offset 0

Base Blocks

BG Character Data

40000h
3C0004| BaseBlock 15
38000h Base Block 14
321‘000h Base Block 13
30000h Base Block 12
2C000%| Base Block 11
2.8(560h Base Block 10
“24000n| BaseBlock 9
’ 20000h Base Block 8
1CQB0h Base Block 7
AOOOh Base Block 6
14000h Base Block 5
10000h Base Block 4
,,,,, ©060n Base Block 3
8000h Base Block 2
4000h Base Block 1
0000h Base Block 0

Note:

For 2D Graphics Engine A, the maximum amount of VRAM that can be used for BG character

data is 256 KB because the DISPCNT register's base offset cannot be set for each BG screen.

For 2D Graphics Engine B, the maximum amount of VRAM that can be used for BG character
data is 128 KB because there are limitations on the size of BG-VRAM that can be allocated.

© 2003-2007 Nintendo
CONFIDENTIAL

89

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

2. BG Screen Data

For 2D Graphics Engine A, the starting address for referencing BG screen data can be set by
specifying the DISPCNT register's screen base offset and the BG Control register's screen base block.
With 2D Graphics Engine B, there is no setting for the screen base offset. The VRAM offset for BG

screen data is shown in Figure 5-5.

The volume of data depends on the BG type (Text BG or Affine BG) and the screen size.
Figure 5-5 : VRAM Offset for BG Screen Data

Base Offsets in VRAM

0x80000

Base Offset 7
0x70000

Base Offset 6
0x60000

Base Offset 5
0x50000

Base Offset 4
0x40000

Base Offset 3
0x30000

Base Offset 2
0x20000

Base Offset 1
0x10000

Base Offset 0
0x00000

BG Screen Data

Base Blocks

10000h
Fsooh!| ~ Base Block 31
C860h
Qf)ooh Base Block 24
:"éSOOh Base Block 23
8800h
8000h Base Block 16
7800h Base Block 15
4800h
4000h Base Block 8
3800h Base Block 7
800h
000h Base Block 0

Note: For 2D Graphics Engine A, the maximum amount of VRAM that can be used for BG screen
data is 64 KB because the DISPCNT register's base offset cannot be set for each BG screen.

With 2D Graphics Engine B, the maximum amount of VRAM that can be used for BG screen

data is 64 KB.

NTR-06-0180-001-G
Released: July 27, 2007

90

© 2003-2007 Nintendo
CONFIDENTIAL

5.23.2 TextBG

5.2.3.21

NITRO Programming Manual

Screen Data Format

Store the BG screen data starting from the starting address of the BG screen base block specified by the
BG Control Register. BG screen data for Text BG screens is configured using the following format:

15

12

Text BG Screen Data

1" 10

9

8

7

VF | HF

Color Palette

Flip

Character Name

* [d15—d12] : Color Palette

Palettes applied to characters are specified in the range of 0-15. The Color Palette specification is
enabled with 256 colors x 16 palettes or 16 colors x 16 palettes, but it is disabled with 256 colors x 1

palette.
e [d11-d10]: Flip

* VF: Vertical Flip Flag HF: Horizontal Flip Flag

0

Do not flip

1

Flip

* [d09-d00] : Character Name

These bits specify the character number of the character that serves as the origin of the starting

address for the character base block specified by the BG Control Register.

© 2003-2007 Nintendo
CONFIDENTIAL

91

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

5.2.3.2.2 Screen Data Address Mapping
1. 256x256-Dot Screen Size

Figure 5-6 shows the address map for screen data with a 256x256—dot screen size.

Figure 5-6 : 256x256—Dot Address Mapping (Text BG)

S N

000h {002h|004h 03Eh
040h(042h|044h 07Eh| 192 Dots
(24 Blocks)
256 Dots
(32 Blocks)
5C0h(5C2h|5C4h 5FEh
7C0h(7C2h|7C4h 7FEh

2. 256x512-Dot Screen Size

Figure 5-7 shows the address map for screen data with a 256x512—dot screen size.

Figure 5-7 : 256x512-Dot Address Mapping (Text BG)

@ Boe

000h|002h|004h 03Eh

040h(042h(044h 07Eh| 192 Dots

(24 Blocks)
256 Dots
(32 Blocks) 5C0h|5C2h|5C4h 5FEh
7COh(7C2h(7C4h 7FEh
512 Dots 800h 83Eh
(64 Blocks)
FCOh FFEh
|:| Display Region
NTR-06-0180-001-G 92 © 2003-2007 Nintendo

Released: July 27, 2007

CONFIDENTIAL

3. 512x256-Dot Screen Size

Figure 5-8 shows the address map for screen data with a 512x256—dot screen size.

NITRO Programming Manual

Figure 5-8 : 512x256—Dot Address Mapping (Text BG)

512 Dots
(64 Blocks)
256 Dots * 256 Dots
(32 Blocks) (32 Blocks)
000h(002h(004h 03Eh|800h 83Eh
040h(042h(044h 07Eh 192 Dots
(24 Blocks)
256 Dots
(32 Blocks)
5C0h|5C2h|5C4h 5FEh
7CO0h|7C2h|7C4h 7FEh|FCON FFEh

4. 512x512-Dot Screen Size

Figure 5-9 shows the address map for screen data with a 512x512—dot screen size.

Figure 5-9 : 512x512-Dot Address Mapping (Text BG)

512 Dots
(64 Blocks)
256 Dots 256 Dots
(32 Blocks) (32 Blocks)
000h|002h|004h 03Eh|800h 83Eh
040h|042h|044h 07Eh 192 Dots
(24 Blocks)
256 Dots
(32 Blocks) 5C0h|5C2h(5C4h 5FEh
7C0h|7C2h(7C4h 7FEh|FCOh FFEh
512 Dots ¢
(64 Blocks) 1000h 103€h | 1800h 183Eh
256 Dots
(32 Blocks)
17Coh 17FER|1FCONh 1FFEh
|:| Display Region
© 2003-2007 Nintendo 93 NTR-06-0180-001-G

CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

5.2.3.2.3 Character Data Formats

The character data formats for Text BG 16-color mode and Text BG 256-color mode are shown below. The
Character Display table shows the case when an 8x8—dot character is defined.

5.2.3.2.3.1 16-Color Mode

The character data format for 16-color mode, correspondence between character display and pixel data,

and address mapping (Figure 5-10) are shown below.

16-Color Mode Character Data Format

15 12 11 8

7

4 3 0

P3 | P2

P1

4 pixels worth of data (4 bits/pixel)

Character Display

PO | P1 | P2 | P3

Figure 5-10 : Character Data Address Mapping (Text BG 16-Color Mode)

4 bits of data for each dot
(specifies 1 of 16 colors)

1 4 7

8 10 11

12 13 14 15

8 Dots

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

I I I I I I
8 Dots
NTR-06-0180-001-G 94 © 2003-2007 Nintendo

Released: July 27, 2007

CONFIDENTIAL

5.2.3.2.3.2 256-Color Mode

NITRO Programming Manual

The character data format for 256-color mode, correspondence between character display and pixel data,
and address mapping (Figure 5-11) are shown below.

15 12

256-Color Mode Character Data Format

1"

7

4

P1

PO

2 pixels worth of data (8 bits/pixel)

Character Display

PO

P1

Figure 5-11 : Character Data Address Mapping (Text BG 256-Color Mode)

8 bits of data for each dot .
(specifies 1 of 256 colors) ..

6 d6 d6 6 d6 d6 d6 d6
ot ot o e o e it o o o g
Byte 0 1 2 3 4 5 6 7
T 8 9 10 11 12 13 14 15
T 16 17 18 19 20 21 22 23
& Dot : 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
T 40 41 42 43 44 45 46 47
T 48 49 50 51 52 53 54 55
1 56 57 58 59 60 61 62 63
i i i i i
8 Dots
© 2003-2007 Nintendo 95 NTR-06-0180-001-G

CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

5.2.3.3 Affine BG
This character format BG type can be rotated and scaled.

Note: Affine BG can be set only with BG2 and BG3. The color mode for Affine BG screens is fixed to
256-color mode. Consequently, the BG Control Register's color-mode setting is disabled.
Furthermore, horizontal and vertical flips cannot be performed on Affine BG.

5.2.3.3.1 Screen Data Format

Store the BG screen data starting from the starting address of the BG screen base block specified by the
BG Control register.

BG screen data for Affine BG screens is configured using the following format:

Affine BG Screen Data

Character Name

* [d07—d00] : Character Name

These bits specify the character number of the character that serves as the origin of the starting
address for the character base block specified by the BG Control Register.

NTR-06-0180-001-G 96 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.2.3.3.2 Screen Data Address Mapping
1. 128X128-Dot Screen Size
Figure 5-12 shows the address map for screen data with a 128x128—dot screen size.
Figure 5-12 : 128X128-Dot Address Mapping (Affine BG)

: 128 Dots
(16 Blocks)

o~ o~
000h|001h 00Fh
128 Dots |010h|011h 01Fh
(16 Blocks) 192 Dots
(24 Blocks)
OFOh|OF1h OFFh
AN A

ANV

|:| Display Region

2. 256x256-Dot Screen Size
Figure 5-13 shows the address map for screen data with a 256x256—dot screen size.
Figure 5-13 : 256x256—Dot Address Mapping (Affine BG)

k(2 Brocke

000h{001h{002h 01Fh
020h(021h{022h 03Fh| 192 Dots
(24 Blocks)
256 Dots
(32 Blocks)
2EOh(2E1h(2E2h 2FFh
3EOh|3E1h|3E2h 3FFh
|:| Display Region
© 2003-2007 Nintendo 97 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

3. 512x512-Dot Screen Size

NITRO Programming Manual

Figure 5-14 shows the address map for screen data with a 512x512—dot screen size.
Figure 5-14 : 512x512-Dot Address Mapping (Affine BG)

L 512 Dots J
N (64 Blocks) 1
E 256 Dots
(32 Blocks)
000h{001h{002h 01Fh|020h 03Fh
040h(041h{042h 05Fh|060h 07Fh]| 192 Dots
(24 Blocks)
5C0h(5C1h(5C2h 5DFh|5EOh 5FFh
512 Dots

(64 Blocks) 7COh(7C1h(7C2h 7DFh|7EOh 7FFh
800h(801h(802h 81Fh|820h 83Fh
FCOh(FC1h[FC2h FDFh({FEOh FFFh

|:| Display Region
NTR-06-0180-001-G 98 © 2003-2007 Nintendo

Released: July 27, 2007

CONFIDENTIAL

NITRO Programming Manual

4. 1024x1024-Dot Screen Size

Figure 5-15 shows the address map for screen data with a 1024x1024—dot screen size.

Figure 5-15 : 1024x1024—-Dot Address Mapping (Affine BG)

1024 Dots J
256 Dots (128 Blocks) 1
(32 Blocks) ;

000h(001h{002h 01Fh|020h 07Fh

080h(081h(082h 09Fh|0AOh OFFh| 192 Dots

(24 Blocks)
B80h|B81h|B82h BI9Fh|BAOh BFFh
1024 Dots
(128 Blocks)
3F80h|3F81h|3F82h 3FFFh
|:| Display Region
© 2003-2007 Nintendo 99 NTR-06-0180-001-G

CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

5.2.3.3.3 Character Data Format

The character data format for Affine BG screens is shown below. The Character Display table shows the
case when an 8x8-dot character is defined. Figure 5-16 shows the character data address mapping.

Character Data Format

15 12 11 8 7 4 3 0
P1 PO
2 pixels worth of data (8 bits/pixel)

Character Display

PO | P1

Figure 5-16 : Character Data Address Mapping (Affine BG)

8 bits of data for each dot .
(specifies 1 of 256 colors) ..

6 d6 d6 6 d6 6 d6 d6
ol ot o o o e b o o e g
Byte 0 1 2 3 4 5 6 7
T 8 9 10 11 12 13 14 15
T 16 17 18 19 20 21 22 23
& Dot : 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
T 40 41 42 43 44 45 46 47
T 48 49 50 51 52 53 54 55
1 56 57 58 59 60 61 62 63
i i i i i i i
8 Dots
NTR-06-0180-001-G 100 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

5.2.3.4

NITRO Programming Manual

256-Color x 16-Palette Character BG (Affine Extended BG)

Select 256-Color x 16-Palette Character BG with the BG Control Register. Select the 256-Color x 16-
Palette Character BG by selecting Affine Extended BG as the BG type and setting the BG Control Register

Color Mode to 0.

Note: 256-Color x 16-Palette Character BG can be set only for BG2 and BG3.

5.2.3.4.1 Screen Data Format
256-Color x 16-Palette BG Screen Data
15 12 11 10 9 8 7 0
] VF | HF 1] |
Color Palette Flip Character Name

* [d15—d12] : Color Palette

When enabled, extended palettes applied to characters are specified in the range of 0-15. When
extended palettes are disabled, standard palettes are used. Extended palettes are enabled/disabled

with the DISPCNT [DB_DISPCNT] Register.

. [d11-d10] : Flip

* VF: Vertical Flip Flag HF: Horizontal Flip Flag

0

Do not flip

1

Flip

* [d09-d00] : Character Name

These bits specify the character number of the character that serves as the origin of the starting

address for the character base block specified by the BG Control Register.

© 2003-2007 Nintendo
CONFIDENTIAL

101

NTR-06-0180-001-G
Released: July 27, 2007

5.2.3.4.2 Character Data Format

NITRO Programming Manual

Character data format is the same as for 256-Color Mode Text BG.

Figure 5-17 shows the character data address mapping.

15

12

1"

Character Data Format
8 7

P1

PO

2 pixels worth of data (8 bits/pixel)

Figure 5-17 : Character Data Address Mapping (256-Color x 16-Palette Character BG)

8 bits of data for each dot

(specifies 1 of 256 colors)

Character Display

PO

P1

6 d6 d6 6 d6 6 d6 d6
ol ot o o o e b o o e g
Byte 0 1 2 3 4 5 6 7
T 8 9 10 11 12 13 14 15
T 16 17 18 19 20 21 22 23
& Dot : 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
T 40 41 42 43 44 45 46 47
T 48 49 50 51 52 53 54 55
1 56 57 58 59 60 61 62 63
i i i i i
8 Dots
NTR-06-0180-001-G 102 © 2003-2007 Nintendo

Released: July 27, 2007

CONFIDENTIAL

NITRO Programming Manual

5.24 Bitmap BG

For Bitmap BG, BG screen composition elements are treated as pixels and the contents of VRAM (frame
buffer) are displayed as color data for each individual screen pixel.

Note: 256-Color Bitmap BG and Direct-Color Bitmap BG can be set only for BG2 and BG3. Large-
Screen 256-Color Bitmap BG can be set only for BG2 with the 2D Graphics Engine A.

5.2.41 256-Color Bitmap BG (Affine Extended BG)

Select 256-Color Bitmap BG with the BG Control Register.

Select the 256-Color Bitmap BG by selecting Affine Extended BG as the BG type and setting the BG
Control Register Color Mode to 1 and the Character Base Block CBO to 0.

52411 Pixel Data Format

The pixel data format for 256-Color Bitmap BG is shown below.

256-Color Bitmap BG Pixel Data Format
7 0

Color Number

5.2.4.1.2 Pixel Data VRAM Map

The screen base address set in the BG Control Register specifies (in 16-KB units) the address in VRAM
where the bitmap data is stored. The DISPCNT register's screen base offset value is invalid.

5.24.2 Direct-Color Bitmap BG (Affine Extended BG)
Select the Direct-Color Bitmap BG with the BG Control Register.

Direct-Color Bitmap BG can be selected by selecting Affine Extended BG as the BG type and setting the
BG Control Register Color Mode to 1 and the Character Base Block CBO to 1.

5.24.21 Pixel Data Format

The pixel data format for Direct-Color Bitmap BG is shown below.

Direct-Color Bitmap BG Pixel Data Format
15 14 10 9 8 7 5 4 0

o BLUE GREEN RED

5.24.2.2 Pixel Data VRAM Map

The screen base address set in the BG Control Register specifies (in 16-KB units) the address in VRAM
where the bitmap data is stored. The DISPCNT register's screen base offset value is invalid.

© 2003-2007 Nintendo 103 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.24.3 Large-Screen 256-Color Bitmap BG
The Large-Screen 256-Color Bitmap BG cannot be used with 2D Graphics Engine B.

5.24.31 Pixel Data Format

The pixel data format for Large-Screen 256-Color Bitmap BG is shown below.

Large-Screen 256-Color Bitmap BG Pixel Data Format
7 0

Color Number

5.2.4.3.2 Pixel Data VRAM Map

The starting address for pixel data is fixed to the starting address of BG-VRAM (0x6000000). Both the BG
Control Register's screen base address and the DISPCNT Register's screen base offset value are invalid.

NTR-06-0180-001-G 104 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.2.5 BG Scroll

For each Text BG screen, the display screen and its offset value can be set in dots.

The Offset register is valid only for Text BG. Set the BG reference starting point (see "5.2.6 BG Rotation
and Scaling (Affine Transformation)" on page 106) to display Affine BG and Bitmap Mode BG with an
offset.

BG Offset Setting Registers

Name Address Attribute Initial Value

(2D_A) BGxOFS(x=0 - 3) 0x04000010, 0x04000014, 0x04000018, 0x0400001C W 0x00000000
(2D_B) DB_BGxOFS(x=0 - 3) 0x04001010, 0x04001014, 0x04001018, 0x0400101C W 0x00000000

31 24(23 16(15 8|7 0

V Offset H Offset

Figure 5-18 shows the offset for BG scrolling.
Figure 5-18 : Offset Schematic

H Offset

Screen

V Offset

Display Screen

© 2003-2007 Nintendo 105 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.2.6 BG Rotation and Scaling (Affine Transformation)

The BG pixels are referenced horizontally in sequence from the top left when a BG is displayed, so a
rotated BG can be displayed by rotating the reference direction.

Figure 5-19 shows the rotation and scaling process for a BG.
Figure 5-19 : BG Rotation and Scaling

Crigin (0,0} X Anis
L

BG Display Screan

Coordinates
before Rotation
{21, ¥1)

Horizontal Line
| Before Rotation

Coordinates

Coordinates for

E Center of Rotation
> (0, y0)
ko
dx (reference distance in x-direction for same line) = (1/a)cos6
dy (reference distance in y-direction for same line) = - (1/B)sin6
dmx (reference distance in x-direction for next line) = (1/a)sind
dmy (reference distance in y-direction for next line) = (1/B)cos6

Note: a is the scale ratio along the x-axis; B is the scale ratio along the y-axis.

The (x2, y2) coordinates correspond to the (x1, y1) coordinates after affine transformation and are
calculated with the following formula:

b i

A= lcosG,BZ lsine, CZ—lSiHG,DZ lcose
a o B p

NTR-06-0180-001-G 106 © 2003-2007 Nintendo
CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

» BG Rotation and Scaling Process

1.

Using the equation above, calculate the results of affine transformation for the top-left coordinates
of the display screen, and then set the results as the BG data reference start point in the following
registers:

« 2D Graphics Engine A BGxX, BGxY Registers (x=2, 3)
+ 2D Graphics Engine B DB_BGxX, DB_BGXxY Registers (x=2, 3)

Also, refer to "Figure 5-19 : BG Rotation and Scaling" on page 106, and set the BG data reference
direction in the following registers:

» 2D Graphics Engine A BGxPA, BGxPB, BGxPC, BGxPD Registers (x=2, 3)
» 2D Graphics Engine B DB_BGxPA, DB_BGxPB, DB_BGxPC, DB_BGxPD Registers (x=2, 3)

The image processing circuitry sums the cumulative increase in the x-direction (dx and dy) and
calculates the x-direction coordinates in relation to the BG data reference start point set in these
registers.

If the line advances, the rendering start point coordinates for the next line are calculated by
summing the cumulative increase in the y-direction (dmx and dmy) in relation to the reference start
point. Then the process in Step 2 is performed.

If the BG Data Reference Start Point Registers are overwritten during an H-Blank, the cumulative
sum for the y-direction related to those registers is not computed. Use this mode to have the CPU
change the affine transformation parameters and the center coordinates for each line.

BG Data Reference Start Point Setting Registers

Name Address Attribute Initial Value

(2D_A) BGxX (x=2, 3) 0x04000028, 0x04000038 W 0x00000000

(2D_B) DB_BGxX (x=2, 3) 0x04001028, 0x04001038 w 0x00000000

31

24|23 16[15 8|7 0

s | INTEGER_SX DECIMAL_SX

x-Coordinate of the Reference Start Point (Affine Transformation Result)

Name Address Attribute Initial Value

(2D_A) BGxY (x=2, 3) 0x0400002C, 0x0400003C W 0x00000000

(2D_B) DB_BGXY (x=2, 3) 0x0400102C, 0x0400103C w 0x00000000

31

24|23 16|15 8|7 0

S | INTEGER_SY DECIMAL_SY

y-Coordinate of the Reference Start Point (Affine Transformation Result)

© 2003-2007 Nintendo 107 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

BG Data Reference Direction Setting Registers

Name Address Attribute Initial Value
(2D_A) BGxPA (x=2, 3) 0x04000020, 0x04000030 W 0x0100
(2D_B) DB_BGxPA (x=2, 3) 0x04001020, 0x04001030 W 0x0100
15 8 7 0
S | INTEGER_DX DECIMAL_DX

Reference distance dx in x-direction for the same line

Name Address Attribute Initial Value
(2D_A) BGxPB (x=2, 3) 0x04000022, 0x0400032 W 0x0000
(2D_B) DB_BGxPB (x=2, 3) 0x04001022, 0x0401032 W 0x0000
15 8 7 0
S | INTEGER_DMX DECIMAL_DMX

Reference distance dmx in x-direction for the next line

Name Address Attribute Initial Value
(2D_A) BGxPC (x=2, 3) 0x04000024, 0x0400034 W 0x0000
(2D_B) DB_BGxPC (x=2, 3) 0x04001024, 0x0401034 w 0x0000
15 8 7 0
S | INTEGER_DY DECIMAL_DY

Reference distance dy in y-direction for the same line

Name Address Attribute Initial Value
(2D_A) BGxPD(x=2, 3) 0x04000026, 0x0400036 W 0x0100
(2D_B) DB_BGxPD(x=2, 3) 0x04001026, 0x0401036 w 0x0100
15 8 7 0
S | INTEGER_DMY DECIMAL_DMY

Reference distance dmy in y-direction for the next line

NTR-06-0180-001-G 108 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

5.3 oBJ

NITRO Programming Manual

NITRO can handle two types of OBJ: Character OBJ and Bitmap OBJ. Table 5-7 summarizes the features
for both Character OBJ and Bitmap OBJ.

Table 5-7 : OBJ Overview

Item

Character OBJ

Bitmap OBJ

Number of Display Colors

1. Standard Palette
16 colors x 16 palettes
256 colors x 1 palette

2. Extended Palette
16 colors x 16 palettes (Standard Palette)
256 colors x 16 palettes (Extended Palette)

32,768 colors

Number of Characters
(Converted to 8x8-Dot)

1. One-dimensional Mapping
1,024 to 8,192 (16-color mode)
512 to 4,096 (256-color mode)

2. Two-dimensional Mapping
1,024 (16-color mode)
512 (256-color mode)

1. 1D Mapping
1,024 to 2,048

2. 2D Mapping
256

Character Size

8x8 dot to 64x64 dot (12 varieties)

Maximum Number Displayed
on One Screen

128 (converted to 64x64 dot)

Maximum Number Displayed
on One Line

128 (converted to 8x8 dot)

Features

HV Offset, HV Flip, Affine Transformation, Translucence (see note), Mosaic,

and Priority settings

Note: See "5.7 Color Special Effects" on page 146 to learn about OBJ color effects.

¢ Otheritems

See "5.6 Windows" on page 142 to learn about OBJ windows.

* Number of OBJ that can be displayed on one line

Table 5-7 gives the capacity of OBJ that can be displayed on one line under the most efficient

© 2003-2007 Nintendo 109
CONFIDENTIAL

conditions. When display OBJ are positioned in series from the start of OAM, the number of OBJ that
can be displayed on one line is calculated as follows:

(H dot count x 6 — 6)/rendering cycle count) = Number of OBJ displayable on 1 line (128 max.)

H dot count is normally 355 dots, but it becomes 256 dots if the DISPCNT [DB_DISPCNT] Register’s
OBJ Processing during H-Blank Period flag is set to 1 (see "4.2 LCD" on page 49).

x 6 represents the number of cycles that the OBJ rendering circuitry can use per dot. - 6 represents the
number of cycles needed for the OBJ rendering pre-process at the start of the H-line.

Table 5-8 shows the relation between the rendering cycle count and the number of OBJ that can be
displayed on one line.

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Table 5-8 : Rendering Cycle Count and Number of OBJ Displayable on One Line
Render Cycle Count Number of OBJ Displayable on One Line
OBJ H-Size = =
Normal OBJ" Affine OBJ™ Normal OBJ Affine OBJ
8 8 26 128 81
16 16 42 128 50
32 32 74 66 28
64 64 138 33 15
128
(Double-Sized 64) - 266 — 7

Note 1: A Normal OBJ has the OBJ Mode of OBJ Attribute 0 set to Normal OBJ.
Note 2: An Affine OBJ has the Affine Enable Flag of OBJ Attribute 0 set to Enable.

Table 5-8 shows values under the most efficient conditions. Efficiency is actually lower because some OBJ
in OAM are outside of the rendered line. Two cycles are lost for an OBJ outside of the rendered line.

NTR-06-0180-001-G

Released: July 27, 2007

110

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

5.3.1 OBJ Display Control

The overall configuration of OBJ features is performed with the DISPCNT Register for 2D Graphics Engine
A and with the DB_DISPCNT Register for 2D Graphics Engine B. The settings for an individual OBJ are
configured with the OBJ Attribute Data stored in OAM. (This subject is touched on later.)

Display Control Register (2D Graphics Engine A)

Name: DISPCNT Address: 0x04000000 Attribute: R/'W Initial Value: 0x00000000

31 24|23 16|15 8|7 0

olgg] | | | | |oHleM cH | | Jow|wi|wo| o [B3]B2[B1[BO BM [cH | |
Ext. OBJ Window Display . BG Mode

Display Mode BGO 2D/3D
Display Selection
Display VRAM
OBJ Mapping

OBJ Processing Mode
during H-Blank Period

2D Display

BG Character Base Forced Blank

Offset

BG Screen Base
Offset

Extended Palette

« OH [d23] : OBJ Processing during H-Blank Period Flag

When set to 0, the OBJ render process is performed during the entire H-line period (including the
H-Blank period).

When set to 1, the OBJ render process is performed only during the display period, but not during the
H-Blank period. In this case, the maximum number of OBJ cannot be displayed.

Display Control Register 1 (2D Graphics Engine B)

Name: DB_DISPCNT Address: 0x04001000 Attribute: R/'W Initial Value: 0x00000000
31 24|23 16(15 8|7 0
o[BG OH CH ow|w1|wo o) |83|Bz|B1 |BO BM |CH | |
Window Display BG Mode
Extended Palette Extended OBJ OBJ Mapping
Mode
OBJ Processing Display Mode 2D Display
during H-Blank Period Forced Blank

* OH [d23] : OBJ Processing during H-Blank Period Flag

When set to 0, the OBJ render process is performed during the entire H-line period (including the
H-Blank period).

When set to 1, the OBJ render process is performed only during the display period, but not during the
H-Blank period. In this case, the maximum number of OBJ cannot be displayed.

© 2003-2007 Nintendo 111 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.3.2 OAM

An OBJ is displayed by storing data in Object Attribute Memory (OAM). A total of 128 sets of OBJ data can
be written to the NITRO Processor's internal OAM (1 KB from 07000000h — 070003FFh for 2D Graphics
Engine A and 1 KB from 07000400h — 070007FFh for 2D Graphics Engine B). Accordingly, a total of 128
OBJ characters of any size can be displayed on the LCD.

5.3.2.1 Memory Map

48 bits x 128 sets of OBJ Attribute data can be written to OAM. If an OBJ is to be rotated and scaled, a total
of 32 groups of affine transformation parameters PA, PB, PC, and PD can be written to OAM as shown in
Figure 5-20.

Figure 5-20 : OAM Memory Map (Add 0x400h to 2D Graphics Engine B Addresses)

Affine Transformation Parameter
...0x070003FEh D@1
Attribute 2
Attribute 1 OBJ 127
..0X070003F8h Atibute O |

Affine Transformation Parameter
PB (0)

Attribute 2
Attribute 1 OBJ 1

0x07000008h Attribute 0

Affine Transformation Parameter
PA (0)

Attribute 2
Attribute 1 OBJ O

0x07000000h Attribute O

(16-bit Width)

NTR-06-0180-001-G 112 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.3.2.2 OAM Data Format

OBJ Attribute 0

15 14 13 12 11 10 9 8 7 0
OBJ Shape OBJ Mode T Y Coordinate
Affine Transformation
Enable Flag

Color Mode Double-Size Flag for

Affine Transformation

. [d15-d14] : OBJ Shape

These bits set the shape of the OBJ. The number of dots in the OBJ's horizontal and vertical
direction is determined by this setting and the OBJ size specification in OBJ Attribute 1. See OBJ
Size under "OBJ Attribute 1" on page 116.

00 Square

01 Long rectangle
10 Tall rectangle
11 Prohibited code

e [d13]: Color Mode

This bit sets whether the OBJ character data is referenced in 16-color format or 256-color format. Be
sure to set Color Mode to O for Direct-Color Bitmap OBJ settings.

0 16-color mode

1 256-color mode

* [d12] : Mosaic

0 Mosaic off

1 Mosaic on

e [d11—d10] : OBJ Mode

The 00 to 10 settings specify Character OBJ. When 10 (the OBJ Window) is specified, data is not
displayed as normal OBJ; if there are dots of non-zero character data, the data is handled as an OBJ
window that can take any shape. See "5.6 Windows" on page 142 for display settings inside the OBJ
window. The 11 setting specifies Bitmap OBJ.

00 Normal OBJ
01 Translucent OBJ
10 OBJ Window
1 Bitmap OBJ
© 2003-2007 Nintendo 113 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

[d09] : Double-Size Flag for Affine Transformation

0 Disable double-size

1 Enable double-size

When the d08 Affine Transformation Enable Flag is set to 1, the OBJ field can be doubled in size for
display. Using a double-size OBJ field allows a rotated OBJ to be displayed in its entirety, without
losing any sections. In addition, an OBJ can be enlarged up to double its original size and displayed
without losing any sections (see Figure 5-21).

When the d08 Affine Transformation Enable Flag is set to 0 and this bit to 1, the OBJ is hidden.
Figure 5-21 : Affine Transformation of Double-Size OBJ Field
Normal Display Rotated Display

Enlarged Display using Rotated Display using
Double-Size OBJ Field Double-Size OBJ Field

[d08] : Affine Transformation Enable Flag
When this bit is enabled, the affine transformation parameters set in OBJ Attribute 1 are referenced.

When this bit is disabled and the d09 Double-Size Flag for Affine Transformation is set to 1, the OBJ is
hidden.

0 Disable
1 Enable

[d07-d00] : Y Coordinate
These bits specify the OBJ's Y coordinate in the display screen in the range of 0 to 255.

NTR-06-0180-001-G 114 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Workaround for AGB Problem with OBJ Wrapping

As shown in Figure 5-22, the AGB has a problem that prevents the upper part of the OBJ in the lower
portion of the screen from displaying when the lower part of the OBJ was wrapped for display to the upper

portion of the screen. This problem is corrected in NITRO (but the problem remains when NITRO is set to
AGB-compatible mode).

Figure 5-22 : Problem of OBJ Wrapping

Lower part of
OBJ wrapped 44—

and displayed
LCD Display Region
Uober part of Virtual Screen
PP OLEJ 4+ 512 x 256
© 2003-2007 Nintendo 115 NTR-06-0180-001-G
CONFIDENTIAL

Released: July 27, 2007

15 14 13

NITRO Programming Manual

OBJ Attribute 1
12 9 8

7

VF|HF| | |

OBJ Size

X Coordinate

Affine Transformation
Parameter Selection

[d15-d14] : OBJ Size

These bits set the OBJ size. The number of vertical and horizontal dots for an OBJ depends on this
setting and the OBJ shape set in OBJ Attribute 0. Table 5-9 shows the relationship.

Table 5-9 : OBJ Shape and OBJ Size Settings

OBJ Attribute 1
OBJ size
00 01 10 1

OBJ Attribute 0
OBJ shape
00 (Square) 8x8 16x16 32x32 64x64
01 (Long rectangle) 16x8 32x8 32x16 64x32
10 (Tall rectangle) 8x16 8x32 16x32 32x64
11 (Prohibited setting) Prohibited Setting

[d13—d09] : Affine Transformation Parameter Selection

These bits specify which of the 32 sets of OAM PA — PD affine transformation parameters to reference.

When the OBJ Attribute 0 Affine Transformation Enable Flag is set to 0 (disabled), the [d13] VF bit is
treated as the Vertical Flip Flag and the [d12] HF bit is treated as the Horizontal Flip Flag.

[d08-d00] : x Coordinate

These bits specify the OBJ's x-coordinate in the display screen in the range of 0 to 511.

NTR-06-0180-001-G
Released: July 27, 2007

116

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

OBJ Attribute 2
15 8 7 0

Color Parameter Display Priority Starting Character Name

For Character OBJ: Color Palette Number
For Bitmap OBJ: agay Value

* [d15—d12] : Color Parameter

What these bits specify depends on whether OBJ Mode in OBJ Attribute 0 is set to Character OBJ or
Bitmap OBJ. These bits specify the Color Palette Number for Character OBJ. They specify the 0lgam
for Bitmap OBJ. The a.pan value is used as a factor for blending with the BG for the Bitmap OBJ (see
"5.3.4 Bitmap OBJ" on page 128).

1. For Character OBJ: Color Palette Number

This specifies one of 16 palettes to apply to the character data.

This bit is invalid in 256-color mode when extended palettes are disabled (see "OBJ Attribute 0" on
page 113).

Extended palettes are enabled/disabled with the DISPCNT [DB_DISPCNT] register.

2. For Bitmap OBJ: apppm Value

The apppm Value is an element of the OBJ's transparency o, where o = dgyp X (0lpam +1)- Set
ogpp Using the Bitmap OBJ data (see "5.3.4.1 Bitmap OBJ Data" on page 130).

* [d11—-d10] : Display Priority
These bits set the order of priority for display.
See "5.9 Display Priority" on page 151 to learn about the priority relation with BG.

The priority set with this bit is invalid when OBJ Mode in OAM Attribute 0 is set to OBJ Window. See
"5.6 Windows" on page 142 to learn about the precedence of windows.

+ [d09—d0Q] : Starting Character Name

The basic character number at the start of the OBJ character data mapped in OBJ-VRAM is written
here. The specification in Bitmap OBJ mode is the same as for Character mode with 8x8-dot units.

2D Mapping Mode

When in 2D Mapping mode and 256-Color mode, the starting character name's lowest bit is fixed at 0.
In addition, OBJ-VRAM references regions only up to 32 KB.

1D Mapping Mode

When in 1D Mapping mode, the capacity of OBJ-VRAM can be expanded (see the RAM Bank Control
Registers 0 and 1 and the Display Control Register).

© 2003-2007 Nintendo 117 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

The boundary of the starting character name varies, as shown in Table 5-10 and Table 5-11,
depending on the OBJ-VRAM capacity to allow the entire OBJ-VRAM region to be referenced with the
setting region of the starting character name (10 bits).

Table 5-10 : Character OBJ

OBJ-VRAM Capacity Starting Character Name Boundary
32 KB 32 bytes
64 KB 64 bytes
128 KB 128 bytes
256 KB 256 bytes

Table 5-11 : Bitmap OBJ

OBJ-VRAM Capacity

Starting Character Name Boundary

128 KB

128 bytes

256 KB

256 bytes

Note: The maximum capacity of OBJ-VRAM is 128 KB for 2D Graphics Engine B because of restric-
tions on VRAM allocation. Therefore, the Character OBJ and Bitmap OBJ capacity cannot be

set to 256 KB.

NTR-06-0180-001-G
Released: July 27, 2007

118

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Affine Transformation Parameters

See "5.3.2.3 OBJ Rotation and Scaling (Affine Transformation)" on page 120 for how to determine the

OBJ's affine transformation parameters.

Affine Transformation Parameter PA

15 14 8 7 0
S_PA | INTEGER_PA DECIMAL_PA
Distance dx moved in x-direction on the same line
Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)
Affine Transformation Parameter PB
15 14 8 7 0
S_PB | INTEGER_PB DECIMAL_PB
Distance dmx moved in x-direction on the next line
Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)
Affine Transformation Parameter PC
15 14 8 7 0
S _PC | INTEGER_PC DECIMAL_PC
Distance dy moved in y-direction on the same line
Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)
Affine Transformation Parameter PD
15 14 8 7 0
S _PD | INTEGER_PD DECIMAL_PD

Distance dmy moved in y-direction on the next line

Signed fixed-point decimal (sign + 7-bit integer + 8-bit decimal part)

© 2003-2007 Nintendo
CONFIDENTIAL

119

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

5.3.2.3 OBJ Rotation and Scaling (Affine Transformation)

The OBJ character data is referenced horizontally in sequence from the top left when an OBJ is displayed,
so a rotated OBJ can be displayed by rotating the reference direction. The center of the rotation is fixed to
the center of the OBJ field (dot boundary). If a reference point is outside the specified OBJ size, it becomes

transparent.
Figure 5-23 shows the rotation and scaling process for an OBJ.
Figure 5-23 : OBJ Rotation and Scaling
. X Axl
. Origin (0,0) is

A4

Coordinates of
Center of Rotation.
OBJ Center (x0, y0)

(.

2 %

< 9/;,

> 3

A\

dx (reference distance in x-direction for same line) = (1/a.)cosH
dy (reference distance in y-direction for same line) = - (1/B)sin®
dmx (reference distance in x-direction for next line) = (1/a)sin®
dmy (reference distance in y-direction for next line) = (1/B)cos6

Note: a is the scale ratio along the x-axis; B is the scale ratio along the y-axis.

+ OBJ Rotation and Scaling Process

1. Affine transformation parameter numbers to be applied are specified in OBJ Attribute 1 registered
in OAM. In addition, the affine transformation parameters PA, PB, PC, and PD to be applied are
set in OAM using the information in Figure 5-23.

2. The image-processing circuitry calculates the coordinates in the x-direction in relation to the data
reference start point that uses the center of the OBJ field as the center of rotation by summing the
cumulative increase in the x-direction (dx and dy).

3. If the line advances, the rendering start point coordinates for the next line are calculated by
summing the cumulative increase in the y-direction (dmx and dmy) in relation to the reference
starting point. Then the process in Step 2 is performed.

NTR-06-0180-001-G 120 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.3.3 Character OBJ

For OBJ character data, 8x8-dot sections are treated as basic characters and are assigned a Character
Number. The OBJ size can be from 8x8 dots to 64x64 dots (12 different sizes). The OBJ character data
base address is fixed as the VRAM base address. OBJ are defined as having either 16 colors or 256
colors, so the definition of a single basic character requires either 32 bytes or 64 bytes (both have the
same format as BG character data).

The Color Mode setting in OAM OBJ Attribute 1 defines whether to reference OBJ character data in
16-color format or 256-color format. In addition, the palette specified in OBJ Attribute 2 is used when
16-color mode has been set or when 256-color mode is set when extended palettes are enabled. Extended
palettes can be enabled/disabled with the DISPCNT [DB_DISPCNT] Register.

Select either 1D Mapping or 2D Mapping for character data VRAM mapping.

Display Control Register (2D Graphics Engine A)

Name: DISPCNT Address: 0x04000000 Attribute: R/'W Initial Value: 0x00000000
31 24(23 22 21 20 16|15 8|17 6 5 4 0
olgg] | | | | loHeM cH | | | Jow|wi|wo] o [B3]B2[B1[BO BM [cH | |
Ext. OBJ Window Display . BG Mode
Display Mode BGO 2D/3D
Display Selection
Display VRAM
OBJ Mapping

OBJ Processing Mode
during H-Blank Period

2D Display

BG Character Base Forced Blank

Offset

BG Screen Base
Offset

Extended Palette

* [d22—d20] : OBJ-VRAM Region Extended Flag
+ CH[d21-d20] : VRAM Region Extended Flag for Character OBJ

These bits specify OBJ-VRAM capacity when OBJ character data uses 1D mapping. When set to
00, the capacity is the same as the AGB. Table 5-12 shows the starting character name
boundaries that can be specified with OAM OBJ Attribute 2.

Table 5-12 : Starting Character Name Boundaries for OBJ Attribute 2

00 32 KB (Starting character name boundary: 32 bytes)
01 64 KB (Starting character name boundary: 64 bytes)
10 128 KB (Starting character name boundary: 128 bytes)
1 256 KB (Starting character name boundary: 256 bytes)

Note: When the OBJ-VRAM Region Setting flag has been set greater than the VRAM size allocated to
the OBJ, do not access the region that exceeds the VRAM size allocated to the OBJ.

© 2003-2007 Nintendo 121 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

[d06—d04] : OBJ Data Mapping Mode
* CH [dO4] : Character OBJ Data Mapping Mode

0 2D mapping

1 1D mapping

In 2D mapping mode, only up to 32 KB of OBJ-VRAM can be referenced.

In 1D mapping mode, a capacity of 32 to 256 KB can be set with the OBJ-VRAM Region Extended
Flag. Accordingly, more OBJ characters can be defined in OBJ-VRAM using 1D mapping mode.

Display Control Register 1 (2D Graphics Engine B)

Name: DB_DISPCNT Address: 0x04001000 Attribute: R/'W Initial Value: 0x00000000

31 24123 21 20 16(15 8|17 6 5 4 0

o[OH CH ow|w1|wo| o [B3[B2[B1[BO BM [cH | |
Window Display BG Mode

E

Extended Palette Extended OBJ OBJ Mapping
Mode
OBJ Processing Display Mode 2D Display
during H-Blank Period Forced Blank

+ [d21-d20] : OBJ-VRAM Region Extended Flag
+ CH[d21-d20] : VRAM Region Extended Flag for Character OBJ

These bits specify OBJ-VRAM capacity when OBJ character data uses 1D mapping. When set to
00, the capacity is the same as the AGB. Table 5-13 shows the starting character name
boundaries that can be specified with OAM OBJ Attribute 2.

Table 5-13 : Starting Character Name Boundaries for OBJ Attribute 2

00 32 KB (starting character name boundary: 32 bytes)
01 64 KB (starting character name boundary: 64 bytes)
10 128 KB (starting character name boundary: 128 bytes)
11 256 KB (starting character name boundary: 256 bytes)

Note: With 2D Graphics Engine B, the maximum size that can be allocated to VRAM is 128 KB.
When the OBJ-VRAM Region Setting flag has been set greater than the VRAM size
allocated to the OBJ, do not access the region that exceeds the VRAM size allocated to
the OBJ.

* [d06—d04] : OBJ Data Mapping Mode
* CH [dO4] : Character OBJ Data Mapping Mode

0 2D mapping

1 1D mapping

In 2D mapping mode, only up to 32 KB of OBJ-VRAM can be referenced.

In 1D mapping mode, a capacity of 32 to 256 KB can be set with the OBJ-VRAM Region Extended
Flag. Accordingly, more OBJ characters can be defined in OBJ-VRAM using 1D mapping mode.

NTR-06-0180-001-G 122 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.3.3.1 Character Data Format

The character data format for Character OBJ is shown below. The Character Display table shows the case

when an 8x8-dot character is defined.

5.3.3.1.1 16-Color Mode

The character data format for 16-color mode, correspondence between character display and pixel data,

and address mapping (Figure 5-24) are shown below.

16-Color Mode Character Data

15 12 1" 8

7

P3 | P2

P1

PO

4 pixels worth of data (4 bits/pixel)

Character Display

PO | P1 | P2 | P3

Figure 5-24 : Character Data Address Mapping (16-Color Mode Character OBJ)

4 bits of data for
each dot ;
(specify 1 of 16 colors);

1 4 7

8 10 11

12 13 14 15

8 Dots

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

I I I I I
8 Dots
© 2003-2007 Nintendo 123 NTR-06-0180-001-G

CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

5.3.3.1.2 256-Color Mode

The character data format for 256-color mode, correspondence between character display and pixel data,
and address mapping (Figure 5-25) are shown below.

256-Color Mode Character Data

15 12 11 8 7 4 3 0
P1 PO
2 pixels worth of data (8 bits/pixel)

Character Display

PO | P1

Figure 5-25 : Character Data Address Mapping (256-Color Mode Character OBJ)

8 bits of data for each dot
(specify 1 of 256 colors) ..

d7 47 47 d7 47 47 47 47
Byte 0 1 2 3 4 5 6 7
1 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23
& Dots : 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
1 40 41 42 43 44 45 46 47
1 48 49 50 51 52 53 54 55
1 56 57 58 59 60 61 62 63
f f f f f f f
8 Dots
NTR-06-0180-001-G 124 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

5.3.3.2 Mapping Modes for Character OBJ Data

5.3.3.2.1 2D Mapping

When displaying 256-color x 1-palette characters in 2D mapping mode, the character name specification is

limited to even numbers, as shown in Figure 5-26.

NITRO Programming Manual

Figure 5-26 : 2D Mapping

32 x 32 Dots 8 x 32 Dots
(16-Color Mode) (256-Color Mode)

=T
(00, l 001h [002h| 003hJ 004h | 005h ¢12h [O1Eh| 01Fh
020h | 021h| 022h| 023h | 024h | 025h 03Dh 03Fh
040h | 041h | 042h | 043h | 044h | 045h 05Dh | O05Eh| 05Fh
060h | 061h | 062h | 063h | 064h | 065h 07Dh} O7Eh | O7Fh
080h | 081h | 082h| 083h | 084h | 085h 09Dh | O9Eh | 09Fh
0AOh | OA1h 0A3h | 0A4h | 0A5h 0BDh| OBEh| OBFh
0COh | OC1hj O0C2h [OC3h | 0C4h | 0C5h 0DDh | oDEh [ie]ela}!

8 x 8 Dots

16 x 16 Dots (16-Color Mode)
(256-Color Mode)
125 NTR-06-0180-001-G

© 2003-2007 Nintendo

CONFIDENTIAL

Released: July 27, 2007

5.3.3.2.2

NITRO Programming Manual

1D Mapping

The address where the data that makes up the character is stored is consecutive for each character, as
shown in Figure 5-27 and Figure 5-28.

Figure 5-27 : 1D Mapping when Character Name Boundary is 32 Bytes

Address Character Name
Offset VRAM Map
e OX06200
00600
01Fh
01Eh
0x0440h 019h

0x0240h

0x0020h

NTR-06-0180-001-G
Released: July 27, 2007

16 x 16 Dots
(256-Color Mode)

8 x 32 Dots
(256-Color Mode)

.o
.o
-
....
.=
-
.o

32 x 32 Dots
(16-Color Mode)

Character Name
OBJ Image Map

01Ah| 01Bh

01Ch | 01Dh| O1Eh | O1Fh
012h | 013h
014h [015h
016h [017h

001h | 002h [003h

004h [005h | 006h | 007h

008h | 009h | 00Ah | 00Bh

00Ch| OODh | OOEh| OOFh

126

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

Figure 5-28 : 1D Mapping when Character Name Boundary is 128 Bytes

Address Character Name Character Name
Offset VRAM Map OBJ Image Map
8x8Dots 008h

(16-Color Mode)

eono"""

Ox 040 h 008h ‘...._...-...... —

16 x 16 Dots 007h
007h (256-Color Mode) m
030 G ”’_‘,.o
—Oi.e—h_ id

005h

8 x 32 Dots
(256-Color Mode)

020 004h e
_.....O_X_.Q__h._ oso®®

32 x 32 Dots
(16-Color Mode)

005h

x 908 001h

003h
000 000h
—X gl

© 2003-2007 Nintendo 127 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.34 Bitmap OBJ
The VRAM Extended Flag and Mapping Mode for Bitmap OBJ are set with the DISPCNT [DB_DISPCNT]
Register.

Display Control Register (2D Graphics Engine A)

Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000
31 24|23 22 21 20 1615 8|7 6 5 4 0
olgg| | | | | loHlem| cH | | Jow|wi|wo] o [B3]B2[B1[BO BM [cH | |

Ext. OBJ Window Display . BG Mode
Display Mode BGO 2D/3D

Display VRAM

OBJ Processing
during H-Blank Period

Display Selection

OBJ Mapping
Mode

BG Character Base
Offset

2D Display
Forced Blank

BG Screen Base

Offset

Extended Palette

* [d22—d20] : OBJ-VRAM Region Extended Flag
BM [d22] : VRAM Extended Flag for Bitmap OBJ

These bits specify OBJ-VRAM capacity when 1D mapping is selected for OBJ bitmap data.

0

128 KB (starting character name boundary of 128 bytes)

1

256 KB (starting character name boundary of 256 bytes)

* [d06—d04] : OBJ Data Mapping Mode
BM [d06—-d05] : Bitmap OBJ Data Mapping Mode

00 2D mapping with 128 horizontal dots
01 2D mapping with 256 horizontal dots
10 1D mapping

1 Prohibited Setting

The OBJ-VRAM Region Extended Flag is ignored with 2D mapping. In this case, OBJ-VRAM is
referenced in a range of addresses that can be specified by the 10-bit character name set by OBJ
Attribute 2 in OAM.

Capacity is set with the OBJ-VRAM Region Extended Flag with 1D mapping.

NTR-06-0180-001-G 128
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

DB_DISPCNT: Display Control Register 1 (2D Graphics Engine B)

Initial Value: 0x00000000

Name: DB_DISPCNT Address: 0x04001000 Attribute: R/W

31 24123 16(15 8|17 6 5 4 0
o[BG OH CH ow|w1|wol o [B3[B2[B1]BO BM [cH |]

Window Display BG Mode
Extended Palette Extended OBJ OBJ Mapping
Mode
OBJ Processing Display Mode 2D Display
Forced Blank

during H-Blank Period

[d06—d04] : OBJ Data Mapping Mode
+ BM [d06—d05] : Bitmap OBJ Data Mapping Mode

00 2D mapping with 128 horizontal dots
01 2D mapping with 256 horizontal dots
10 1D mapping

1 Prohibited Setting

In 2D mapping mode, only up to 32 KB of OBJ-VRAM can be referenced.

In 1D mapping mode, OBJ-VRAM capacity is set to 128 KB.
With 2D Graphics Engine B, a maximum of 128 KB can be allocated to VRAM.

Note:

Accordingly, although it can be specified for 2D Graphics Engine A, the OBJ-VRAM
capacity for 1D mapping mode is fixed to 128 KB.

© 2003-2007 Nintendo
CONFIDENTIAL

129

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

5.3.41 Bitmap OBJ Data

Bitmap OBJ data

15 14 10 9 8 | 7 5 4 0
A BLUE | GREEN RED
olBMP PO

« A[d15]: OpmpP

The agpyp value is an element of the OBJ's transparency o, where o = agyp X (apam +1)- Set apam
using OBJ Attribute 2 (see "5.3.2.2 OAM Data Format" on page 113).

OBJ Display

PO

5.3.4.2 Blending with BG

As with translucent OBJ, Bitmap OBJ can be blended with the BG of the second target screen for display.
When agap = 0, the entire region of the OBJ becomes transparent and is not rendered. When agpapy is

non-zero, the OBJ is blended for display according to the following formula:

Coprx o+ Cpex (16 —a)

C:
16

QA = Ogyp X (Olpay + 1)
Ogyvp is set with Bitmap OBJ data, and apayp is @ value specified with OBJ Attribute 2 of OAM.

C is the color of the blending result (calculation results are rounded to the nearest integer).

Cogg I8 the Bitmap OBJ color of the first target screen.

Cpg is the BG color of the second target screen.

NTR-06-0180-001-G 130 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.34.3 Mapping Modes for Bitmap OBJ Data

5.3.4.3.1 2D Mapping with 128 Horizontal Dots
Figure 5-29 shows the 2D map of Bitmap OBJ data with 128 horizontal dots in VRAM.
Figure 5-29 : 2D Map of Bitmap OBJ Data VRAM (128 Horizontal Dots)

Dot 0 1 2 3 | T 125 | 126 | 127

Line0 | oh 2h 4h en | FAh | FCh | FEh
1 100h | 102h | 104h | 10eh | 1FAh | 1FCh | 1FEh
2 200h | 2020 | | | T OFCh | 2FEh

3 300h | 3020 | | | 77T 3FCh | 3FEh

4 a00n | | [T 4FEh

Character names are set in units of 8x8 dots (128 bytes) of bitmap data. Figure 5-30 shows the 2D image
map of character names in VRAM.

Figure 5-30 : 2D Image Map of Character Name VRAM

S0t 07 | 815 | 16-23 | 24-31 104-111 | 112-119 | 120-127
0-7 Oh 1h 2h s | Dh Eh Fh
815 | 10h 11h | 12h 13 | 1Dh | 1Eh | 1Fh
1623 | 20n | 2th | 22h | 230 | 2Dh | 2Eh | 2Fh
24-31 | 3oh | 3th | 32n | 330 | 3Dh | 3Eh | 3Fh
32-39 | 40h | 4th | 42n | 430 | 4Dh | 4Eh | 4Fh

| | | | I | | | | |

© 2003-2007 Nintendo 131 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.3.4.3.2 2D Mapping with 256 Horizontal Dots
Figure 5-31 shows the 2D map of Bitmap OBJ data with 256 horizontal dots in VRAM.
Figure 5-31 : 2D Map of Bitmap OBJ Data VRAM (256 Horizontal Dots)

Dot 0 1 2 3 253 | 254 | 255

Line0 | oh 2h 4h en | 1FAh | 1FCh | 1FEh
1 200h | 202h | 204n | 200 | 3FAh | 3FCh | 3FEh

2 aooh | 4020 | | | 5FCh | 5FEh

3 eooh | eo2h | | | 7FCh | 7FEh

4 goon | | |1 9FEh

Character names are set in units of 8x8 dots (128 bytes) of bitmap data. Figure 5-32 shows the 2D image
map of character names in VRAM.

Figure 5-32 : 2D Image Map of Character Name VRAM

Line Dot} Q-7 8-15 16-23 2431 | 232-239 | 240-247 | 248-255

0-7 Oh 1h 2h 3n | 1Dh 1Eh 1Fh
8-15 20h 21h 22h 23h | 3Dh 3Eh 3Fh
16-23 40h 41h 42h a3h | 5Dh 5Eh 5Fh
24-31 60h 61h 62h e3h | 7Dh 7Eh 7Fh
32-39 80h 81h 82h 8nh | 9Dh 9Eh 9Fh

| | | | | | | | | |

NTR-06-0180-001-G 132 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.3.4.3.3 1D Mapping
Character Names

In 2D Graphics Engine A, the Bitmap OBJ VRAM extension flag in the display control register DISPCNT
changes both the OBJ-VRAM range that can be specified by a character name, and the character name
boundary (see Table 5-14).

In 2D Graphics Engine B, VRAM allocation is restricted, so the OBJ-VRAM range is fixed to 128 KB, and
the character name boundary is fixed to 128.

Table 5-14 : Character Name Boundaries

Bitmap OBJ -
VRAM Extended Flag OBJ-VRAM Specifiable Range Character Name Boundary
0 128 KB 128 bytes
1 256 KB 256 bytes

For example, if the VRAM Extended Flag for Bitmap OBJ is set to 0, and the OBJ Attribute 2 setting for
Starting Character Name is set to 4Ch, the Bitmap OBJ data defined from address 2600h (= 4Ch x 128
bytes) is referenced.

1D VRAM Mapping of Bitmap OBJ Data

Map bitmap data from the starting address of the character name boundary for the size of the character.
This size is not in units of 8x8 dots. Figure 5-33 and Figure 5-34 show the 1D map for 8x8-dot characters
and 16x16-dot characters. In these figures, C+xxh denotes the offset from the starting address of the
character name boundary.

Figure 5-33 : 1D Map of VRAM with 8x8-Dot Characters

0 1 2 3 4 5 6 7
0 C+0h C+2h C+4h C+6h C+8h C+Ah C+Ch C+Eh
1 C+10h | C+12h | C+14h | C+16h | C+18h | C+1Ah | C+1Ch | C+1Eh
2 |C+on| o T/ e P [c+2En
3 C+30h | | | | | C+3Eh
N S O A A =
5 C+50h | | | | I C+5Eh
6 C+60h | C+62h | C+64h | C+66h | C+68h | C+6Ah | C+6Ch | C+6Eh
7 C+70h | C+72h | C+74h | C+76h | C+78h | C+7Ah | C+7Ch | C+7Eh
© 2003-2007 Nintendo 133 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 5-34 : 1D Map of VRAM with 16x16-Dot Characters

0 1 2 13 14 15
0 | Con | Ce2n | Cvan | C+1Ah | C+1Ch | C+1Eh
1| C+20h | Cvozh [Cvaan | 7~ C+3Ah | C+3Ch | C+3Eh
2 |c+on| I romTmmmmmm T [Cesen
| | | |
__________ Jl'_____I_____|_____—______'T_—__ﬂ—____:_____
----------- N A MO M
18 |C+1AOh| T TTTTTATTTTTTmTTTTT N
14__[c+icon|c+iczh|caican] T~ C+1DAh | C+1DCh | C+1DEh
15 | C+1EOh |C+iE2h |C+1EAN| C+1FA | C+1FCh | C+1FER
NTR-06-0180-001-G 134 ©2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

54 Backdrop

The 2D graphics displayed on the LCD are composed of OBJ, BG, and the Backdrop. An OBJ is a
relatively small image, but several of them can be displayed. They are mainly used to display characters
that move around the screen. A BG has features equivalent to an OBJ, but only a few BG screens can be
displayed because a BG is large and consumes a lot of memory. A BG is used to display large images
such as objects that are continuously on-screen or in the background.

On NITRO, regions of the LCD screen where no OBJ and BG are displayed are filled with a single color.
This region is called the Backdrop and can be visualized as a single-color surface that is always displayed
furthest in the back, as depicted in Figure 5-35. The Backdrop is a surface filled only with a single color and
does not have the features of OBJ and BG. The Backdrop color can be changed with the palette (see "5.5
Color Palettes" on page 136).

Figure 5-35 : Backdrop Schematic
Backdrop BG

oBJ

LCD Display

© 2003-2007 Nintendo 135 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.5 Color Palettes

As a standard feature, NITRO has RAM allocated specifically for BG and OBJ palettes (Palette RAM).
Data stored in Palette RAM are called standard palettes.

A BG or OBJ can be displayed using just a standard palette, but extended palettes allow the use of 256
colors x 16 palettes and enable richer visuals. To use extended palettes, allocate VRAM using the RAM
Control Register and enable the Extended Palette Flag with the DISPCNT [DB_DISPCNT] Register.

5.5.1 Standard Palettes

Standard palette RAM is allocated separately for OBJ and for BG in both 2D Graphics Engine A and 2D
Graphics Engine B. Color 0 in each palette is the transparent color, regardless of the settings. The
Backdrop screen uses the color set at the beginning of the BG palette (Color 0 of Palette 0). Because
standard palette RAM resides inside the 2D Graphic Engines, the 2D Graphic Engine must be enabled in
the Power Control Register (POWCNT) before data can be written to its RAM.

Figure 5-36 shows the standard palette RAM addresses. Figure 5-37 shows the color specifications for 16
Colors x 16 Palettes. Figure 5-38 shows the color specifications for 256 Colors x 1 Palette.

Figure 5-36 : Standard Palette RAM Addresses (Add 0x400h for 2D Graphics Engine B)

NTR-06-0180-001-G
Released: July 27, 2007

0x050003FFh

0x05000200h

OBJ Palette RAM
(512 bytes)

0x050001FFh

0x05000000h

BG Palette RAM
(512 bytes)

Figure 5-37 : 16 Colors x 16 Palettes

Start of palettes

Start of palettes

Palette 15 Color 15
Palette 2 Color 2
Palette 1 Color 1
Palette 0 Color 0

Color 255
Palette)
Color 2
Color 1
Color 0
136 © 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

The format for color data is shown below.

Color Data Format

15 14 10 9 8 | 7 5 4 0
BLUE | GREEN | RED
Color Data

5.5.2 Extended Palettes

OBJ and each BG screen can be allocated 256 colors x 16 palettes (8 KB) of VRAM by setting the
Extended Palette Flag in the DISPCNT [DB_DISPCNT] Register and the RAM Bank Control Register.
When allocated, palette slots are not mapped to the CPU bus. To rewrite the palette data, the palette slot
must be allocated to LCDC.

5.5.2.1 BG Extended Palettes

Display Control Register (2D Graphics Engine A)

Name: DISPCNT Address: 0x04000000 Attribute: RIW Initial Value: 0x00000000

31 30 24|23 1615 8|7 0

olgg| | | | | |oHleM cH | | Jow|wi|wo] o [B3]B2[B1[BO BM [cH | |
Ext. OBJ Window Display o BG Mode

Display Mode BGO 2D/3D
Display Selection
Display VRAM
OBJ Mapping

OBJ Processing Mode
during H-Blank Period

2D Display

BG Character Base Forced Blank

Offset

BG Screen Base
Offset

Extended Palette

Display Control Register 1 (2D Graphics Engine B)

Name: DB_DISPCNT Address: 0x04001000 Attribute: R/IW Initial Value: 0x00000000

31 30 24123 16|15 8|7 0
olsG OH CH ow|w1|wol o [B3[B2[B1]BO BM [cH |]

Window Display BG Mode
Extended Palette Extended OBJ OBJ Mapping
Mode
OBJ Processing Display Mode 2D Display
during H-Blank Period Forced Blank
© 2003-2007 Nintendo 137 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

+ [d31,d30] : Extended Palette Enable Flag
+ BG [d30] : BG Extended Palette

This flag is valid for BG screens that can be displayed with 256 Colors x 16 Palettes.

0 Disable (256 colors x 1 palette)
1 Enable (256 colors x 16 palettes)

The standard palette is always used for BG screens that do not support 256 Colors x 16 Palettes,
even if BG Extended Palettes are enabled. In addition, the Backdrop screen always uses Color 0
of the standard palette.

To use BG extended palettes, VRAM must be allocated to the BG Extended Palette Slots. See the
RAM Bank Control Register for allocating VRAM to the BG Extended Palette Slots.

BG Extended Palette Slots

BG Extended Palettes can have up to 32 KB allocated to Slots 0-3. Whether BGO uses Slot 0 or Slot 2 is
selected with the BGO Control Register, and whether BG1 uses Slot 1 or Slot 3 is selected with the BG1
Control Register. BG2 can use only Slot 2, and BG3 can use only Slot 3. Therefore, if Slot 0 is set to BGO
and Slot 1 to BG1, each BG screen can use its own extended palette. On the other hand, by setting Slots 2
and 3 to be shared by all BG screens, the BG Extended Palettes can conserve 16 KB.

Color 0 in both palettes is the transparent color, regardless of the settings. The Backdrop screen uses the
color set at the beginning of the BG standard palette (Color 0 of Palette 0).

Figure 5-39 shows the memory map for BG extended palette slots.
Figure 5-39 : BG Extended Palette Memory Map

0x00008000
Slot 3
0x00006000
Slot 2
0x00004000
Slot 1
0x00002000
Slot 0
0x00000000 ©
NTR-06-0180-001-G 138 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

Table 5-15 lists the palettes that can be used by each type of BG.

NITRO Programming Manual

Table 5-15 : Palettes and BG Types

Usable Palette Region
Category BG Type S 28 Extended Palette Slot
Palette | Screen | gtandard
0 1 2 3
16/16 BG0-3 X
BGO X X X
Text BG 256/16 BG1 X X X
Character BG2 X X
BG BG3 X X
Affine BG 256/1 BG2-3 X
o - BG2 X X
256-Color x 16 256/16
Palette BG BG3 X X
Ext.
BG 256-Color 256/1 BG2-3 X
B'g'(‘;ap Direct Color 32,768 | BG2-3
Large-Screen 256-Color 256/1 BG2 X

As shown in Figure 5-15, the Extended Palette Slot number can be selected for BGO and for BG1. With 2D
Graphics Engine B, Large-Screen 256-Color Bitmap BG cannot be selected for the BG type. See the
section on the BG Control Register in "5.2.2 BG Control" on page 81 to learn how to select slots.

© 2003-2007 Nintendo

CONFIDENTIAL

139

NTR-06-0180-001-G
Released: July 27, 2007

5.5.2.2

NITRO Programming Manual

OBJ Extended Palettes

Display Control Register (2D Graphics Engine A)

Name: DISPCNT Address: 0x04000000 Attribute: R/W Initial Value: 0x00000000
31 30 24|23 1615 8|7 0
olgg| | | | | loHleM cH | Jow|wi|wo] o [B3]B2[B1[BO BM [cH | |
Ext. OBJ Window Display o BG Mode
Display Mode BGO 2D/3D

Display VRAM

OBJ Processing

during H-Blank Period

BG Character Base
Offset

BG Screen Base
Offset

Extended Palette

Display Selection

OBJ Mapping
Mode

2D Display
Forced Blank

Display Control Register 1 (2D Graphics Engine B)

Name: DB_DISPCNT Address: 0x04001000 Attribute: RIW Initial Value: 0x00000000
31 30 24123 1615 817 0
o[BG OH CH ow|w1|wo| o [B3[B2[B1[BO BM [CH | |
Window Display BG Mode
Extended Palette Extended OBJ OBJ Mapping
Mode
OBJ Processing Display Mode 2D Display
during H-Blank Period Forced Blank
* [d31,d30] : Extended Palette Enable Flag

* O[d31]: OBJ Extended Palette

0 Disable (256 colors x 1 palette)

1 Enable (256 colors x 16 palettes)

The standard palette (palette RAM) is always used for 6-Color Mode OBJ, even if OBJ Extended
Palettes are enabled. See "5.5 Color Palettes" on page 136 for more information on these
palettes.

To use OBJ extended palettes, VRAM must be allocated to the OBJ Extended Palette Slots. See
the RAM Bank Control Register for allocating VRAM to the OBJ Extended Palette Slots.

NTR-06-0180-001-G
Released: July 27, 2007

140

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

OBJ Extended Palette Slots

Although 16 KB of VRAM is allocated to the OBJ extended palettes, only 8 KB of this can be used as an
extended palette. As Figure 5-40 illustrates, only Slot 0 can be used as an extended palette; Slot 1 is
invalid.

Color 0 for each palette is handled as the transparent color, regardless of the settings. The Backdrop
screen uses the color set at the beginning of the standard BG palette (Color 0 of Palette 0).

Figure 5-40 : OBJ Extended Palette Slot Memory Map

0x00004000
Slot 1 (Invalid Region)
0x00002000
Slot 0
0x00000000 ©
© 2003-2007 Nintendo 141 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.6 Windows

Window features can restrict the regions where BG and OBJ screens are displayed as well as the region
where color special effects are applied. NITRO uses three kinds of windows: Window 0, Window 1, and the

OBJ Window (see OBJ Attribute 0 in "5.3 OBJ" on page 109 to read about the OBJ Window settings).

Window Interior Control Register

Name Address Attribute Initial Value
(2D_A) WININ 0x04000048 R/W 0x0000
(2D_B) DB_WININ 0x04001048 R/W 0x0000
15 13 12 8 7 5 4 0
| |EFcT| oBJ | BG3 | BG2 | BG1 | BGO | |EFcT| oBJ | BG3 | BG2 | BG1 | BGO

Inside Window 1

Inside Window 0

Window Exterior and OBJ Window Interior Control Register

Name Address Attribute Initial Value
(2D_A) WINOUT 0x0400004A R/W 0x0000
(2D_B) DB_WINOUT 0x0400104A R/W 0x0000

15

13 12 8

5 4 0

|EFCT| oBJ | BG3 | BG2 | BG1 | BGO

|EFCT| OBJ | BG3 | BG2 | BG1 | BGO

Inside OBJ Window

Outside Window (0,1, and OBJ Windows)

[d13], [d05] : EFCT: Color Special Effects Enable Flag

0

Disable

1

Enable

. OBJ, BG3-0 [d12-d08], [d04—d00] : Display Enable Flag

0

Hide

1

Show

Display control over the window’s exterior is valid whenever Window 0, Window 1, or the OBJ Window is

displayed.

NTR-06-0180-001-G
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Window Position Setting Register

Name Address Attribute Initial Value
(2D_A) WINxH(x=0, 1) 0x04000040, 0x04000042 w 0x0000
(2D_B) DB_WINxH(x=0, 1) 0x04001040, 0x04001042 W 0x0000

15

Window Top Left x-coordinate

Window Bottom Right x-coordinate

* [d15—d08] : Window Top-Left x-coordinate
Set this in the range between 0 and 255.

* [d07—-d00] : Window Bottom-Right x-coordinate

Set this in the range between 0 and 255.

Name Address Attribute Initial Value
(2D_A) WINxV (x=0, 1) 0x04000044, 0x04000046 W 0x0000
(2D_B) DB_WINxV (x=0, 1) 0x04001044, 0x04001046 W 0x0000

15

Window Top Left y-coordinate

Window Bottom Right y-coordinate

* [d15—d08] : Window Top-Left y-coordinate

Set this in the range between 0 and 191.

+ [d07-d00] : Window Bottom-Right y-coordinate

Set this in the range between 0 and 192.
Window Range

If the window's top-left coordinates are (Ix, ly) and the bottom-right coordinates are (rx, ry), the window
range for LCD coordinates (0, 0) — (255, 191) is (Ix, ly) — (rx-1, ry-1).

To locate a window along the right side of the LCD screen, set its bottom-right x-coordinate to 0. To locate
a window along the left side of the LCD screen, set the top-left x-coordinate to 0. However, if both x-
coordinates are set to 0, the window is not displayed. Consequently, the window cannot span the entire
LCD screen width. Use another window (or the OBJ Window) to span the entire width of the LCD screen

with windows.

Window Shape

Window 0 and Window 1 can be set only as rectangular shapes. However, the shape’s appearance can be
altered by overwriting the Window Position Setting Register during an H-Blank period (see Figure 5-41).

© 2003-2007 Nintendo
CONFIDENTIAL

143

NTR-06-0180-001-G
Released: July 27, 2007

Screen

NITRO Programming Manual

Figure 5-41 : Altering a Window Shape

Window

NTR-06-0180-001-G
Released: July 27, 2007

144

Screen

Window

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

5.6.1 Precedence of Windows

As shown in Figure 5-42, Window 0 always has display priority (precedence) over Window 1, and the OBJ
Window has the lowest precedence. The precedence cannot be changed.

Figure 5-42 : Display Priority of Window 0, Window 1, and the OBJ Window

Screen

OBJ Window

Window 0

Window 1

Note 1 Regarding Windows: When the top-left y-coordinate of the window is between 0 and 6,
the top-left y-coordinate is forcibly displayed as though it were 0. Use one of the following two
methods to work around this problem.

Method 1: Perform the following steps:

1. Set the window's y-coordinate to a value of 7 or higher before the V-Count reaches 256 during
the V-Blank process.

2. Restore the window's y-coordinate to its original value after confirming that V-Count has
reached 262 by checking V-Count using a V-Count Match Interrupt or an H-Blank Interrupt.

Method 2: Perform the following steps:

1. Set the Window Display Enable Flag in the Display Control Register, using the values shown
below after confirming that V-Count has reached 262 by checking V-Count using a V-Count
Match Interrupt or an H-Blank Interrupt.

When the window y-coordinate is 0: 1 (Show window)
When the window y-coordinate is non-zero: 0 (Hide window)

2. Read the V-Count value using an H-Blank Interrupt and compare that value to (window y-
coordinate — 1). If the two values are equal, set the Window Display Enable Flag in the Display
Control Register to 1 (Show window) during the H-Blank.

Note 2 Regarding Windows: Immediately after drawing a line in which the bottom-right x
coordinate is set to 0, drawing of the current window will not be complete at H-Blank. If the
coordinates of the next window are set in this state, the window will continue drawing up to the
bottom-right x coordinate of the next window.

To avoid this, you must wait until the window has finished drawing before setting the coordinates of
the next window. If the bottom-right x coordinate is 0, the window will finish drawing 3 clock cycles
of the system clock (33 MHz) after the H-Blank flag changes from 1 to 0 (or the V-Count value
increments by 1). Between this time and the time when the H-Count reaches the top-left x coordi-
nate of the next window, it will be outside the window. So set the coordinates for the next window
during this period. Note that you cannot use this method when setting window coordinates using
H-Blank—initiated DMA.

© 2003-2007 Nintendo 145 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.7 Color Special Effects

OBJ and BG can use the alpha-blending and fade-in/fade-out color special effects. These effects can be
limited to a region by using windows (see "5.6 Windows" on page 142). Table 5-16 summarizes color

special effects.

Table 5-16 : Color Special Effects

Color Special Effect

Result

Alpha-Blending selected screens.

Computations are conducted and a 16-level translucency process is performed on two

This process is not performed on transparent portions (transparent pixels).

Brightness Up/Down
(Fade-in/Fade-out)

Computations are conducted and a 16-level process of changing the brightness is
performed on the selected screen.
This process is not performed on transparent portions (transparent pixels).

Color Special Effect Control Register

Name Address Attribute Initial Value
(2D_A) BLDCNT 0x04000050 R/W 0x0000
(2D_B) DB_BLDCNT 0x04001050 R/W 0x0000
15 13 8 7 6 5 0

BD | OBJ | BG3 | BG2 | BG1 | BGO

BD | OBJ | BG3 | BG2 | BG1 | BGO

Second Target Screen

First Target Screen

Special Effect

Selection

Color special effects are set with the BLDCNT [DB_BLDCNT] Register. For alpha-blending, which
processes two screens, the two target screens must have the proper priority. In addition, translucent OBJ
are specified separately in OAM and the BLDCNT [DB_BLDCNT] Register specifies color special effects

for the entire OBJ.

NTR-06-0180-001-G
Released: July 27, 2007

146

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

» [d07-d06] : Special Effect Selection

Table 5-17 : Color Special Effects and Processing

Effect Selection
Type Description of the Color Special Effect Processing
do7 do6
Normally, color special effect processing is not performed.

0 0 None However, 16-level translucency processing (alpha-blending) is performed if a
second target screen is directly behind a translucent OBJ, Bitmap OBJ, or a 3D
surface is rendered to a BGO screen.
16-level translucency processing (alpha-blending) is performed if a second
target screen is directly behind the first target screen.

0 1 Alpha- Set the first target screen's Backdrop screen bit to off ([d05] = 0).

Blending If OBJ = 1 for the first target screen, processing is executed on all OBJ,
regardless of type. If OBJ = 0, processing is executed only for translucent OBJ,
Bitmap OBJ, or a 3D surface rendered to a BGO screen.
. Gradually increases the brightness of the first target screen. If the first target
Brightness o _ L
1 0 Up screen specifies OBJ = 1, processing is executed only for normal OBJ. alpha-
(see note) blending is always performed when a second target screen is directly behind a
translucent OBJ, Bitmap OBJ, or 3D surface rendered to a BGO screen.
. Gradually decreases the brightness of the first target screen. If the first target
Brightness o _ o
1 1 Down screen specifies OBJ = 1, processing is executed only for normal OBJ. alpha-
(see note) blending is always performed when a second target screen is directly behind a
translucent OBJ, Bitmap OBJ, or 3D surface rendered to a BGO screen.

Note: As stated in Table 5-17, alpha-blending is always performed on translucent OBJ, Bitmap OBJ,
and BGO rendered with a 3D surface and a second target screen, where the second target
screen is directly behind, regardless of the Special Effect Selection setting. Therefore, to use
Fade-in/Fade-out with these screens, do not specify a second target screen (clear all) or place
something other than a second target screen immediately behind these screens.

© 2003-2007 Nintendo
CONFIDENTIAL

147 NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

1. Alpha-Blending

Color Special Effect Alpha-Blending Factor Register

Name Address Attribute Initial Value
(2D_A) BLDALPHA 0x04000052 R/W 0x0000
(2D_B) DB_BLDALPHA 0x04001052 R/W 0x0000
15 12 8 7 4 0
EVB EVA

The factors used for alpha-blending are set with EVA and EVB in the BLDALPHA [DB_BLDALPHA]
Register. EVA and EVB are divided by 16 and are used as the pixel color factors in the equations
below (when EVA or EVB exceeds 16, it is reset to 16).

Note that when a Bitmap OBJ is blended with the second target screen, the Bitmap OBJ's alpha value
is used instead of these values. For further details, see "5.3.4 Bitmap OBJ" on page 128 and "5.3.4.2
Blending with BG" on page 130.

» Computations for alpha-blending (16 levels of translucency)
Display color (R) = 1st pixel color (R) x (EVA /16) + 2nd pixel color (R) x (EVB / 16)
Display color (G) = 1st pixel color (G) x (EVA /16) + 2nd pixel color (G) x (EVB / 16)
Display color (B) = 1st pixel color (B) x (EVA /16) + 2nd pixel color (B) x (EVB / 16)

The computation results for alpha-blending are rounded to the nearest integer.

Note: An OBJ cannot be alpha-blended with another OBJ.

Figure 5-43 shows a case where an OBJ is specified as the first target screen, and a BG and an OBJ
are specified as the second target screen. In this situation, OBJ-B is ignored as the target pixels for
alpha-blending, and alpha-blending is carried out with OBJ-A and BG, just as if the BG were located
directly behind OBJ-A.

Figure 5-43 : Alpha-Blending Display Priority

BG
OBJ-B OBJ-A
bDisplay PrioritH
Low High
NTR-06-0180-001-G 148 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

2. Brightness Up/Down

Color Special Effect Brightness Change Factor Register

Name Address Attribute Initial Value
(2D_A) BLDY 0x04000054 W 0x0000
(2D_B) DB_BLDY 0x04001054 w 0x0000
15 8 7 0
EVY

The factor used for changing brightness is set with EVY in the BLDY [DB_BLDY] Register. EVY is
divided by 16 and is used as the pixel color factor in the equations below (when EVY exceeds 16, it is
reset to 16.)

» Computations to increase brightness
Display color (R) = 1st pixel (R) + (31 - 1st pixel (R)) x (EVY / 16)
Display color (G) = 1st pixel (G) + (31 - 1st pixel (G)) x (EVY / 16)

Display color (B) = 1st pixel (B) + (31 - 1st pixel (B)) x (EVY / 16)
+ Computations to decrease brightness

Display color (R) = 1st pixel (R) - 1st pixel (R) x (EVY / 16)
Display color (G) = 1st pixel (G) - 1st pixel (G) x (EVY / 16)
Display color (B) = 1st pixel (B) - 1st pixel (B) x (EVY / 16)

The computation results for brightness are rounded to the nearest integer.

© 2003-2007 Nintendo 149 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

5.8 Mosaic

The Mosaic size is set with the MOSAIC [DB_MOSAIC] Register. Mosaic is turned on/off for each BG with
the Mosaic Flag on the BG Control Register.

Mosaic Register

Name Address Attribute Initial Value
(2D_A) MOSAIC 0x0400004C W 0x0000
(2D_B) DB_MOSAIC 0x0400104C W 0x0000
15 8 7 0
V Size | H Size V Size | H Size
OBJ Mosaic Size BG Mosaic Size

The Mosaic Size value specifies how many dots of a normal display should comprise each large dot
displayed. The Mosaic display starts with the top-left dot on the screen and uses the dots spaced a distance
of the Mosaic size from the top-left dot. All other dots are overwritten with the mosaic (see Figure 5-44). In
other words, if the Mosaic size is set to 0, images display normally, even if Mosaic is on.

Figure 5-44 : Display Changes According to Mosaic Size

Normal Display Mosaic H Si_ze:_1 Mosaic H Si_ze:_3
V Size: 1 V Size: 5
00(01]02[03(04 05|06 |07 00|00 |02 04 06 00|00 (00| 00|04
101111213 (14 [15]16 |17 00|00 00|00 |00|00
2012112212324 |25(26 |27 20 22 24 26 00|00 |00|00
3003113213334 |35(36 |37 00|00 |00 |00
40141 (42|43 |44 |45]46 |47 40 42 44 46 00|00 |00|00
5051 52|53 |54 |55|56 |57 0000 |00 |00
60|61162)|63|64|65(66 |67 60 62 64 66 60 64
70|71 |72|73|74|75(76 |77
NTR-06-0180-001-G 150 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

5.9 Display Priority
« BG Display Priority

Four levels of display priority can be set for BGs with the BG Control Register. When BGs have the
same priority, the one with the lower BG number has higher priority. The Backdrop screen always has
the lowest priority.

« OBJ Display Priority

Four levels of display priority can be set for OBJs with the OBJ Attribute Data stored in OAM. When
OBJs have the same priority, the one with the lower OBJ number has higher priority.

+ BG - OBJ Display Priority
If an OBJ and a BG have the same priority, the OBJ has higher priority than the BG (see Figure 5-45).
Figure 5-45 : Display Priority

Backd BG BG BG BG
ackdrop Priority 3 Priority 2 Priority 1 Priority 0
oBJ 0BJ 0BJ "
Priority 3 Priority 2 Priority 1 OBJ Priority 0

(Display Priority :
Low High

Workaround for the AGB OBJ Display Priority Problem

A problem with AGB caused an improper display when the OBJ numbers (the order OBJs are registered in
OAM), and the OBJ priority levels were reversed. This problem is corrected in NITRO (unless NITRO is set
to AGB-compatibility mode).

© 2003-2007 Nintendo 151 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 152 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6 3D Graphics

Figure 6-1 is a schematic of the hardware block involved in the rendering of 3D graphics.
Figure 6-1 : 3D Graphics Hardware Block Diagram

's '
<
GXSTAT Command
Register —> FIFO Current Clip Current Matrix Stack
> Coordinate Projection [4— " 4
+ Matrix Matrix eve
GXFIFO)
Register Current Position Matrix Stack
Coordinate Matrix Level 31
; Linked
Geometry Engine (GE)
Command Current | |) Matrix Stack
Register Directional Level 31
Group Vector Matrix eve
i Specular Reflection | [Current Texture
3D Graphics Brightness Table Matrix
Registers/Memory
Vertex RAM |
Counter |
Polygon List .
RAM < Polygon List —| Vertex RAM :r
RAM
Counter
[[
Rendering Engine (RE)
Stencil Buffer
Toon Table Sta:i;e 1 * \ 4 < tl |
g Rasterize <} >
' | Attribute Buffer I'l
L
Texture } 1 |
Image Slot <
i Texture Mapping Depth Buffer
Texture ’E _>| i P
Palette Slot ; |
i a—BIending E‘__f_[_
Color Buffer
dl
-
Edge Color Stage 2 <
Table > Edge Marking i« :
B - -
Fog Blending g Fog — | (Stage 1 Current)
Factor Table _|_> (Stage 2 Current)
—p| (Stage 3 Current)
Stage 3 :
i Anti-Alasing i
4 J
A 4
Buffer Logic Memory BGO Screen
© 2003-2007 Nintendo 153 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

* Polygon List RAM, Vertex RAM

The data that is passed from the Geometry Engine to the Rendering Engine is stored in Polygon List

RAM and Vertex RAM.

Table 6-1 shows the capacity for Polygon list RAM and Vertex RAM.

Table 6-1 : Capacity of Polygon List RAM and Vertex RAM

RAM

Capacity

Polygon List RAM

2048 polygons

Vertex RAM

6144 vertices

The capacity of polygon list RAM is just enough for 2048 triangular polygons. Because quadrilateral
polygons have four vertices, fewer of these can be stored in this RAM. A maximum of 1706 can be
stored for the quadrilateral strip because neighboring quadrilateral polygons share vertices.

« Buffers inside the Rendering Engine

The Stencil buffer, Attribute buffer, Depth buffer, and Color buffer are memory regions that store
information for each pixel. One buffer block in Figure 6-1 depicts a line buffer for an LCD horizontal line

of 256 pixels. For more details, see the "6.3 Rendering Engine" on page 226.

NTR-06-0180-001-G
Released: July 27, 2007

154

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

6.1 3D Display Control
DISP3DCNT: 3D Display Control Register
Name: DISP3DCNT Address: 0x04000060 Attribute: R/W Initial value: 0x0000
15 14 13 12 11 8 7 6 5 4 3 2 1 0
CIE | GBO | RBU FOG_SHIFT FME [FMOD| EME | AAE | ABE | ATE | THS | TME

Fog

Color Buffer Underflow Flag | | Edge Marking Enable Flag |

Polygon List RAM and | Anti-aliasing Enable Flag |
Vertex RAM Overflow Flag

| a-Blending Enable Flag |

Clear Image Enable Flag

| a-Test Enable Flag |

| Toon/Highlight Shading Selection |

Texture Mapping Enable Flag

» CIE[d14] : Clear Image enable flag

Two VRAMSs of 128 kilobytes each are used to set the values for Clear Color, Clear o, Clear Depth,
and Clear Fog.

The Clear a value is specified with 1 bit, so you can select only transparent or opaque.
VRAM2 banks must be assigned to the Clear Image buffer with the RAM Control register 0.
Even when this feature is used, the register value is used for the Clear Polygon ID.
For further information, see "6.3.3.2 Initializing with Clear Images" on page 232.

+ GBO[d13] : Polygon List RAM and Vertex RAM overflow flag

The flag is set to 1 when the Geometry Engine processes too many polygons and vertices and
Polygon List RAM and Vertex RAM overflow.

Once an overflow has occurred, the bit remains 1 even if it is no longer overflowing. You can reset the
flag by writing 1.

0 No overflow

1 Overflow

When the polygon list RAM or vertex RAM overflow, the polygon that caused the overflow and all the
polygons after it are not registered.

+ RBU[d12] : Color buffer underflow flag

This flag is set to 1 when rendering is not done in time to display and a Color buffer underflow occurs
(a line overflow in the Rendering Engine).

Once the Color buffer has underflowed, this bit remains 1 even upon deletion. You can reset by writing
1. See "6.3.2 Rendering Methods" on page 228.

0 No underflow

1 Underflow

© 2003-2007 Nintendo 155 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

e [d11-d06] : Fog
This feature applies a fog effect. For details, see the "6.3.1 Overview" on page 226.
+ [d11-d08] : Fog Shift
The depth value used by fog uses the upper 15 bits (called the fog depth value) of the 24 bits.
The Fog table is referenced using 5 bits of the depth value as an index.

When the Fog Shift is 0, the bits d14 - d10 of the depth value are referenced as the index. For
every 1-step increase in the Fog Shift, the reference bits are shifted 1-bit to the right.

Note: Setting values of 11—15 is prohibited.
+ FME[dO7] : Fog master enable flag

0 Disable

1 Enable

« FMOD[d06] : Fog mode

Selecting 1 makes 3D objects appear to dissolve into a 2D background.

0 Fog blending using pixel's color value and O value.

1 Fog blending using only the pixel's Ol value.

« EME[d05] : Edge-marking enable flag

This feature draws an outline in the specified color around the edges of polygons with different polygon
IDs.

For details, see the "6.3.1 Overview" on page 226.

0 Disable

1 Enable

* AAE[d04] : Anti-aliasing enable flag
This feature blends the edges of a polygon with the color value for the polygon behind it.
For details, see the "6.3.1 Overview" on page 226.

If you plan to capture the rendering result used as Bitmap OBJ, etc., disabling this flag gives you more
natural images.

0 Disable

1 Enable

» ABE[d03] : Alpha-Blending enable flag

This feature blends the Color buffer's color with the fragment color in accordance with the fragment's
alpha value.

For details, see the "6.3.1 Overview" on page 226.

0 Disable
1 Enable
NTR-06-0180-001-G 156 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

+ ATE[d02] : a-Test enable flag

NITRO Programming Manual

This feature enables you to skip the drawing of pixels that have an a-value lower than the specified

value.

For details, see the "6.3.1 Overview" on page 226.

0

Disable

1

Enable

* THS[d01] : Toon/Highlight Shading Selection

This bit selects the shading mode for the polygon specified for Toon shading/Highlight shading with the
PolygonAttr command.

+ TMOD : Toon/Highlight polygon mode

0 Toon shading

1 Highlight shading

+ TME[dOO0] : Texture Mapping master enable flag

This selects whether to perform texture mapping.

0

Disable

1

Enable

© 2003-2007 Nintendo
CONFIDENTIAL

157

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

6.2 Geometry Engine

6.2.1 Overview
Table 6-2 lists geometry engine specifications.

Table 6-2 : Geometry Engine Specifications

Operating Frequency | 33.514MHz

Coordinate

X Maximum 4 million vertices/sec
Transformation

Matrix Computation |4x4 matrix computation and matrix stack

Clipping 6-plane clipping
Light: Parallel light source x 4
Lighting Material: Reflected light (diffuse reflection, specular reflection,

ambient reflection), Emission light

Backface culling; Specify display of 1-dot polygons (see note); Box
Other features culling test; Texture coordinate transformation; Adjust specular
reflection shininess distribution

Note: A 71-dot polygon is a polygon whose constituent coordinates (x, y) have been condensed to the
same coordinate.

6.2.2 Coordinate System

In three-dimensional space, the coordinate system can be defined in two ways: as a right-handed
coordinate system or as a left-handed coordinate system, depending on the direction of the z-axis relative
to the x and y axes.

As a rule, NITRO adopts the right-handed coordinate system. However, because Z values are inverted
with the projection matrix, the coordinates after clipping are in the left-handed coordinate system.

Figure 6-2 shows the relation of the x, y, and z axes in a right-handed coordinate system.
Figure 6-2 : Right-Handed Coordinate System

Y
i\

NTR-06-0180-001-G 158 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.2.3 Coordinate Transformations

In OpenGL, when a model is located in view coordinates, the model is first multiplied by the model view
matrix, which includes the view transformation. This is then multiplied by the projection matrix, and the
apparent size of the model is determined based on the view volume.

To reduce the load on the hardware, NITRO uses a clip coordinate matrix that is a concatenation of the
projection matrix and the position coordinates matrix so that clip coordinate conversion is done with only
one coordinate transformation. Then the clip coordinate values (X, y, z, w) are divided by 2w (perspective
division) after only the w coordinate is translated to get the normalized screen coordinates, and a scaling
transformation is done on the BG screen coordinates by a viewport transformation.

For the vertex's normal vector and light vector, OpenGL performs a transformation with the transposed
matrix of the modelview matrix. In contrast, NITRO assumes the vector is normalized and uses only the
rotational component's matrix (the orthogonal matrix) for the transformation. This kind of transformation is
called a directional vector transformation.

In OpenGL, vertex position coordinates and directional vectors are transformed into view coordinates just
by setting the modelview matrix. But in NITRO, the vertex position coordinates and directional vectors are
transformed by separate matrices, and these are separately defined as the position coordinates matrix and
directional vector matrix.

© 2003-2007 Nintendo 159 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

Figure 6-3 illustrates the coordinate transformation flow on the NITRO.

Position Coordinates
Transformation

Figure 6-3 : Coordinate Transformation Flow Chart

Object Coordinates

v

Modeling
Transformation

v

World Coordinates

v

Viewing
Transformation

Clip Coordinates
Transformation

v

View Coordinates

v

Projection
Transformation

NTR-06-0180-001-G

v

Clip Coordinates

v

Perspective
Division

v

Normalized Screen
Coordinates

v

Viewport
Transformation

v

BG Screen
Coordinates

Released: July 27, 2007

NITRO Programming Manual

‘ World Coordinate System

\

Object Coordinate System

Vertex coordinates specified with Vertex

commands.

Sign + 3-bit integer + 12-bit fractional part

Z

World space

Sign + 16-bit integer + 12-bit fractional part

View Coordinate System

World space where the eye point is at the
origin and the z-axis is opposite the line of

sight.

Sign + 16-bit integer + 12-bit fractional part

Clip Coordinate System

Clipped by view volume with an reversed

z-axis.

Sign + 11-bit integer + 12-bit fractional part

Normalized Screen Coordinates

The x,y,z axes of the plane of projection
(the near clip plane) are normalized to 0.0

to 1.0

BG Screen Coordinate System

Normalized screen coordinates are scaled,
offset, and applied to the BGO screen.
The Y-axis is inverted when rendering with

the Rendering Engine.

160

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

6.2.4 Projection Transformations
The perspective of the viewed polygon object from the eye point is defined by the view volume.

The view volumes and projection matrices for perspective projections (Figure 6-4) and orthogonal
projections ("Figure 6-5 : Orthogonal Projections" on page 162) are described below.

1. Perspective Projections
Figure 6-4 : Perspective Projections

Far Clip Plane

Near Clip Plane

Eye

a. Left-Right Asymmetrical Perspective Projection

2n
—_ 0 0 0
r—1
0 2—”b 0 0
Frustum = - x scalel
r+/ t+5b _f+ n _1
r—1 t—-b f-n
21n
0 0O — 0
b. Left-Right Symmetrical Perspective Projection
L 0 0 0
asp-sin@
0 C?Sg 0 0
Perspective = sin x scalel
f+n
0 0 —_— -1
f—n
21n
0 0 —_— 0
© 2003-2007 Nintendo 161 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

2. Orthogonal Projections
Figure 6-5 : Orthogonal Projections

Far Clip Plane

Ortho =
2
=
r+/1 t+b +
r—1 t-b f—n

0 0
n
n

t : Top edge y-coordinate of near clip plane

b : Bottom edge y-coordinate of near clip plane

r : Right edge x-coordinate of near clip plane

| : Left edge x-coordinate of near clip plane

n : Distance from eye point to near clip plane

f : Distance from eye point to far clip plane

0 : Angle of field-of-view (screen angle) in vertical (y) direction + 2

asp : Aspect ratio of width to height of field-of-view (height:width ratio = width of field-of-view + height
of field-of-view)

scaleW : Parameter for precision-adjusting view volume

(Use to change the scaling of clip coordinate space and increase the precision of the orthogonal
screen coordinates after perspective division.)

NTR-06-0180-001-G 162 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.2.5 Depth Buffering

1. For Perspective Projections
The perspective projection matrix parameters are set as shown below. (For details about elements
p0-p5, see "6.2.4 Projection Transformations" on page 161).
p0 0 0 O
M= 0 p2 0 0 x scalel
pl p3 p4 —1
0 0 pb O
When the View coordinates are (x, y, z, 1), the Clip coordinates (x’, y’, Z’, w’) are as follows:
X = (p0x x+ pl x 2)x scalell
V= (p2x y+pdxz)xscalell
Z = (pdxz+pbx1l)xscalell
W = —zx scalell
When each clip coordinate component is translated by w’ and then divided by 2w’ (perspective
division), the normalized screen coordinates (x”, y”, z’, 1) are obtained. The z” component is calculated
as follows:
. Z2+v0 _ (pAxztpo—z)xscalel _ 1 pi pd
2w —2zx scalel 2 2 2z
p4 and p5 are elements of the perspective projection matrix, so using the matrix shown in the equation
"a. Left-Right Asymmetrical Perspective Projection" on page 161 yields:
r n
Z' = (1 + —g —far< z<-near
During Z buffering, this z” value is multiplied by Ox7FFF to get the depth value z’”. The z™” value is
proportional to the inverse of the View coordinate z value, so in View coordinate space the position
coordinates are more precise the closer they are to the eye point and less precise the farther they are
away from the eye point. As a result, when you represent a large space, drawings that are farther away
tend to be more imprecise. To resolve this problem, NITRO supports W buffering, which uses clip
coordination as the depth value.
Because the depth value is taken as a multiple of the view coordinate z from the equation...
W = —zx scalell (-far< z<—-near)
... the precision of rendering in the distance improves. The trade-off is that this diminishes the precision
of nearby images compared to Z-buffering. But by enlarging the view volume space and adjusting
scaleW in order to maintain a certain level of resolution, this should not present a problem for nearby
images. (See Figure 6-6.)
© 2003-2007 Nintendo 163 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 6-6 : Z-Buffering and W-Buffering (Perspective Projection)

(Z buffering

)

Depth Value

N\

OX7FFF

N

- f

H

View Coordﬁate
Z value

f : Distance from eye point to far clip plane

n : Distance from eye point to near clip plane

NTR-06-0180-001-G
Released: July 27, 2007

164

C

W Buffering) Depth Value

A\
fxscaleW
»- nxscaleW
- 2
- f - nTV|eW Coordinate

Z value

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

2. For Orthogonal Projections

The orthogonal projection matrix parameters are set as shown below. (For details about elements
p0-p5, see "6.2.4 Projection Transformations" on page 161.)

p0 0 0 0
0 p2 0 0
0 0 p40
pl p3 pb 1

M= x scalelW

When the View coordinates are (x, y, z, 1), the Clip coordinates (x’, y’, Z’, w’) are as follows:

X = (p0x x+plx1)x scalell
V= (p2xy+tpdxl)xscalell
72 = (pdxz+pbxl)xscalell
W = 1xscalell

When each component of the clip coordinate is translated by w’ and then divided by 2w’

When each clip coordinate component is translated by w’ and then divided by 2w’ (perspective
division), the normalized screen coordinates (x”, y”, z*, 1) are obtained. When scaleW = 1, coordinates
are translated by 1 and divided by 2, so the clip coordinate system values -1.0 to 1.0 are transformed
into the normalized screen coordinate system values 0.0 to 1.0.

The normalized screen coordinate z” component is calculated as follows:

Z2+v _ (pAxz+pbtl)xscalell pixz+ps+1
2w 2x scalell 2

2=

p4 and p5 are elements of the orthogonal projection matrix, so using the matrix shown in the equation
"2. Orthogonal Projections" on page 162 yields:

~ (-

z" (z+ n) (-far< z<—-near)

111

During Z buffering, this z” value is multiplied by 0x7FFF to get the depth value z’”. This z”” value is
proportional to the View coordinate z value, so no problems arise with the precision of distant images.

When w buffering is used, the w’ clip coordinate which serves as the depth value is always fixed to the
value 1 x scaleW. For this reason, w buffering is not used with orthogonal projections. (See Figure 6-7.)

© 2003-2007 Nintendo 165 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Figure 6-7 : Z-Buffering and W-Buffering (Orthogonal Projection)

(Z Buffering) Depth Value (W Buffering) Depth Value
N
Ox7FFF
View Coordinate 1xscaleW View Coordinate
Z value ‘ ’ Z value
> ’ —>
- f T -n - f T -n

f : Distance from eye point to far clip plane

n : Distance from eye point to near clip plane

Depth value format
The NITRO Depth buffer uses 24 bits for each pixel, so the depth value must fit inside that range.

For Z buffering, the depth value is the value that expresses the distance from the near clip plane to the far
clip plane with 24-bit precision.

For W buffering, the distance from the eye point in the View coordinate system must fit within the 24-bit
precision (sign + 11-bit integer + 12-bit fractional part) range of the Clip coordinate system, and the depth
value is the result of translating the W value of the clip coordinates a distance of W and then dividing by
two (12-bit integer + 12-bit fractional part).

Note: Make sure that the Clip coordinate values do not exceed the 24-bit range.

For fog, the depth value is the upper 15 of the 24 bits. See "6.3.3.1 Initializing with the Clear
Registers" on page 231 for details.

NTR-06-0180-001-G 166 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.2.6 Geometry Commands

To transfer the data of matrices and polygons, etc. to the Geometry Engine requires writing command
strings to Command FIFO. There are two ways to write to Command FIFO:

Method 1: Write parameters to the group of command registers mapped in the register space of the main
processor.

Write the parameters into Command registers, and the command code and parameters are
automatically written into Command FIFO. This method works when the CPU will process one
command at a time.

Method 2: Write command code and parameters to the Command FIFO register.

This method is appropriate for transferring large amounts of data to the Geometry Engine,
such as for DMA transfers of command strings stored in main memory.

Note: The Geometry Command register group and Command FIFO are specialized for 32-bit access.
Whether you are writing using the CPU or DMA, make sure the access width is 32 bits.

When an attempt is made to write to Command FIFO when it is full, the process enters a wait state
until 32 bits open up in Command FIFO. During this wait state the bus cannot be used even by
another bus master. You can avoid this situation by doing the following:

Transfer commands using the DMA Geometry Command FIFO startup mode

In this mode, DMA is started when Command FIFO becomes less than half full, sending in units of
112 words (see note) until the specified transfer volume is reached. See "7 DMA" on page 273.

Note: If commands have been packed, the word count equals the number of words before
unpacking.

You can determine the status of Command FIFO by checking the Command FIFO status
flag in the Geometry Engine status register (GXSTAT).

© 2003-2007 Nintendo 167 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

GXFIFO: Command FIFO Register

Name: GXFIFO Address: 0x04000400 (Image: 0x04000404 - 0x0400043F) Attribute: W

Data written to the Command FIFO register is sent to Command FIFO.
Command FIFO has a depth of 32 bits x 256 levels.

Be careful not to transfer undefined command codes.

Command Packing

When transferring command strings to the Command FIFO register, the command strings can be
compressed by packing up to four command codes in one word.

Packed command strings are first decompressed and then stored in command FIFO. The packed
command strings are stored in command FIFO in order starting from the low-order byte, so you need to
pack the command codes starting from the low-order address and fill the empty higher-order bytes with 0.

Figure 6-8 shows the different command transfers for commands that are packed and not packed.

Figure 6-8 : Transferring Packed and Non-Packed Commands

Non-packed Commands Packed Commands

Word GXFIFO GXFIFO

Count | g31-d24 d23 - d16 d15 - d08 d07 - d00 d31 - d24 d23 - d16 d15 - d08 do7 - d00
1 0x00 0x00 0x00 Command 1 "] command 4 | Command3 | Command2 | Command 1
2 Parameter for Command 1 Parameter for Command 1
3 0x00 0x00 0x00 Command 2 Parameter A for Command 2
4 Parameter A for Command 2 Parameter B for Command 2
5 Parameter B for Command 2 Parameter for Command 4
6 0x00 0x00 0x00 Command 3 0x00 0x00 Command 6 | Command 5
7 0x00 0x00 0x00 Command 4 Parameter for Command 5
8 Parameter for Command 4 | |
9 0x00 | 0x00 | 0x00 | Commands | : !
10 Parameter for Command 5 I 4-Word Reduction |

! [

11 0x00 | o0x00 | 0x00 | commande R s s]

In the example shown above, Commands 1, 4, and 5 have one parameter each, Command 2 has two
parameters, and Commands 3 and 6 have no parameters.

In Figure 6-8, a data volume of 11 words is sent to the Command FIFO register when the commands are
not packed, but when commands are packed only 7 words are sent, for a savings of 4 words.

NTR-06-0180-001-G
Released: July 27, 2007

168 © 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

Precautions regarding the CPU continuously writing to the Geometry FIFO

Continuous writing to the Geometry FIFO using STM or STRD instructions can occur properly only when
the two following conditions are met. See Figure 6-9.

*+ Command Pack is not used
* Write only one command-parameter pair at a time

Figure 6-9 : Continuous Writing to the Geometry FIFO using STM or STRD Instructions

31 24 23 16 15 87 0
Valid .
000000h Command Un|tlthat can be
21h (Normal) continuously
transferred with
STM or STRD
Parameters for Normal instructions
Valid N
000000h Command
23h (Vertex1) Unit that can be
continuously
> transferred with
Parameters for Vertex1 STM or STRD
instructions
Parameters for Vertex1
/
Unit that can be
Valid continuously
000000h Command transferred with
41h (End) STM or STRD
instructions
Valid .
000000h Command Unit that can be
continuously
29h (PolygonAttr) transferred with
STM or STRD
instructions

Parameters for PolygonAttr

The “Unit that can be continuously transferred with STM or STRD instructions” mentioned above can be
written at a single time. However, do not perform a write with STM or STRD instructions that exceed this
unit. Leave a blank interval of one system cycle between each “Unit that can be continuously transferred
with STM or STRD instructions.”

Cautions regarding Data Arrays for Command Packs

Writing to the Geometry FIFO when command packs are used can occur properly only when one of the fol-
lowing conditions are met whether using the CPU or DMA.

* Do not have a command without parameters (see Note 2 below) come in the top level of valid
commands in the command pack (see Note 1 below). See Figure 6-10 and Figure 6-11 for details.

Note 1: “Valid command” indicates a command defined within the region between 0x10 and OxFF. “Invalid
Commands” are in the region between 0x00 and OxOF.

© 2003-2007 Nintendo 169 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Note 2: A “command without parameters” is one of the four following commands:

PushMatrix
* Loadldentity
End

* Commands undefined within the region between 0x10 and OxFF

Figure 6-10 : Case 1: Preventing a Command without Parameters from Being the First Valid Command

Top Level of Valid Commands

31 24 23 l 16 15 87 0
Invalid Valid Valid Valid
Command Command Command Command

00h 41h (End) 23h (Vertex1) 21h (Normal)
Parameters for Normal
Parameters for Vertex1
Parameters for Vertex1
Valid Valid Valid Valid
Command Command Command Command
23h (Vertex1) 22h (TexCoord) 40h (Begin) 29h (PolygonAittr)
Parameters for PolygonAttr
31 24 23 16 15 87 0
Invalid Invalid Valid Valid
Command Command Command Command
00h 00h 23h (Vertex1) 21h (Normal)
Parameters for Normal
Parameters for Vertex1
Parameters for Vertex1
Valid Valid Valid Valid
Command Command Command Command
22h (TexCoord) 40h (Begin) 29h (PolygonAittr) 41h (End)
Parameters for PolygonAttr

NTR-06-0180-001-G
Released: July 27, 2007

170 © 2003-2007 Nintendo

CONFIDENTIAL

Figure 6-11 : Case 2: Preventing a Command without Parameters from Being the First Valid Command

31

2423

NITRO Programming Manual

16 15

87

0

Valid
Command
11h (PushMatrix)

Valid
Command
11h (PushMatrix)

Valid
Command
11h (PushMatrix)

Valid
Command
11h (PushMatrix)

Valid
Command
23h (Vertex1)

Valid
Command
22h (TexCoord)

Valid
Command
40h (Begin)

Valid
Command
29h (PolygonAttr)

Parameters for PolygonAttr

il

Not included in the command pack

31

24 23 16 15 87 0
Invalid Invalid Invalid Valid
Command Command Command Command
00h 00h 00h 11h (PushMatrix)
Valid Valid Valid Valid
Command Command Command Command
29h (PolygonAttr) | 11h (PushMatrix) | 11h (PushMatrix) [11h (PushMatrix)

Parameters for PolygonAttr

© 2003-2007 Nintendo

CONFIDENTIAL

171

NTR-06-0180-001-G
ased: July 27, 2007

Rele

NITRO Programming Manual

* When a command without parameters comes in the top level of valid commands in the command
pack, insert zeros at the end of the parameter array corresponding to that command pack.

NTR-06-0180-001-G

Figure 6-12 : When the First Valid Command has no Parameters

Top Level of Valid Commands

31 24 23 l 16 15 87
Invalid Valid Valid Valid
Command Command Command Command
00h 41h (End) 23h (Vertex1) 21h (Normal)
Parameters for Normal
Parameters for Vertex1
Parameters for Vertex1
31 24 23 16 15 87
Invalid Valid Valid Valid
Command Command Command Command
00h 41h (End) 23h (Vertex1) 21h (Normal)

Parameters for Normal

Parameters for Vertex1

Parameters for Vertex1

All Zeros (0)

172

Released: July 27, 2007

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

Table 6-3 and Table 6-4 show lists of Geometry Commands.

Table 6-3 : Geometry Commands (in Command Code Order)

Command
register | Command ke 55
Category Feature Command name 9 words in | Page
address code
parameter
(see note)
— No operation Nop — 0x00 0 None
Matrix mode | Sets the matrix mode MatrixMode 0x440 0x10 1 181
Pushes to stack PushMatrix 0x444 0x11 0 186
Pops from stack PopMatrix 0x448 0x12 1 186
Writes to specified location in stack | StoreMatrix 0x44C 0x13 1 187
Reads from specified location in RestoreMatrix 0x450 Ox14 1 187
stack
Operations | Initializes a unit matrix Identity 0x454 0x15 0 182
el thet Sets a 4x4 matrix LoadMatrix44 0x458 0x16 16 182
curren
matrix Sets a 4x3 matrix LoadMatrix43 0x45C 0x17 12 182
Multiplies a 4x4 matrix MultMatrix44 0x460 0x18 16 183
Multiplies a 4x3 matrix MultMatrix43 0x464 0x19 12 183
Multiplies a 3x3 matrix MultMatrix33 0x468 Ox1A 9 184
Multiplies a scale matrix Scale 0x46C 0x1B 3 185
Multiplies a translation matrix Translate 0x470 0x1C 3 184
Directly sets vertex color Color 0x480 0x20 1 201
. Verte)f Sets normal vector Normal 0x484 0x21 1 202
information
Sets texture coordinates TexCoord 0x488 0x22 1 206
Sets the vertex coordinates Vertex 0x48C 0x23 2 202
Same as above Vertex10 0x490 0x24 1 203
Sets the XY coordinates of the VertexXY 0x494 0x25 1 203
vertex
Vertex Sets the XZ coordinates of the
coordinates |yertex VertexXZ 0x498 0x26 1 203
Sets the YZ coordinates of the VertexYZ 0x49C 0x27 y 203
vertex
Sets vertex using the dlﬁerentlal VertexDiff OX4AO 0x28 1 204
value of the last-set coordinate
Polygon .
attribute Sets the polygon attribute PolygonAttr 0x4A4 0x29 1 196
Sets the texture parameters TexImageParam 0x4A8 0x2A 1 207
Texture Sets the b dd f the text
information | ©¢'S 1€ base adaress otine Iexire | 1o, pittBase OX4AC 0x2B 1 212
palette
Sets the colors for ambient MaterialColor0 0x4C0 0x30 1 192
reflection and diffuse reflection
Material | oot the colors foremission light i i o10r1 0x4C4 0x31 1 192
and specular reflection
Sets the specular reflection Shininess 0x4D0 0x34 32 193
shininess table
© 2003-2007 Nintendo 173 NTR-06-0180-001-G

CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

Command

register | Command e
Category Feature Command name 9 words in | Page
address code
parameter
(see note)
Liaht Sets the directional vector for light | LightVector 0x4C8 0x32 1 189
i
Y Sets the light color LightColor 0x4CC 0x33 1 189
Vertex list | Declares the start of the vertex list | Begin 0x500 0x40 1 200
begin/end | Declares the end of the vertex list | End 0x504 0x41 0 201
Swap
Rendering
Engine Swaps the (_1ata group referenced by SwapBuffers 0x540 0x50 1 178
the Rendering Engine
reference
data
Viewport Sets the viewport ViewPort 0x580 0x60 1 180
Tgsts whether the box is inside the BoxTest 0x5C0 0x70 3 216
view volume
1o Sets position coordinates for test PositionTest 0x5C4 0x71 2 218
Sets directional vector for test VectorTest 0x5C8 0x72 218
Note: The Command register address values shown here are offset from address 0x04000000.

Be careful not to issue undefined command codes to the Geometry Engine's command FIFO.

Table 6-4 : Number of Geometry Command Run Cycles & Timing Related to Command Issue (in Command Code

Order)
Command Run Issue When settings take
cycle e 9 When settings are destroyed
Name timing effect
number
No
) Restriction
NTR-06-0180-001-G 174 © 2003-2007 Nintendo

Released: July 27, 2007

CONFIDENTIAL

NITRO Programming Manual

Run .
Ll cycle I.ss.u " When settings take When settings are destroyed
Name number timing effect

MatrixMode 1 When next MatrixMode command is executed
PushMatrix 17 When next Push/StoreMatrix command is executed
PopMatrix 36 When next Matrix change command is executed
StoreMatrix 17 When next Push/StoreMatrix command is executed
RestoreMatrix 36
Identity 19
LoadMatrix44 34
LoadMatrix43 30
MultMatrix44 35 No - When next Matrix change command is executed

Restriction
MultMatrix43 31*
MultMatrix33 28*
Scale 22 When command is
Translate 22* executed
Color 1

9-12 When next Color, Normal command is executed
Normal 25
(+2)>
TexCoord 1(+1)*5 When next TexCoord command is executed
Vertex 9(+2)"®
VertexShort 8(+2)"®
VertexXY g(+2)"® | Only
— between When next Vertex related command is executed

VertexXZ 8(+2) 5 Begin_End
VertexYZ 8(+2)"®
VertexDiff 8(+2)"®

Only When Begin command

i is executed (settings

PolygonAttr 1 ;:tsi'ge_ are valid betENeen g When next PolygonAttr command is executed

End Begin—-End units) 3
TexlmageParam 1 Per When command is When next TeximageParam command is executed

+4 |executed (settings are)
TexPlttBase 1 Polygon valid in polygon units) When next TexPlttBase command is executed
MaterialColor0 4 When next MaterialColor0 command is executed
MaterialColor1 When next MaterialColor1 command is executed
Shininess 32 When Norrpal When next Shininess command is executed
: No command is executed : :

LightVector 6 I When next LightVector command is executed

Restriction
LightColor 1 When next LightColor command is executed
Begin 1 When command is When next Begin command is executed
End 1 executed No set value

© 2003-2007 Nintendo
CONFIDENTIAL

175

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Run .
Ll cycle I.ss.u " When settings take When settings are destroyed

Name number timing effect

SwapBuffers 392 | Only \;\g:gé enter V-Blank |\\hen next SwapBuffers command is executed
outside

ViewPort 1 Begin — When next ViewPort command is executed
BoxTest 103 End When next BoxTest command is executed

» Per When command is .)
PositionTest 9 Polygon*“ executed When next PositionTest is executed
VectorTest 5 ggstriction When next VectorTest is executed

The number of run cycles is a system clock (33.514Mhz) converted value.

*When in Position and Vector Simultaneous Setting mode, this takes another 30 cycles.

*2 |s increased according to the number of lights that are enabled (ON)

*3 The PolygonAttr command is enabled with the Begin command. However, to reflect the light enable flag
on vertex color, issue a Normal command again to recalculate the lighting.

*4 Concerning the Polygon unit:

Commands that can be issued in polygon units can be issued in the Vertex-related command string at
polygon breakpoints (breakpoints appear as ® in the following table.)

Triangular Polygons
o

Begin

Vertex //Polygon 1
Vertex
Vertex

Vertex
Vertex
Vertex

//Polygon 2

Vertex
Vertex
Vertex

//Polygon 3

End

Triangular Polygon Strip
L]

Begin

Vertex //Polygon 1
Vertex
Vertex
Vertex
Vertex //Polygon 2
Vertex //Polygon 3

End

Quadrilateral Polygons
[]

Begin

Vertex //Polygon 1
Vertex
Vertex
Vertex

Vertex
Vertex
Vertex
Vertex

//Polygon 2

Vertex //Polygon 3
Vertex
Vertex
Vertex

End

Quadrilateral Polygon Strip
[]

Begin

Vertex //Polygon 1
Vertex
Vertex
Vertex
Vertex
Vertex
Vertex
Vertex

//Polygon 2
//Polygon 3

End

*5 The number of run cycles for commands corresponding to each source increases by the amount shown
in parentheses when performing texture coordinate conversion in texture coordinate conversion mode.

NTR-06-0180-001-G
Released: July 27, 2007

176

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Figure 6-13 shows a schematic of the main Geometry Command processes.

Figure 6-13 : Schematic of the Main Geometry Command Processes

Register Can é“mmta“ci"sé Matrix Stack
< Current Clip oncatenaied | Current Projection 1 N atrix Staci
be Read Coordinate Matrix Matrix Level 1
Current Position Matrix Stack
Coordinate Matrix Level 31
Matrix A » ;
Commands d Linked
Register ¢ Current Directional Matrix Stack
Can be Read Vector Matrix Level 31
N |
M y, S, N Current Texture
Matrix
Viewport A A A A Current
Command > Viewport
v v _ _
Vertex A A A Clip Coordinate Perspective Viewport
Commands > Transformation P Division > Transformation A > > Vertex RAM
Color -
° A P M Maximum 6144
Command v + Vertices
Normal A 4 Vector coordinate Lighti _» Current Vertex
Command > transformation > Ighting Color >
i &
LightColor Current Light
— N>
Command Color Bg -
v :
LightVector L 5 Vector N Current Light N 2 ugj
o— Coordinate ©
Command Transformation Vector ‘|__ g’
[=
> [}
= el
MaterialColor A > Current Material [} E g
Command Color o ha
S, —
When Vertex Color for Diffuse
Shininess J Specular Reflection Color is Set
Command h > Shininess Table [
A 4
TexCoord - [Texture Coordinate|) Current texture
Command Transformation coordinates
Polygon List
Begin, End >
cor?\mands e > RAM
When the Begin Command | |
Pol N is Processed Maximum 2048 Polygons
olygonAttr,
TexlrxggeParam [> C“fre”t
7| Attribute
Commands

Note: The flow shown here for the TexCoord command is for when the texture coordinate transformation
mode is set to TexCoord source.

© 2003-2007 Nintendo 177 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.7 Swapping the Rendering Engine's Reference Data

SwapBuffers: Swaps the Data Group referenced by the Rendering Engine

Name: SWAP_BUFFERS Address: 0x04000540 Attribute: W Command Code: 0x50
31 24123 16|15 817 10
DP|YS

+ DP[d01] : Depth buffering selection flag

Selects the value used for the depth test. To read how the depth value differs depending on the depth-
buffering method, see "6.2.5 Depth Buffering" on page 163.

0 Select buffering with the Z value

Select buffering with the W value

L (Does not function properly for orthogonal projections)

* YS[d0O0] : Translucent polygon Y-sorting selection flag
Translucent polygons are polygons with (1 < oo < 30) or mapped with a translucent texture.

Select manual sort mode to specify the order of rendering, such as when using shadow volume.

0 Auto-sort mode

1 Manual sort mode

The Geometry Engine writes the data passed to the Rendering Engine to Polygon List RAM.

For translucent polygons, you can choose whether to sort the data and then write, or to write the data
in the order the polygons are processed without sorting. In Auto-sort mode, polygons are sorted from
the polygon with smallest maximum Y value on the LCD (see note) to the polygon with the largest
maximum Y value. Polygons that share the same maximum Y value are sorted in order from the
polygon with smallest minimum Y value.

In Manual sort mode, polygons are sorted according to the order in which they are sent to the
Geometry Engine.

In Auto sort mode, the Rendering Engine does not reference polygons with minimum Y values larger
than the scan line (a line that is being rendered) or polygons with maximum Y values smaller than the
scan line. However, all polygons are referenced in manual mode, which increases the load on the
geometry engine (and reduces rendering efficiency). Because of this, be careful when using Manual
sort mode when there are a large number of translucent polygons.

Opaque polygons are always Auto sorted.
Regardless of the sort mode, opaque polygons are always rendered before translucent polygons.
Note: Maximum Polygon Y value on the LCD

The Y coordinates are the inverse of Y coordinates in the BG Screen Coordinate Group in the
Coordinate Transformation Flow Chart (Figure 6-3). Therefore, the maximum Y value for a
polygon on the LCD is the minimum value in the BG Screen Coordinate Group.

NTR-06-0180-001-G 178 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

» Reflecting the Depth Buffering Select Flag and Translucent Polygon Y Sorting Select Flag

These flags are reflected in the geometry engine from the next frame. However, because polygon list
RAM and vertex RAM are double buffered, the rendering engine renders the data that the geometry
engine stored in the previous frame. Therefore, data that the geometry engine outputs is rendered with
an additional one-frame delay.

* Processing the SwapBuffers command

The SwapBuffers command is processed at the next V-Blank, regardless of when it was input. (The
geometry engine is in wait status until the V-Blank period arrives.) The Polygon List RAM, Vertex RAM,
rendering-related registers, and other data referenced by the Rendering Engine is swapped at the start
of the next V-Blank period after the issuance of the SwapBuffers command. Because of this timing,
rendering reflects the written graphics data in the next frame after the SwapBuffers command is
issued.

© 2003-2007 Nintendo 179 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.8 Viewport

ViewPort: Sets the Viewport

Name: VIEWPORT Address: 0x04000580 Attribute: W Command Code: 0x60
31 24123 16|15 7 0
INTEGER_Y2 INTEGER_X2 INTEGER_Y1 INTEGER_X1
Y2 X2 Y1 X1

Y2, X2 [d31-d24, d23—d16] : Top right coordinates
Set Y2 to a value larger than Y1. Can be set in the range 0-191.

Set X2 to a value larger than X1. Can be set in the range 0-255.

* Y1, X1[d15—d08, d07—d00] : Bottom left coordinates (the viewport origin)

Set Y1 to a value smaller than Y2. Can be set in the range 0-191.

Set X1 to a value smaller than X2. Can be set in the range 0-255.

This sets the position and the size of the viewport which draws 3D graphics on the BGO screen.

The BGO's H offset is added to get the display position on the LCD.
Notice that the origin point is different than for the 2D coordinate group. (See Figure 6-14)

Figure 6-14 : Size and Position of the Viewport

BGO Screen
191T
o (X2, Y2)
x
<
>)
+ Viewport
9]
o
2
Q
s
(X1, Y1)
0
&
Origin Viewport X Axis ——8 ——>
0 255

Note: Rendering may result in one dot protruding from the right or bottom edge of the viewport.

NTR-06-0180-001-G
Released: July 27, 2007

180

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

6.2.9 Matrices

6.2.9.1 Manipulating the Current Matrix

MatrixMode: Sets the Matrix Mode
Name: MTX_MODE Address: 0x04000440 Attribute: W Command Code: 0x10

31 24123 1615 817 1 0

M

&

Matrix Mode

* M[d01-d0Q] : Matrix mode

00 Projection mode ... (For manipulating projection matrices)
01 Position mode ... (For manipulating position coordinate matrices)
Position & Vector ... (For manipulating position coordinate matrices and
10 . S .
Simultaneous Set mode directional vector matrices)
1 Texture mode ... (For manipulating texture matrices)

This specifies the current matrix on which Matrix commands operate (this classification is called the
matrix mode).

Position mode and Position and Vector Simultaneous Set mode

NITRO does not use the hardware to make a unit normal vector. Therefore, to obtain correct lighting
effects, you must set a unit vector as the normal in advance, and the directional vector matrix must be an
orthogonal matrix (a matrix that does not change the length of the directional vector). When a model is
transformed, the transformation matrix is usually used for both the position coordinates matrix and the
directional vector matrix. But with NITRO, the directional vector matrix must be maintained as an
orthogonal matrix, so depending on the type of transformation, sometimes the transformation matrix is
used only for the position coordinates matrix.

Let the situation dictate whether to use Position mode or Position and Vector Simultaneous Set mode to
set the Position and Vector simultaneously.

Examples

When rotating a model, usually the mode is set to the Position and Vector Simultaneous Setting and the
MultMatrix command is executed to apply the rotation component of the matrix for both the position
coordinates matrix and the directional vector matrix.

When the Scale command is used for model scaling, the directional vector matrix can be maintained as an
orthogonal matrix, so the correct lighting effect can be obtained. (See the Scale command on page 185.)

When the scale matrix is applied with the MultMatrix command, the directional vector matrix is not
maintained as an orthogonal matrix, and the lighting effect is brighter or darker than the original. Thus, it
would be safer not to use this procedure.

When Position mode is selected, Matrix commands are applied only to the position coordinates matrix, so
the correct lighting effect is obtained even when the scale matrix is applied with the MultMatrix command.
You can also use this mode when you want to apply the rotation matrix only to the position coordinates
matrix, but unnatural effects can arise. For example, sometimes the lighting effect does not change upon
rotation, or a part that is not being illuminated ends up being the brightest.

© 2003-2007 Nintendo 181 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

MTX_IDENTITY: Initialize Current Matrix to Unit Matrix
Name: MTX_IDENTITY Address: 0x04000454 Attribute: W Command Code: 0x15

31 24(23 16(15 8|7 0

LoadMatrix44: Set 4x4 Matrix to Current Matrix

Name: MTX_LOAD_4x4 Address: 0x04000458 Attribute: W Command Code: 0x16
31 30 24|23 16|15 12 11 8|7 0

S INTEGER_M44 DECIMAL_M44

Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)
M44 : 4x4 matrix elements m[x] (x = 0 - 15)

The matrix M is set as follows with elements m[0] to m[15]:

m0] m[1] m[2] m[3]
m(4] m[5] m[6] mT7]

M =
m[8] m[9] m[10] m[11]
m[12] m[13] m[14] m[15]
LoadMatrix43: Set 4x3 Matrix to Current Matrix

Name: MTX_LOAD_4x3 Address: 0x0400045C Attribute: W Command Code: 0x17
31 30 24|23 16|15 12 11 8|7 0
s INTEGER_M43 DECIMAL_M43
Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)
M43 : 4x3 matrix elements m[x] (x =0 - 11)

The matrix M is set as follows with elements m[0] to m[11]:

m0] m[1] m[2] O

- | ml31 m{4] 5] 0

m6] m[7] m=8] O

m9] m[10] m[11] 1
NTR-06-0180-001-G 182 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

MultMatrix44: Multiply 4x4 Matrix by Current Matrix

Name: MTX_MULT_4x4 Address: 0x04000460 Attribute: W Command Code: 0x18
31 30 24|23 16|15 12 11 8|7 0

S INTEGER_M44 DECIMAL_M44

Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)
M44 : 4x4 matrix elements m[x] (x =0 - 15)

The matrix M is set as follows with elements m[0] to m[15]:

m 0] m[1] m[2] m[3]
- | m4] (5] m[6] m[7]
m8] m[9] m[10] m11]
m[12] m[13] m[14] m[15]

If the current matrix is C, then the new current matrix C’ = MC

MultMatrix43: Multiply 4x3 Matrix by Current Matrix

Name: MTX_MULT_4x3 Address: 0x04000464 Attribute: W Command Code: 0x19
31 30 24|23 16|15 12 11 8|7 0

S INTEGER_M43 DECIMAL_M43

Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)
M43 : 4x3 matrix elements m[x] (x =0 - 11)

The matrix M is set as follows with elements m[0] to m[11]:

m0] m[1] m[2] O
m3] m4] m[5] O
m6] m[7] m8] O
m9] m[10] m[11] 1

If the current matrix is C, then the new current matrix C’ = MC

© 2003-2007 Nintendo 183 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

MultMatrix33: Multiply 3x3 Matrix by Current Matrix

Name: MTX_MULT_3x3 Address: 0x04000468 Attribute: W Command Code: Ox1a
31 30 24|23 16|15 12 11 8|7 0

S INTEGER_M33 DECIMAL_M33

Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)
M33 : 3x3 matrix elements m[x] (x =0 - 8)

The matrix M is set as follows with elements m[0] to m[8]:

mO0] m[1] m[2] O
m[3] m[4] m[5] O
m[6] m[7] m[8] O
0 0 0 1
If the current matrix is C, then the new current matrix C’ = MC

M:

Translate: Multiply Translation Matrix by Current Matrix

Name: MTX_TRANS Address: 0x04000470 Attribute: W Command Code: Ox1c
31 30 24|23 16|15 12 11 8|7 0

S INTEGER_TRANSLATE DECIMAL_TRANSLATE

Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)
TRANSLATE : Translation matrix elements m[x] (x =0 -2)

The matrix M is set as follows with elements m[0] to m[2]:

1 0 0 0
y—lo 1 0 o
0 0 1 0

m0] m[1] m2] 1

If the current matrix is C, then the new current matrix C’ = MC

NTR-06-0180-001-G 184 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Scale: Multiply the Scale Matrix by Current Matrix

Name: MTX_SCALE Address: 0x0400046C Attribute: W Command Code: 0x1b
31 30 24|23 16|15 12 11 8|7 0

S INTEGER_SCALE DECIMAL_SCALE

Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)
* SCALE : Scale matrix elements m[x] (x=0-2)

The matrix M is set as follows with elements m[0] to m[2]:

m0] 0 0 0

s |0 a1 0 o0
0 0 m2] O

0o 0 0 1

If the current matrix is C, then the new current matrix C’ = MC

The Scale command performs multiplication only on the position coordinates matrix, even when the
matrix mode has been set to Position & Vector Simultaneous Setting mode. (If it were performed on
the directional vector matrix, the direction and length of vectors would change and abnormal lighting
effects would arise.)

© 2003-2007 Nintendo 185 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.9.2 Matrix Stack
Manipulations are made to the stack of the current matrix.

Because the position coordination matrix stack and the directional vector matrix stack are connected,
manipulations affect both stacks, whether the mode is set to Position mode or Position & Vector
Simultaneous Setting mode.

PushMatrix: Push the Current Matrix on the Stack
Name: MTX_PUSH Address: 0x04000444 Attribute: W Command Code: 0x11

31 24(23 16(15 8|7 0

PopMatrix: Pop the Current Matrix from the Stack
Name: MTX_POP Address: 0x04000448 Attribute: W Command Code: 0x12

31 24(23 16(15 8|7 0
S INT
NUM number of pops

Signed integer (sign + 5-bit integer)
* NUM[d05-d00] : Specify the number of pops (Can set a value of -30 to 31)

Pops the nt" level matrix (as specified by NUM), starting from the position of the stack pointer of the
matrix stack specified by the matrix mode, and sets it as the current matrix.

When the matrix mode is set to projection mode, the stack only has 1 level so the value of NUM is
treated as 1, no matter what value has been set.

This command is normally issued outside of the command string that runs from Begin to End, but it can
also be issued between Vertex commands within the Begin to End command string.

Command String

PushMatrix—>Translate—>Begin—> Vertex—>Vertex—>Vertex—>End—>PopMatrix (1)
Example 1

Command String | PushMatrix—Translate—>PushMatrix—>Begin— Vertex—>PopMatrix (1)—>Vertex—>
Example 2 PopMatrix (-1)—>Vertex—>PopMatrix (1)—>Vertex—>End—>PopMatrix (1)

In Command string Example 2, the PopMatrix command is issued between Vertex commands to
realize stitching and sprite polygon deformations. Stitching is a type of skinning. Sprite polygons are
polygons displayed in 2D.

NTR-06-0180-001-G 186 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

StoreMatrix: Store the Current Matrix in the Specified Stack Position
Name: MTX_STORE Address: 0x0400044C Attribute: W Command Code: 0x13

31 24(23 16(15 8|7 4 0
INDEX

Storage Position

Unsigned integer (5-bit integer)
+ INDEX[d04-d00] : Storage position (Can set a value of 0 to 30)
Stores the matrix specified with matrix mode in the matrix stack in the position specified by INDEX.

When the matrix mode is set to projection mode, the stack only has 1 level so the value of INDEX is
treated as 0 no matter what value has been set.

The matrix stack pointer moved by the PushMatrix and PopMatrix commands does not move after this
command is issued.

RestoreMatrix: Reads Matrix from Specified Position in Stack
Name: MTX_RESTORE Address: 0x04000450 Attribute: W Command Code: 0x14

31 24123 16(15 8|7 5 4 0
INDEX

Read Position

Unsigned integer (5-bit integer)
* INDEX[d04-d00] : Read position (Can set a value of 0 to 30)

The value in the position specified by INDEX in the matrix stack is set as the matrix specified by the
matrix mode.

When the matrix mode is set to projection mode, the stack only has 1 level so the value of INDEX is
treated as 0 no matter what value has been set.

The matrix stack pointer moved by the PushMatrix and PopMatrix commands does not move after this
command is issued.

This command is normally issued outside of the command string that runs from Begin to End, but it can
also be issued between Vertex commands within the Begin to End command string.

Command String

Example 1 StoreMatrix (i)—> Translate—>Begin—>Vertex—>Vertex—>Vertex—>End—> RestoreMatrix (i)

Command String | StoreMatrix (i)—> Translate—> StoreMatrix (i+1)—>Begin—>Vertex—>RestoreMatrix (i)—>
Example 2 | vertex—>RestoreMatrix (i+1)—>Vertex—>End—>RestoreMatrix (i)

In Command string Example 2, the RestoreMatrix command is issued between Vertex commands to
realize stitching and sprite polygon deformations. Stitching is a type of skinning. Sprite polygons are
polygons displayed in 2D.

© 2003-2007 Nintendo 187 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.9.3 Reading the Current Matrix
ClipMatrix_Result: Read the Current Clip Coordinates Matrix

Name Address Attribute Initial Value

0x04000640, 0x04000644, 0x04000648, 0x0400064C,
0x04000650, 0x04000654, 0x04000658, 0x0400065C,

CLIPMTX_RESULT_x (x=0-15) . 04000660, 0x04000664, 004000668, 0x0400066C, R~ 0x00000000
0x04000670, 004000674, 0x04000678, 0x0400067C
31 30 24|23 16[15 12 11 8|7 0
s INTEGER_mix] DECIMAL_mix]
Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

* m[x] (x = 0-15) : The elements of the current clip coordinates matrix

m[0] m{1] m[2] m3]
m[4] m5] m[6] mT7]
m[8] m[9] m[10] m[11]
m[12] m[13] m[14] m[15]

The current clip coordinates matrix (position coordinate matrix and projection matrix) can be read.

CurrentClipCoordinatesMatrix =

If you want to read the current projection matrix, make the current position coordinates matrix a unit
matrix and read this register.

If you want to read the current position coordinates matrix, make the current projection matrix a unit
matrix and read this register.

Note: To safely read these matrices, confirmation that the Geometry Engine is stopped must occur
before reading.

VectorMatrix: Read the Current Directional Vector Matrix

Name Address Attribute Initial Value
0x04000680, 0x04000684, 0x04000688, 0x0400068C,
VECMTX_RESULT x (x=0-8) 0x04000690, 0x04000694, 0x04000698, 0x0400069C, R 0x00000000
0x040006A0
31 30 24|23 1615 12 11 8|7 0
S INTEGER_m[x] DECIMAL_m[x]
Sign Integer part Decimal part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

« mx] (x=0 - 8): The elements of the current directional vector matrix

m[0] m[1] m[2]
CurrentDirectionalVectorlatrix = |p3] m[4] m5]

m[6] m[7] m[8]
Note: To safely read this matrix, first confirm that the Geometry Engine is stopped.

NTR-06-0180-001-G 188 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.2.10 Light
NITRO supports only parallel light sources.

LightVector: Set the Light's Directional Vector

Name: LIGHT_VECTOR Address: 0x040004C8 Attribute: W Command Code: 0x32
31 30 29 28 24|23 20 19 18 1615 10 9 8|7 0
LNUM|sZ] DECIMAL_Z SY| DECIMAL_Y sx| DECIMAL_X

Light Directional vector's Z component Directional vector's Y component Directional vector's X component

Signed fixed-point number (sign + 9-bit fractional part)
+ LNUM[d31-d30] : Light number
0-3
« X, Y, Z[d29-d20], [d19—-d10], [d09—-d00] : Directional vector
Coordinate transformation with the directional vector matrix is performed after the settings are made.

The hardware does not perform vector normalization, so set the unit vector.

LightColor: Set the Light Color

Name: LIGHT_COLOR Address: 0x040004CC Attribute: W Command Code: 0x33
31 30 24(23 16(15 14 10 9 8|7 5 4 0
LNUM BLUE | GREEN RED

Light Light Color

* LNUM[d31-d30] : Light number
0-3
* [d14—d00] : Light color

Although OpenGL has light color parameters for diffuse, specular, and ambient light, for NITRO this
has been simplified to a single parameter.

© 2003-2007 Nintendo 189 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.11 Material

For objects, the appearance of the texture differs depending on the material on the surface of the object
and the environment in which the object sits.

As shown in Figure 6-15, lighting (the illumination process) uses four material colors (specular reflection color,
diffuse reflection color, ambient reflection color, and emission light color) to express the texture of a model.

Figure 6-15 : Material Color Schematic

Light
Source {i}

SPECULAR: Specular DIFFUSE: Diffuse

Reflection Color (\. Reflection Color
AMBIENT: Ambient

Reflection Color

@
EMISSION: Emission Light Color
Diffuse reflection color

This is the color of the object when it is illuminated by the light. Consider this the basic color of the object.

The diffuse reflection color is defined to reflect evenly in all directions, so it is not influenced by the position
of the eye point. As shown in Figure 6-16, it is, however, influenced by the color and the direction of the
light and by the normal of the polygon.

The only influence it has is on the color of the parts of objects that are directly illuminated by the light.

Figure 6-16 : Directional Vector Relational Diagram (Diffuse Reflection Color)

Light
Source

Reverse Normal Vector N

Direction
Light Vector

Polygon v
Object \

\
Light Vector ‘\‘A
L
Normal vector N: The unit normal vector of the vertex. (Set with the Normal command)

Light vector L: Normalized vector of parallel light source. (Set with the LightVector command)

NTR-06-0180-001-G 190 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Ambient reflection color

This is the color of the object when it is illuminated by ambient light.
Objects are illuminated not only by direct light, but also by light reflecting off of other objects.

This reflected light is called ambient light when it is defined to exist uniformly in the entire scene. Since
ambient light exists uniformly in the entire scene, it influences the color of the entire object.

Diffuse reflection color has strong influence of parts of the object that are illuminated by direct light, but
ambient reflection color has the predominant influence on parts that are shaded.

Specular reflection color
This is the glossy color of the object when it is illuminated by light. This glossiness is called specular highlight.

In optical terms, specular highlight is the reflected light of the light source. Accordingly, the part of the
object where light strikes and reflects straight back to the eye point is the brightest.

Specular highlight is influenced by the color and direction of light, the normal of the polygon and the
position of the eye point. (See Figure 6-17.)

When the eye point shifts the specular highlight moves.

It only has influence on the color of the parts of objects that are directly illuminated by the light, and this
influence corresponds to the eye point.

Figure 6-17 : Directional Vector Relational Diagram (Specular Reflection Color)

Light
Source

:: Normal Vector N

Reverse Direction
Half-Angle Vector -H

Eye
Point

Line-of-Sight Vector

Polygon 1 \
Object ’ \

\
‘\
\} LiE\LtVector
L
Half-Angle Vector H of L and E
Normal vector N: The unit normal vector for the vertex. (Set with the Normal command.)

Line-of-sight vector E: Normalized vector from eye point toward vertex. Taken to be the same as the
negative direction of the z axis in the View coordinate system.

Light vector L: Normalized vector of parallel light source. (Set with the LightVector command.)
Half-angle vector H of L and E: Normalized vector of the sum of the line-of-sight vector and the light vector.

When NITRO performs the calculation for specular reflection shininess, the line-of-sight vector is taken to
be the same as the negative direction of the z axis in the View coordinate system, and it is assumed that
both the light vector and the normal vector will be transformed into the View coordinate system.

© 2003-2007 Nintendo 191 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

For this reason, when the View matrix (the LookAt matrix) is applied to the projection matrix, the coordinate
system for the light vector and normal vector differ from the coordinate system for the line-of-sight vector
after the transformation, and the specular reflection result is abnormal.

Accordingly, when the specular reflection color is set to any value other than black (0), the matrix mode
must be set to the Position & Vector Simultaneous Set mode, and the rotation component of the view
matrix (the LookAt matrix) must be reflected on the directional vector matrix.

When the specular reflection color is set to black, the view matrix can be applied to the projection matrix
because diffusion reflection does not depend on the eye point. In short, you can set the model matrix for
the position coordinates matrix, and the combination of the view matrix and the projection matrix for the
projection matrix.

Emission light color

This is the color of the light that is emitted from the object itself.

Note that this is not treated as light, so it does not illuminate other objects (that is, it does not influence the
color of other objects).

To achieve this result, you need to create a light source that is the same color as the emission light color
and place it at the same position as the object that you want emitting light.

MaterialColor0: Set the Material's Diffuse Reflection Color and Ambient Reflection Color
Name: DIF_AMB Address: 0x040004C0 Attribute: W Command Code: 0x30

31 30 26 25 24|23 21 20 16]15 14 10 9 8 | 7 5 4 0
AMBIENT_BLUE [AVBIENT GREEN | AMBIENT_RED | C | DIFFUSE_BLUE [DIFFUSE_GREEN | DIFFUSE_RED

Ambient reflection color Diffuse reflection color

* C[d15]: Vertex color set flag

0 Does not set vertex color

1 Sets the diffuse reflection color as the vertex color

If diffuse reflection color has been set for the vertex color, it remains valid until the next time the Color,
Normal or MaterialColorQ (vertex color set flag) command is issued and the current vertex color is updated.

Because the vertex color is handled as bits R:G:B = 6:6:6 in the Rendering Engine, the diffuse reflection
color is applied to the upper five bits. When diffuse reflection color is 0, the lower 1 bit is 0, and when the
diffuse reflection color is nonzero, the lower 1 bit is 1.

MaterialColor1: Set the Material's Specular Reflection Color and Emission Color
Name: SPE_EMI Address: 0x040004C4 Attribute: W Command Code: 0x31

31 30 26 25 24|23 21 20 16(15 14 10 9 8 | 7 5 4 0
EMlSSIONfBLUE|EMISSION_GREEN EMISSION_RED | S | SPECULAR_BLUE |SPECULAR_GREEN SPECULAR_RED

Emission color Specular reflection color

« S[d15] : Specular reflection shininess table - enable flag

0 Disable
1 Enable
NTR-06-0180-001-G 192 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Shininess: Set the Specular Reflection Shininess Table

Name: SHININESS Address: 0x0400004D Attribute: W Command Code: 0x34
31 24123 16|15 817 0
SHININESS_n (n=4x+3) SHININESS_n (n=4x+2) SHININESS_n (n=4x+1) SHININESS_n (n=4x+0)
Shininess when Is=n Shininess when Is=n Shininess when Is=n Shininess when Is=n

Unsigned fixed point decimal (8-bit fractional part)
Sets the 8-bit x 128 table for converting the shininess of the specular reflection.

If the specular reflection shininess table-enable flag was set to 1 by the just-issued MaterialColor1
command, the Geometry Engine looks up the table based on the upper 7 bits of /s—the result of the
specular calculation—and converts the shininess of the specular reflection.

This table can be used to adjust the brightness of the specular reflection. (See "6.2.11.1 Lighting
(llumination Process)" on page 194 for the computation formula.)

By rewriting the specular reflection shininess table, you can display polygons having a number of different
specular reflection effects inside a single scene.

The specular reflection shininess calculation result /s is obtained from the inner product of the vectors, so
as Figure 6-18 shows, it is less precise near the center of the luster and more precise farther away (A-B =
|A| |B|cos). (See "6.2.11.1 Lighting (lllumination Process)" on page 194 for the /s calculation.)

Figure 6-18 : Specular Reflection Shininess

cos &

1.0

Technique

You can achieve special lighting effects by setting non-consecutive values for the specular reflection
shininess table.

© 2003-2007 Nintendo 193 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.11.1 Lighting (lllumination Process)

Lighting (the illumination process) is conducted when the Normal command is issued, and the results of

the calculations are used for the vertex color.

The computations shown below are done on each color component (R, G, B).

Lighting Formulas for Various Material Colors

Material Color

Lighting Formulas

Diffuse Reflection Color Id = max[0, -L-N]

D = Id*light*diffuse_material

Ambient Reflection Color | A = light*ambient_material

Is = max[0, cos 2 0]

(When the specular reflection shininess table is disabled)
Specular Reflection Color | S = |s*light*specular_material

(When the specular reflection shininess table is enabled)
S = shininess_table[Is]*light*specular_material

Emission Color E = emission_material

L : The light's directional vector

N : Normal vector

H : The vector that is half the sum of L (the light's directional vector) and the line-of-sight vector (the vector
that points in the negative direction of the Z axis.) This is called a half-angle vector because it indicates the

direction halfway between the L and line-of-sight vectors.
0 : The angle between the vector (-H) and the vector (N)
Id : Diffuse reflection shininess

Is : Specular reflection shininess

light : Light color

diffuse_material : Material's diffuse reflection color
ambient_material : Material's ambient reflection color
specular_material : Material's specular reflection color

emission_material : Material's emission color

NTR-06-0180-001-G 194
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Vertex color expressions

The ultimate vertex color is calculated with the following expression using the results of the lighting
calculations conducted on each material color.

3
C= > [Di+Ai+ Si]+E

=0
C: Vertex color

Di : Diffuse reflection color for light i

Ai : Ambient reflection color for light i

Si : Specular reflection color for light i

E : The color of self-emitted light

When light i is disabled, the corresponding color components (Di, Ai, Si) are not calculated.

The greater the number of lights that are enabled, the greater the load of the vertex color computations
(that is, the greater the load of the Normal command). For this reason, be careful not to enable any more
lights than are needed.

Vertex color when lighting is OFF

Even when lighting is OFF, the vertex color is calculated using the above expressions when the Normal
command is issued. The result in this case is that the vertex color is set to the emission color.

© 2003-2007 Nintendo 195 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.12 Polygon Attributes
PolygonAttr: Set the Polygon-Related Attribute Values

Name: POLYGON_ATTR Address: 0x040004A4 Attribute: W Command Code: 0x29
31 29 24123 20 16115 14 13 12 11 817 6 5 4 3 0
HEER | | | | [Fe[oT[or]re]xe FRBK| | [L3[L2[L1]L0
Polygon ID Alpha Value

Fog Enable Flag

| Depth Test Conditions |

Polygon Rendering
Screen

FAR Plane Intersecting

Polygon Display Specification Polygon Mode

| Light Enable Flags

Translucent Polygon Depth
Value Update - Enable Flag

* [d29—d24] : Polygon ID

The polygon ID is stored in separate attribute buffers for opaque polygons and translucent polygons
when the polygon is being rendered by the Rendering Engine. The stored polygon ID is used when
rendering translucent polygons and shadow polygons and when edge-marking. For details, see "6.3.4
Rasterizing" on page 235.

* [d20—d16] : alpha value

1-31 Polygon's opaqueness

0 Wire frame display

The polygon is called a translucent polygon when 1 < o, < 30 and an opaque polygon when o = 31.
When a = 0, the display becomes a wireframe display and the original meaning of a is lost.

* FE[d15] : Fog-enable flag
When fog is enabled, the Rendering Engine performs fog blending.
To learn about fog blending, see "6.3.9 Fog Blending" on page 260.

0 Disable

1 Enable

+ DT[d14] : Depth test conditions

When set to 1, another polygon can be pasted on a polygon that has already been rendered (decal
polygon).

0 Rendering when the fragment's depth value is smaller than the depth buffer's depth value.
1 Rendering when the fragment's depth value is equal to the depth buffer's depth value.
NTR-06-0180-001-G 196 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

* [d13—d12] : Polygon display specification
« D1[d13] : 1-dot polygon rendering specification

This allows control of whether 1-dot polygons are passed to the rendering engine. A 1-dot polygon
is a polygon where the coordinates (x, y) of all the vertices are integrated into a single coordinate
as the results of geometry engine calculations.

0 Does not render if becomes a 1-dot polygon

1 Renders even if becomes 1-dot polygon

When set to 1, 1-dot polygons are always written to polygon list RAM and vertex RAM.

When this is set to 0, the depth value of the 1-dot polygon controls whether to write the polygon to
polygon list RAM and vertex RAM or to discard it.

Set the display boundary depth value of 1-dot polygons with the Disp1DotDepth register.
* FC[d12] : Far plane intersecting polygon display specification

0 Deletes if intersects the far plane

1 Clips if intersects the far plane

Note that clipping on the far plane increases the load on the Geometry Engine.

* XL[d11] : Translucent polygon depth-value update enable flag

Select whether to update the depth buffer when rendering a polygon with an o value of 1-30.

When this is set to 1, sometimes you can improve on a situation where too much fog is applied in
regions where translucent polygons are being rendered. However, you need to be careful because
sometimes the edge-marking of background is not rendered correctly.

0

Does not update the depth buffer when rendering translucent polygons

1

Updates the depth buffer when rendering translucent polygons

+ [d07—d06] : Polygon rendering screen specification

The surface is the plane tracing the vertices counterclockwise.
* FR[dO07] : Render front surface

0 Disable

1 Enable

* BK[d06] : Render back surface

0 Disable

1 Enable

If the specified screen is in the screen being displayed when the rendering specification is disabled,
this polygon will not be included in the List RAM.

© 2003-2007 Nintendo 197
CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

For quadrilateral polygons, if any of the first three vertices share the same coordinates, duplication will be
detected by the hardware and the polygon is displayed as usual without regard to front or back. Further-
more, when the first three vertices do not overlap but are in a straight line, the straight line is not preserved
due to a problem with precision in internal calculations. In this case, the surface may be determined to be
the front or back according to the camera state. Use the following procedure to avoid this problem:

+ Change the order the vertices are sent

* Have the second coordinate value be the same as the first or third coordinate value (Of the first
three vertices, set 1 and 2 or 2 and 3 to the same value)

* Separate into triangles

When rendering a line segment in which polygon vertex coordinates overlap, front/back determination is
impossible, and therefore it is always rendered, regardless of this flag’s setting.

* PM[d05-d04] : Polygon mode
Modulation mode and decal mode are ways of blending texture color and fragment color.
Toon / Highlight shading is a way to transform with the fragment color table.
Shadow polygon is a feature for applying shadow using the stencil buffer.

For details, see the respective parts in the Rendering Engine "6.3.1 Overview" on page 226.

00 Modulation mode

01 Decal mode

10 Toon / Highlight shading

1 Shadow polygon

About Toon/Highlight Shading
Toon and Highlight Shading share use of the same table.
Use the DISP3DCN register to choose either Toon or Highlight.

The setting written to the DISP3DCN register becomes valid when the frame switches, so Toon and
Highlight Shading cannot be mixed in the same drawing frame.

* L3-L0[d03—-d00] : Light enable flags

These are separate flags for setting lights 0-3.

0 Disable (light off)

1 Enable (light on)

NTR-06-0180-001-G 198 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Where to issue the PolygonAttr command

The values set with the PolygonAttr command become valid when the Begin command is issued. The
values are subsequently used as vertex attributes.

Do not issue the PolygonAttr command between the Begin command and the End command.

Simply setting the light enable flag to enabled in the Begin command does not affect the vertex color.
The vertex color is first affected when lighting (lighting process) is performed with the Normal command
after the light enable flag setting is enabled in the Begin command.

Disp1DotDepth: 1-Dot Polygon Display Boundary Depth Value Register
Name: DISP_1DOT_DEptH Address: 0x04000610 Attribute: W Initial value: Ox7FFF

15 14 8 | 7 0
INTEGER_W DECIMAL_W
W Coordinate

Fixed-point number (12-bit integer + 3-bit fractional part)
* W coordinates [d14—d00] : Depth value

When the PolygonAttr command’s “1-dot polygon rendering specification flag” is 0, the Geometry
Engine references this register for use as described below:

When the X and Y coordinates of all polygon vertices are transformed into BG screen coordinates
within a range of 1 dot or less, if the smallest W value (the depth value) is larger than this register’s
setting value, polygon data is not written to Polygon List RAM or Vertex RAM (and is not displayed as
a result).

This W value is referenced even during Z buffering.

© 2003-2007 Nintendo 199 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.13 Polygons
BEGIN_VTXS: Declare the Start of the Vertex List

Name: BEGIN_VTXS Address: 0x04000500 Attribute: W Command Code: 0x40

31 24(23 16(15 8|7 10
TYPE
Type

+ TYPE[d01-d0Q] : Primitive type

00 Triangle

01 Quadrilateral

10 Triangle Strips

1 Quadrilateral Strips

Polygon strips share vertices, so they consume less Vertex RAM than independent polygons of the
same shape.

The table below shows the relation between drawing and the order in which vertices are issued by the
Vertex command for different types of primitives.

Relation between Drawing and the Order in which the Vertex Command Issues Vertices

A series of triangles are drawn starting with vertices “v0, v1, and v2” and then vertices “v3,

Triangle Polygon v4, and v5.”

A series of quadrilaterals are drawn starting with vertices “v0, v1, v2, and v3” and then

Quachlgerlbelvesn vertices “v4, v5, v6, and v7.”

A series of triangles are draw starting with vertices “v0, v1, and v2,” “v2, v1, and v3” and
Triangle Strips then “v2, v3, and v4.” This is the order so that the triangles are drawn in the same direction
on both sides of the surface. (See Figure 6-15.)

A series of quadrilaterals are drawn starting with vertices “v0, v1, v3, and v2,” “v2, v3, v5,
Quadrilateral Strips | and v4” and then “v4, v5, v7, and v6.” This is the order so that the quadrilaterals are drawn
in the same direction on both sides of the surface. (See Figure 6-15.)

Defining the primitive's front surface

The surface is described counterclockwise (v0, v1, v2,... : in order of issued Vertex-group commands).

Figure 6-19 : Order in which the Vertex commands issues vertices

v4
v0 v2 v2 v6
v4 vO0 v3 v0
L " \’\‘ u \
v1 v2 v3 v1 v2 v1
v1 v3 v5 v7
Triangle Triangle Strips Quad Quad Strips

When you want to draw line segments, set the same value for neighboring vertices in the above primitives.
However, because it is not possible to determine the front or back of the line segments, they are always
rendered, even if the polygon attributes specify to disable display. As Figure 6-20 shows, the anti-aliasing
and edge marking features (see the Rendering Engine "6.3.1 Overview" on page 226) work on line
segments as well.

NTR-06-0180-001-G 200 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figure 6-20: Line segment using sides from a triangle

v0
v2

vi

When you draw quadrilateral polygons in the shapes shown in Figure 6-21, sometimes the results are not
as intended. Be sure to set the vertices so quadrilateral polygons are not drawn in these shapes.

Figure 6-21: Quadrilateral Polygon shapes that yield unintended shapes

X7 e

Quadrilateral with Concave Twisted
Intersecting Sides Quadrilateral Quadrilateral

End: Declare the End of the Vertex List
Name: END_VTXS Address: 0x04000504 Attribute: W Command Code: 0x41

31 24(23 16(15 8 (7 0

Make certain to issue Begin and End commands in pairs.

Color: Directly Set the Vertex Color

Name: COLOR Address: 0x04000480 Attribute: W Command Code: 0x20
31 24123 16|15 14 10 9 8 | 7 5 4 0
BLUE | GREEN | RED
Color

The vertex color remains valid until the current vertex color is updated by the next Color command, Normal
command, or MaterialColor0 (vertex color set flag) command.

Thus, multiple vertices can share the same vertex color.

Because the vertex color is handled as bits R:G:B = 6:6:6 in the Rendering Engine, the diffuse reflection
color is applied to the upper five bits. When set color value is 0, the lower 1 bit is 0, and when it is nonzero,
the lower 1 bitis 1.

The Color command is usually issued between the Begin and End commands, but it can also be issued
before the Begin command.

Command string

Begin—>Color—>Vertex—>Vertex—>Vertex—End
Example 1

Command string | Color—>Begin— Vertex— Vertex—Vertex—End—>Begin— Vertex—Vertex—>
Example2 | \ertex—>End

© 2003-2007 Nintendo 201 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Normal: Set the Normal Vector

Name: NORMAL Address: 0x04000484 Attribute: W Command Code: 0x21
31 30 29 28 24|23 20 19 18 1615 10 9 8|7 0
s | NZ s | NY s | NX
Normal vector’'s Z component Normal vector’s Y component Normal vector’s X component

Signed fixed-point number (sign + 9-bit fractional part)
Lighting (illumination process) is performed only when the Normal command is executed.

Accordingly, you need to reissue the Normal command after you switch lighting On/Off or change the light
or material parameters in order for the change to be reflected in the vertex color. (See note.)

Further, the hardware does not normalize vectors, so you need to set the unit vector.

The vertex color obtained with the lighting process remains valid until the current vertex color is updated by
the next Color command, Normal command, or MaterialColor0 (vertex color set flag) command.

Thus, in actuality multiple vertices can share the same normal vector.

Note: To turn light on or off after setting in the PolygonAttr command, first enable the set value with the
Begin command and then issue the Normal command.

Where to issue the Normal command

The Normal command is usually issued between the Begin and End commands, but it can also be issued
before the Begin command.

Command string

Begin—>Normal—>Vertex—>Vertex—>Vertex—End
Example 1

Command string | Normal—>Begin—>Vertex—>Vertex—>Vertex—End—>Begin—>Vertex—>Vertex—>
Example2 | \ertex—>End

VTX_16: Set the Vertex Coordinates

Name: VTX_16 Address: 0x0400048C Attribute: W Command Code: 0x23
3130 28 27 24|23 16]15 14 12 11 8 | 7 0
SY| INT_Y | DECIMAL_Y sx| INT_X | DECIMAL_X

Y Coordinate X Coordinate

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

31 24|23 16[15 14 12 11 8 | 7 0
sz| INT_Z | DECIMAL_Z
Z Coordinate

NTR-06-0180-001-G 202 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

VTX_10: Set the Vertex Coordinates

Name: VTX_10 Address: 0x04000490 Attribute: W Command Code: 0x24
31 2928 2625 24|23 20 19 18 16|15 10 9 8 | 7 5 0
szl NTz | DeEcivALZ [sy[INT.Y DECIMAL Y [sx| INT.X DECIMAL_X

Z Coordinate

Y Coordinate

X Coordinate

Signed fixed-point number (sign + 3-bit integer + 6-bit fractional part)

VertexXY: Set the Vertex XY Coordinates (for Z Coordinate, Use the Last-Set Data)

Name: VTX_XY Address: 0x04000494 Attribute: W Command Code: 0x25
3130 28 27 24|23 16]15 14 12 11 8 | 7 0
SY| INT_Y | DECIMAL_Y sx| INT_X | DECIMAL_X

Y Coordinate

X Coordinate

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

VertexXZ: Set the Vertex XZ Coordinates (for Y Coordinate, Use the Last-Set Data)

Name: VTX _XZ Address: 0x04000498 Attribute: W Command Code: 0x26
3130 28 27 24|23 1615 14 12 11 8|7 0
sz| NTZ | DECIMAL_Z sx| INT X | DECIMAL_X

Z Coordinate

X Coordinate

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

VertexYZ: Set the Vertex YZ Coordinates (for X Coordinate, Use the Last-Set Data)

Name: VTX_YZ Address: 0x0400049C Attribute: W Command Code: 0x27
3130 28 27 24|23 1615 14 12 11 8|7 0
sz| NT.Z | DECIMAL_Z sy INT.Y | DECIMAL_Y

Z Coordinate

Y Coordinate

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

© 2003-2007 Nintendo

CONFIDENTIAL

203

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

VertexDiff: Set the Difference Value of the Last-Set Data for Vertex Coordinates

Name: VTX_DIFF Address: 0x040004A0 Attribute: W Command Code: 0x28
31 29 28 24|23 20 19 18 16|15 10 9 8|7 0
sz| DECIMAL _Z SY| DECIMAL_Y sx| DECIMAL_X
Z Coordinate Y Coordinate X Coordinate

Signed fixed-point number (sign + 9-bit fractional part)
The value after adding to the last-set vertex value is stored as the 16-bit vertex coordinates.

The VertexDiff command data is sign-extended to 16 bits and added to the prior-set vertex coordinate. The
vertex coordinates (the Vertex-group command's data) are 16 bits in size (sign + 3-bit integer + 12-bit
fractional part), so the data of the VertexDiff command corresponds to the 4th to 12th places of the
fractional part of the vertex coordinates (see Figure 6-22.)

Note: Use caution because an overflow can occur during the addition process.

Figure 6-22: The Process for Adding the X Coordinate

9 8|7 0
VertexDiff command data |SX DECIMAL_X
15 9i8|7 0
Expanded to 16 bits sx[sx[sx[sx[sx[sx[sx DECIMAL X
Addition
i 15 14 12i11 8|7 0
Last-set vertex coordinates SX| INT_X DECIMAL_X

Items common to all Vertex commands

When Vertex commands are issued, the vertex data that have been transformed into BG screen
coordinates are stored in Vertex RAM. Further, polygon data is stored to Polygon List RAM when the data
for the number of vertices comprising the polygon are processed.

Note: Be sure to issue Vertex commands between the Begin command and the End command and that
there are not too many or too few vertices in the specified primitives.

Cautions for polygons during clipping

When a polygon is clipped, the G value, B value, or both on the clipping plane polygon will occasionally
change to 0, causing color distortion. Figure 6-23 represents the state in which this has occurred (the G
value and the B value have both changed to 0). When calculating the color of the vertex newly created
through clipping, the color value may become a value higher than 31. When this happens, the last 5 bits of
the value truncated to 32 will become the final color, incorrectly making it 0. This does not occur for the R
value because the calculation accuracy is higher than the other two. This results in a reddish display.

NTR-06-0180-001-G 204 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

This issue may be avoided by using the following methods:
» Set the polygon scaling small to assure high geometry calculation accuracy.

» Shorten the vertex interval of the polygons or pull the vertex away from the clipping plane to reduce the
effect of the errors stemming from low calculation accuracy.

» If the vertex color is directly configured through a modeling software, set the vertex color to be (R, G,
B) = (31, 30, 30) or smaller.

» If the vertex color is not directly configured, adjust the material or light color so that the calculated
vertex will be (R, G, B) = (31, 30, 30) or smaller.

Figure 6-23: Polygon Clipping Color Distortion

Clipping Plane

V3
RGB=(0,0,0)

A |
RGB=(0,0,0)

V2
RGE=(21,31,31)

© 2003-2007 Nintendo 205 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.14 Texture Mapping

TexCoord: Set Texture Coordinates

Name: TEXCOORD Address: 0x04000488 Attribute: W Command Code: 0x22
31 30 24|23 16[15 14 8|7 0
ST| INTEGER_T | DECIMAL_T ss| INTEGER_S DECIMAL_S

T Coordinate S Coordinate

Signed fixed-point number (sign + 11-bit integer + 4-bit fractional part)
« TEX_T, TEX_S[d31-d16], [d15-d00]: Texture coordinates

As Figure 6-24 shows, the texture coordinates set the coordinates in texture image space, treating the
texel size as 1.0 (4-bit fractional part).

Figure 6-24: Texture Image Space (for an Image of 1,024x1,024 Texels)

-2,048

T Axis

-2,048 ——S Axis 1 +2,047.9375

Texture
Image

+2,047.9375

The texture coordinates remain valid until the next TexCoord command resets the current texture
coordinates.

Because of this, the same texture coordinates can be shared by multiple vertices.

Where to issue the TexCoord command

The TexCoord command is normally issued between the Begin command and the End command, but it
can also be issued before the Begin command.

Command String

Example 1 Begin—TexCoord—>Vertex—>Vertex—>Vertex—End

Command String | TexCoord—>Begin—>Vertex—>Vertex—>Vertex—End—>Begin—> Vertex—>Vertex—>
Example 2 Vertex—End

When texture mapping, the Geometry Engine works faster if you issue commands in the following order:
TexCoord—>Normal—>Vertex.

NTR-06-0180-001-G 206 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

Name: TEXIMAGE_PARAM

NITRO Programming Manual

TexlmageParam: Setting the Texture Parameters

31 30 29 28 26 25 24|23 20 19 18 17 16|15

Address: 0x040004A8

Attribute: W Command Code: 0x2a

817 0

| | | 1_size | s_size |[FT|Fs|rT]Rs| |

Texture Size

Texture's Starting Address in VRAM

Texture Format

| Flip |

| Repeat |

Enable Flag for Palette
Color 0 Transparency

Texture Coordinates
Transformation Mode

00 Do not transform texture coordinates
01 TexCoord source

10 Normal source

1 Vertex source

TGEN[d31-d30] : Texture coordinate transformation mode

TR[d29] : Enable flag for the palette's color0 transparency

When using transparent texels with 4-, 16-, and 256-color palette textures, set this bit to 1 so the
palette's color0 can be referenced for the transparent color.

0 Enable the palette's color0 setting
1 Make appear transparent, regardless
of the palette colorQ setting value

« TEXFMT[d28-d26] : Texture format

0 No texture

1 A3I5 translucent texture

2 4-color palette texture

3 16-color palette texture

4 256-color palette texture

5 4x4 texel compressed texture

6 A5I3 translucent texture

7 Direct texture

© 2003-2007 Nintendo
CONFIDENTIAL

207

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

o [d25-d20] : Texture size
« T_SIZE, S SIZE

Selects texture size of 8 x 8 to 1,024 x 1,024.

0 8 texels

1 16 texels

32 texels

64 texels

128 texels

256 texels

512 texels

N ol o Al O DN

1,024 texels

. [d19-d18]: Flip

Specifies whether to flip the texture image up/down and/or left/right for mapping when the texture
coordinates pertain to a region beyond the texture size. (See Figure 6-25 and Figure 6-26.) The flip
setting is valid only when Repeat has been specified.

* FT[d19] : Flip in direction of T coordinates

0 Do not flip

1 Flip

» FS[d18] : Flip in direction of S coordinates

0 Do not flip

1 Flip

+ [d17—-d16] : Repeat

Specifies whether to repeatedly map the texture image when the texture coordinates pertain to a
region beyond the texture size.

* RT[d17] : Repeat in the direction of the T coordinates

0 Do not repeat

1 Repeat

+ RS[d16] : Repeat in the direction of the S coordinates

0 Do not repeat

1 Repeat

« TEX_ ADDR[d15-d00] : Texture’s starting address in VRAM

The system references the 3-bit left-shift of the texture’s starting address in VRAM.

NTR-06-0180-001-G 208 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Where to issue the TexlmageParam command

The TexImageParam command is normally issued before the Begin command, but it can also be issued
between the Begin and End commands. By issuing it during the Begin-End interval you can set different
texture parameters for every polygon inside the Begin-End command string.

Note: A problem causes the previous polygon texture attributes to be overwritten with the parameters
passed by the TexImageParam command, according to the process status of the geometry
engine.

The following examples show the positions in which to issue the TexImageParam command:
* OQutside the Begin-End interval:

TexImageParam;
Begin;
TexCoord;
Vertex;

End;

« Within the Begin-End interval with quadrilateral polygons:

1. When the command structure for the polygon that has changed texture after the second
polygon changes from TexCoord to Vertex:

Begin;
TexImageParam;
First Polygon;
TexImageParam;
Normal; Send the Normal command as a dummy command
Second Polygon;
End;

2. When the command structure for the polygon that has changed texture after the second
polygon changes from TexCoord to Normal to Vertex:

The problem can be resolved effectively by sending OxFF (undefined) as the dummy
command, in place of the Normal command sent in the first example. However, when the
TexPlttBase command is send with the TexImageParam command, this problem does
not occur, and there is no need to send a dummy command.

« Within the Begin-End interval with triangle polygons:

1. When the command structure for the polygon that has changed texture after the second
polygon changes from TexCoord to Vertex:

Same as example 1 for quadrilateral polygons.

2. When the command structure for the polygon that has changed texture after the second
polygon changes from TexCoord to Normal to Vertex:

No problems occur.

© 2003-2007 Nintendo 209 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

« Within the Begin-End interval with triangle and quadrilateral polygons:

In this case, always use End once when changing textures. In other words, limit issuing the
TexImageParam command to a position before the Vertex command is issued, as shown

below.
Begin;
TexImageParam;
Vertex;
End;

« Texture Flip and Repeat Settings (For a Texture Image of 1,024 x 1,024 Texels)
1. When when there is no repeat
Figure 6-25: Texture Image Space (No Repeats)

No Repeat

S-Axis

T-Axis

NTR-06-0180-001-G 210 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

2. Flip settings when there is a repeat

Figure 6-26: Texture Image Space (with Repeats)

i®
i®
i®
1

T-Axis

S-Axis

i®
i®
i®
i®

refetete
Fefefele

Flip in T-Coordinate Direction

T-Axis

S-Axis

LT

© 2003-2007 Nintendo
CONFIDENTIAL

211

Flip in S-Coordinate Direction

Wi
Wi
Wi
i

T-Axis

g
i®
i®
i®

S-Axis

SINININ

Flip in S- and T-Coordinate Directions

S-Axis

3
3

:
b

R R

T-Axis

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

TexPlttBase: Set Texture Palette's Base Address

Name: TEXPLTT_BASE

31

24

23

Address: 0x040004AC

16(15

Attribute: W

12

8|7

Command Code: 0x2b

PLTT_BASE

Palette's base address

PLTT_BASE[d12—d00] : Specifies the palette's base address

The system references a 2 to 4 bit left shift of the palette’s base address.

The shift volume varies, depending on the texture format (see "Table 6-4 : Number of Geometry
Command Run Cycles & Timing Related to Command Issue (in Command Code Order)" on page 174).

Table 6-5: PLTT_BASE Values and Shift Volumes

4-color 16-color 256-color 4x4 texels
PLTJ RS Palette Palette Palette Compressed | A3I5 Texture | A5I3 Texture
alue
Texture Texture Texture Texture
0x0000 0x00000 0x00000 0x00000 0x00000 0x00000 0x00000
0x0001 0x00008 0x00010 0x00010 0x00010 0x00010 0x00010
0x0002 0x00010 0x00020 0x00020 0x00020 0x00020 0x00020
0x17FE 0xOBFFO 0x17FEO 0x17FEO 0x17FEO 0x17FEO 0x17FEO
0x17FF OxOBFF8 0x17FF0 0x17FF0 0x17FF0 0x17FF0 0x17FF0
Setting Setting Setting Setting Setting
A 0x0C000 prohibited | prohibited prohibited prohibited prohibited
Setting Setting Setting Setting Setting
DIERE OxOFFFO prohibited | prohibited prohibited prohibited prohibited
Setting Setting Setting Setting Setting
sl OXOFFF8 | onibited | prohibited | prohibited prohibited | prohibited

Where to issue the TexPlttBase command

The TexP1ttBase command is normally issued before the Begin command, but it can also be issued
between the Begin and End commands. By issuing it between these two commands you can set a
different palette base address for every polygon between the Begin and End commands.

Command String
Example 1

TexPlttBase—>Begin—>TexCoord—>Vertex—> TexCoord—>Vertex—>TexCoord—>
Vertex—>End

Command String
Example 2

Begin—> TexPlttBase—>TexCoord—>Vertex—> TexCoord—>Vertex—>TexCoord—>
Vertex—> TexPlttBase—> TexCoord—>Vertex—> TexCoord—>Vertex—> TexCoord—>
Vertex—>End

NTR-06-0180-001-G
Released: July 27, 2007

212

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

6.2.14.1 Texture Coordinate Transformations
The texture coordinate transformation mode can be switched using the TexImageParam command.

In the three modes described in this section, the values given by the pertinent command are used as the
input coordinates for the calculations.

The values after the coordinate transformation are not meant to be used, so make sure you set the texture
matrix appropriately in advance.
TexCoord source

The texture coordinate transformation is performed using the values set by the TexCoord command as
the input coordinates.

The coordinate transformation is executed when the TexCoord command is issued.

You can produce a simple texture scroll by setting a translation matrix or a rotation matrix for the texture matrix.
Operation Expressed in Matrix Form

m0] m1] m[2] m[3]

_ 1 1||m4] m5] m[6] m[7]
[5 IR 4’] {5 "' 16 16 m8] m[9] m[10] m[11]
m[12] m[13] m[14] m[15]

Specific Expression Taking Decimal-Point Position into Account

S
7

{m[0] x (S« 12)+m[4] x (T« 12)+ m[8] x (1 « 12) + m[12] x (1 « 12)} » 24
{m[1]x (S« 12)+mb] x (T« 12)+ m[9] x (1 « 12) + m[13] + (1 « 12)} » 24

Normal source

The texture coordinate transformation is performed using the values set by the Normal command as the
input coordinates.

The coordinate transformation is executed when the Normal command is issued.

The S and T values set by the immediately-prior TexCoord command are used as the translation
components of the texture coordinates.

You can produce spherical reflection mapping by setting in the texture matrix the result of reading the
current directional vector matrix and multiplying by the scaling matrix that expands the directional vector
space (-1.0 to 1.0) to 1/2 the texture size. When doing this, use the TexCoord command to translate the
origin of the texture coordinate to the center of the spherical texture.

Operation Expressed in Matrix Form

m 0] m[1] m[2] m[3]
m4] m[5] m6] mT7]
m8] m[9] m[10] m11]

S T m14] a[15]

(s 7 & @] = [vuvviw 1]

© 2003-2007 Nintendo 213 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Specific Expression Taking Decimal-Point Position into Account
S = {m0]x (Mx«3)+m4]x (Ny«3)+m8]x(Nz«3)+(S«12)x (1 «12)} » 24
7' =A{m[1]x (Nx«3)+mbD] x (Ny«3)+m9]x (Nz«3)+ (T«l12)x(1«12)} »24

Vertex source

The texture coordinate transformation is performed using the values set by a Vertex-group command as
the input coordinates. The coordinate transformation runs when a Vertex-group command is issued.

The S and T values set by the TexCoord command issued immediately prior are used as the translation
components of the texture coordinates.

You can produce texture scrolls dependent on the View coordinates by reading the current position
coordinate matrix and setting it to the texture matrix.

Operation Expressed in Matrix Form

0] m[1] m[2] m[3]
m(4] m[5] m[6] mT7]
m8] m9] m[10] m11]
S T m14] a[15]

s rrol=lxrzi

Specific Expression Taking Decimal-Point Position into Account

S = {mO0]x XA+ ma]x V+m8]x 7+ (S«12)x(1«12)}»24
T'={m1]x X+ mblx F+m9]x 7+ (T«12)x (1 «12)} » 24

* Decimal point positions between parameters used by texture-coordinate transformation
expressions

The parameter formats used in the expressions for calculating texture coordinate transformations are
shown in the following table.

Therefore, to unify texture coordinate transformation calculations to 12-bit fractional parts, the Normal
coordinates could be left-shifted by 3 bits, and the texture coordinates could be left-shifted by 8 bits
before the calculation is applied.

However, as can be seen in “Specific expression taking decimal-point position into account,” texture
coordinates are left-shifted by 12 bits before the expression is applied, and the results that are right-
shifted by 24 bits are taken as the new texture coordinates.

From this, it is natural to assume that the texture coordinate transformation is (Sign + 15-bit integer +
0-bit fractional part). That is, texture coordinate transformation calculations use units of 1/16 texel,
rather than units of 1 texel.

Parameter Name Parameter Format
Texture Matrix m[num] (num = 0-15) | Sign + 19-bit integer + 12-bit fractional part
Normal Coordinate Nx, Ny, Nz Sign + 9-bit fractional part
Vertex Coordinate X, Y, Z Sign + 3-bit integer + 12-bit fractional part
Texture Coordinate S, T Sign + 11-bit integer + 4-bit fractional part
NTR-06-0180-001-G 214 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Technical tip

There may be times when you are using polygons to represent 2D graphics, and you want the texels to
have 1:1 correspondence with the pixels on the LCD. Because texture sampling proceeds from the
upper left texel, the texture may be off by 1 texel due to such factors as polygon rotation. To prevent
this from happening, use a texture-coordinate transformation to adjust the position from the position at
which sampling starts. For details, see "6.3.5.1.1 Texture Image Sampling" on page 244.

Polygon processing cycle count

When there are two lights or fewer, the execution cycle of the geometry engine will not vary based on
the availability of the Normal command. When there are three or more lights, the execution cycle will
be faster without the Normal command. Also, regardless of the number of lights, the transfer time (bus
usage time) to the command FIFO will be shorter if the Normal command is not executed.

The following table values result from the fact that when the number of lights is small, the coordinate
conversion will become the bottleneck even if the calculation cycle of the vertex color is short.
Therefore the polygon operation will be fixed to the vertex coordinate conversion time. But when the
number of lights increase, the vertex color calculation cycle will exceed this time.

Command Structure Light Count for Triangular Polygons Light Count for Quadrilateral
Polygons

OFF 1ch 2ch 3ch 4ch OFF 1ch 2ch 3ch 4ch

TexCoord -> Normal -> Vertex 28 28 28 30 33 37 37 37 40 44

Normal -> Vertex 28 28 28 28 30 37 37 37 37 40
TexCoord -> Vertex 28 28 28 28 28 37 37 37 37 37
Vertex 28 28 28 28 28 37 37 37 37 37
© 2003-2007 Nintendo 215 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

6.2.15 Tests

NITRO Programming Manual

When the Geometry Engine executes a test-related command (such as the status flag and the resulting
register value), it updates the test command result.

BoxTest: Test if Cuboid Sits Inside View Volume

Name: BOX_TEST Address: 0x040005C0 Attribute: W Command Code: 0x70
3130 28 27 24|23 1615 14 12 11 8|7 0
sy INTY | DECIMAL_Y sx| INT X | DECIMAL_X
Y Coordinate X Coordinate

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)
3130 28 27 24|23 1615 14 12 11 8|7 0
sw| INT W | DECIMAL_W sz| INT.Z | DECIMAL_Z

Width Z Coordinate
3130 28 27 24|23 16[15 14 12 11 8|7 0
SD| INTD DECIMAL_D SH[INTH | DECIMAL_H

Depth Height

Specify the box's standard vertices of the box shown in Figure 6-27 for the coordinate values.

The result of the Box test is stored in the Geometry Engine Status register (GXSTAT).
Figure 6-27: Box to Be Tested

e Box Test Contents

A

b

X
-
Height
- S——

Atandard
< Vertices Depth

Width

Determines whether any of the six faces of the box are not completely within the view volume.

For this reason, if the view volume is completely contained within the box, it is considered out of view.

¢ Conditions Required to Properly Run a Box Test

Conduct the box test with both polygon attribute flags set to 1. If either of the flags is set to 0, the test
results may not be correct.

NTR-06-0180-001-G

Released: July 27, 2007

216

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

Keep in mind that overflow may occur when width/height/depth is added to the reference vertices. (The
result of the addition must be greater than or equal to — 8.0 and less than 8.0.)

1. Set both of the polygon attribute flags to 1:

» Far plane-intersecting polygon display specification
» 1-dot polygon rendering specification

2. Begin command
End command

4. BoxTest command

© 2003-2007 Nintendo 217 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

PositionTest: Set the Position Coordinates for the Tests

Name: POS_TEST Address: 0x040005C4 Attribute: W Command Code: 0x71
3130 28 27 24|23 1615 14 12 11 8|7 0
sy INTY | DECIMAL_Y sx| INT X | DECIMAL_X

Y Coordinate X Coordinate

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)

31 24|23 16[15 14 12 11 8 | 7 0
sz| INT.Z | DECIMAL_Z
Z Coordinate

Coordinate transformation is performed on the position coordinates for the test by the current clip
coordinate matrix.

The results of the Position test (the clip coordinates) are stored in the PositionResult register.

VectorTest: Set the Directional Vector for the Tests

Name: VEC_TEST Address: 0x040005C8 Attribute: W Command Code: 0x72
31 29 28 24|23 20 19 18 16|15 109 8|7 0
sz DECIMAL_Z S| DECIMAL_Y sx| DECIMAL_X
Z Component Y Component X Component

Signed fixed-point number (sign + 9-bit fractional part)

Coordinate transformation is carried out on the directional vector for the test by the current directional
vector matrix.

The result of the Vector test (the directional vector in the View coordinate space) is stored in the
VectorResult register.

PositionResult: Read the PositionTest Computational Results

Name Address Attribute Initial Value
POS_RESULT_x (x=X,Y,Z,W) 0x04000620, 0x04000624, 0x04000628, 0x040062C R 0x00000000
31 30 24|23 16|15 12 11 8|7 0
Sx INTEGER_x DECIMAL_x
Sign Integer Part Decimal Part

Signed fixed-point number (sign + 19-bit integer + 12-bit fractional part)

The clip coordinates values (X, y, z, w) are stored in these registers.

NTR-06-0180-001-G 218 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

VectorResult: Read the VectorTest Computational Results

Name Address Attribute Initial Value
VEC_RESULT_x (x=X,Y,Z) 0x04000630, 0x04000632, 0x04000634 R 0x0000
15 12 1 8 7 0
Sx INTEGER_x DECIMAL_x
Sign Integer Part Decimal Part

Signed fixed-point number (sign + 3-bit integer + 12-bit fractional part)
The directional vector values (x, y, z) of the view coordinate space are stored in these registers.

The read-out computation results are within £1, so the integer is a sign extension.

© 2003-2007 Nintendo 219 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.2.16 Status

You can check the status of Polygon List RAM and Vertex RAM using the previously mentioned
DISP3DCNT register.

To check the status of command FIFO and matrix stacks, etc., see the GXSTAT register diagram below.

GXSTAT: Geometry Engine Status Register

Name: GXSTAT Address: 0x04000600 Attribute: R'W Initial Value: 0x00000000
31 30 29 27 26 25 24|23 16|15 14 13 12 8|7 1 0
ElH{F] [[[| | | [[sE[s8|py PV TR[TB

Command FIFO Count Matrix Stack Status

| Command FIFO Status | Test Status

| Geometry Engine Busy Flag |

Conditions for Command
FIFO Interrupt Requests

FI[d31—d30] : Conditions for Command FIFO interrupt requests

00 Disable Command FIFO interrupt requests

01 Make interrupt request when Command FIFO is less than half full

10 Make interrupt request when Command FIFO is empty

1 Setting prohibited

B[d27] : Geometry Engine busy flag

0 Geometry Engine is stopped

1 Geometry Engine is running

If commands or parameters have not been sent, the busy flag goes to the command wait / parameter
wait status with the busy flag set to 0.

When commands or parameters resume, geometry processing resumes.

When a SwapBuffers command is issued, and no subsequent commands are issued, the geometry
engine busy flag is set to 0 at the completion of a SwapBuf fers process, which begins with a V-
Blank. (It is 1 until then.)

This timing occurs 400 cycles (calculated at 33 MHz) after the V-Blank.

If, after the SwapBuffers command is issued, a next command is also issued, the next command
is executed after the completion of the SwapBuffers process, which commences after the V-Blank.

NTR-06-0180-001-G 220 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

* [d26—d24] : Command FIFO status
* E[d26] : Command FIFO empty flag

0 FIFO is not empty

1 FIFO is empty

* H[d25] : Command FIFO under-half flag

0 FIFO is at least half full

1 FIFO is less than half full

* F[d24] : Command FIFO full flag

0 FIFO is not full

1 FIFO is full

* [d23—d16] : Command FIFO count value
Can reference the number of commands/amount of data currently stored in Command FIFO.

* [d15—d08] : Matrix stack status
» SE[d15] : Stack error flag

The flag is set to 1 when an overflow or underflow of the matrix stack occurs.

It can be cleared by writing 1.

0 No stack overflow or underflow

1 Stack overflow or underflow

When referencing the status error flag of matrix stack status, confirm that the PushMatrix and
PopMatrix commands that have been issued have completed by first referencing the matrix
stack busy flag.

+ SB[d14] : Matrix stack busy flag
* When referencing PJ and PV matrix stack levels, check this flag to confirm that execution of the
issued PushMatrix or PopMatrix command has completed.

0 There is no unexecuted PushMatrix or PopMatrix command.

The PushMatrix or PopMatrix command has been issued, and the execution is not yet

L completed.

« PJ[d13] : Projection matrix stack level

Can reference the current stack level (0-1)
* PV[d12-d08] : Position and Vector matrix stack level

Can reference the current stack level (0-31)

© 2003-2007 Nintendo 221 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

+ [dO1—-d00] : Test status flag
+ TR[dO1] : Box test result

All the faces that constitute the box are outside the view

0
volume.

Of the six faces that constitute the box, part of one of
the faces, or all are inside the view volume.

« TB[d00] : Test busy flag

Can reference the ready/busy status of each test (BoxTest, PositionTest, VectorTest).

0 Ready

1 Busy

LISTRAM_COUNT: Polygon List RAM Count Register
Name: LISTRAM_COUNT Address: 0x04000604 Attribute: R Initial Value: 0x0000

15 11 8 7 0

Polygon-List RAM Counter

* [d11-d00] : Polygon List RAM counter (Maximum valid value is 0x800)

You can reference the number of opaque polygons + translucent polygons that are currently stored in
Polygon List RAM.

Polygon List RAM has a capacity of 2048 polygons, so the maximum valid value is 0x800.

The polygon list RAM counter is cleared 10 system clock cycles (33.5MHz) after the V-Blank that
comes immediately after the SwapBuffers command is issued.

VTXRAM_COUNT: Vertex RAM Count Register
Name: VTXRAM_COUNT Address: 0x04000606 Attribute: R Initial Value: 0x0000

15 12 8 7 0

Vertex RAM Counter

* [d12—d00] : Vertex RAM counter (Maximum valid value is 0x1800)
You can reference the number of vertices that are currently stored in Vertex RAM.
Vertex RAM has a capacity of 6144 vertices, so the maximum valid value is 0x1800.

The vertex RAM counter is cleared 10 system clock cycles (33.5MHz) after the V-Blank that comes
immediately after the SwapBuffers command is issued.

NTR-06-0180-001-G 222 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.2.16.1 Data Storage Capacity of Polygon List RAM and Vertex RAM
1. Polygon List RAM

The 52 KB of Polygon List RAM is divided into an ORDER area of 12 KB, followed by a POLYGON
area of 40 KB. The number of polygons that can be stored in these two areas of Polygon List RAM
does not change when polygons are connected, but because connected polygons share vertices, the
same number of polygons consume less memory if they are connected. This is an effective way to
economize on Vertex RAM.

No matter how the polygons are drawn, the ORDER area of Polygon List RAM can store 2048
polygons. However, the storage capacity of the POLYGON area varies, depending on the conditions
under which polygons are drawn. In this area, the polygon data comprises a header region of 12 bytes
followed by a vertex index region of 8 or more bytes. Normally, each triangular polygon consumes 8
bytes of the vertex index region, and each quadrilateral polygon consumes 12 bytes. Accordingly, the
maximum number of polygons that can be stored in the POLYGON area is calculated as follows:

(Connected) triangular polygons: 40 KB / (12 byte header + 8 bytes) = 2048 polygons
(Connected) quadrilateral polygons: 40 KB / (12 byte header + 12 bytes) = 1706 polygons

Note that 4 bytes in the vertex index region are consumed each time the number of vertices increases
due to clipping. This means that the total number of polygons that can be stored in the POLYGON area
decreases by one polygon for every five clippings performed on triangular polygons and for every six
clippings performed on quadrilateral polygons.

2. Vertex RAM
The 72 KB of Vertex RAM is fully available to store vertex data. Each vertex consumes 12 bytes.

Table 6-6 shows the amount of vertex RAM consumed and the maximum number of polygons that can
be stored for each primitive type.

Table 6-6: Vertex RAM Consumed and the Maximum Number of Polygons Stored per Primitive Type

Primitive Type Vertex RAM Consumption Maximum No. of Polygons that Can Be Stored
Triangle Polygon | 3 vertices per polygon 2048
Quadrilateral .
Polygon 4 vertices per polygon 1536
6142
Connected First polygon: 3 vertices
Triangle Polygons | Later polygons: 1 vertex However, with 2050 vertices, the Polygon List RAM
maximum of 2048 polygons is reached.
Connected . . . 3070
Quadrilateral First polygon: 4 vertices
Later polygons: 2 vertices However, with 3414 vertices, the Polygon List RAM
Polygons . !
maximum of 1706 polygons is reached.

Because clipping also consumes Vertex RAM, connect polygons whenever possible as an effective
method to avoid Vertex RAM overflow.

a. Why Shared Vertices are Released during both Z-Buffering and W-Buffering

When clipping is performed on connected polygons, the shared vertices between neighboring
polygons are released.

© 2003-2007 Nintendo 223 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

b. Why Shared Vertices are Released only during Z-Buffering

During Z-buffering, shared vertices are released if the W values (twice the clip-coordinate W
values) stored in Vertex RAM for neighboring connected polygons are such that the W value for
even one vertex of one of the polygons exceeds 16 bits (15 bits in clip coordinates) while not
exceeding 16 bits for any of the vertices of the other polygon. (See Figure 6-28.) This happens
because the Z value and the W value are both stored in Vertex RAM during Z-buffering, so the 24-
bit W value can only be stored with 16-bit precision. What is stored is either the upper 16 bits or
the lower 16 bits of the 24-bit W value, with the result that differences arise between polygons.
This situation does not arise during W buffering because there is no need to store the Z value to
vertex RAM during W buffering. Therefore, the 24-bit W value of the clip coordinate will be stored
as it is, and the release of shared vertices does not occur.

Figure 6-28: Release of Shared Vertices Among Connected Polygons (Clip Coordinate System)

N Connected polygons

NTR-06-0180-001-G
Released: July 27, 2007

y
Far clip boundary 16 bit boundary Near clip boundary /N
i H H
: : :
§ i Range where the lower 16 E ey
: Range where the upper 16 é bits become the w-value é e -7 S
: bits become the w-value : e AN ;
? ? // N . ”I
E ,/’ ‘:_\I'
: \\\ ,, _______
' _¥T
g
- / hS
II
’I
/1 ______
>
fxscaleW Ox00FFFF nxscaleW

B Independent polygons ™

S

Clipped polygons

z axis: 24-bit W value

To read about n, f, scaleW, 24-bit W values see "6.2.5 Depth Buffering" on page 163.

Reasons for Released Vertices in the Polygon Attribute Settings for Rendering 1-Dot
Polygons

If "Do not render 1-dot polygons" is set in the polygon attributes and the polygon's W value
exceeds the value in the 1-dot polygon display boundary depth value register, the vertices shared
among the connected polygons will be released. In this case, whether or not a shared vertex will
be released is decided for each polygon. Therefore, groups of polygons that do not exceed the
value in the 1-dot polygon display boundary depth value register will share vertices unaltered. To
avoid this, set "Display 1-dot polygons" in the polygon attributes.

224 © 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

4. Memory capacities and the storable number of polygons

The table shows the relationship between the capacity of each memory region and the number of
polygons that can be stored in each region.

Memory Region Relational Expression for Storable No. of Polygons & Memory Capacity

The POLYGON Area of Polygon

List RAM (12+8) x (F3+MF3) + (12+12) x (F4+MF4) + 4 x CLIP <= 40KB

(12 x 3) x (F3+MP3+DMF3) + (12 x 1) x (MF3-MP3-DMF3) +
Vertex RAM (12 x 4) x (F4+MP4+DMF4) + (12 x 2) x (MF4-MP4-DMF4) +
12 x CLIP <= 72KB

F3: Number of triangular polygons

MF3: Number of connected triangular polygons

MP3: Number of primitives of connected triangular polygons

F4: Number of quadrilateral polygons

MF4: Number of connected quadrilateral polygons

MP4: Number of primitives of connected quadrilateral polygons

CLI : Number of times clipping occurs

DMF3: Number of times vertices released for connected triangular polygons

DMF4: Number of times vertices released for connected quadrilateral polygons

5. Summary

The actual number of polygons that are rendered is limited by the lesser of the number of polygons
that can be stored in Polygon List RAM and in Vertex RAM.

When extensive use is made of polygon strips, Vertex RAM has plenty of space. Therefore, you can
estimate, based on the capacity limitations of Polygon List RAM.

If you make extensive use of polygon strips, even in the unusual situation where every polygon is
clipped once, you can be sure to obtain these numbers of polygons:

Triangular polygon strips: 40 KB / (12 + 8 + 4) = 1706 polygons
Quadrilateral polygon strips: 40 KB / (12 + 12 + 4) = 1462 polygons

6.2.17 Warnings Regarding Calculation Precision

Although you can specify a 32-bit space for the world coordinate system (sign + 19-bit integer + 12-bit
fractional part) with NITRO, objects on the edges of this 32-bit space may appear distorted and wrapped
because the computational precision of the hardware is also 32 bits. To use the world coordinate system
without problems, keep within a range of 29 bits (sign + 16-bit integer + 12-bit fractional part).

NITRO also has a 24-bit view space (sign 1 bit + 11-bit integer + 12-bit fractional part). Objects can appear
distorted and wrapped if you specify some other space as the view volume.

© 2003-2007 Nintendo 225 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3 Rendering Engine
6.3.1 Overview
Table 6-7 lists the rendering engine specifications.

Table 6-7: Rendering Engine Specification List

Operating frequency |33.514 MHz

Render data Triangles and quadrilaterals

Maximum 120,000 polygons/sec (60FPS)

Rendering capacity |\ i\ m 30 million pixels/sec (60FPS)

Shadow surface

Switch between Z-value buffering and W-value buffering methods

process
Shading Gouraud shading
Perspective correction, modulation/decal
Support for 4x4 texel compression
Texture mapping Support for translucent textures

Flip, Repeat
Image sizes of 8x8 texels to 1024x1024 texels

(See Table 6-8) shading, shadow, wireframe, Clear Image

Other capabilities Alpha blending, alpha test, anti-aliasing, edge marking, fog, toon shading, highlight

NTR-06-0180-001-G 226
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Table 6-8 gives an overview of rendering engine features.

Table 6-8: Overview of Rendering Engine Features

Alpha Blending

Blends the color value stored in the color buffer with the input fragment’s color value based
on the alpha value of that fragment (the fragments after texture blending).

Compares the fragment's alpha value with the reference value set in the register and

Alpha Test draws only if the fragment's alpha value is larger than this reference value.
(These fragments are the fragments after texture blending.)
Antialiasing Blends the color of the polygon's boundaries with color values of the polygon behind it

using the (5-bit width) factor computed based on the shift from the original display position.

Edge Marking

Marks the boundary edges of polygons with different polygon IDs (6-bit) using the polygon
edge-specified color (8 colors). When anti-aliasing is enabled, the edge marking is
followed by anti-aliasing.

Fog

Using the fog density table, the specified fog's color value is blended with the color buffer's
color value. The fog density can be specified in 32 levels, and the value that is applied is
the value that results from linear interpolation with the depth value of the target pixels.
When 3D is displayed in front of a 2D screen, fog can be applied to the 2D screen as well
by using the color buffer.

Toon Shading

Can present cartoon-like pictures by steepening the shininess calculation results.

Highlight Shading

Can present shininess beyond the texture color.

Shadow Can easily put shadows on even bumpy surfaces by defining the shadow volume.
Wireframe Can draw only the edges of polygons without drawing the surfaces.
Can apply Clear Images in VRAM as the initial values for the color buffer's, depth buffer's
Clear Image

and attribute buffer's fog-enable flags.

Note: The rendering-related registers have a double-buffer structure, and the contents of each register
are sent to the Rendering Engine at the start of the V-Blank period that begins right after the
SwapBuffers command is issued. Therefore, data can be written to these registers even during
the middle of a frame. The data is not reflected in the image drawn in the frame at the time of the

change.

© 2003-2007 Nintendo
CONFIDENTIAL

227 NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

6.3.2 Rendering Methods

6.3.2.1 Line Buffer Rendering

NITRO employs a line-buffer method for rendering, rather than a frame-buffer method. Because of this,
line overflow can occur when too many polygons are layered on a single line to be rendered during the
horizontal period. To prevent line overflow from occurring easily, the color buffer operates FIFO, holding 48
lines, and the rendering begins from the middle of the V-Blank period, drawing and storing the line data
before display (see Figure 6-29.)

By reading the RDLINES_COUNT register, you can check the minimum number of lines that remain in the
color buffer while the frame that has been rendered is displaying. In other words, you cannot confirm
whether or not lines have been dropped, but you can determine the risk of this happening.

To read about the RDLINES_COUNT register see "6.3.11 Status" on page 267.

This diagram shows only the FIFO operation. The Rendering Engine is actually reading from and writing to
the color buffer.

Figure 6-29: Color Buffer's FIFO Operation

Pixel Color Pixel Color

" v [v

Rendering Color Buffer BGOD
Engine 4B Line FIFO) Screen

\ J L J

The rendering period changes, Read in Horzontal Scans
depending on the number of Rendearing from Intervals
polygons on the line Bafore the Start of

Scanning

6.3.2.2 Buffers in the Rendering Engine
Table 6-9 shows the buffers in the Rendering Engine that store information about every pixel.

Also see "Figure 6-1 : 3D Graphics Hardware Block Diagram" on page 153.

Table 6-9: Buffes in the Rendering Engine

This buffer holds one line at 1 bit/pixel.

Stencil buffer It is used when rendering shadow polygons.

This buffer holds two lines at 23 bits/pixel.
Attribute buffer This buffer stores the polygon ID and fog enable flag for every pixel.
Polygon IDs are managed separately for opaque polygons and translucent polygons.

This buffer holds two lines at 24 bits/pixel.
It is used for depth test and fog blending calculations.

Color buffer This buffer holds 48 lines at 23 bits/pixel (R:G:B:A = 6:6:6:5).

Depth buffer

NTR-06-0180-001-G 228 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

6.3.2.3 Blank Periods

NITRO Programming Manual

The Rendering Engine begins rendering when scanning starts for the LCD's 214" Jine, and it keeps
rendering until the start of display of the 1915t final line. Thus, the Rendering Engine's blank period is the
23 lines from line 191 to 213 (see Figure 6-30).

To safely rewrite data to the VRAM region (texture image and texture palette) referenced by the Rendering
Engine, do so during these 23 lines.

Figure 6-30: Rendering Engine Blanking Periods

355 Dots

256 Dots +—99 Dots——)

191 Lines

263 Lines:

Rendering Period

—x

23 Lines

Rendering Blank Period

49 Lines

Rendering Period

Table 6-10 shows the Rendering Engine timing specifications.

Table 6-10: Rendering Engine Timing Specifications

Render Flow
Y)
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
] .
[] Rendering
w—---- .-...V Ends
Rendering
Starts

Item Spec Period

Rendering Number of Horizontal Dots 256 dots 45.8316 Us
Period Number of Vertical Lines 49+191 lines| 15.2533 ms
Number of Horizontal Dots 355 dots| 63.5556 |ls

Total Period
Number of Vertical Lines 263 lines 16.7151 ms
Blank Period Number of blank Lines 23 lines 1.4618 ms
Scan Cycle V Cycle 59.8261Hz 16.7151 ms

© 2003-2007 Nintendo
CONFIDENTIAL

229

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

6.3.2.4 Number of Polygons that can be Drawn with One Line

The Rendering Engine can draw for a period of 355 dots with one line. (See "Table 6-10 : Rendering
Engine Timing Specifications" on page 229).

Each dot involves 6 cycles, but since there is also an overhead of 4 cycles for each line, the number of
cycles that can be used for rendering is (355 x 6) - 4 = 2126 cycles.

In NITRO, the fill rate for even texture-mapped translucent polygons is 1 pixel per cycle, but there is an 8-
cycle overhead every time rendering of a polygon starts.

Given these factors, the minimum guaranteed number of polygons that can be drawn on one line is:
(2126 cycles) / (8 cycles + number of horizontal pixels in polygon).

Excluding the overhead, the per-line fill rate is:
(2126 cycles) — (8 cycles x guaranteed number of polygons drawn with one line).

Using these formulas yields the results shown in Table 6-11.

Table 6-11: Maximum Polygons Rendered per Line and Fill Rate (Calculated Values)

Number of Horizontal Pixels in the Polygon 8 16 32 64 128 | 256

Number of Polygons Guaranteed to Be Drawn by One Line | 132 88 53 29 15 8

Per-line Fill Rate 1070 | 1422 | 1702 | 1894 | 2006 | 2062

Because the line buffer is FIFO, the actual number of polygons drawn may be higher.

NTR-06-0180-001-G 230 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.3.3 Initializing the Rendering Buffers

6.3.3.1 Initializing with the Clear Registers
ClearColorAttr: Clear Color Attribute Register

Name: CLEAR_COLOR Address: 0x04000350 Attribute: W Initial value: 0x00000000
31 29 24123 20 16(15 14 10 9 8 | 7 5 4 0
HEER | [| | [F BLUE | GREEN RED
Clear Polygon ID a value Fog Color

* Clear Polygon ID [d29—-d24] : Polygon ID initial value

Sets the initial value of the opaque Polygon ID in the Attribute buffer. Whether edge marking is applied
is determined by comparing the polygon ID and this Clear Polygon ID in the case of edges that can be
clipped at the edge of the screen.

* o value[d20—-d16] : Initial value of a

Sets the initial value of the a value in the Color buffer.
Normally, set this to 0 when compositing with 2D.
* F[d15]: Fog enable flag
Sets the initial value of the fog enable flag in the Attribute buffer.

When compositing with the 2D screen, you can use this to control whether or not to apply fog to the
rear plane.

This is effective when you want to clearly display a 2D background.
* Color[d14—d00] : Clear Color RGB values
Sets the Color buffer's initial RGB values.
The Color buffer in the Rendering Engine is (R:G:B = 6:6:6) bits, so the lower 1 bit is treated as 0 when
the Clear Color value is 0, and as 1 when the value is non-zero.

ClearDepth: Clear Depth register

Name: CLEAR_DEptH Address: 0x04000354 Attribute: W Initial value: Ox7FFF
15 14 8 | 7 0
CLEARDEPTH

Clear Depth Value

* CLEARDEptH[d14—d00Q] : Clear Depth value

The Depth buffer in the Rendering Engine is 24 bits/pixel, so the Clear Depth value is used after
shifting 9 bits to the left. The lower 9 bits are treated as 0, except when the Clear Depth value is
Ox7FFF, in which case the lower 9 bits are treated as 1.

To read how this differs from the depth value in the different depth buffering methods, see "6.2.5 Depth
Buffering" on page 163.

© 2003-2007 Nintendo 231 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3.3.2 Initializing with Clear Images

When the Clear Image Enable Flag is set in the 3D Display Control register (DISP3DCNT), the Clear
Images stored in VRAM are used as the initial values of the Color buffer and Depth buffer and the Attribute
buffer's fog enable flag. Even when this feature is used, the value of the CLEAR_COLOR register is still
used for the Attribute buffer's polygon ID.

Use the RAM Bank Control register to assign the VRAM that stores Clear Images to the Clear Image
buffer.

The format for each Clear Image is given below. "Figure 6-31 : VRAM Mapping of Clear Images (Texture
Image Slots 2 and 3 Shared)" on page 233 shows Clear Image VRAM mapping.

Clear Color Image Format

15 14 10 9 8 | 7 5 4 0
A BLUE | GREEN | RED
Clear Color

Clear Alpha Flag

* [d15] : Clear o flag

The actual clear o values are as follows:

0 0x00

1 Ox1F

* [d14—d00] : Clear Color RGB values
« Sets the Color buffer's RGB initial values.

» The Color buffer in the Rendering Engine is (R:G:B = 6:6:6) bits, so the lower 1 bit is treated as 0 when
the Clear Color value is 0, and as 1 when the value is non-zero.

Clear Depth Image Format

15 14 8 7 0

FPoo) | | | [[[[T [T [| | |

Clear Depth

* FOG[d15]: Clear Fog

Sets the initial value of the fog enable flag in the Attribute buffer.

When compositing with the 2D screen, you can use this to control whether or not to apply fog to the
rear plane.

This is effective when you want to clearly display a 2D background.

*[d14—d00Q] : Clear Depth

To read how this differs from the depth value in the different depth buffering methods, see "6.2.5 Depth
Buffering" on page 163

NTR-06-0180-001-G 232 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

Figure 6-31: VRAM Mapping of Clear Images (Texture Image Slots 2 and 3 Shared)

NITRO Programming Manual

15

Dot 0 1 2 3 253 | 254 | 255

Line0 | oOh 2h 4h 6h 1FAh | 1FCh | 1FEh
1 200h | 202h | 204n | 2080 | 3FAh | 3FCh | 3FEh

2 a00h | 4020 | | | T 5FCh | 5FEh

3 eooh | eo2n | | | T 7FCh | 7FEh

4 gooh | | | | T 9FEh

251 |1Fs0OM| | | | T 1F7FER
252 | 1Fsooh | 1F8o2n | | | 1F9FCh | 1F9FEh
253 | 1FAOOh | 1FAO2n | | | 1FBFCh | 1FBFER
254 | 1FCOOh | 1FCO2h | 1FCO4h | 1FCosh | 1FDFAh | 1FDFCh | 1FDFE
255 | 1FEOOh | 1FEO2h | 1FE04h | 1FEOBR | 1FFFAh | 1FFFCh | 1FFFER

ClearimageOffset: Clear Image Offset Settings Register
Name: CLRIMAGE_OFFSET

Address: 0x04000356

8

Attribute: W

7

Initial value: 0x0000

0

Y Offset

X Offset

Can assign offsets to the Clear Images that are read when the rendering buffers are initialized. The image

is wrapped and read if it exceeds the 256x256 data region on screen. Figure 6-32 shows the clear image

offset.

© 2003-2007 Nintendo
CONFIDENTIAL

233

NTR-06-0180-001-G
Released: July 27, 2007

NTR-06-0180-001-G
Released: July 27, 2007

256 lines—

NITRO Programming Manual

Figure 6-32: Clear Image Offset

256 Dots
A

(

Virtual Screen

Y Offset

X Offset

Virtual Screen

Virtual Screen

amay

3D Screen
(256x192)

Virtual Screen

hecccccncaan

234

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

6.3.4 Rasterizing

Rasterization is the process of dividing the polygon surface into pixels and writing them to a buffer. During
rasterization, the Rendering Engine interpolates the pixel colors inside the polygon, based on the vertex
colors passed from the Geometry Engine.

The Rendering Engine stores the pixel colors in the Color buffer and stores each pixel's polygon ID and fog
enable flag in the Attribute buffer. The rendering engine first finishes rendering the opaque polygon that are
in polygon list RAM, and then renders the translucent polygons.

6.3.4.1 Opaque Polygons
An opaque polygon is a polygon with an o value of 31 (oL = 31).
* Polygon ID

This is stored in the region for opaque polygon IDs in the Attribute buffer when the polygon is
rendered.

* Fog enable flag
When an opaque polygon is rendered, the fragment's fog enable flag overwrites the Attribute buffer's
fog enable flag.

6.3.4.2 Translucent Polygons

A translucent polygon has either an o value between 1 and 30 (1 £ a < 30) or a translucent texture
applied.

Therefore, this term also encompasses shadow polygons.

6.3.4.2.1 Polygons with 1 < o <30
+ Polygon ID

This is stored in the region for translucent polygon IDs in the Attribute buffer when the polygon is
rendered.

When different translucent polygons overlap on the screen, a translucent polygon that uses the same
polygon ID as another translucent polygon is not overwritten.

* Fog enable flag

When a translucent polygon is rendered, the fragment's fog enable flag and the Attribute buffer's fog
enable flag are combined with a logical AND operation, and the result is written to the Attribute buffer.

This feature can be used to apply fog to everything except specific translucent polygons.

© 2003-2007 Nintendo 235 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3.4.2.2 Translucent texture-mapped polygons

Translucent texture-mapped polygons (A315 and A5I3 textures) are stored in the translucent polygon
region of the polygon list RAM, even if all of the texels are opaque. Therefore, they are rendered after
opaque polygons. Notice that processing of polygon IDs and fog enable flags differs, according to whether

the pixel is opaque (at=31) or translucent (1 < o < 30). Therefore, opaque pixels and translucent pixels
may be mixed within a polygon.

+ Polygon ID
* Opaque pixels
When rendering polygons, these are stored in the attribute buffer’s opaque polygon ID area.

Therefore, they are targeted for edge marking.
« Translucent pixels

When rendering polygons, they are stored in the attribute buffer’s translucent polygon ID area.

If different translucent polygons overlap on the screen, translucent polygons that have the same
polygon ID are not overwritten.

* Fog enable flag
* Opaque pixels
Fragment fog enable flags are overwritten by the attribute buffer’s fog enable flags.
* Translucent pixels

When a translucent polygon is drawn, the fragment's fog enable flag and the Attribute buffer's fog
enable flag are combined with a logical AND operation, and the result is written to the Attribute
buffer.

This feature can be used to apply fog to everything except specific translucent polygons.

6.3.4.3 Wireframes

A wireframe is a polygon with an « value of 0 (o = 0). In this case, o does not have its original meaning of
opacity level. Instead, only the outline of the polygon (wireframe) is rendered. If it is clipped, the clipping
boundary (a new side created due to clipping) is also rendered as a wireframe. To render a wireframe as
translucent, map a translucent texture.

Note: The characteristics of the circuit do not permit a wireframe to be drawn semi-transparently.

About the Polygon ID

When a wireframe is rendered, it is stored in the opaque polygon ID region of the attribute buffer. (Only the
polygon ID of the wire is updated.)

NTR-06-0180-001-G 236 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.3.4.4 Shadow Polygons

Shadow volume is defined as the space that is not illuminated by light because the light has been
obstructed by an object. A shadow, then, can be thought of as something that is generated in the region
where the shadow volume intersects with another object. The polygon used to express a shadow volume
is called a shadow polygon.

You can create a shadow image that can be seen from the user’s perspective by creating only a mask
image of the Stencil buffer when rendering the inner side of the shadow volume, and then excluding the
mask region when drawing outside the shadow volume.

Shadow polygons used for masks and rendering can be differentiated by their polygon IDs.

Polygon ID Classification

0 Shadow polygons for masks

1-63 Shadow polygons for drawing

Figure 6-33 illustrates the concept of shadow polygons. "Eigure 6-34 : When Drawing a Shadow Polygon
for a Mask" on page 239 describes rendering shadow polygons for masking. "Figure 6-34 : When Drawing
a Shadow Polygon for a Mask" on page 239 describes rendering shadow polygons for drawing.

The procedure for attaching shadows using shadow polygons is as follows:

1. Set rendering order

Because both mask- and draw-shadow polygons must be translucent and must exist in the drawing order (see the
"Cautions" on page 240), set the translucent polygons to manual sort with SwapBuffers and set them to be rendered

in the order they are transmitted to the Geometry Engine.

2. Draw the shadow polygon for the mask

Set the polygon attributes to [Draw only the back surface], [ID = 0], [t = 1 - 30] and [Shadow polygon] and draw the
mask-shadow polygon. The rendering engine does not update the color buffer and creates only the mask images

with 1 set in the stencil buffer.
J

3. Draw the shadow polygon for rendering

Next, set the polygon attributes to [Draw both surfaces], [ID = 1-63], [0 = 1-30] and [Shadow polygon] and draw the
shadow polygons for rendering. The rendering engine first reads the stencil buffer, and if the value is 1, resets it to 0.
If the value is 0, the engine attempts to draw to the color buffer.

* Polygon ID

The draw-shadow polygon is drawn at this time only if its ID differs from both the ID of the opaque polygon and
the ID of the translucent polygon in the Attribute buffer. This specification prevents an object from casting a
shadow on itself by setting the same polygon ID for both the object and the draw-shadow polygon.

When multiple shadows overlap, you can control whether to overlay them by setting them to the same polygon
ID.

« Fog Enable Flag

When a shadow polygon is rendered, the results of a logical AND operation applied to the fragment's fog
enable flag and the Attribute buffer's fog enable flag are written to the Attribute buffer. With this feature, it is
possible to exclude shaded areas from fog.

(Example: A spotlight can be expressed by excluding an area from black fog.)

© 2003-2007 Nintendo 237 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

« Shadow Volume

NITRO Programming Manual

Figure 6-33: Shadow Volume

Ligh
ight Source {i} Object that

Casts Shadow

Shadow
Volume

Other Object
(Normal Polygon)

+ Shadow-volume shape

In principle, the shadow volume takes the shape of a closed 3D shape. Note the "Cautions" on
page 240 if you plan to use an open 3D shape in order to reduce the number of polygons.

« Shadow-volume direction

To create the shadow of a spherical object, a cylinder-shaped shadow volume is created on the
straight line defined by the light source and the spherical object.

+ Shadow-volume position

The cylinder-shaped shadow volume is located where it cannot be seen from the light source (a place
not illuminated by the light of the sphere).

* Shadow-volume length

The shadow is drawn on the surface of the object that is located inside the shadow volume. Thus, the
length of the shadow volume should be long enough to pass through the surface of the object on which
you want the shadow to be drawn.

NTR-06-0180-001-G
Released: July 27, 2007

238

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Stencil buffer calculations

1. When drawing a shadow polygon for a mask
The Stencil buffer is set to 1 when the depth test fails without affecting the Color buffer.
Figure 6-34: When Drawing a Shadow Polygon for a Mask

Depth Test Result Stencil Buffer Color Buffer

Shadow Polygon for _— .)
Masking {Outside Surface) '! Oﬂbjm that Casts Shadow

Other Object (Momnal Polygon)
2. When drawing a shadow polygon for rendering

If the Stencil buffer is already set to 1, it is reset to 0. When the depth test succeeds, if the polygon ID
in the attribute does not match the polygon ID of the shadow polygon for rendering, the polygon is
drawn to the color buffer.

Figure 6-35: When Drawing the Shadow Polygon for Rendering

Depth Test Result Stencil Buffer Color Buffer

el Plizitin e Coallel Not drawn to Color
Btz Pl e 1D Buffer if depth test fails
are Same
Shadow Polygon for QObject that Casts Shadow
Shadow

Rendering (Outside Surface)

[Drawn to Color buffer]

if Polygon IDs are Different Other Object (Normal Polygon)

As the diagrams illustrate, the shadow is drawn to a portion of one side of the shadow polygon for
rendering. That is why you cannot achieve the effect of directly pasting textures to shadows when texture

mapping.

© 2003-2007 Nintendo 239 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Cautions

1.

Order for rendering shadow polygons

To create a single shadow, draw the necessary shadow polygon for the mask and then the shadow
polygon for rendering. If you draw a collection of shadow polygons for the mask and then draw the
corresponding collection of shadow polygons for rendering, shadows may not be created in the
intended regions.

Correct rendering string:

Shadow volume for mask 1 — Shadow volume for rendering 1 —
Shadow volume for mask 2 — Shadow volume for rendering 2

Shadow volumes with open shapes

When the shadow volume takes the shape of an open 3D shape, a region that has a shadow polygon
for rendering but not a shadow polygon for the mask may be generated. This results in the creation of
an incorrect shadow.

Note that when a shadow volume is clipped, it takes on an open shape.

Technigue

By following the procedure below, you can create scenes in which shadows are cast on translucent
polygons. (However, this technique requires more shadow polygons.)

o > DN~

Opaque polygon —
Shadow polygon (shadow on opaque polygon) —
Translucent polygon on which a shadow is cast (update depth buffer) —

Shadow polygon (the shadow on the translucent polygon / polygon ID is the same as in step 2) —
Translucent polygon on which the shadow is not cast.

Figure 6-36 shows a schematic representation.

Figure 6-36: Technique for Rendering a Shadow on a Translucent Polygon

Light
Source

Translucent
Polygon

Opaque Polygon

NTR-06-0180-001-G 240 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.3.4.5 Toon Shading/Highlight Shading
ToonTable: Toon Table Register

Name Address Attribute Initial Value

0x04000380, 0x04000384, 0x04000388, 0x0400038C,
0x04000390, 0x04000394, 0x04000398, 0x0400039C,
0x040003A0, 0x040003A4, 0x040003A8, 0x040003AC,
0x040003B0, 0x040003B4, 0x040003B8, 0x040003BC

TOON_TABLE_x (x=0-15) W 0x00000000

31 30 26 25 24|23 21 20 16|15 14 109 8|7 5 4 0
BLUE n1 | GREEN n1 | RED n1 BLUE n0 | GREEN n0 RED n0
RGB transformation values when brightness n1=2x+1 RGB transformation values when brightness n0=2x

This register is used for toon shading and highlight shading.

In toon shading and highlight shading, the fragment color R value is treated as the brightness, and this R
value (upper 5 bits) is used as the index to reference RGB values from the toon table.

Figure 6-37: Transformations Using a Toon Table

Toon Table

Upper 5 Bits of Rs é 15 Bit x 32 é (Rs', Gs', Bs')

(0 - 31 Index)

© 2003-2007 Nintendo 241 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3.4.5.1 Toon Shading

The fragment color R value is treated as the brightness, and this R value (the upper 5 bits) is used as the
index to reference RGB values from the toon table to set the new fragment colors.

The texture color and the post-table-reference fragment color both have (Rs5:G5:Bs = 5:5:5) number of bits.
Therefore, before the texture-blending computation is conducted, the following formulas are used to
expand the number of bits to (Rg:Gg:Bg = 6:6:6).

Re = Rs << 1 (When R is 0)

Rg = (Rg << 1) +1 (When Rg is nonzero)

Texture mapping involves the same equations used in Modulation mode, except that the toon table—
transformed values are used for the fragment colors (see Table 6-12).

Table 6-12 : Texture Blending Equations (toon table)

Type of Texture Translucent Texture Non-translucent Texture
Texture R ={ (Rt+1) x (Rs’+1) -1} / 64 R={ (Rt+1) x (Rs’+1) -1} / 64
Blendin G={ (Gt+1) x (Gs’+1) -1} / 64 G ={ (Gt+1) x (Gs'+1) -1}/ 64

E uationgs B ={ (Bt+1) x (Bs'+1) -1} / 64 B ={ (Bt+1) x (Bs'+1) -1} / 64
9 A={ (At+1) x (As+1) -1}/ 64 A=Atx As

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)
(Rt, Gt, Bt, At) : Texture color expanded to (R:G:B = 6:6:6) bits

(Rs, Gs, Bs, As) : Fragment color

(Rs’, Gs’, Bs’) : Fragment color expanded to (R:G:B = 6:6:6) bits after table conversion

Note: The toon table is referenced for fragment colors shared by all toon-shaded polygons. If you want
every toon shading polygon to have different colors, use textures to color even monochrome
polygons.

Using ambient reflection color and emission color to raise the minimum value of the fragment color
R value also narrows the effective range of R, and this coarsens the gradation of toon shading.
Because material color loses its meaning when toon shading, we recommend that you use only
diffusion reflection color so as to retain gradation.

NTR-06-0180-001-G 242 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.3.4.5.2 Highlight Shading

The fragment color R value is treated as the brightness, and this R value (the upper 5 bits) is used as the
index to reference RGB values (color offset values) from the toon table to add to the fragment color.

The texture color and the post-table-reference fragment color both have (Rs5:G5:Bs = 5:5:5) number of bits.
Therefore, before the texture-blending computation is conducted, the following formulas are used to
extend the number of bits to (Rg:Gg:Bg = 6:6:6).

Rg = Rg << 1 (When Rg is 0)

Rg = (Rg << 1) +1 (When Rg is nonzero)
When texture mapping, a color offset value is added to texture colors whose RGB values have each been

modulated by the fragment color’s R value (see Table 6-13). This can produce an effect as if the texture is
highlighted (emitting a color brighter than the texture's own color).

Table 6-13 : Texture Blending Equation (Highlight Shading)

Texture Type Translucent Texture Non-translucent Texture
Texture R =min[63, { (Rt+1) x (Rs+1) -1} /64 + Rs’] R =min[31,{ (Rt+1) x (Rs+1) -1}/ 64 + Rs’]
Blendin G =min[63, { (Gt+1) x (Rs+1) -1} /64 + Gs’] G =min[31, { (Gt+1) x (Rs+1) -1} /64 + Gs’]

E uatior?s B =min[63, { (Bt+1) x (Rs+1) -1}/64 + Bs’] B =min[31, { (Bt+1) x (Rs+1)-1}/64 + Bs’]
a A={ (At+1) x (As+1) -1} / 32 A=AtxAs

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)
(Rt, Gt, Bt, At) : Texture color extended to (R:G:B = 6:6:6) bits

(Rs, Gs, Bs, As) : Fragment color

(Rs’, Gs’, Bs’) : Fragment color extended to (R:G:B = 6:6:6) bits after table conversion

Note: Because a color offset is added, sometimes the hue of the fragment color changes.

© 2003-2007 Nintendo 243 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3.5 Textures

6.3.5.1 Texture Blending

The Rendering Engine interpolates the texture coordinates corresponding to each pixel inside the polygon
using the texture settings (flip/repeat) passed by the Geometry Engine, the vertex texture coordinates, and
the w value.

The process of blending texel color with the color of each pixel of the polygon is called texture blending.
The mode for this texture blending can be set to either Decal or Modulation, using the PolygonAttr register.

6.3.5.1.1 Texture Image Sampling

In NITRO, the texture image is sampled by interpolating, from each vertex’s texture coordinates, texture
coordinates that correspond to the top-left of each pixel in a polygon (see Figure 6-38).

Figure 6-38: Texture Image Sampling

~—— Geometry Engine ~—— ~—— Rendering Engine ~—m——
Vertex 1 Vertex 4 Texture Coordinate 1 ‘ ‘ Texture Coordinate 4
(Texture Coordinate 1) (Texture Coordinate 4)
® L I
Polygon
*—0—0& ®
@ L
Vertex 2 Vertex 3
(el CearihiEls 2) (Texture Coordinate 3) Texture Coordinate 2 Texture Coordinate 3
N\ J o J

For example, if a polygon has 8x8 textures applied to it and its display width is 14 dots, pixel and texel
correspondence are as shown on the left in Figure 6-39.

If a polygon is turned front to back like this, the texel/pixel correspondence slips.

In the diagram on the right of Figure 6-39, texel 0 appears at the left edge (if the texture is not H-flipped, it
is omitted). On the right edge, texel 0 is only sampled once.

Figure 6-39: Applying an 8x8 texel Texture to an 14-dot Wide Polygon

‘ Texture Coordinate 1 ‘ ‘ Texture Coordinate 4 ‘ Texture Coordinate 1 Texture Coordinate 4

JYAVAVAVAVAVAVAVA
8Texels 7 \3‘ .
=== AXHACS

AN 44

~ao
-

)

14 Pixels 14 Pixels

NTR-06-0180-001-G 244 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

If a polygon has 8x8 textures applied to it and its display width is 8 dots, pixel and texel correspondence
are as shown in Figure 6-40.

Figure 6-40: Applying an 8x8 texel Texture to an 8-dot Wide Polygon

Texture Coordinate 1

Texture Coordinate 4

8 Texels

r === r
o anose ol

Texture Coordinate 1

Texture Coordinate 4

When using polygons for 2D displays such as OBJ or BG, texels and pixels have a one-to-one
correspondence. However, in a case such as this, when rendering a polygon that is mapped with an 8x8
texel texture on 8x8 pixels of an LCD, the front and back surfaces are displayed as shown in Figure 6-41.

o + A
2 23

Figure 6-41: Displaying Front and Back Surfaces of an LCD

Front Surface

00 01 04 05 06 07

BN 16 17

26 27

37
56 57

66

76

90 Degree Clockwise Rotation
270 Degrees Counterclockwise

0[0) 0 60 Ol 40 | 30 0 0
0 6 41

Wl 72 | 62 | 52 | 42 12
03| 73|63|53|43|33]23]13
04| 74 | 64 | 54 |44 | 34 | 24

Wl 75 | 65 | 55 | 45 25| 15
06 76 66 56 [PI) 16
0 6 47 | 37

© 2003-2007 Nintendo
CONFIDENTIAL

Horizontal Reflection of Polygons

00 07 06 05 m 02 01
10 17 16. 12 11
20 27 24 | 23
Om
DoooE
50 57 56 |3

20 27 24

23
12 [RE

245

Vertical Reflection of Polygons

00 01 02
70 71

60 61

50 51

41
=

20

10 11

aEn -

23
T 6 17

270 Degree Clockwise Rotation
90 Degrees Counterclockwise

(0[0]

07

06 16
- G

NTR-06-0180-001-G
Released: July 27, 2007

6.3.5.1.2 Decal Mode

NITRO Programming Manual

Depending on the texture's a value, either the result of Gouraud shading of the vertex color created by the
lighting process (fragment color) or the texture's color value is displayed.

For translucent textures, blending is done with the texture's o value.

Table 6-14 shows the texture-blending expression used in decal mode.

The texture color has (R5:G5:B5s = 5:5:5) number of bits. Therefore, before the texture-blending
computation is conducted, the following formulas are used to expand the number of bits to (Rg:Gg:Bg =

6:6:6).
R6 = R5 <<
Re= (Rg<<1)+1

(When Rg is 0)

(When Rs is non-zero)

Table 6-14 : Texture Blending Equations (Decal Mode)

Texture Type

Translucent Texture

Non-translucent Texture

Texture
Blending
Equations

R ={Atx Rt + (31 - At) Rs} / 32
G={Atx Gt + (31 -At)Gs}/ 32
B ={Atx Bt + (31 - At)Bs}/32
A=As

Handling exceptions:

When At =0,

(R, G B, A) = (Rs, Gs, Bs, As) is used.
When At =31,

(R, G, B, A) = (Rt, Gt, Bt, As) is used.

R=AtxRt+ (1-At)Rs
G=AtxGt+(1-At)Gs
B =AtxBt +(1-At)Bs
A=As

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)

(Rt, Gt, Bt, At) : Texture color expanded to (R:G:B = 6:6:6) bits

(Rs, Gs, Bs, As) : Fragment color

NTR-06-0180-001-G
Released: July 27, 2007

246

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

6.3.5.1.3 Modulation Mode

The result of the Gouraud shading of the vertex color (fragment color) created by the lighting process is
modulated by the texture's color value and displayed.

Table 6-15 shows the texture-blending expressions used in modulation mode.

The texture color's fragment color has (R5:G5:Bs = 5:5:5) number of bits. Therefore, before the texture-

blending computation is conducted, the following formulas are used to expand the number of bits to
(Re:Gg:Bg = 6:6:6).

Re = Rs << 1 (When R is 0)

Rg = (Rg << 1) +1 (When Rg is nonzero)

Table 6-15 : Texture Blending Expressions (Modulation Mode)

Type of Texture Translucent Texture Non-Translucent Texture
Texture R={(Rt+1) x (Rs+1) -1}/ 32 R ={ (Rt+1) x (Rs+1) -1}/ 32
Blendin G ={(Gt+1) x (Gs+1) -1}/ 32 G = { (Gt+1) x (Gs+1) -1} / 32
E uatior?s B ={(Bt+1) x (Bs+1)-1}/32 B ={(Bt+1) x (Bs+1)-1}/32
& A={(At+1) x (As+1)-1}/32 A=At x As

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)
(Rt, Gt, Bt, At) : Texture color expanded to (R:G:B = 6:6:6) bits
(Rs, Gs, Bs, As) : Fragment color

© 2003-2007 Nintendo 247 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3.5.2 Texture Formats

NITRO can handle seven different texture formats. Table 6-16 lists the texture formats.

Table 6-16 : List of Texture Formats

Palette
Format Number of Selectable Base o Value Number of Bits per
Colors for 1 Texel Boundary (see Bits Texel
note)
4-Color Palette Texture 4 0x08 0 2
16-Color Palette Texture 16 0x10 0 4
256-Color Palette Texture 256 0x10 0 8
4x4 Texel 4 3
0x10 0 (Includes palette index
Compressed Texture (every 4x4 texels) data)
A3I5 Translucent Texture 32 0x10 3 8
A5I3 Translucent Texture 8 0x10 5 8
Direct Color Texture 32,768 Pals;t: ant 1 16

Note: Palette Base Boundary is the amount by which the address is increased when the palette base is
increased by 1 by the TexP1ttBase command

6.3.5.2.1 Texture Images

The Rendering Engine references the texture image slot's texture image in the format specified by the
TexImageParam command. The texture image is composed of texel data.

6.3.5.2.1.1 4-Color Palette Textures

Texel Data Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T7 | T6 T5 | T4 T3 | T2 T TO
8 Texels of Data (2 bits / texel)

e T7-TO : Texel Data

Specifies the texture color palette color number (0-3)

Display Texture

TO (| T1 | T2 | T3 | T4 | TS | T6 | T7

NTR-06-0180-001-G 248 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

6.3.5.2.1.2 16 Color Palette Textures

NITRO Programming Manual

Texel Data Format

15 12 11 8 0
T3 T2 T1 TO
4 Texels of Data (4 bits / texel)
« T3-TO : Texel Data
Specifies the texture color palette color number (0-15).
Display Texture
TO | T1 | T2 | T3
6.3.5.2.1.3 256-Color Palette Textures
Texel Data Format
15 8 0

T1

TO

2 Texels of Data (8 bits / texel)

e T1-TO : Texel Data

Specifies the texture color palette color number (0-255).

© 2003-2007 Nintendo

CONFIDENTIAL

Display Texture

T0

T1

249

NTR-06-0180-001-G
Released: July 27, 2007

6.3.5.2.1.4 4x4 Texel Compression Textures

NITRO Programming Manual

This format can obtain the compression effect by dividing the image into 4x4 pixel blocks and then
converting them to images with palettes with 2-bit indexes.

31 24

23

Texel Data Format

16

15 8

7 0

T33 | T32 | T31 | T30

T23 | T22 | T21 | T20

T13 | T12 | T | T10

T03 | T02 | TO1 | T0O

4 x 4 Texels of Data (2 bits / texel)

¢ T33-T00 : Texel Data

Specifies the color number (0-3).

NTR-06-0180-001-G
Released: July 27, 2007

Display Texture

TOO

TO1

T02

TO3

T10

T11

T12

T13

T20

T21

T22

T23

T30

T31

T32

T33

250

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Palette Index Data Format

15 14 13 8 7 0
A [PTY L [1 | L [T |
Palette Settings Palette Address

+ Palette settings
* A 3colors/ 4 colors setting flag

0

3 colors + Transparent mode
(Color 3 is transparent color)

1

4-color mode

« PTY : Palette type selection flag

0

4-color palettes
(Four palettes for each 4x4 texels)

Linear interpolation 4-color palettes (Two palettes for each
4x4 texels)

¢ Palette address

The address of the texture palette slot in which color data is stored is specified in units of 2 colors
(units of 4 bytes).

Color 0 is the color located at the texture palette slot address, calculated as follows:

(The value set by the TexPIttBase command x 0x10) + (the palette address setting value x 4)

The texel color value RGB components are calculated as shown in Table 6-17.

Table 6-17 : Texel Color Values

PTY=0

PTY=0

=0

Color 0[5:0]:(Palette 0[4:0]==0) ? (Palette 0[4:0] x 2) : (Palette 0[4:0] x 2 + 1)
Color 1[5:0]:(Palette 1[4:0]==0) ? (Palette 1[4:0] x 2) : (Palette 1[4:0] x 2 + 1)
Color 2[5:0]:(Palette 2[4:0]==0) ? (Palette 2[4:0] x 2) : (Palette 2[4:0] x 2 + 1)
Color 3[5:0]: Transparent Color

=1

Color 0[5:0]:(Palette 0[4:0]==0) ? (Palette 0[4:0] x 2) : (Palette 0[4:0] x 2 + 1)
Color 1[5:0]:(Palette 1[4:0]==0) ? (Palette 1[4:0] x 2) : (Palette 1[4:0]x 2 + 1)
Color 2[5:0]:(Palette 2[4:0]==0) ? (Palette 2[4:0] x 2) : (Palette 2[4:0] x 2 + 1)
Color 3[5:0]:(Palette 3[4:0]==0) ? (Palette 3[4:0] x 2) : (Palette 3[4:0] x 2 + 1)

PTY=1

=0

Color 0[5:0]:Palette 0[4:0] x 2

Color 1[5:0]:Palette 1[4:0] x 2

Color 2[5:0]:Palette 0[4:0] + Palette 1[4:0]
Color 3[5:0]: Transparent Color

Color 0[5:0]:Palette 0[4:0] x 2
Color 1[5:0]:Palette 1[4:0] x 2
Color 2[5:0]:(Palette 0[4:0] x 5 + Palette 1[4:0] x 3) / 4
Color 3[5:0]:(Palette 0[4:0] x 3 + Palette 1[4:0] x 5) / 4

One set of palette index data is associated with each 4x4 texel (see "Eigure 6-42 : Texture Image Slots" on

page 252).

© 2003-2007 Nintendo 251 NTR-06-0180-001-G
CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

Texture Image Slots

In 4x4 texel compression mode, the texture image data and the texture palette index data should be
mapped as follows:

« Texel data

Map to texture image slots 0 and 2.

Texture palette index data

Map to texture image slot 1.

Correspondence between texel data and texture palette index data

The texture palette index data that corresponds to the 4x4 texel data in the TIDAa address of texture
image slot 0 should be placed in the (TIDAa/2) address of texture image slot 1.

The texture palette index data that corresponds to the 4x4 texel data in the TIDAb address of texture

image slot 2 should be placed in the (0x10000 + (TIDAb/2)) address of texture image slot 1. (See
Figure 6-42.)

Each 4x4 texel is associated with one set of texture palette index data. Individual texel colors take the

color of the address (the texture color palette slot) specified by the texture palette index data as 0 and
use the color number’s color designated by the texel data.

Figure 6-42 : Texture Image Slots

0x20000

0x20000 0x20000
l‘\\
\
\.\
\. The texture Palette
Y Index Data of Slot 2
A
‘\
\\\
\ [ox10000+(TIAb/2) | Texture
0x10000. \\\\ Image Data
NN
Texture .
NN
Image Data L
\‘\ \ “\
v
\\ \ \\
o
\ \
The Texture Palette kL
Index Data of Slot 0 N
e
i L
\\\\\ N\ b
TIAa . Y MTIAb
"""""""""" TiAa/2 ‘
0x00000 0x00000 0x00006‘

Texture Image Slot 0 Texture Image Slot 1 Texture Image Slot 2

Note: Texture data is placed in slot 0 and slot 2. Because the address jumps, it is not possible to

reference 1024x1024. In 4x4-texel compressed-texture mode, use a texture size that is no larger
than 1024x512.

NTR-06-0180-001-G 252 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.3.5.2.1.5 A3I5 Translucent Textures

15 13

12

Texel Data Format

8 7 5 4

ALPHA

INDEX

ALPHA |

INDEX

T1

TO

e T1-TO : Texel data

« ALPHA : a-value

Specifies that the degree of transparency for the texel. 0 is Transparent.

The a—value is used in the Rendering Engine, extended in 5 bits as shown in the table below.

(5-bit o = {(3 bit o << 2) + (3 bit & >> 1)})

e INDEX : Color number

Specifies the color number (0-31) of the texture color palette.

Display Texture

TO

T

6.3.5.2.1.6 AS5I3 Translucent Textures

15

11

10

Texel Data Format

8 7

ALPHA

INDEX ALPHA

INDEX

T1

TO

e T1-TO : Texel data

« ALPHA : a-value

Specifies that the degree of transparency for the texel. 0 is Transparent.
+ INDEX: Color number

Specifies the color number (0-7) of the texture color palette.

© 2003-2007 Nintendo
CONFIDENTIAL

Display Texture

T0

™

253

NTR-06-0180-001-G
Released: July 27, 2007

6.3.5.2.1.7 Direct Color Textures

15 14

NITRO Programming Manual

Texel Data Format

ALPHA BLUE

RED

e TO: Texel data

Directly configures texel color. The texture color palette is not used.

NTR-06-0180-001-G
Released: July 27, 2007

Display Texture

T0

254

© 2003-2007 Nintendo
CONFIDENTIAL

6.3.5.2.2 Texture Palette

NITRO Programming Manual

The texture palette slot stores the texture color data.

15 14 13 12 11

Texture Color Data Format

10 9 8 | 7

6 5 4 3 2 1 0

TEX_COLOR_BLUE

| TEX_COLOR_GREEN | TEX_COLOR_RED

Color

The texture format determines the way in which texture color palettes are referenced. (The texture formats
are: 4-color, 16-color, 256-color, 4x4 compressed-texel, A3I5, and A5I3.)

Generally, the color number is referenced for the color determined by the texel data from the palette specified
by the texture palette base. However, when the texture is a 4x4 compressed-texel-format texture, the palette
is specified by setting the palette address, in addition to the texture palette base. See Figure 6-43 to Figure 6-
46 for details on the palette base for each texture color palette and palette address mapping.

Figure 6-43: Palette Base and Palette Address (4-color palette)

4-Color Palette Texture

0x18000
Unreferenced Region
0x10000
Color 3
Color 2
Color 1
O0xOFFF8 Color 0 Palette Base Ox1FFF
0x00010
Color 3
Color 2
Color 1
0x00008 Color 0 Palette Base 0x0001
Color 3
Color 2
Color 1
0x00000 Color 0 Palette Base 0x0000

© 2003-2007 Nintendo
CONFIDENTIAL

255

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Figure 6-44: Palette Base and Palette Address (16-Color Palette and 256-Color Palette)

16-Color Palette Texture 256-Color Palette Texture
0x18000 0x18000
Color 15 Color 255
Color 14 Color 254
Color 1 Color 2
0x17FEOQ Color 0 Palette Base 0x17FE Color 1
i 0x17E00 Color 0 Palette Base 0x17E0
0x00040
Color 15
Color 14
Color 1 E 0x00200 Color 0 Palette Base 0x0020
0x00020 Color 0 Palette Base 0x0002 Color 255
Color 15 Color 254
Color 14
Color 2
Color 1 Color 1
0x00000 Color 0 Palette Base 0x0000 0x00000 Color 0 Palette Base 0x0000
Figure 6-45: Palette Base and Palette Address (4x4 Texel Compression)
4x4 Texel Compressed Texture
0x18000
Color Data
Color 3
With a 4-color palette
Color 2
Color 1
PB*0x10 + PAy*4 Color 0 Palette Base PAyL
N
With linearly interpolated
Color 1 4-color palette
PB*0x10 + PAx*4 Color 0 Palette Base PAXL
A
PB*0x00010 Color Data Palette Base PB|
0x00010 Color Data Palette Base 0x0001 |
0x00000 Color 0 Palette Base Ox0000|
NTR-06-0180-001-G 256 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

For a 4x4 compressed-texel-format texture, the palette address is set by the palette base and the palette
address. Color numbers 0 to 3 are referenced for a four-color palette, but only color numbers 0 and 1 are
referenced for a linear interpolated four-color palette. The remaining two colors applied to the texels are
calculated from Color 0 and Color 1.

Even for a four-color palette, Transparent is used without referencing Color 3 when the mode is set to

Three Colors + Transparent.

A3I5 Texture

Figure 6-46: Palette Base and Palette Address (A3l5, A5I3)

A5I3 Texture

0x18000 0x18000
Color 31 Color 7
Color 30
Color 1
Color 1 0x17FFO0 Color 0 Palette Base 0x17FF
0x17ECO Color 0 Palette Base 0x17FC
Color 7
0x00080
Color 31 Color 1
Color 30 0x00020 Color 0 Palette Base 0x0001
Color 7
Color 1
0x00040 Color 0 Palette Base 0x0004 Color 1
Color 31 0x00010 Color 0 Palette Base 0x0001
Color 30 Color 7
Color 1 Color 1
0x00000 Color 0 Palette Base 0x0000 0x00000 Color 0 Palette Base 0x0000
© 2003-2007 Nintendo 257 NTR-06-0180-001-G

CONFIDENTIAL

Released: July 27, 2007

NITRO Programming Manual

6.3.6 Alpha-Test

After texture blending, the fragment's alpha value is compared with the value set in the AlphaReference
register. Rendering does not occur when the o value is less than this reference value.

AlphaReference: Alpha-Test Comparison Value Register
Name: ALPHA_TEST_REF Address: 0x04000340 Attribute: W Initial value: 0x0000

15 8 7 4 0
ALPHA_REFERENCE
o -Test Comparison Value

« ALPHA_REFERENCE[d04-d00] : a-Test comparison value
When a-Test is set to ON, pixels that have an o value below this specified value are not drawn.
* Wireframe display polygons

Setting o = 0 in the polygon attributes displays polygons as wireframes—a no longer retains its
original meaning.

If translucent textures are unmapped, the wireframe section actually has an o value of 31.

Therefore, if the o test reference level is set when the o test is ON when displaying a wireframe, it is
displayed for any reference value other than 31.

6.3.7 Alpha-Blending

The specifications call for the Rendering Engine to perform alpha-blending by first creating the 3D screen
before alpha-blending with the 2D screen. Alpha-blending with the 2D screen is performed using the 2D
graphics color special effect functions.

You can control the Rendering Engine's alpha-blending process by setting the DISP3DCNT register's
a-blending enable flag on/off.

Table 6-18 shows the equation used when alpha-blending.

Table 6-18: Equation when O.-Blending

o.-Blending Enable Flag Calculations for Newly Stored Data in Color Buffer

R={(As + 1) X Rs + (31 - As) x Rb} / 32
G={(As+1)xGs + (31-As)xGb}/32
B ={(As + 1) x Bs + (31 - As) x Bb} / 32
When ON A= maX[AS, Ab]

Handling exceptions:
When As =0, (R, G, B, A) = (Rb, Gb, Bb, max[As, Ab]) is used.
When As =31 0or Ab =0, (R, G, B, A) = (Rs, Gs, Bs, max[As, Ab]) is used.
When As =0
(R, G, B, A) = (Rb, Gb, Bb, Ab)
When As is non-zero
(R, G, B, A) =(Rs, Gs, Bs, As)

When OFF

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)
(Rb, Gb, Bb, Ab) : Color buffer's color

(Rs, Gs, Bs, As) : Fragment color

NTR-06-0180-001-G 258 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.3.7.1 3D Alpha-blending

The color buffer's color value and the fragment's color value are blended based on the fragment's o value,
and the result is then written back to the color buffer.

6.3.7.2 2D and 3D Alpha-Blending Preprocess

In the 3D alpha-blending process described above, the color buffer's o value is updated only when it is
smaller than the fragment's o value. This specification is set in order to approximate the o value in regions
where translucent polygons overlap when alpha-blending 2D and 3D.

When the color buffer's alpha value is 0 and translucent polygons are drawn, the fragment's color is written
to the color buffer without any alpha-blending.

You can thus achieve a more natural composite with the 2D screen by using ClearColor to zero-clear the
color buffer's alpha value, since the ClearColor's RGB values are not blended.

Refer to "6.4.4.1 Alpha-Blending with the 2D Screen" on page 270 for details on this subject.

6.3.8 Edge Marking

Edge marking is a feature for outlining the edges of opaque polygons with different polygon IDs in the
Attribute buffer. You can control this feature by setting the DISP3DCNT register's edge-marking enable flag
on or off.

The colors that are used in edge marking are the eight colors that are selected using the upper 3 bits of the
polygon ID as an index.

EdgeColor: Edge Color Register

Name Address Attribute Initial Value
EDGE_COLOR_x (x =0-3) 0x04000330, 0x04000334, 0x04000338, 0x0400033C W 0x00000000

31 30 26 25 2423 21 20 1615 14 10 9 8|7 5 4 0
BLUEn1 | GREENn1 | REDnI BLUEnO | GREENnO | REDnO
Edge marking color when polygon ID (n1)=2x+1 Edge marking color when polygon ID (n)=2x

* [d30-d16], [d14—d00] : Edge marking colors
Specifies the eight colors to employ for edge marking.

If a polygon is clipped, edge marking is also applied to the clipping boundary (a new edge created by
clipping) A comparison to clear polygon ID is also made at the edge of the screen. Therefore, if the
clear polygon ID and the polygon ID are the same, edge marking is not applied to the new edges
created by clipping.

Note: Edge marking of opaque polygons in the background behind translucent polygons sometimes
does not work correctly when the PolygonAttr command has set the Translucent Polygon
Depth Value Update—enable flag to 1 (because the Depth buffer's value is referenced when
determining edge marking).

© 2003-2007 Nintendo 259 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3.9 Fog Blending

Fog blending is the process of blending each pixel color with fog color in proportion to the depth value. The
fog-blending process can create a fog effect on the screen, hiding from the player the far-plane clipping-
and-rejection processes that do not arise in the natural world. You can control this feature by setting the
DISP3DCNT register's fog-enable flag on or off.

6.3.9.1 3D Fog

In OpenGL, the fog process is performed on each polygon when it is drawn. But with NITRO, the fog process
is performed on the color buffer in which all polygons have been drawn after the edge marking process.

Because of this specification, you can produce effects in which fog is applied to everything except a
specified region. However, applying fog to regions in which translucent polygons are rendered can produce
unnatural effects. If this happens, use the PolygonAttr command to set the Translucent Polygon Depth
Value Update—enable flag for visual approximation.

Note: If you update the depth value, you must also conduct a Z sort, or else some parts inside regions in
which translucent polygons overlap may not be rendered.

FogColor: Fog Color Register

Name: FOG_COLOR Address: 0x04000358 Attribute: W Initial value: 0x00000000

31 24(23 20 16(15 14 10 9 8 | 7 5 4 0
FOG_ALPHA FOG_BLUE | FOG_GREEN FOG_RED
Fog o Value Fog Color

This specifies the fog color.

When compositing with the 2D screen's background, you can achieve the effect of the object’s dissolving
into the 2D screen if you set the fog o value to 0. This effect appears more natural if you set the Fog mode
of the 3D Display Control register (DISP3DCNT) to Fog Blending Using only the Pixel’s o Value.

FogOffset: Fog Offset Register

Name: FOG_OFFSET Address: 0x0400035C Attribute: W Initial value: 0x0000
15 14 8 | 7 0
FOG_OFFSET
Fog Offset

+ FOG_OFFSET[d14-d00] : Fog offset
Sets the depth value that is the basis for fog density calculations.

The fog density for pixels that have an upper 15-bit depth value nearer than (fog offset + (0x400 >> fog
shift)) is fixed to the fog density table's DENSITYO value. The fog density for pixels that have a depth
value farther than (fog offset + (0x400 >> fog shift) x 32) is fixed to DENSITY31.

The fog shift is a value set by the DISP3DCNT register (the 3D Display Control register).

If the depth value is within the two areas mentioned above, the fog density is the value that results
from linear interpolation of two elements in the fog table.

Because the depth value differs depending on the method of depth buffering (Z buffering or W
buffering), the way in which fog is applied also differs. In short, the fog density depends on the depth-
value curve to the z value of the View coordinates. To learn more about this relationship, see "6.2.5
Depth Buffering" on page 163. The method for depth buffering is selected using the Geometry
Engine's SswapBuffers command.

NTR-06-0180-001-G 260 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

Name

NITRO Programming Manual

FogTable: Fog Density Table Register

Address

Attribute Initial Value

FOG_TABLE_x (x=0-7)

31 30

24

0x04000360, 0x04000364, 0x04000368, 0x0400036C,
0x04000370, 0x04000374, 0x04000378, 0x0400037C

23 22 16(15 14

w 0x00000000

DENSITY n3

DENSITY n2

DENSITY n1

DENSITY n0

Fog Density n3=4x+3

Fog Density n2=4x+2

Fog Density n1=4x+1

Fog Density n0=4x

Specifies a 32-level fog density table.

The fog density for each pixel is the value that results from linear interpolation of the corresponding depth
buffer value. You can thus approximate any fog density curve (see "Figure 6-47 : Depth Values and Fog

Density" on page 262).

6.3.9.1.1

Fog Density Equations

Assume that F_IVL = (0x400 >> FOG_SHIFT) and that f(i) is the fth parameter in the fog density table.
Then the fog density and the upper 15-bit depth value (Zd) have the following relationship:

1. When 0x0000 < Zd < (FOG_OFFSET + F_IVL - 1):

Fog density f =f (0)

2. When (FOG_OFFSET + F_IVL x i) < Zd < (FOG_OFFSET +F_IVLx (i+ 1)-1) (i = 1-31):

Fog density f =

f

F_IVL

3. When FOG_OFFSET + F_IVL x 32 < Zd < Ox7FFF:

Fog density f =f (31)

© 2003-2007 Nintendo
CONFIDENTIAL

261

_)= fG=1)}x{zd ~(FOG_OFFSET+F _IVLxi)}

-1

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Figure 6-47: Depth Values and Fog Density

AN
7

127

Fog Density

To 4 Fog Table No.
0 : 31}
0-1 1-2 ihel
0 0 Linear Linear e nolation
Interpolation | Interpolation P

4
0x400 >>%

Fog OﬁsetﬁeFog Offset
Depth Value: >

The fog shift is set by the DISP3DCNT register (the 3D Display Control register).

NTR-06-0180-001-G 262 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Table 6-19 shows the fog-blending equations.

Table 6-19: Fog-Blending Equations

Fog Mode | Fog Blending with Pixel's Color and 0. Value | Fog Blending only with Pixel's o Value
R={fxRf+ (128-f)xRs}/128 R =Rs
G={fxGf+ (128-f)xGs}/128 G=Gs
Fog B={fxBf + (128-f)xBs}/ 128 B =Bs
Blending A={fxAf + (128-f)xAs}/128 A={fxAf+(128-f)xAs}/ 128
Saugrogs Handling exceptions: Handling exceptions:
When f =127, When f =127, A = Af is used
(R, G, B, A) = (Rf, Gf, Bf, Af) is used

(R, G, B, A) : Newly written fragment color (fractional parts resulting from calculations are truncated)
(Rf, Gf, Bf, Af) : Fog color

(Rs, Gs, Bs, As) : Color in the color buffer after edge marking

6.3.9.2 Fog Preprocessing for 2D

If fog is disabled, the region in which the color buffer's o value is zero-cleared is treated as an alpha cut-
out region when compositing with the 2D screen. From this region, you can see the unmodified color of the
2D screen in the background. (See "6.4 2D Graphics Features you can Apply to the 3D Screen after

Rendering" on page 268.)

If, on the other hand, fog is enabled, this otherwise transparent region is also subject to fog blending, and
the color buffer value is updated. Afterwards, the 2D color special-effect feature (2D and 3D alpha-
blending) can work to alpha-blend the color buffer and the 2D screen, so fog is also applied to the 2D
screen in the background seen from this region.

In this way, 2D fog blending is conducted via 2D and 3D alpha-blending. (See "6.3.7.2 2D and 3D Alpha-
Blending Preprocess" on page 259.)

© 2003-2007 Nintendo 263 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.3.10 Anti-aliasing

The anti-aliasing feature blends an edge section in the front buffer with the color in the back color buffer.
The front color buffer holds the rendered results of the front polygon; the back buffer stores the rendered
results of all polygons (including clear colors) that are behind the front polygon. Anti-aliasing is only applied
to the edges of opaque polygons. Anti-aliasing uses the o value that is newly written into the color buffer
as a blending factor when alpha-blending with 2D. Therefore, even a 2D background exhibits the anti-
aliasing effect.

Table 6-20 shows the anti-aliasing equations.

Figure 6-48 illustrates the concept of anti-aliasing. Figure 6-49 shows the edge that is output to the LCD.

Table 6-20: Anti-aliasing Equations

Anti-aliasing Equations

RA={(AC+1)xR1+(31-AC)xR2}/32

GA={(AC+1)xG1+(31 AC)x G2}/32

BA={(AC+1)x B1 +(31 AC)xB2}/32
)

A2 at least 1
AA={(AC+1)x31 +(31-AC)xA2}/32
RA = R1
_ GA = G1
b=l BA = B1

AA={(AC+1)x31}/32

(RA, GA, BA, AA) : Color newly stored in the color buffer (fractional parts resulting from calculations are
truncated).

(R1, G1, B1, 31) : Color in the front color buffer (alpha = 31 since the anti-aliasing target is an opaque
polygon).

(R2, G2, B2, A2) : Color in the back color buffer

AC : Anti-aliasing factor (5 bits)

The anti-aliasing factor is applied proportionately to the surface area of the pixel occupied by the polygon.

NTR-06-0180-001-G 264 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figure 6-48: Anti-aliasing

@ Front Polygon

[Rear Polygon

B Clear Color

[J 2D Surface Color of the Second Target Screen
Color with anti-aliasing of RGB

Front Color Buffer Back Color Buffer 2D Surface of Second Target Screen

Anti-Aliasing

When Clear a.is 0 When Clear o is 1 or greater

J

© 2003-2007 Nintendo
CONFIDENTIAL

la-Blending with 2D Surface

LCD

265 NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Figure 6-49: Final LCD Image Output (Anti-Aliasing)

s N f N
No a-Blending with 2D a-Blending with 2D

Clearais 0

Clear ais 1 or
greater

Figure 6-49 shows the visual image. Table 6-21 shows the actual RGB results

Table 6-21: Anti-Aliasing and Alpha-Blending with a 2D Surface

a.Blending Anti-ali;scinBaResults Result of 0L Blending with 2D Surface
A2 | with2D dEzE-d) (RGB)
Surface Edge Background Edge Background
0 No (R1,G1,B1,AA) |(R2,G2,B2,0) |[(R1,G1,B1) Color of 2D surface
o-blended color of (R1, G1, B1)
0 Yes (R1, G1,B1, AA) |[(R2, G2,B2,0) |and 2D surface Color of 2D surface
(ot-blending factor AA)
mor | No |(Ra,GABA AA) [(R2, G2, B2, A2) | (RA, GA, BA) (R2, G2, B2)
1 o-blended color of (RA, GA, BA) | o.-blended result of (R2,
M:r; Yes |(RA GA BA, AA) |(R2, G2, B2, A2) |and 2D surface G2, B2) and 2D surface
(at-blending factor AA) (at-blending factor A2)

Because the interior of a polygon is opaque (alpha = 31), there is no alpha-blending with the 2D.
Therefore, this case is omitted.

Table 6-21 shows how, when A2 is 0, anti-aliasing is applied only to alpha values. RGB color is written to
the color buffer as is, with no blending.

In this case, do alpha-blending with the 2D surface and reflect this in RGB. (The alpha value from anti-
aliasing is applied to alpha-blending.

NTR-06-0180-001-G
Released: July 27, 2007

266

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

6.3.11 Status

Rendered Line Count Register
Name: RDLINES_COUNT Address: 0x04000320 Attribute: R Initial value: 0x0000

15 8 7 5 0

RENDERED_LINES_MIN

Minimum value for number of rendered lines

RENDERED_LINES MIN[d05—-d00] : Minimum value for number of rendered lines (0—46)

Use this to check the minimum number of lines in the color buffer during display of the previous frame.
This register is updated during every V cycle. The color buffer holds 48 lines, but 2 lines are the current
buffer, so the largest count-value for this register is 46. You cannot confirm from this value whether or
not lines have overflowed, but you can determine the risk of this happening. To determine whether or
not lines have overflowed, check the Color Buffer Underflow Flag of the 3D Display Control register
(DISP3DCNT).

Note: When the counter reaches 0, there is a risk that the Rendering Engine will fail to draw lines
(that is, lines will overflow). When the counter approaches 0, reduce the load on the Rendering
Engine by, for example, reducing the number of polygons sent to the Geometry Engine.

Comparison of Rendering Buffer Methods

Normal frame-buffer method

In this method, there are two or three frame buffers for rendering and display, and the buffers are
swapped during the V-Blank period immediately after drawing is completed. If there are more
rendering polygons and pixels than the rendering engine can process, the frame rate drops due to
rendering delays.

FIFO line-buffer method adopted by NITRO

In this method, drawing and display involve the same FIFO buffer. This FIFO buffer has a capacity of
48 lines. During display, data is read from the FIFO buffer in sync with the timing of the LCD. Data for
the horizontal direction is read with the dot clock, whereas data for the vertical direction is read in the
horizontal scanning interval (355-dot clocks). If there are more polygons and pixels for the line to be
drawn than the Rendering Engine can process, the display is corrupted because the Rendering Engine
cannot render it in time.

© 2003-2007 Nintendo 267 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.4 2D Graphics Features you can Apply to the 3D Screen after Rendering

In NITRO, the 3D screen is displayed as BGO after it has been rendered, rather than being displayed
directly on the LCD. This enables certain 2D graphic features to also be applied and displayed on the LCD.
To read the basic specifications for 2D graphics see "5 2D Graphics" on page 73.

6.4.1 Raster Scroll

Unlike 2D screens, 3D screens cannot be scrolled vertically. However, they can be scrolled horizontally.

BGO Offset Settings Register

Name: BGOOFS Address: 0x04000010 Attribute: W Initial value: 0x0000
15 8 7 0
SH INTEGER_H
H Offset

Signed fixed-point number (sign + 8-bit integer)
+ H[d08-d00] : H offset
Changes the starting position of display in the horizontal direction.
Unlike for 2D screens, d08 is the sign bit, and the offset value can be set in the range of —256 to +256.

Portions of the display screen that go beyond the screen because of horizontal scrolling become
transparent. (See Figure 6-50.)

Figure 6-50: H Offset for a 3D Surface

H Offset

Q/ 3D BGO Screen
|:| Display Image

Transparent Display

6.4.2 Order of Display Priority with a 2D Screen

BGO Control Register
Name: BGOCNT (x=0, 1) Address: 0x04000008 Attribute: R/ W Initial value: 0x0000

15 8 7 1 0

Order of Priority

By adjusting the display priority, you can place the 2D screen either in front of or behind the 3D screen.

See the diagram in "5.9 Display Priority" on page 151.

NTR-06-0180-001-G 268 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.4.3 Windows

You can apply windows to BGO of the 3D screen.

Window Position Settings Register
Name: WINxH (x=0, 1) Address: 0x04000040, 0x04000042 Attribute: W Initial value: 0x0000

15 8 7 0

Window's upper-left X coordinate Window's lower-right X coordinate

Name: WINXV (x=0, 1) Address: 0x04000044, 0x04000046 Attribute: W Initial value: 0x0000

15 8 7 0

Window's upper-left Y coordinate Window's lower-right Y coordinate

Window Inside Control Register

Name: WININ Address: 0x04000048 Attribute: R/ W Initial value: 0x0000
15 8 7 0
| |ercT| oBJ | BG3 | BG2 | BG1 | BGO | |ercT| oBJ | BG3 | BG2 | BG1 | BGO
Window 1 Inside Window O Inside

Window Outside Control Register

Name: WINOUT Address: 0x0400004A Attribute: R/ W Initial value: 0x0000
15 8 7 0
| |eFcT| oBJ | BG3 | BG2 | BG1 | BGO | |ercT| oBJ | BG3 | BG2 | BG1 | BGO
OBJ Window Inside Window (0, 1 and OBJ Window) Outside

If the 3D screen has highest priority, a-blending is always enabled, regardless of the setting for the
Window Control register's color-effect enable flag.

© 2003-2007 Nintendo 269 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

6.4.4 Color Effects

For details on each register parameter, see the Color Special Effects Register below.

6.4.4.1 Alpha-Blending with the 2D Screen

The alpha-blending feature of 2D color effects is used for post-processing after the 2D and 3D alpha-
blending process and the 2D fog process. To read about preprocessing, see "6.3.7.2 2D and 3D Alpha-
Blending Preprocess" on page 259 and "6.3.9.2 Fog Preprocessing for 2D" on page 263.

Color Effect Control Register

Name: BLDCNT Address: 0x04000050 Attribute: R/ W Initial value: 0x0000
15 13 8 7 6 5 0
BD | oBJ | BG3 | BG2 | BG1 [BGO [0 1 BD | oBJ | BG3 | BG2 | BG1 | BGO
Second Target Screen Selected Effect First Target Screen

+ [d07-d06] : Selected effect
Perform alpha-blending by setting [d07] to 0 and [d06] to 1.

The process involved when alpha-blending the 3D screen and the 2D screen differs, depending on the
relative priority of the two screens. When the 2D screen is the first target screen, the value set in the
BLDALPHA register is used for alpha-blending, as per the specifications. However, when the 3D

screen is the first target screen, alpha-blending with the second target screen is performed using the
alpha value that is being rendered to the color buffer (that is, alpha-blending is done in units of pixels).

Note: Any part with a color buffer alpha value of 0 is handled in the same way as a 2D cut-out region,
and thus is not subjected to alpha-blending. Any part with a color buffer alpha value of 1 or more is
subjected to alpha-blending.

Color Special Effect / Alpha-Blending Factors Register
Name: BLDALPHA Address: 0x04000052 Attribute: R/ W Initial value: 0x0000

15 12 8 7 4 0

The factors used for the alpha-blending process are set by EVA and EVB in the BLDALPHA register. (EVA
and EVB values that are 16 or above are treated as 16.)

NTR-06-0180-001-G 270 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

6.4.4.2 Shininess Up/Down

Color Effect Control Register

Name: BLDCNT Address: 0x04000050 Attribute: R/ W Initial value: 0x0000
15 13 8 7 6 5 0
BD | OBJ | BG3 | BG2 | BG1 | BGO | 1 BD | OBJ | BG3 | BG2 | BG1 | BGO
Second Target Screen Selected Effect First Target Screen

* [d07—d06] : Selection of color special effects

Perform a process to change the shininess by setting [d07] to 1.
When [d06] is set to 0, shininess is increased. When [d06] is set to 1, shininess is decreased.

All zeros must be set for the second target screen.

Color Special Effect /| Change Shininess Factor Register

Name: BLDY Address: 0x04000054 Attribute: W

15 8 7

Initial value: 0x0000

The factor used for changing shininess is set by EVY in the BLDY register. (EVY values that are 16 or

above are treated as 16.)

© 2003-2007 Nintendo 271
CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 272 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

7 DMA

NITRO Programming Manual

DMA is a high-speed data-transfer method that bypasses the CPU. It is controlled by the DMA Controller.
The ARM9 bus has four DMA channels (DMAO — 3). (The ARM7 bus also has four channels.)

The highest priority channel is DMAO, followed by DMA1, DMA2, and DMAZ3, in order of priority.

If a higher-priority DMA is activated while a lower-priority DMA is executing, the lower-priority DMA pauses,
and the higher-priority DMA is executed. After the higher-priority DMA is finished, the lower-priority DMA
resumes execution. Because DMA execution can be paused, consider giving higher priority to DMA
transfers that must finish within a limited time frame.

However, when the CPU is operating with DMA, RAM outside the TCM or cache cannot be accessed.

Therefore, in the interval until the DMA finishes, an interrupt is delayed when processing anything other

than TCM.

DMAXxSAD: DMAXx Source Address Registers (x =0 - 3)

Name

Address

Attribute Initial Value

DMAXSAD (x =0 - 3)

31 27

24

0x040000B0, 0x040000BC, 0x040000C8, 0x040000D4

16(15

8

R/W 0x00000000

DMA Source Address

DMAXxDAD: DMAXx Destination Address Registers (x =0 - 3)

Name

Address

Attribute Initial Value

DMAXDAD (x =0 - 3)

31 27

24

0x040000B4, 0x040000C0, 0x040000CC ,0x040000D8

16(15

8

R/W 0x00000000

DMA Destination Address

© 2003-2007 Nintendo
CONFIDENTIAL

273

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

DMAXCNT: DMAXx Control Registers (x=0 to 3)

Name Address Attribute Initial Value
DMAXCNT (x =0 - 3) 0x040000B8,0x040000C4,0x040000D0,0x040000DC R/W 0x00000000
31 30 29 27 26 25 24|23 22 21 20 16115 817 0
Efr|mooE |seeMsar [DAR| [| [[[[[[[[[[[[][]]]
Start Mode _ Word Count

|

| Destination Address Update Method |

| Source Address Update Method

| Repeat Mode |

| Transfer Bit Width |

Interrupt Request
Enable Flag

Enable Flag

+ E[d31]: DMA enable flag

0 Disable

1 Enable

+ 1[d30]: Interrupt request enable flag

0 Disable

1 Enable

+ MODE[d29-d27]: Options for DMA start mode

000 Start immediately

001 Start at V-Blank

Start at H-Blank
(DMA does not start during an H-Blank within a V-Blank period)

o1 Synchronize to start with display
(that is, synchronized to start as each horizontal line is drawn)

010

100 Main memory display

101 DS Game Card

110 DS Accessory

111 Geometry Command FIFO

» SB[d26]: Transfer bit-count selection

0 16 bits
1 32 bits
NTR-06-0180-001-G 274 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

+ CMI[d25]: Repeat mode selected flag

0 Not Repeat mode

1 Repeat mode

* SAR[d24-d23]: Options to update source address

00 Increment
01 Decrement
10 Fixed

1 Setting prohibited

* DAR[d22-d21]: Options to update destination address

00 Increment

01 Decrement

10 Fixed

11 Increment/reload

« WORD_COUNT[d20—d00]: Word count

Specifies the number of transfers.

* Repeat mode

When the DMA repeat mode is on, DMA starts automatically each time the start mode conditions
occur.

If the repeat mode is not set, DMA stops when the transfer of the word count volume is complete.
To cancel repeat mode, set the DMA enable flag to 0, as described in Step 2 in the procedure below.
e Address update method

The details of processing the address update method are shown in Table 7-1.

Table 7-1 : Processing Details for the Address Update Method

Address Update Method Process
Increment The address value increases one unit with each transfer
Decrement The address value decreases one unit with each transfer
Fixed The address stays fixed
Increment/Reload Incre_ments for each transfer, and then returns to the .transfer's
starting address when the transfer of the word count is done

Note: Setting the address update method to fixed or decrement is prohibited if the source or destination
is set to Game Pak space because the hardware does not support it.

© 2003-2007 Nintendo 275 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

* DMA Start Mode
Main Memory Display Start Mode

Do not set the DMA source address to any memory region outside of main memory in Main Memory
Display Mode. Also, be sure to set the transfer bit mode to 32-bit and the word count value to 4.

Geometry Command FIFO Start Mode

When the Geometry Command FIFO is less than half full, DMA starts and 112 words (see the
procedure below) are transferred. The process repeats until the volume transferred reaches the word
count value.

Note: If commands have been packed, the number of words sent in each repetition equals the num-
ber of words before unpacking.

¢ Procedures to Start and Stop DMA
1. When starting DMA

A delay of 2 cycles of the system clock (33.514 Mhz) occurs from the time the DMA enable flag is
set until the time DMA starts. If any of the DMA-related registers are accessed during this period,
DMA might not operate correctly. To prevent a DMA problem during this period, run another
process, such as inserting a dummy Load command. (The main processor executes a Load
command in %z cycle of the system clock, so you would need to insert two or more Load
commands to the same register.)

2. When stopping DMA

DMA begins when the signal that serves as the start trigger is issued. If the CPU disables DMA at
the same time the start trigger is issued, DMA could lock up. Therefore, be sure to disable DMA at
least 4 cycles after the start trigger.

1. When the DMA repeat feature is off

Because the DMA stops automatically after it is executed once, do not forcibly clear the DMA
enable flag. Instead, wait for the flag to become 0.

2. When the DMA repeat feature is on

Be sure to clear the DMA enable flag with the CPU at least 4 cycles after the signal that serves
as the DMA start trigger. For example, you can safely stop DMA using the interrupt generated
when DMA ends, clearing the DMA enable flag before the next start trigger is issued.

If you cannot use this method, stop DMA by using the procedure described below.
3. Stopping DMA in H-Blank or V-Blank auto-start mode

During a V-Blank period, DMA is stopped, and the start trigger is not issued, so you can safely
clear the DMA enable flag at that time. If you cannot use this method, follow the procedure below:

Step 1: Write 16 bits to the DMA control register (see Table 7-2).

Table 7-2 : Register Configuration (Step 1)

Setting Content
DMA Enable Flag 1 (Enable)
DMA Start Timing 00 (Start Immediately mode)
DMA Repeat Mode 0 (Disable Repeat Mode)
Other Bits Do not change
NTR-06-0180-001-G 276 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Step 2: Carry out the process for more than four cycles.
Example: 3 NOP or 1 LDR instruction) + 1st cycle of STR instruction from Step 3 = 4 cycles
The actual writing by the STR instruction occurs in the 2nd cycle.
Step 3: Write 16 bits to the DMA control register, then stop the DMA (see Table 7-3).

Table 7-3 : Register Configuration (Step 3)

Setting Content
DMA Enable Flag 0 (Disable)
DMA Start Timing 00 (Start Immediately mode)
DMA Repeat Mode 0 (Disable Repeat Mode)
Other Bits Do not change

Note: DMA may run one extra time in Step 1.

Precautions for starting multiple. parallel DMA channels in the ARM9 System Bus

When ARM946E-S starts accessing regions that cannot be accessed in a single system cycle (33.514
MHz), such as main memory or DS accessories, an ARM9-DMA with a lower priority (Auto) starts at the
same time. The automatic startup of ARM9-DMA with a higher priority occurs immediately afterwards, and
the DMA with higher priority runs out of control. This condition does not exist on ARM7 because the
system bus specifications differ.

Workaround
Of the DMA Parallel Start Categories shown in Table 7-4, items in Category 3 must not be used together. In
addition, start DMA from TCM. However, V-Blank start and H-Blank start can be used together.

Table 7-4 : ARM9-DMA Parallel Start Category Chart

DMA Parallel Start Category Number DMA Description
1 Start immediately
2 Geometry Command FIFO (Normal)

Geometry Command FIFO (Auto Start)

V-Blank Start (can use with H-Blank Start)

H-Blank Start (can use with V-Blank Start or with multiple H-Starts)
3 Display Synchronization

Main Memory Display

Game Card

DS Accessory

© 2003-2007 Nintendo 277 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 278 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

8 Timer

NITRO Programming

Manual

The ARM9 bus side of NITRO comes equipped with a 4-channel, 16-bit timer.

When the timer is enabled, the Count Register counts up according to the prescaler (frequency divider)
cycle specified with the Control Register.

An interrupt can be generated when the Count Register overflows.

If the Count Register overflows, the value set when the count began is loaded, and the count starts over.

TMOCNT_L: Timer 0 Co

Name: TMOCNT_L Address: 0x04000100

15

unt Register
Attribute: R/W Initial Value: 0x0000

Timer 0 Counter

* [d15—d00]: Timer 0 Counter

TMOCNT_H: Timer 0 Control Register

Name: TMOCNT_H Address: 0x04000102 Attribute: R/W Initial Value: 0x0000
15 8 7 6 1 0
E | PS
Prescaler

* [d07—d00]: Timer 0 Control
« E[dO7]: Timer O Enable Flag

0

Disable

1

Enable

* |[d06]: Interrupt Request Enable Flag

0

Disable

1

Enable

* PS[d01-d00]: Prescaler Selection Flag

00 System Clock (33.514 Mhz)
01 1/64 of System Clock
10 1/256 of System Clock
11 1/1024 of System Clock
© 2003-2007 Nintendo 279

CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

TMxCNT_L: Timer x Count Register (x =1 - 3)

Name: TMXCNT_L (x=1-3) Address: 0x04000104,0x04000108,0x0400010C Attribute: R/W Initial Value: 0x0000

15

8 7

0

Timer x Counter

e [d15—d00]: Timer x Counter

TMxCNT_H: Timer x Control Register (x =1 - 3)

Name: TMxCNT_H (x =1-3) Address: 0x04000106,0x0400010A,0x0400010E Attribute: R/W Initial Value: 0x0000

15 8 7 6 2 1 0
E | CH PS
Mult-
Stage Prescaler

* [d07—d00]: Timer x Control
+ E[dO7]: Timer x Enable Flag

0

Disable

1

Enable

* |[d06]: Interrupt Request Enable Flag

0

Disable

1

Enable

* CH[d02]: Multistage Counter Selection Flag

0

According to Prescaler setting

1

Counts up when timer (x-1) overflows
regardless of Prescaler setting

» PS[d01-d00]: Prescaler Selection Flag

00

System Clock (33.514Mhz)

01

1/64 of System Clock

10

1/256 of System Clock

11

1/1024 of System Clock

NTR-06-0180-001-G

280

Released: July 27, 2007

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

9 Interrupts

This chapter describes the hardware interrupts for the ARM9 main processor.

When an interrupt request signal occurs from each piece of hardware, the bit that supports the interrupt
request register is set, and if interrupts are enabled, the CPU is informed of the interrupt occurrence.

Each hardware interrupt request signal can be disabled individually via the interrupt enable register.

9.1 Interrupt Master Enable Register

This register can disable registers as a whole, and it configures whether to disable all registers or to enable
the interrupt enable register settings.

IME: Interrupt Master Enable Register

Name: IME Address: 0x04000208 Attribute: R/W Initial Value: 0x0000
15 8 7 0
IME

* IME[d00]: Interrupt Master Enable Flag

0 Disable all interrupts
1 Enable the Interrupt Enable Register settings
© 2003-2007 Nintendo 281 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

9.2 Interrupt Enable Register
Each hardware interrupt request can be disabled individually.

Setting each bit enables interrupt requests from the corresponding hardware. Conversely, interrupt
requests from corresponding hardware are disabled when the bit is reset.

IE: Interrupt Enable Register

Name: |E Address: 0x04000210 Attribute: R/W Initial Value: 0x00000000

31 24123 21 20 19 18 17 16|15 13 12 11 8|7 6 3 2 0
GF MI|MC IFN|IFE A7 D] K D3|D2|D1|DO T3|T2|T1|To VE|HB|VB
. DMA Timer LCD

ARM7 I_Kil

DS Accessory

| ARM9 - ARM7 FIFO |

Game Card

| Geometry Command FIFO |

* GF[d21]: Geometry Command FIFO Interrupt Permission Flag
For more information, see "6.2.16 Status" on page 220.
* MI[d20]: NITRO Card IREQ_MC Interrupt Permission Flag
* MCI[d19]: NITRO Card Data Transfer Completion Interrupt Permission Flag
* |IFN[d18]: ARM9 — ARM7 FIFO Not Empty Interrupt Permission Flag
* IFE[d17]: ARM9 — ARM7 FIFO Empty Interrupt Permission Flag
* A7[d16]: ARM7 Interrupt Permission Flag
» 1/D[d13]: DS Accessory IREQ/DREQ Interrupt Permission Flag
+ K[d12]: Key Interrupt Permission Flag
For more information, see "12.2 Interrupt Handling for Key Input" on page 298.
« D3[d11]: DMAS3 Interrupt Permission Flag
+ D2[d10]: DMA2 Interrupt Permission Flag
* D1[d09]: DMA1 Interrupt Permission Flag
+ DO0[d08]: DMAQO Interrupt Permission Flag
For more information, see "7 DMA" on page 273.

« T3[d06]: Timer 3 Interrupt Permission Flag

* T2[d05]: Timer 2 Interrupt Permission Flag

* T1[dO4]: Timer 1 Interrupt Permission Flag

* TO[dO3]: Timer O Interrupt Permission Flag

For more information, see "8 Timer" on page 279.

* VE[d02]: V-Counter Match Interrupt Permission Flag
+ HB[d01]: H-Blank Interrupt Permission Flag

« VB[d0O0]: V-Blank Interrupt Permission Flag

For more information, see "4.3 Display Status" on page 51.

NTR-06-0180-001-G 282 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

9.3 Interrupt Request Register

When an interrupt request from a hardware component occurs, the corresponding bit for the hardware
component is set in the interrupt request register.

Also, if 1 is written to the bit where the interrupt request flag is set, the interrupt request flag is reset.

IF: Interrupt Request Register

Name: IF Address: 0x04000214 Attribute: R/W Initial Value: 0x00000000
31 24123 21 20 19 18 17 16|15 13 12 11 8|7 6 3 2 0
GF MI|MC IFN|IFE A7 D] K D3|D2|D1|DO T3|T2|T1|To VE|HB|VB
DMA Timer LCD
s
[ARw7 | [Key]
DS Accessory

| ARMO - ARM7 FIFO |

Game Card

| Geometry Command FIFO |

* GF[d21]: Geometry Command FIFO Interrupt Request Flag
For more information, see "6.2.16 Status" on page 220.
* MI[d20]: NITRO Card IREQ_MC Interrupt Request Flag
+ MC[d19]: NITRO Card Data Transfer Completion Interrupt Request Flag
» IFN[d18]: ARM9 — ARM7 FIFO Not Empty Interrupt Request Flag
* IFE[d17]: ARM9 — ARM7 FIFO Empty Interrupt Request Flag
* A7[d16]: ARM7 Interrupt Request Flag
« 1/D[d13]: DS Accessory IREQ/DREQ Interrupt Request Flag
* K[d12]: Key Interrupt Request Flag
For more information, see "12.2 Interrupt Handling for Key Input" on page 298.
« D3[d11]: DMAS3 Interrupt Request Flag
+ D2[d10]: DMA2 Interrupt Request Flag
* D1[d09]: DMA1 Interrupt Request Flag
+ DO0[d08]: DMAO Interrupt Request Flag
For more information, see "7 DMA" on page 273.
* T3[d06]: Timer 3 Interrupt Request Flag
« T2[d05]: Timer 2 Interrupt Request Flag
« T1[dO4]: Timer 1 Interrupt Request Flag
« TO[dO3]: Timer O Interrupt Request Flag
For more information, see "8 Timer" on page 279.
* VE[d02]: V-Counter Match Interrupt Request Flag
« HB[d01]: H-Blank Interrupt Request Flag
* VB[d0OQ]: V-Blank Interrupt Request Flag
For more information, see "4.3 Display Status" on page 51.

© 2003-2007 Nintendo 283 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

9.4 Interrupt Cautions

9.4.1 Clearing IME and IE

Even while the command to clear all flags in the IME and IE registers is executing, relevant interrupts are
generated.

When clearing the IE flags, be sure to clear IME first to avoid inconsistencies in interrupt checks.

9.4.2 Multiple Interrupts

If clearing of IME and an interrupt occur at the same time, multiple interrupts are not accepted during that
interrupt. Therefore, you must set IME after clearing it during the interrupt routine.

9.4.3 Interrupt Delays During DMA Operation

The CPU cannot access RAM other than the TCM or cache RAM during DMA operations.

Therefore, during the interval until the DMA stops, the interrupt is delayed when performing interrupt
handling on anything other than TCM.

944 Interrupts from ARM7

The A7, IFE, and IFN interrupts are for use by the subprocessor and the subprocessor API for
communications.

The subprocessor API does not operate properly if these interrupts are disabled or if the interrupt request
is reset.

NTR-06-0180-001-G 284 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

10 Power Management

The Power Management API can be used by the application to put the NITRO into Sleep mode, to control
power to various circuits, to check for the low-battery state, and to check whether the DS is open or closed.

10.1 Sleep Mode

The application can use the Power Management API to put the NITRO into Sleep mode. In Sleep mode, all
circuits in the NITRO Processor stop. Power to the LCD and the sound is turned off, so there is nothing
displayed and no sounds are played. However, the data in the NITRO Processor internal memory and in
main memory are retained.

The Power LED blinks slowly in Sleep mode. In NITRO mode, a fully charged battery lasts about two
weeks in Sleep mode.

Table 10-1 shows the factors that cause the NITRO to waken from Sleep mode and the timing with which
this happens.

Table 10-1 : Conditions for Waking from Sleep Mode

Conditions for Waking Timing

NITRO Is Opened When NITRO is opened

RTC Alarm Feature When the alarm reaches the set time
When a Game Card or DS Option Pak is accidentally removed

DS Game Card or when an interrupt is generated from a pak that causes a

DS Option Pak cartridge interrupt (such as a pak that uses an Advance Movie
or RTC).

Key Entry When a previously specified key (with the exception of X or Y)
is pressed

Note: When waking from Sleep mode, do not play sounds for the first 15 ms, which is the time for the
sound to recover from the power-off state.

© 2003-2007 Nintendo 285 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

10.2 Controlling Various Power Supplies

The Power Management API can be used to control the power supply to the sound circuitry, LCD backlight,
LCD, microphone, system, and graphics.

10.2.1 Sound

It is possible to control the power supply to the sound circuitry. However, that function is not currently being
disclosed.

10.2.2 LCD Backlight

The Power Management API can be used to control the power supply to the backlight of the upper screen
and the backlight of the lower screen separately. When the application is using only one LCD screen, the
power can be turned off to the screen that is not being used to reduce battery consumption.

When no game is being played and the system is not standing by for wireless, if you choose not to display
on either LCD and to turn off power to the LCD backlight in consideration of battery life, we suggest that
you move to Sleep mode, which more effectively reduces power consumption.

10.2.3 LCD

The Power Management API can be used to control power supply to both the upper and lower screen
LCDs. Furthermore, the LCD backlight can be turned off regardless of the LCD backlight settings.
However, the LCD backlight settings are preserved.

When there is no display on the LCD screen, such as when the application is waiting for wireless
communication, battery consumption can be controlled by turning off the power supply to the LCD.

When the system is not standing by for wireless, if you choose to turn off power to the LCD in consideration
of battery life, we suggest that you move to Sleep mode, which more effectively reduces power
consumption.

Note: Although the power supply to the LCD can be directly controlled with the graphics power control
register mentioned below, the LCD circuitry may be damaged according to when the LCD is turned
on or off. Therefore, directly changing the register value is prohibited. When manipulating the
power supply to the LCD, always use the API.

When the LCD is turned off, the power supply for the sound amp is also turned off, and the
speaker will not function. However, if you connect the headphones when the LCD is on and then
turn off the LCD, the headphones will still generate sound. Additionally, the headphones may not
generate sound if they are connected while the LCD is off. Any software designed to generate
sound while the LCD is off should clearly describe in its Instruction Booklet a process for reliably
generating sound through the headphones.

10.2.4 Microphone

When using the microphone, power must be turned on to the PMIC’s programmable gain amplifier (PGA).
The Power Management API can be used to control power to the PGA.

Note: Do not use the microphone for 3 seconds after it is turned on.

10.2.5 System
The Power Management API can be used to turn off the NITRO’s system power (shut-down).

Note: Depending on the DS, there is no guarantee that the system will be reliably shut down if a shut-
down is executed when the LCD is off (in rare instances the system may restart). Therefore, be
sure to perform a shut-down only when the LCD is on.

NTR-06-0180-001-G 286 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

10.2.6 Graphics

Power consumption can be reduced by: controlling the clock supply to the circuits of the geometry engine,
the rendering engine, and the 2D graphics engine; and disabling circuits that are not being used.

Figure 10-1 : POWCNT: Graphics Power Control Register

Name: POWCNT Address: 0x04000304 Attribute: RI'W Initial value: 0x0000
15 9 8 7 3 2 1 0
DSEL 2DGB GE RE | 2DGA | LCDE
2D Graphics Engine B Geometry Engine
Enable Flag Enable Flag
Rendering Engine
Enable Flag
2D Graphics Engine A
Enable Flag
Enable Flag for both LCDs
+ 2DGBJd09] : 2D Graphics Engine B Enable Flag
Used to reduce power consumption when the 2D Graphics Engine B is not being used.
0 Disable
1 Enable
* GE[dO3] : Geometry Engine Enable Flag
When the geometry engine is enabled, issue the SwapBuffers command once.
0 Disable
1 Enable
* RE[d02] : Rendering Engine Enable Flag
If the rendering engine is enabled, issue the SwapBuffers command once.
0 Disable
1 Enable
+ 2DGA[d01] : 2D Graphics Engine A Enable Flag
Used to reduce power consumption when only 3D graphics are being used.
0 Disable
1 Enable
© 2003-2007 Nintendo 287 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

Note:

NITRO Programming Manual

LCDE[d00] : Enable Flag for Both LCDs (Use Prohibited)

When disabled, both the clock supply to the LCD main and sub-controllers and the power supply to the

main and sub-LCDs are stopped.

0 Disable

1 Enable

other bits.

Use the API to enable/disable the LCDs. Be careful not to change this bit when writing data to

The memory addresses and registers to which the clock signal is stopped when each flag is disabled:

When 2D Graphics Engine A is disabled:
0x04000008 - 0x0400004D

0x04000050 - 0x04000055

2D Graphics Engine A's OAM and palette RAM
When 2D Graphics Engine B is disabled:
0x04001008 - 0x0400104d

0x04001050 - 0x04001055

2D Graphics Engine B’s OAM and palette RAM
When the Geometry Engine is disabled:
0x04000400 - 0x04000473

0x04000480 - 0x040004AF

0x040004CO0 - 0x040004D3

0x04000500 - 0x04000507

0x04000540 - 0x04000543

0x04000580 - 0x04000583

0x040005C0 - 0x040005CB
0x04000600 - 0x04000607

0x04000610 - 0x04000611

0x04000620 - 0x04000635

0x04000640 - 0x040006A3

When the Rendering Engine is disabled:
0x04000320 - 0x04000321

0x04000330 - 0x04000341

0x04000350 - 0x0400035D

0x04000360 - 0x040003BF

NTR-06-0180-001-G 288
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Table 10-2 shows the behavior that occurs when there is access to memory and registers to which the
clock signal has been stopped.

Table 10-2 : Access to Memory and Registers when Clock Signal is Stopped

Write Read

Memory Invalid ALL zero

Registers Invalid Read-enabled

10.3 Power Status

10.3.1 Low Battery State

When the remaining charge in the battery drops below 10-20%, the low battery state is entered, and the
Power LED turns red. The Power Management API can be used to read the battery state data and check
for the low-battery state (see Table 10-3). The amount of charge left in the battery when the power LED
turns red is only a rough indication due to individual differences in the NITRO system, batteries,
application, and environmental temperature.

Table 10-3 : Battery State Data

Data Type Data Content

Battery State Low battery state flag (0 — 1)

Details about PMIC status data:
* Low Battery State Flag
0 : Battery still has a charge.

1 : Battery is low.

10.3.2 DS Open/Closed State

The Power Management API can be used to read the status data shown in Table 10-4 to check whether
the DS is open or closed.

Table 10-4 : DS Opened/Closed State Data

Data Type Data Content

Device Opened/Closed

State DS Opened/Closed State Flag (0 — 1)

Details about DS open/closed status data:
+ DS Opened/Closed State Flag

0 : DS is open.

1: DS is closed.

© 2003-2007 Nintendo 289 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 290 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

11.1

Shown below are the Divider Data setting register for the Divider and the Control Register that specifies
the Divider mode and indicates the Divider state.

11 Accelerators

Divider

NITRO Programming Manual

NITRO contains both divider and square-root computation accelerators.

Divider Data (Numerator, Denominator, Quotient, Remainder) Registers

CONFIDENTIAL

Name Address Attribute Initial Value Comment
DIV_NUMER 0x04000290 R/W 0x00000000_00000000 Numerator
DIV_DENOM 0x04000298 R/W 0x00000000_00000000 Denominator
DIV_RESULT 0x040002a0 R/W 0x00000000_00000000 Quotient
DIVREM_RESULT 0x040002a8 R/W 0x00000000_00000000 Remainder
31 24123 1615 817 0

Divider Data Lower Word
31 24123 1615 8 0
Divider Data Upper Word
Signed integer (sign + 63-bit integer part)
DIVCNT: Divider Control Register
Name: DIVCNT Address: 0x04000280 Attribute: RIW Initial value: 0x0000
15 14 8 7 1 0
BUSY | DIVO MODE
Busy E)'/V'ZS;C:Q Division Mode
BUSY[d15]: Busy Flag
0 Divider is ready
1 Divider is busy
DIVO[d14]: Divide-by-zero error flag
0 There is no divide-by-zero error
1 There is a divide-by-zero error
© 2003-2007 Nintendo 291 NTR-06-0180-001-G

Released: July 27, 2007

NITRO Programming Manual

+ MODE[d01-d00]: Divider Mode

00 32-bit (DIV_NUMER)/32-bit (DIV_DENOM)

quotient 32-bit (DIV_RESULT), remainder 32-bit (DIVREM_RESULT)
01 64-bit (DIV_NUMER)/32-bit (DIV_DENOM)

quotient 64-bit (DIV_RESULT), remainder 32-bit (DIVREM_RESULT)
10 64-bit (DIV_NUMER)/64-bit (DIV_DENOM)

quotient 64-bit (DIV_RESULT), remainder 64-bit (DIVREM_RESULT)
1 Setting prohibited

Note: Regardless of the Divider mode, the Division by Zero Error flag is enabled only when all 64 bits
of the denominator (DIV_DENOM) are zero.

For this reason, set all of the upper 32 bits of the denominator (DIV_DENOM) to 0 even when
the Divider mode is 32-bit/32-bit or 64-bit/32-bit.

If the upper 32 bits of the denominator (DIV_DENOM) are not set to 0, the Division by Zero
Error flag will not function properly.

NTR-06-0180-001-G 292 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

1.1.1 Number of Calculation Cycles

After writing to the Divider Data Registers, the DIVCNT register's busy flag is set during the cycles shown
in Table 11-1, according to the Divider Mode. When the busy flag has been cleared, you can find the
calculation result by reading the register that stores the result.

Table 11-1 : Calculation Bit Count and Calculation Cycle Count by Divider Mode

Divider . . Calculation
Mode Calculation Bit Count Cycle Count
00 32 bits (DIV_NUMER)/32 bits(DIV_DENOM) 18 ovcles
Quotient 32 bits (DIV_RESULT), Remainder 32 bits (DIVREM_RESULT) Y
01 64 bits (DIV_NUMER)/32 bits (DIV_DENOM) 34 cveles
Quotient 64 bits (DIV_RESULT), Remainder 32 bits (DIVREM_RESULT) Y
10 64 bits (DIV_NUMER)/64 bits (DIV_DENOM) 34 cveles
Quotient 64 bits (DIV_RESULT), Remainder 64 bits (DIVREM_RESULT) Y
© 2003-2007 Nintendo 293 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

11.2 Square-Root Unit
The control registers that indicate the states of the square root calculator data register, calculation result
register, calculation mode, and the square root calculator are shown below.

SQRT_PARAM: SQRT Data Register
Name: SQRT_PARAM Address: 0x040002B8 Attribute: R/W Initial value: 0x00000000_00000000

31 24(23 16(15 8|7 0

SQRT Data Lower Word

31 24123 16(15 8|7 0

SQRT Data Upper Word

Unsigned integer (64-bit integer part)

SQRT_RESULT: SQRT Calculation Result Register
Name: SQRT_RESULT Address: 0x040002B4 Attribute: R/W Initial value: 0x00000000

31 24123 16(15 8|7 0

SQRT Calculation Results Data

SQRTCNT: SQRT Control Register

Name: SQRTCNT Address: 0x040002B0 Attribute: R/W Initial value: 0x0000
15 8 7 0
BUSY MODE
Busy Mode

. BUSY[d15]: Busy Flag

0 Square root calculator ready

1 Square root calculator busy

+ MODE[d00]: SQRT Computation Mode

0 32-bit input

1 64-bit input

NTR-06-0180-001-G 294 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

11.21 Number of Calculation Cycles

The SQRTCNT register's busy flag is set during the cycles shown in Table 11-2, according to the
Computation Mode after writing to the Data Registers. When the busy flag has been cleared, you can find
the calculation result by reading the register that stores the result.

Table 11-2 : Input Bit and Calculation Cycle Count by Computation Mode

SQRT .
Computation Input Bit Count alohial S e
Count
Mode
0 32-bit input 13 cycles
1 64-bit input 13 cycles
© 2003-2007 Nintendo 295 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 296 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

12 Keys

NITRO has A, B, L, R, +Control Pad, START, SELECT, X, and Y digital keys.

12.1 Input Keys

The status of the A, B, L, R, +Control Pad, START, and SELECT keys can be verified by reading the key
input register (KEYINPUT) and checking the status of each bit. Because the X and Y keys are connected
to the subprocessor, an API must be used to check the input status of these keys. The application can read

all key data without regard for subprocessor operations when this APl is used.

KEYINPUT: Key Input Register

Name: KEYINPUT Address: 0x04000130

15

7

Attribute: R

Default Value: 0x0000

0

DOWN| uP |LEFT |RIGHT|START| SEL| B | A

Key Input

* [d09—d00]: Key Input

0 Key is being pressed.

1 Key is not being pressed.

Note: ON-OFF may be repeated multiple times in a short time even if the user presses a key only once.
To prevent a button from being pressed twice (chattering), allow an interval between readings of
the key data (around 1 frame each). The input status of the X and Y keys cannot be read directly

from the register.

© 2003-2007 Nintendo
CONFIDENTIAL

297

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

12.2 Interrupt Handling for Key Input

Key input from the A, B, L, R, +Control Pad, START, and SELECT keys can generate interrupts. The key
control register (KEYCNT) can be used to specify the key combinations and conditions for which interrupts

can be generated.

KEYCNT: Key Control Register
Name: KEYCNT Address: 0x04000132 Attribute: R/W Default Value: 0x0000
15 9 8 7 0

LoGIc| INTR L R DOWN| uP | LEFT |RIGHT|START| SEL | B | A
Logic Interrupt Key Selection

1

Interrupt Request

Enable Flag

| Logic Specification Flag |

+ LOGIC[d15] : Logic Specification Flag

0 Detects if any of the specified keys was pressed

1 Detects if all of the specified keys were pressed

* INTR[d14]: Interrupt Request Enable Flag

0 Disable

1 Enable

* [d09-d00] : Key Selection

0 Key is not specified.

1 Key is specified.

Note: Interrupt handling cannot be specified for X or Y key input.

NTR-06-0180-001-G 298
Released: July 27, 2007

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

13 Sound

NITRO contains a sound circuit that enables the processing of 16-channels of simultaneous sound
generation, two sound capture devices that can write the output from a specific channel or a mixer to
memory, left and right speakers that can output sound, and a headphone output jack.

Since the subprocessor carries out the sequence processing and the sound generation processing, there
will be no heavy burden on the main processor, even when sound processing is performed.

The sound circuit is illustrated in Figure 13-1.

Figure 13-1 : Sound Circuit Outline Diagram

Waveform Data —>{ Channel 0

Waveform Data —p»| Channel 1

. [)
Maximum of 16 o
channels can be .
used concurrently o

Waveform Data Channel 14

Waveform Data —» Channel 15

© 2003-2007 Nintendo
CONFIDENTIAL

Left Mixer

Right Mixer

299

Left Amp

Right Amp

Left Speaker

Headphone
Jack

Right
Speaker

NTR-06-0180-001-G
Released: July 27, 2007

13.1

NITRO Programming Manual

Hardware Specifications

The specifications for the included sound circuit hardware are as follows.

13.1.1

Data Format

8bitPCM, 16bitPCM, IMA-ADPCM, PSG rectangular waveforms, and noise can be used as formats for

waveform data.

The 8bitPCM, 16bitPCM, and IMA-ADPCM data formats, as well as descriptions of PSG rectangular

waveforms and noise are shown below.

13.1.1.1

8bitPCM Data Format

The 8bitPCM data format is shown below.

8bitPCM Data Format

13.1.1.2

31 24|23 1615 8|7 0
HEEEEEEEEEEEEEEEEE e En
Data 3 Data 2 Data 1 Data 0

16bitPCM Data Format
The 16bitPCM data format is shown below.
16bitPCM Data Format
31 24123 1615 8|7 0
HEEEEEEEEEEEEEEEEEEE e En
Data 1 Data 0
NTR-06-0180-001-G 300 © 2003-2007 Nintendo

Released: July 27, 2007

CONFIDENTIAL

NITRO Programming Manual

13.1.1.3 IMA-ADPCM Data Format
The header and data parts of the IMA-ADPCM data format are shown below.

IMA-ADPCM Header Format (First 32 bits)
31 24(23 22 16|15 8|7 0

Table Index Initial Value Initial Value

IMA-ADPCM Data Format (From the 33rd bit)

31 24(23 16(15 8 (7 0

Data 7 Data 6 Data 5 Data 4 Data 3 Data 2 Data 1 Data 0

Note: When repeatedly playing the ADPCM with the repeat feature, set the repeat pointer to the address
of the data section, rather than that of the header section.

Also, if the repeat pointer is altered after starting playback on ADPCM, normal repeat play is not
possible.

Be sure to stop playback before making changes to the repeat pointer.

13.1.1.4 PSG Rectangular Waveforms

The Programmable Sound Generator (PSG) creates tones by altering the frequency of the output
rectangular waveform (square waves) and the duty ratio.

The duty ratios of the PSG rectangular waveforms used on NITRO can be altered as shown in Table 13-1.

Table 13-1 : Duty Ratio and PSG Rectangular Wave Waveforms

Duty Ratio Waveform

12.5% |_| |_|
25.0% | | | |

37.5%

EER puniil

62.5%

75.0%

87.5%

13.1.1.5 Noise
Noise has no configurable items.

Noise can be used to generate white noise on a channel designated for noise.

© 2003-2007 Nintendo 301 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

13.1.2 Channels

Waveform data can be played simultaneously from 16 channels. However, PSG rectangular waveforms
can be played on only 6 specific channels, and noise can be played on only 2 specific channels of the 16
channels.

Volume, pitch, and pan (orientation) can be configured for each channel.

The playable channels for each format are shown in Table 13-2.

Table 13-2 : Overview of Data Formats and Playable Channels

Data Format Playable Channels

8bitPCM

16bitPCM Can be played on all channels from 0 to 15.

ADPCM
Can be played on Channels 8 to 13.

PSG Rectangular 8bitPCM, 16bitPCM, and ADPCM cannot be played

Waveform simultaneously on a channel that is playing a PSG rectangular

waveform.

Can be played on Channels 14 to 15.
Noise 8bitPCM, 16bitPCM, and ADPCM cannot be played
simultaneously on a channel that is playing noise.

13.1.3 Mixer

NITRO comes equipped with both left and right mixers.

The sampling frequency of the mixer is 1.04876 MHz with an amplitude resolution of 24 bits, but the
sampling frequency after mixing with PWM modulation is 32.768 kHz with an amplitude resolution of 10
bits.

PWM is an abbreviation of Pulse Width Modulation. As "Eigure 13-2 : Pulse Width Modulation (PWM)" on
page 303 shows, PWM converts the amplitude of a fixed-interval pulse to a duty ratio and then outputs it.

The stronger the amplitude, the higher the duty ratio it is converted to.

NTR-06-0180-001-G 302 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figure 13-2 : Pulse Width Modulation (PWM)

Input Waveform Data (Sound Composite) PWM Output Waveform Data

&—— Amplitude Resolution ——>

&—— Sampling Frequency ——

13.1.4 Master Volume

The speaker output can be adjusted in 128 steps (from 0 to 127) via the master volume.

13.1.5 Sound Capture

There are two built-in sound capture devices on NITRO that allow output waveform data to be written to
memory.

Output from the left mixer or output from channel 0 can be written to memory with sound capture 0.
Output from the right mixer or output from channel 2 can be written to memory with sound capture 1.
The sampling frequency can be set up to 1.04876 MHz. The amplitude resolution can also be set from 8
bits to 16 bits.

13.1.6 Power Control

Turning off power to the sound circuit can reduce battery consumption when not using sound.

When restoring the power supply to the sound circuit (coming out of sleep mode, etc.), do not output any
sound during the 15 milliseconds it takes the sound circuit to recover.

For more details about controlling power to the sound circuit, see "10 Power Management" on page 285.

13.1.7 Cautions

Playing waveform data with a high sampling rate, or playing sound whose pitch is higher than the original
data because of fast-forwarding, leads to more frequent DMA transfers.

If DMA transfers occur frequently, they affect the main processor processes as well as subprocessor
processes, such as wireless communications and the microphone.

© 2003-2007 Nintendo 303 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

13.2

This section shows the block diagrams for the NITRO sound circuits.

Sound Block Diagrams

13.2.1 Overall Sound
The block diagram for the overall sound circuit is shown in Figure 13-3.

Figure 13-3 : Overall Sound Block Diagram

PWM

Channel 15 (ADPCM/PCM/Noise)

| sound |4 | workRAM VN M'(‘E”:]'g
P DMA 4 > P 64 KB g hl P p MBry
[} E ™
@ 23
= > 5%
['4 £ c
Subprocessor |, | <C ARMO Shared o7 (4 o NITRO
ARM7) [T g Work RAM g [T 7| GameCard
L] 16 KBx2
H
o—>| FIFO I—.H Channel 0 (ADPCM/PCM) |—>
[}
¢>—>| FIFO |—'>| Channel 1 (ADPCM/PCM) |——->
M Sound Capture 0
H
FIFO Channel 2 (ADPCM/PCM
I—:H () >
FIFO |—'>| Channel 3 (ADPCM/PCM) |—>
M Sound Capture 1
¢—» FiFo [»| Channel 4 (ADPCM/PCM) >
q»—>| FIFO |—>| Channel 5 (ADPCM/PCM) |—> o
3
e—» FiFo [Channel 6 (ADPCM/PCM) > . K|
< [
¢>—>| FIFO |—>| Channel 7 (ADPCM/PCM) |—> > é
&—»| FIFO [P Channel 8 (ADPCM/PCM/PSG Square Wave) |—
.—>| FIFO |—>| Channel 9 (ADPCM/PCM/PSG Square Wave) |—>
¢—» FIFO [Channel 10 (ADPCM/PCM/PSG Square Wave) |—
o—>| FIFO |—>| Channel 11 (ADPCM/PCM/PSG Square Wave) |—>
o—>| FIFO |—>| Channel 12 (ADPCM/PCM/PSG Square Wave) |—>
¢—»| FIFO | —p{ Channel 13 (ADPCM/PCM/PSG Square Wave) [Logic
—» FIFo | > Channel 14 (ADPCM/PCM/Noise) >
Memory

| FIFO ||

NTR-06-0180-001-G 304

Released: July 27, 2007

© 2003-2007 Nintendo

CONFIDENTIAL

13.2.2

NITRO Programming Manual

Channels 0 — 3 and Sound Capture 0 - 1

The block diagram for channels 0 to 3 and sound capture 0 and 1 is shown in Figure 13-4.

Figure 13-4 : Channel 0-3 and Sound Capture 0-1 Block Diagram

Subprocessor Bus

Channel 0

FIFO

ADPCM

B PCM

&8

Sound Capture 0

FIFO

[Capture

4_

FIFO

ADPCM
PCM

>

Pan

h 4

h 4

v

Pan

X

Channel 1

Channel 2

FIFO

ADPCM
PCM

Pan

B

B

Sound Capture 1

FIFO

[Capture

T
4_ d

Pan

Add

T_+

—ab D

L

[

h 4

Timer

FIFO

ADPCM
PCM

Channel 3

© 2003-2007 Nintendo

CONFIDENTIAL

Pan

Pan

305

il ey
e

S1_

v

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

Caution 1: The switches before and after the pan blocks of channels 1 and 3 are always circuits
connected to selectors A and B of the final-step output selection. Therefore, when channels 1
or 3 are selected as final-step outputs, sound will be output. Be aware of this when you do not
want to output any sound.

Caution 2: The input signal to the mixer from the pan blocks of channels 1 and 3 is determined by the pri-
ority shown on Table 13-3. When channels 1 and 3 are set to bypass to the final-step output,
the added channels are input to the mixer. Even if the output of that mixer is configured to be
captured, channels 1 and 3 will not be input to the mixer (the switch immediately after the pan
block will connect to GND, and the mixer input will always be 0 in this case only). As a result,
there will be no reverb. Be aware that reverb using both the mixer and adder is not possible
when channels 1 and 3 are set to bypass to the final-step output. If you are considering Cau-
tion 3 below, it is recommended that you use only the mixer.

Table 13-3 : Switch Input Priority from Channels 1 and 3 to the Mixer

Priority

Mixer Input

Switch State

High

0 Input (Connected to GND)

Sound Final-Step Output

Bypass Configuration

Pan 0 along with Pan 2

Channel Addition and
Capture Configuration

Low

Pan 1 along with Pan 3

Normal Configuration

Caution 3: There is a fault in the logic (preliminary to selector 0 and 1) for capturing the channel adder
output. The following situations can occur:

* When adding channels 0 and 1 along with channels 2 and 3, if an overflow occurs in either
of the addition results, sign-inverted data will be output.

* When adding channels 0 and 1 along with channels 2 and 3, if the signs of channels 0 and
1 and channels 2 and 3 are each negative, the capture data will be forcibly converted to
the maximum negative value.

Noise will be output in the sounds from these results. To deal with these faults, make sure that the addition
data does not become saturated when using the adder, and that the values for channels 0-1 and channels

2-3 do not both become negative when not using the adder.

NTR-06-0180-001-G
Released: July 27, 2007

306

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

13.2.3 Channels 4 -7
The block diagram for channels 4 to 7 is shown in Figure 13-5.
Figure 13-5 : Channel 4-7 Block Diagram

Subprocessor Bus

y : Channel 4 -

) o []
Sound - ADPCM £ »
DMA P FIFO | PCM P g | Pan
g g
\— _ g p
b bleL
= o M
—> %
] =
Channel 5
g ————>
o» FiFo |p| ADPCM L I E L 3L pap . R
PCM g N—\ M
-
Channel 6 -
Q
ADPCM £ .
&P FIFO [PCM —>§ —» Pan C e T
— (0]
> | 15] |-
= o
2> Wl R
— = g M
Channel 7 8
g =
ADPCM
oP| FIFO b PCM > 2 [» Fan >
> g L L[]
© 2003-2007 Nintendo 307 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

13.2.4

NITRO Programming Manual

Channels 8 - 15

The block diagram for channels 8 to 15 is shown in Figure 13-6. PSG rectangular waveforms can be
played on channels 8 to 13. Noise can be played on channels 14 and 15.

Subprocessor Bus

NTR-06-0180-001-G
Released: July 27, 2007

Figure 13-6 : Channel 8-15 Block Diagram

308

\ Channel 8
Sound ADPCM
DMA p| FIFO b PCM > -
HRE o | 1
[} (]
(%) > g
———— P =
PSG Square Wave § § \7\/
Generation Circuit_’ A s] §] M > L
[%2]
s
— MNP
Channel 13 —
ADPCM
| FIFO [PCM >
gl |8
[} o L MM
on >
PSG Square Wave
Generation Circuit >
Channel 14
ADPCM
@ FIFO [PCM 1
- 2. E
HME
Noise .
Generation - -
Circuit
>
[0}
Channel 15 £
2 P
»nl = o
Lp| FIFO [ADPCM "IEZ Wi R
PCM s o M
" \— (E‘@
S)
{1
° o »
(] > g L L
Noise —
Generation P
Circuit

© 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

13.2.5 Examples of Using Sound

Examples of normal sound, a reverb effect using sound capture circuitry, and using the sound circuitry for
sound effects are shown in the figures below.

13.2.5.1 Normal Use Example

Under normal use, the sound waveform data read from main memory is played on each channel, and then
is output to the speaker via the mixer.

An example of a sound circuit under normal use is shown in Figure 13-7. Red numbers shown in
Figure 13-7 indicate the bit count of data at the time of block input/output.

Figure 13-7 : Example of Sound Usage (Normal)

Work RAM Main Memory
Subprocessor 64 KB 4 MB
(ARM7)
JJ Sound Waveform Data
Subprocessor Bus
16 Channel 0 o4 —]
20 27 9]
sound [oo .| ~DPCM g Pan [>3 28 I R
DMA PCM o 0 < €
> 5128 2 |16 P110
i SP{ VL
- Add 2 g M
|| 3| |2
Add 2
Sound Capture 0 |
4 L
S
FIFO Capture ‘8’
©
(]
- Pan
T
:
| ADPCM £
FIFO Hmi PCM § pan
Channel 1 ! ‘P@
ToR
(Right Side Omitted)
© 2003-2007 Nintendo 309 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

13.2.5.2 Reverb Example
A reverb effect (echo) can be achieved using the sound capture feature.

Use sound capture to store the output from the mixer in Work RAM. A reverb effect results from playing the
stored sound data on a channel and outputting it to the speakers via the mixer.

An example of sound circuit usage during reverb is shown in Figure 13-8. Red numbers shown in
Figure 13-8 indicate the bit count of data at the time of block input/output.

In the example, Channel 1 is used for the reverb effect.

Figure 13-8 : Example of Sound Usage (Reverb)

Work RAM Main Memory
Subprocessor 64 KB 4MB
(ARM7)

1 Wrtie capture data

Capture Data Sound Waveform Data
f
Subprocessor Bus
2 Read Capture Data [|
Channel 0 -] —
Q
Sound ADPCM £ Pan £|28
FIFO 3 = lg— P g
DMA PCM S 0 < 5
™ > 5 |28 3 |16] P [10
> Sz Wi L
Timer Add — s ‘% M
2 ©
Add =
Sound Capture 0 / [R —
o
O g) W 16 5
FIFO |- Capture |- ‘g 28
2 la A A A
N
m
— 0
16
\p- ADPCM £
FIFO Hp»] PCM H- S 24
(]
> | Pan
Channel 1 1
ToR
Right Side Omitted
NTR-06-0180-001-G 310 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

13.2.5.3 Effect Example
Data can be modified before outputting the sound by using the sound capture feature.

Store the captured data in Work RAM; after modifying the data using the subprocessor, output the data

from a channel.

NITRO Programming Manual

A sound effect example is shown in Figure 13-9. Red numbers shown in Figure 13-9 indicate the bit count
of data at the time of block input/output.

In the example, Channel 1 is used for the effect.
Figure 13-9 : Example of Sound Usage (Effect)

Subprocessor
(ARM7)

Work RAM Main Memory
64 KB

4 MB

' 2 Process ’j

(

Sound
DMA

1 Write capture data

FIFO

Capture Data

Sound Waveform Data

Subprocessor Bus

3 Read Processed Data

Channel 0

ADPCM
PCM

Timer

Sound Capture 0

FIFO

g Capture |-

© 2003-2007 Nintendo
CONFIDENTIAL

Timer

FIFO

Lt RS

ADPCM

Channel 1

Pan

Volume

Add

28

Mixer

Pan

| /Selector 0\

Pan

H]

Volume

(Right Side Omitted)

311

ToR

SeeLor A
Master volume
Y
Z=Z=s7U
v
r

Add

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

13.3 NITRO-Composer

There is no need to be concerned with the subprocessor operations when using the NITRO-Composer.

The NITRO-Composer allows easy playback of even complicated sounds, such as BGM.

13.3.1 NITRO-Composer Playback Method

There are three playback methods: sequence playback, waveform playback, and stream playback.

13.3.1.1 Sequence Playback
Sequence playback plays a variety of combined sounds, such as BGM and sound effects.
A maximum of sixteen sequences can be played simultaneously.

For example, during playback of a BGM that has one sequence assigned to it, up to fifteen sound effects
can be played simultaneously.

A variety of parameters for each sequence, such as tempo and volume, can be individually controlled on
the application side.

13.3.1.2 Waveform Playback
Waveform playback is a method for direct playback of waveform data.

It can play back waveform data, etc., that has been sampled with a microphone.

13.3.1.3 Stream Playback
Stream playback plays back long sequences, such as movie soundtracks.

Waveform data can be played back while the data stored on the NITRO card is sequentially loaded.

NTR-06-0180-001-G 312 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

14 Wireless Communications

NITRO contains hardware for wireless communications using the 2.4 GHz band.

14.1 Hardware Specifications

The hardware specifications for wireless communications are shown in Table 14-1.

Table 14-1 : Wireless Communications Hardware Specifications

Item Description

Band Used 2.4 GHz band

IEEE802.11 (Internet Play)

Communications Nintendo’s proprietary protocol (Multi-Card Play)

Protocol Nintendo’s proprietary protocol (DS Single-Card Play)
Security WEP40 bit/128 bit compatible
Wireless Channels 13 channels

Communications

Speed 1 Mbps or 2 Mbps

10-30 meters
This can change dramatically, depending on the environment and
orientation of the unit.

Communications
Range

MAC Address Unique for each DS and thus can be used for identification.

Devices that use the 2.4 GHz band (cordless phones, microwave ovens,
Interfering Devices the wireless adapter for Game Boy Advance, WaveBird, other WiFi
devices, etc.)

Note: When communications is used, power consumption also increases, so the battery will be
consumed more quickly. Accordingly, when not using communication, put the unit in the STOP
state using the wireless communications API.

The wireless adapter for Game Boy Advance cannot be used to communicate with NITRO.
Other devices may cause interference, making communications difficult. To avoid this, make the
communications packet size as small as possible.

14.2 Wireless Manager

By calling the wireless manager API, you can control the wireless system without worrying about the
operation of the subprocessor.

The unit can use Internet Play, Multi-Card Play, and Single-Card Play.

14.2.1 Internet Play

In this mode, the unit can connect to the Internet using a wireless LAN (IEEE802.11b/g) access point.

14.2.2 Multi-Card Play

This mode allows wireless communication between a maximum of 16 DS devices.

© 2003-2007 Nintendo 313 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Because it uses NITRO’s proprietary communications method, data units can be exchanged in less than
one frame.

In Multi-Card Play, the maximum communications data size is 512 bytes.

14.2.3 Single-Card Play

This mode allows a child device without a NITRO card to download a game from a parent device with a
NITRO card.

If the parent device sends data with a header that includes address information, the child device’s system
ROM stores the data in the region specified by the header.

This mode uses Nintendo’s proprietary protocol.

NTR-06-0180-001-G 314 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

15 Touch Panel

The lower screen includes a resistive-membrane touch panel that allows coordinates to be obtained in dot
units. Although the touch panel can be operated with a finger, a touch pen with a 1.0 mm tip (see "Figure
15-1 : Comparison of LCD Dot Size and Touch Pen Size" on page 316) is included with the NITRO as
standard equipment.

The application can use the touch panel without regard for subprocessor operations when using the touch
panel API. To overcome the differences in the coordinate position data on the API side, the calibration data
stored in internal flash memory must be read with the IPL correction program and set with the API before
using the touch panel.

The touch panel input data shown in Table 15-1 can be read with this API. The API reads in two ways:
auto-sampling that reads four times per frame and request sampling that reads in real time in response to
a request. When a request for a read is generated with request sampling, an interval of at least 4.17 msec
must be maintained between requests to ensure a correct reading.

Table 15-1 : Touch Panel Input Data
Data Type Data Description

x coordinate (8 bit), y coordinate (8 bit)
Touch Panel Input Data Touch Determination Flag (1 bit)
Data Validity Flag (2 bit)

The details for input data for the touch panel are shown below.

 x-coordinate, y-coordinate

x-coordinate : 0 - 255 (dots)
y-coordinate : 0 - 191 (dots)

* Touch Determination Flag

0 : The touch panel is not being touched
1 : The touch panel is being touched

 Data Validity Flag

00 : Both the x-coordinate and y-coordinate are valid
01 : The x-coordinate is invalid

10 : The y-coordinate is invalid

11 : Both the x-coordinate and y-coordinate are invalid

Note: Structurally, the resistive-membrane touch panel can detect coordinates for only one location at a
time. Therefore, if multiple locations are touched at the same time, the coordinates for each point
cannot be detected. When the included stylus is used, the touch panel must be pressed down with
a force of at least 80 g for the location to be detected. In some cases, the touch pen may not be
able to depress areas within four dots of the screen edge as a result of built-in error between the
touch panel and the DS and limitations due to the shape of the touch pen’s tip.

© 2003-2007 Nintendo 315 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

On some occasions, irregular coordinate data are read immediately after the screen is touched or
immediately after removing the touch pen from the screen. In these cases (in particular when oper-
ating a button displayed on screen), have the application use coordinates that are read in with the
same value continually as valid data for processing. Note that the touch determination flag and the
data validity flag are independent of each other, and that there may be a situation where, even
though invalid data were stored, the touch panel is being touched. For example, cases may occur
in which invalid data get stored while drawing a figure with a single stroke. In such cases, rather
than determining that the user removed the touch pen from the touch panel, make the determina-
tion by reading the touch determination flag.

Figure 15-1 : Comparison of LCD Dot Size and Touch Pen Size

1 Dot = Appwox. 0.24 mim

> g i Touch Pen
| L /
/ -
] y
'\ Vs
N
»]
~—T | LCD
15.1 Touch Panel Structure

The construction of the resistive-membrane touch panel is illustrated in Figure 15-2.

Normally, the space formed between the upper and the lower films, both of which are coated with a
transparent conducting membrane (ITO membrane: indium tin oxide), prevents current from being
conducted. When a finger or stylus presses on the panel, the pressure causes the upper and lower films to
touch and conduct current. The dot spacers prevent erroneous input and the NITRO from being
continuously on.

NTR-06-0180-001-G 316 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Figure 15-2 : Touch Panel Structure

ITO
| % Membrane
\
L0 | 0 o | > e |
« » A] 7
/‘

/

Upper and lower ITO membranes
touch and conduct current.

| Lower Film | | Dot Spacers |

© 2003-2007 Nintendo 317 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 318 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

16 Microphone

Nintendo DS is equipped with an omnidirectional condenser microphone that can be used for audio
sampling. In addition, the user can use a Nintendo DS Series Headset. Microphone sensitivity can vary by
up to a factor of two, depending on the console. Figure 16-1 shows a schematic diagram of the
microphone.

Figure 16-1 : Microphone Schematic

Internal

Microphone
Sub p E P E Input <'|
ubprocessor |« _ 1 ADConverter % PGA H Switch
Serial tecceccnmcccccacanned J : /
.................... | a
Power Management IC b
Touch Panel IC (PMI?:) Nintendo DS

Series Headset

In preparation for audio sampling, the gain for audio picked up by the microphone can be adjusted to 4
levels using the programmable gain amplifier (PGA). If the audio input is low and the sampling resolution is
low or if the audio input is loud, you can adjust the gain to balance the amplitude resolution. The amplitude
resolution for audio sampling can be set to 8 or 12 bits.

The range of possible settings for gain and amplitude resolution are indicated in Table 16-1.

Table 16-1 : Ranges of Possible Settings for Gain and Amplitude Resolution

Data Type Data Description

4 levels: 20x, 40x, 80x, and 160x

Gain Default is 40x (API specifications)

8- or 12-bit
Amplitude Resolution | If 8-bit is used, one byte is used for one item of sampling data
If 12-bit is used, two bytes are used for one item of sampling data

To use the microphone, power must be supplied to the PGA. For instructions on supplying power to the
PGA, see "10 Power Management" on page 285.

The microphone can be used without regard for subprocessor operations when the microphone API is
used. The sampling rates that can be specified range from several kHz to 32 kHz. However, the sampling
rates for normal operation depend on the status of subprocessor use. The recording time depends on the
memory size and sampling rate provided by the application.

The 60-Hz noise that is synched to the V-Blank is superimposed on the microphone input. However, this
frequency is very low and the noise level is sufficiently low compared to audio input. Therefore, this will not
cause a problem as audible sound.

Note: Wireless communication and sound processing also use the subprocessor. Therefore, if the
microphone is used at the same time as these features, specify a sampling rate that takes into
account the load on the subprocessor. In addition, the same serial bus is used to read touch panel
data, access the internal flash memory, and control the PMIC. If the microphone is used at the
same time as these features, ensure that conflicts do not occur. Do not use the microphone for 3
seconds after the power is turned on.

© 2003-2007 Nintendo 319 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Depending on the console, the microphone input value while there is no sound will have individual
differences in the range as shown in Table 16-2. In order to prevent a false determination that there is
microphone input when there is none, avoid determining that there is microphone input within these

ranges.

Table 16-2 : Microphone Input Values when there is no Sound

Amplitude Resolution

Amplitude Deviation

Noise Component

Total

(Microphone input
values when there is

no sound)
. Signed -13 to +13 -14 to +14 -27 to +27
oot Unsigned 115 to 141 114 to 142 101 to 155
_ Signed -192 to +192 -224 to +224 -416 to +416
12 ot Unsigned 1856 to 2240 1824 to 2272 1632 to 2464

Also, depending on the console, it will not be possible to pick up the full range of microphone input values
listed under amplitude resolution. Differences are shown in Table 16-3. In cases such as determining the

magnitude of microphone input with threshold values, avoid using values that include ranges outside of the
guaranteed input in order to prevent false determinations.

Table 16-3: Guaranteed Microphone Input Ranges

e gt | Ot o Suramesaoput | S
Amplitude Resolution Range Value Ranges
LOWER LIMIT UPPER LIMIT
. Signed -128 to -108 +107 to +127 -107 to +106
oot Unsigned 0to 20 235 to 255 21to0 234
_ Signed -2048 to -1728 +1727 to +2047 -1727 to +1726
12t Unsigned 0 to 320 3775 to 4095 32110 3774

There may be feedback howl and incorrect playback, depending on the system, if the recording of the
sound input from the microphone and playback of that recorded sound were performed at the same time.

Use appropriate caution.

NTR-06-0180-001-G
Released: July 27, 2007

320

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Programming Manual

17 Real-Time Clock (RTC)

The DS has an internal Real-Time Clock (RTC). Time is kept by means of an auto-calendar feature that
extends through 2099 and accounts for leap years. The maximum error for the clock is £4 seconds/day.

The time is set on the following occasions:

1.
2.
3.

4.

When the power is turned on for the first time after the unit is purchased.
When the power is turned on after changing the battery.

When the unit is restarted after the batteries have been drained (unit has been sitting for several
months with no charge in the batteries).

When the date and time are set from the boot menu.

When the RTC APl is used, the RTC can be used without regard for subprocessor operations. The
real-time data shown in Table 17-1 can be read with this API.

Table 17-1 : Real-Time Data

Data Type Data Description

Year (00 - 99), month (01 - 12), date (01 - 31), day (00 - 06),

Real-Time Data hours (00 - 23), minutes (00 - 59), seconds (00 - 59)

Each value is stored as a binary coded decimal (BCD) value.

In addition, two types of alarm functions are provided. By setting the alarm from the application and
engaging sleep mode, the unit can be awakened from sleep mode at a specified time. For information on
sleep mode, see "10 Power Management" on page 285. The API can be used to read and write the
following settings for Alarm 1 and Alarm 2.

Table 17-2 : Settings for Alarm 1 and Alarm 2
Data Type Data Description
Day (00 - 06), hour (00 - 23), minutes (00 - 59)

Separate settings for alarms 1 and 2 can be specified.

Alarm 1 Each value is stored as a binary coded decimal (BCD) value.
and \ .
Alarm 2 Day, hour, and time can be enabled or disabled.

Example: The alarm can be set to activate at the same time every day by disabling
the day setting.

Note: Real-time data cannot be written from the application to the RTC.

© 2003-2007 Nintendo 321 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 322 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

18 Internal Flash Memory

The NITRO has internal flash memory to store touch panel calibration data, owner information, the NITRO
initial setting data, and RTC operation information data. The internal flash memory is dedicated memory for
the storage of NITRO setting data; the application cannot write to the internal flash memory.

18.1 Touch Panel Calibration Data

This calibration data is used to compensate for the variation in coordinate positioning data between
individual touch panels. If an application uses the touch panel, the touch panel must be set by reading the
calibration data with the API.

18.2 Owner Information Data

The owner information data stores information about the owner of the DS. Using the API, the owner
information in Table 18-1 can be read.

Table 18-1 : Owner Information Data

Data Type Data Contents

User ID (22 bytes), User color (1 byte), Birthday

Owner Information Data (2 bytes), Comment (46 bytes)

The details of the owner information data are shown below.

» User ID (Nickname)
Nickname string : Maximum of 10 Unicode (UTF16) characters (20 bytes). No termination code.

String length : Nickname string length (2 bytes).

» User Color (Favorite color)

0-15 : Selected from a set of 16 colors determined by IPL. (RGB values are enclosed by parentheses.)

0: GRAY (12,16,19) 1: BROWN (23,9, 0)
2: RED (31,0, 3) 3: PINK (31,17,31)
4: ORANGE (31,18, 0) 5: YELLOW (30,28, 0)
6: LIME GREEN (21,31, 0) 7: GREEN (0,31, 0)
8: DARK GREEN (0,20, 7) 9: SEA GREEN (9,27,17)
10: TURQUOISE (6,23,30) 11: BLUE (0,11,30)
12: DARK BLUE (0,0,18) 13: PURPLE (17, 0,26)
14: VIOLET (26, 0,29) 15: MAGENTA (31,0,18)

+ Birthday (month and day) (Each is stored as a binary-coded decimal number.)
Month (1 byte) : Month of birth (01-12)
Day (1 byte) : Day of birth (01-31)

 Comment

A comment of two lines of a maximum of 23 characters each (23 bytes x 2 = 46 bytes) using Unicode
(UTF16).

© 2003-2007 Nintendo 323 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

18.3

NITRO Programming Manual

NITRO Initial Setting Data
The NITRO initial setting data stores which LCD screen is used in AGB mode and the language setting.
Using the API, the NITRO initial setting data in Table 18-2 can be read.

Table 18-2 : NITRO Initial Setting Data

Data Type

Data Content

NITRO Initial Setting Data

The LCD screen used in AGB mode (2 bytes) and
the language setting (4 bytes)

The details of the NITRO initial setting data are shown below:

e LCD screen used in AGB mode
0:
1:

Upper Screen

Lower Screen

+ Language setting

0:
: English

N OO o b~ 0N -

18.4

Japanese

: French
: German
: Italian

: Spanish
: Chinese

: Korean

RTC Operation Information Data

When setting the real-time clock (RTC), the difference in seconds with the initial data is set. This
information can be used to determine if the user has changed the RTC data.

Using the API, the RTC operation information data in Table 18-3 can be read.

Table 18-3 : RTC Operation Information Data

Data Type

Data Content

RTC Operation Information Data This value changes each time the RTC setting is

RTC offset value.

changed.

NTR-06-0180-001-G

Released: July 27, 2007

324 © 2003-2007 Nintendo
CONFIDENTIAL

NITRO Programming Manual

Appendix A. Register List
A.1 Addresses 0x04000000 and Higher
Address ARM9

Offset Register Name Page Description
0x000 . : .
DISPCNT 55 2D Graphics Engine A display control

0x002

0x004 DISPSTAT 5ill Display status

0x006 VCOUNT 53 V count comparison

0x008 BGOCNT 81 2D Graphics Engine A BGO control

0x00a BG1CNT 81 2D Graphics Engine A BG1 control

0x00c BG2CNT 83 2DGraphics Engine A BG2 control

0x00e BG3CNT 83 2D Graphics Engine A BG3 control

0x010 BGOHOFS 105 |2D Graphics Engine A BGO display H offset

0x012 BGOVOFS 105 2D Graphics Engine A BGO display V offset

0x014 BG1HOFS 105 2D Graphics Engine A BG1 display H offset

0x016 BG1VOFS 105 2D Graphics Engine A BG1 display V offset

0x018 BG2HOFS 105 2D Graphics Engine A BG2 display H offset

0x01a BG2VOFS 105 2D Graphics Engine A BG2 display V offset

0x01c BG3HOFS 105 |2D Graphics Engine A BG3 display H offset

0x01e BG3VOFS 105 2D Graphics Engine A BG3 display V offset
2D Graphics Engine A BG2 affine transformation

0x020 BG2PA 108 parameters (sarﬁe line X-direction reference shift dx)
2D Graphics Engine A BG2 affine transformation

0x022 BG2PB 108 parame?ers (nexgt line X-direction reference shift dmx)
2D Graphics Engine A BG2 affine transformation

0x024 BG2PC 108 parameters (san%]e line Y-direction reference shift dy)
2D Graphics Engine A BG2 affine transformation

0x026 BG2PD 108 parameters (nexgt line Y-direction reference shift dmy)

0x028 2D Graphics Engine A BG2 reference start point

0x02a Bl - (x coordinate)

0x02¢ 2D Graphics Engine A BG2 reference start point

0x02e BG2Y 107 (y coordinate)
2D Graphics Engine A BG3 affine transformation

0x030 BG3PA 108 parame?ers (sarﬁe line X-direction reference shift dx)
2D Graphics Engine A BG3 affine transformation

0x032 BG3PB 108 parameters (nex% line X-direction reference shift dmx)
2D Graphics Engine A BG3 affine transformation

0x034 BG3PC 108 parame?ers (san%]e line Y-direction reference shift dy)
2D Graphics Engine A BG3 affine transformation

0x036 BG3PD 108 parameters (nex% line Y-direction reference shift dmy)

0x038 2D Graphics Engine A BG3 reference start point

0x03a BG3X 107 (x coordinate) J

0x03c 2D Graphics Engine A BG3 reference start point

0x03e BG3Y 107 (y coordinate)

0x040 WINOH 143 2D Graphics Engine A window 0 H size

© 2003-2007 Nintendo 325 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

Address
Offset

0x042

ARM9
Register Name

WIN1H

NITRO Programming Manual

Page

—
~
(@8]

Description

2D Graphics Engine A window 1 H size

0x044

WINOV

—
~
(¢S]

2D Graphics Engine A window 0 V size

0x046

WIN1V

—
~
(@8]

2D Graphics Engine A window 1V size

0x048

WININ

—
~
N

2D Graphics Engine A window inside

0x04a

WINOUT

—
~
N

2D Graphics Engine A window outside

0x04c

MOSAIC

—
(&)
o

2D Graphics Engine A mosaic size

0x04e

0x050

BLDCNT

—
~
o

2D Graphics Engine A color special effects

0x052

BLDALPHA

—
N
(o]

2D Graphics Engine A alpha blending factor

0x054

BLDY

—
©

2D Graphics Engine A brightness change factor

0x056

0x058

0x05a

0x05¢c

0x05e

0x060

DISP3DCNT

—
(&)

3D display control

0x062

0x064

0x066

DISPCAPCNT

Display capture

0x068

0x06a

DISP_MMEM_FIFO

(o]
[6)]

Main memory display FIFO

0x06¢

MASTER_BRIGHT

2

Image output A master brightness

0x06e

0x070

0x072

0x074

0x076

0x078

0x07a

0x07c

0x07e

0x080

0x082

0x084

0x086

0x088

0x08a

0x08c

0x08e

0x090

0x092

NTR-06-0180-001-G

Released: July 27, 2007

326

© 2003-2007 Nintendo

CONFIDENTIAL

NITRO Pro

AOffsst RegisterName Page
0% |]
0% | |
| x0%e |]
02 |]
a6 |]
 O0aa | |
| OXae |]

gigig DMAODAD 273

0x0bc
0x0be

DMA1SAD

N
w

gramming Manual

Description

DMAO destination address

DMA1 source address

0x0c4

DMA1CNT
0x0c6

N
N

0x0cc

DMA2DAD
0x0ce

N
w

DMA1 control

DMAZ2 destination address

0x0d4

0x0d6 DMA3SAD

N
w

0x0dc

DMA3 source address

DMA3CNT 274
0x0de -
o0z |

© 2003-2007 Nintendo
CONFIDENTIAL

DMA3 control
327 NTR-06-0180-001-G

Released: July 27, 2007

NITRO Programming Manual

Address ARM9
Offset Register Name

o | |
00 | |
oee | |
ooz | |
o6 | [|
0w | [|
Cooe | [|
oz | |
o6 | |
ol | |
ore | [|
ooz | |
I A
I R
oz | [|

0x136

Page Description

NTR-06-0180-001-G 328 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9
Offset Register Name

L O
L O
L O
“oqes |
oea |
odee |
0 O
o |
L O
L O
“oqe2 | |
oes | |
oqee | |
oee | |
0
L
L O
o |
oqez | |
“oqe | |

Page Description

© 2003-2007 Nintendo 329 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9
Offset Register Name

o |
o |]
oe |
L O
I O S
oaee |]
0w |
o |
o |
o |
I S
T O
odea |
oaee |
o |
o |
o |
o |
I N S
T O S

Ox1da

Page Description

NTR-06-0180-001-G 330 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9
Offset Register Name

odee | |
o2 |
“odes | |
“odes | | |
odee | |
2 O
L
L
e |
ez | |
o | |
o |
T O

0x214 Interrupt request fla
o216 | ptreq g

T O
“oee | |
I N S
oes | |
oee |

Page Description

© 2003-2007 Nintendo 331 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9
Offset Register Name

oz | T
o |
T N S
o |
oe |

0x244
WVRAMCNT RAM bank control 1
0x246

o | |
o | |
o | |
oaw | |
I R
o | |
o | |
I R
o | |
oee | | |
oo | |
o | |
oera | |

0x27e

Page Description

NTR-06-0180-001-G 332 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9

Offset Register Name Page Description

I O
o@s | |
L O
oese | |

DIV_DENOM 291 Denominator

SQRT_PARAM Square root unit data

© 2003-2007 Nintendo 333 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9
Offset Register Name

e |
o |
o |
ok |
o |
o |
oea |
o |
“oep |
“oee |
oew |
oee |
o |
oce |
octa |
oce |
oge |
0w |]
I N O
owe |]

0x322

Page Description

NTR-06-0180-001-G 334 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Aggf:ests Regigtlg\'nr?lame Page Description
0x324
0x326
0x328
0x32a
0x32¢c
0x32e
0x330 | EDGE COLOR 0L | 259 |Edgemarkingcolor
— — = = (Polygon ID’s 3 upper bits are 000)

0x332 EDGE_COLOR_0_H 259 (EPdogligrgr?rllg’]sg 3? ?Jlgger bits are 001)
B, Entls COtoR i - 259 (E:cﬁsgrgr? rIITZI)r’]s? ?? ?le?pr)er bits are 010)
0x336 EDGE_COLOR_1_H 259 (EPdogligrgr?rllg’]sg 3? ?Jlgger bits are 011)
Bsete Entls COloR 2 - 259 (E:cﬁsgrgr? rIITZI)r’]s? ?? ?le?pr)er bits are 100)
Ox33a EDGE_COLOR 2_H 259 (EPdogligrgr?rllg’]sg 3? ?Jlgger bits are 101)
et Entls COloR 2 - 259 (E:cﬁsgrgr? rIITZI)r’]s? ?? ?le?pr)er bits are 110)
Ox33e EDGE_COLOR_3_H 259 (EPdogligrgr?rllgr’]sg ; ?Jlgger bits are 111)
0x340 ALPHA TEST_REF 258 |Alpha test
0x342
0x344
0x346
0x348
0x34a
0x34c
0x34e
0x350 L

CLEAR _COLOR 231 Color buffer initial value
0x352
0x354 CLEAR_DEptH 231 Depth buffer initial value
0x356 CLRIMAGE_OFFSET 233 Clear image offset
0x358 FOG_COLOR 260 |Fog color
0x35a
0x35c FOG_OFFSET 260 Fog offset
0x35e
0x360 FOG_TABLE 0 L 261 Fog density table (0, 1)
0x362 FOG_TABLE_O_H 261 Fog density table (2, 3)
0x364 FOG_TABLE 1 L 261 Fog density table (4, 5)
0x366 FOG_TABLE_1_H 261 Fog density table (6, 7)

© 2003-2007 Nintendo 335 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Aggrg:sts Regigg?'nl?lame Page Description

0x368 FOG _TABLE_2 L 261 Fog density table (8, 9)

0x36a FOG_TABLE_2_H 261 Fog density table (10, 11)

0x36¢ FOG_TABLE_3_L 261 Fog density table (12, 13)

0x36e FOG_TABLE_3_H 261 Fog density table (14, 15)

0x370 FOG_TABLE_4 L 261 Fog density table (16, 17)

0x372 FOG_TABLE_4_H 261 Fog density table (18, 19)

0x374 FOG_TABLE_5 L 261 Fog density table (20, 21)

0x376 FOG_TABLE_5 H 261 Fog density table (22, 23)

0x378 FOG_TABLE_6_L 261 Fog density table (24, 25)

0x37a FOG_TABLE_6_H 261 Fog density table (26, 27)

0x37c FOG_TABLE_7_L 261 Fog density table (28, 29)

0x37e FOG_TABLE_7_H 261 Fog density table (30, 31)

0x380 TOON_TABLE_0O_L 241 Toon table (RGB conversion value when brightness is 0)

0x382 TOON_TABLE 0 H 241 Toon table (RGB conversion value when brightness is 1)

0x384 TOON_TABLE_1_L 241 Toon table (RGB conversion value when brightness is 2)

0x386 TOON_TABLE_1 H 241 Toon table (RGB conversion value when brightness is 3)

0x388 TOON_TABLE_2 L 241 Toon table (RGB conversion value when brightness is 4)

0x38a TOON_TABLE 2 H 241 Toon table (RGB conversion value when brightness is 5)

0x38c TOON_TABLE_3 L 241 Toon table (RGB conversion value when brightness is 6)

0x38e TOON_TABLE_3 H 241 Toon table (RGB conversion value when brightness is 7)

0x390 TOON_TABLE 4 L 241 Toon table (RGB conversion value when brightness is 8)

0x392 TOON_TABLE 4 H 241 Toon table (RGB conversion value when brightness is 9)

0x394 TOON_TABLE_5_L 241 Toon table (RGB conversion value when brightness is 10)

0x396 TOON_TABLE 5 H 241 Toon table (RGB conversion value when brightness is 11)

0x398 TOON_TABLE_6_L 241 Toon table (RGB conversion value when brightness is 12)

0x39a TOON_TABLE 6 H 241 Toon table (RGB conversion value when brightness is 13)

0x39c TOON_TABLE_7_L 241 Toon table (RGB conversion value when brightness is 14)

0x39e TOON_TABLE 7 H 241 Toon table (RGB conversion value when brightness is 15)

0x3a0 TOON_TABLE_8_L 241 Toon table (RGB conversion value when brightness is 16)

0x3a2 TOON_TABLE 8 H 241 Toon table (RGB conversion value when brightness is 17)

0x3a4 TOON_TABLE_9 L 241 Toon table (RGB conversion value when brightness is 18)

0x3a6 TOON_TABLE 9 H 241 Toon table (RGB conversion value when brightness is 19)

0x3a8 TOON_TABLE_10_L 241 Toon table (RGB conversion value when brightness is 20)

0x3aa TOON_TABLE_10_H 241 Toon table (RGB conversion value when brightness is 21)

0x3ac TOON_TABLE_11_L 241 Toon table (RGB conversion value when brightness is 22)

0x3ae TOON_TABLE_11_H 241 Toon table (RGB conversion value when brightness is 23)

0x3b0 TOON_TABLE_12_L 241 Toon table (RGB conversion value when brightness is 24)

0x3b2 TOON_TABLE_12 H 241 Toon table (RGB conversion value when brightness is 25)

0x3b4 TOON_TABLE_13_L 241 Toon table (RGB conversion value when brightness is 26)

0x3b6 TOON_TABLE_13 H 241 Toon table (RGB conversion value when brightness is 27)

0x3b8 TOON_TABLE_14_L 241 Toon table (RGB conversion value when brightness is 28)
NTR-06-0180-001-G 336 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9
Offset Register Name

o |
o |
o |]
o |]
o |
0w |
ocw |
ol |
o |
o |]
ogea | |]
o | | |]
oo |
ooe |
oow |
oo |

Page Description

© 2003-2007 Nintendo 337 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9 Page Description

Offset Register Name
0x404

0x406
0x408
0x40a
0x40c
0x40e
0x410
0x412
0x414
0x416
0x418
Ox41a
0x41c
Ox41e
0x420
0x422
0x424
0x426
0x428
0x42a
0x42c
0x42e
0x430
0x432
0x434
0x436
0x438
0x43a
0x43c
0x43e
0x440
0x442
0x444
0x446
0x448
Ox44a
0x44c
Ox44e
0x450
0x452

GXFIFO image

MTX_MODE

—
—

Current matrix mode setting

MTX_PUSH

—
[es]
(o]

Push current matrix onto the stack

MTX_POP

—
(0]
(0]

Pop current matrix from the stack

MTX_STORE

—
o
~

Store current matrix in specified position in the stack

MTX_RESTORE

—
~

Read matrix from specified position in the stack

NTR-06-0180-001-G 338 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9 . ..
Offset Register Name Page Description
0x454 o .)

MTX_IDENTITY 182 Initialize unit matrix
0x456

0x45¢c

MTX_LOAD 4x3
Oxd5e —-OADAX

—
(O8]

Set 4x3 matrix

0x464

—
(O8]

MTX_MULT_4x3 Multiply by 4x3 matrix

0x466

0x46¢

OxdBe MTX_SCALE 185 Multiply by the Scale matrix

0x480 COLOR 201 |Vertex color
0x482 =2

0x488
TEXCOORD
0x48a

N
o
(o]

Texture coordinates

0x490
0x492

VTX_10

N
o
[é8]

Vertex coordinates

0x498

VTX_XZ
0x49a -

N
o
[é8]

Vertex XZ coordinates

0x4a0
0§4:2 VTX_DIFF 204 Vertex coordinates difference value specification
© 2003-2007 Nintendo 339 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9

Offset Register Name Page Description

TEXIMAGE_PARAM 207 Texture parameters

oawo | |
oaws | |
oawe | |

DIF_AMB

—
©
N

Material's diffuse and ambient colors

—
©

LIGHT _VECTOR Light direction vector

SHININESS 193 Specular reflection shininess table

NTR-06-0180-001-G 340 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9
Offset Register Name

Cowe | |
e | |
e | [|

| O%0 | ep vTixs Vertex list end
0x506

osta |
oste |]
“oe2 |
T N
osa |
ose |
oe2 |
o |]
oz |
oz |]
T N S
T O
o |
o |

Page Description

o | |

© 2003-2007 Nintendo 341 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9
Offset Register Name

oss |
I N S
om0 |
oess |
T O
o |]
o0 |]
oses |
I N
o |
“os0 |
oens |
oem |
“oee |

s | 0 !
I e e
o6 | [
I e e
I e e

Page Description

NTR-06-0180-001-G 342 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9
Offset Register Name

ossa |
o |
I N S
o |
I N S
I O S
o2 |
oo |]
I N S
oeee |

0x504
POS TEST Position coordinate test

T
o0 | | |
L O
L
T O
“oee0 | |
oes | | |
oG | | |

Page Description

© 2003-2007 Nintendo 343 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9

Offset Register Name Page Description

Ox5ec
Ox5ee
0x5f0
0x5f2
0x5f4
0x5f6
0x5f8
Ox5fa
Ox5fc
Ox5fe
0x600

GXSTAT

N
N
o

Geometry engine status

0x602

N
N
N

0x604 LISTRAM_COUNT Polygon list RAM count

0x606 VTXRAM_COUNT

N
N
N

Vertex RAM count

0x608

0x60a

0x60c

0x60e

©

0x610 DISP_1DOT_DEptH 1 1-dot polygon display boundary depth value

0x612

0x614

0x616

0x618

Ox61a

0x61c

Ox61e

2 g . . .
0x620 POS RESULT X Result of position coordinate test (clip coordinate X
0x622 - - component)

0x624 Result of position coordinate test (clip coordinate Y

N
[
[oe]

N
—
(o]

POS_RESULT_Y
0x626 - - component)

2 g . . .
0x628 POS RESULT 7 Result of position coordinate test (clip coordinate Z
0x62a - - component)

Ox62c Result of position coordinate test (clip coordinate W

N
[
[oe]

N
—_
(o]

POS_RESULT_W
0x62e - - component)

0x630 VEC_RESULT X

N
—
©

Result of direction vector test (X component)

N
—
©

0x632 VEC _RESULT Y Result of direction vector test (Y component)

0x634 VEC_RESULT Z

N
—
©

Result of direction vector test (Z component)

0x636

0x638
0x63a

0x63c

NTR-06-0180-001-G 344 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9 S

Offset Register Name Description

0x63e

0x640 ; : :

0xGa2 CLIPMTX_RESULT_0 188 Current clip coordinate matrix (element mO)

0x644 . .)

0xGA6 CLIPMTX_RESULT _1 188 Current clip coordinate matrix (element m1)

0x648 ; : :

0x6da CLIPMTX_RESULT_2 188 Current clip coordinate matrix (element m2)

0x64c . .)

OxGio CLIPMTX_RESULT_3 188 Current clip coordinate matrix (element m3)

0x650 ; : :

0xG52 CLIPMTX_RESULT_4 188 Current clip coordinate matrix (element m4)

0x654 . .)

X656 CLIPMTX_RESULT 5 188 Current clip coordinate matrix (element m5)

0x658 : : :

0x65a CLIPMTX_RESULT_6 188 Current clip coordinate matrix (element m6)

0x65¢c . .)

x50 CLIPMTX_RESULT 7 188 Current clip coordinate matrix (element m7)

0x660 ; : :

0x662 CLIPMTX_RESULT_8 188 Current clip coordinate matrix (element m8)

0x664 . .)

X666 CLIPMTX_RESULT 9 188 Current clip coordinate matrix (element m9)

0x668 ; : .

0x66a CLIPMTX_RESULT_10 188 Current clip coordinate matrix (element m10)

0x66¢c . . .

x50 CLIPMTX_RESULT_11 188 Current clip coordinate matrix (element m11)

0x670 ; : .

X672 CLIPMTX_RESULT_12 188 Current clip coordinate matrix (element m12)

0x674 . . .

X676 CLIPMTX_RESULT 13 188 Current clip coordinate matrix (element m13)

0x678 : : :

0x67a CLIPMTX_RESULT_14 188 Current clip coordinate matrix (element m14)

0x67c . . .

X670 CLIPMTX_RESULT_15 188 Current clip coordinate matrix (element m15)

0x680 . :

0xG82 VECMTX_RESULT 0 188 Current direction vector matrix (element m0)

0x684 L i

X636 VECMTX_RESULT 1 188 Current direction vector matrix (element m1)

0x688 . :

0xG8a VECMTX_RESULT 2 188 Current direction vector matrix (element m2)

0x68c L i

OxG80 VECMTX_RESULT_3 188 Current direction vector matrix (element m3)
© 2003-2007 Nintendo 345 NTR-06-0180-001-G

CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Address ARM9
Offset Register Name

Page Description

0x694
0x696

0x69
0;((6 92 VECMTX_RESULT_7 188 | Current direction vector matrix (element m7)

VECMTX_RESULT_5 188 Current direction vector matrix (element m5)

0x6e0

NTR-06-0180-001-G 346 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9
Offset Register Name

oees | |
oG | |
I

Page Description

o0 |
s | |
. O
oo | | |

© 2003-2007 Nintendo 347 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

A.2 Addresses 0x04001000 and higher (2D Graphics Engine B-related)

RELIED il Page Explanation
Offset Register Name g P
0x000
DB_DISPCNT 57 2D Graphics Engine B display control
0x002
0x004
0x006
0x008 DB_BGOCNT 81 2D Graphics Engine B BGO control
0x00a DB_BG1CNT 81 2D Graphics Engine B BG1 control
0x00c DB_BG2CNT 83 2D Graphics Engine B BG2 control
0x00e DB_BG3CNT 83 2D Graphics Engine B BG3 control
0x010 DB_BGOHOFS 105 2D Graphics Engine B BGO display H offset
0x012 DB_BGOVOFS 105 2D Graphics Engine B BGO display V offset
0x014 DB_BG1HOFS 105 2D Graphics Engine B BG1 display H offset
0x016 DB_BG1VOFS 105 2D Graphics Engine B BG1 display V offset
0x018 DB_BG2HOFS 105 2D Graphics Engine B BG2 display H offset
0x01a DB_BG2VOFS 105 2D Graphics Engine B BG2 display V offset
0x01c DB_BG3HOFS 105 2D Graphics Engine B BG3 display H offset
0x01e DB_BG3VOFS 105 2D Graphics Engine B BG3 display V offset
2D Graphics Engine B BG2 affine transformation
e DIEL e 108 parameters (same line X-direction reference shift dx)
2D Graphics Engine B BG2 affine transformation
0x022 DB_BG2PB 108 parameters (next line X-direction reference shift dmx)
2D Graphics Engine B BG2 affine transformation
el DIzl BERFe 108 parameters (same line Y-direction reference shift dy)
2D Graphics Engine B BG2 affine transformation
0x026 DB_BG2PD 108 parameters (next line Y-direction reference shift dmy)
0x028 i i i
DB_BG2X 107 2D Graphlcs Engine B BG2 reference start point
0x02a (x coordinate)
0x02c i ' i
DB_BG2Y 107 2D Grap_hlcs Engine B BG2 reference start point
0x02e (y coordinate)
2D Graphics Engine B BG3 affine transformation
LUEY DIzl Bl 108 parameters (same line X-direction reference shift dx)
2D Graphics Engine B BG3 affine transformation
0x032 DB_BG3PB 108 parameters (next line X-direction reference shift dmx)
2D Graphics Engine B BG3 affine transformation
e R 108 parameters (same line Y-direction reference shift dy)
2D Graphics Engine B BG3 affine transformation
0x036 DB_BG3PD 108 parameters (next line Y-direction reference shift dmy)
0x038 i i i
DB_BG3X 107 2D Graphlcs Engine B BG3 reference start point
0x03a (x coordinate)
NTR-06-0180-001-G 348 © 2003-2007 Nintendo

Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

(LEICED) .ARM9 Page Explanation
Offset Register Name
gzggz DB_BG3Y 107 ?yDCS;?;:iac;;Engine B BG3 reference start point
0x040 DB_WINOH 143 2D Graphics Engine B window OH size
0x042 DB_WIN1H 143 2D Graphics Engine B window 1H size
0x044 DB_WINOV 143 2D Graphics Engine B window QV size
0x046 DB_WIN1V 143 2D Graphics Engine B window 1V size
0x048 DB_WININ 142 2D Graphics Engine B window inside
0x04a DB_WINOUT 142 2D Graphics Engine B window outside
0x04c DB_MOSAIC 150 2D Graphics Engine B mosaic size
0x04e
0x050 DB_BLDCNT 146 2D Graphics Engine B color special effects
0x052 DB_BLDALPHA 148 2D Graphics Engine B alpha blending factor
0x054 DB_BLDY 149 2D Graphics Engine B brightness conversion factor
0x056
0x058
0x05a
0x05¢
0x05e
0x060
0x062
0x064
0x066
0x068
0x06a
0x06¢ DB_MASTER_BRIGHT "1 Image output B master brightness

© 2003-2007 Nintendo 349 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

A.3 Addresses 0x04100000 and higher

Address ARM9
Offset Register Name

o0 |
oo |
oo |
oo |
o0 |
oo |
oo |
o0 |
o0 |
I N R
I R
o0 |
o0 |
I R
oo | |
o |
oo |
I O

0x048

Page Explanation

NTR-06-0180-001-G 350 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Address ARM9
Offset Register Name

oo |
o0 |
oo |
oo | | |
oo | |
Cooe0 |

Page Explanation

Cooes | |
Cooes | | |
o0 | |
o0 |
oo |
oo |
oo |

© 2003-2007 Nintendo 351 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 352 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Appendix B. List of VRAM Data Capacities
(Data capacity unit: bytes)

8 16 32 64 128 256 256 512 512 1024 1024
X X X X X X X X X X X
PSp—— 8 16 32 64 128 192 256 256 512 512 1024
16-Color Character 32 | 128 | 512 | 2K X X X X X X X
256-Color Character 64 | 256 | 1K 4K X X X X
Direct Color Bitmap OBJ 128 | 512 | 2K 8K X X X X X X X
Normal Character BG Screen X X X X 2K 4K 8K X X
Rotated Character BG Screen [P X X X 256 X 1K X 4K X 16K
ExtendedBlI(Q;o:::t;tl |::haracter X X X X 512 X oK X 8K X 39K
256-Color Bitmap BG X X X X 16K | X | 64K | 128K | 256K | X X
Large Sc.:reen 256-Color X X X X X X X X X 512Kk X
Bitmap BG
Direct Color Bitmap BG X X X X 32K X 128K | 256K | 512K | X X
Clear Color Image X X X X X 96K X X X X X
Clear Depth Image X X X X X | 96K | X X X X X
Display Capture X X X X 32K | 96K X X X X X
4-Color Texture 16 | 64 | 256 | 1K | 4K — | 16K | — | 64K | — |256K
16-Color Texture 32 | 128 | 512 | 2K | 8K — [32K | — |128K| — |512K
256-Color Texture 64 | 256 | 1K | 4K | 16K | — | 64K | — |256K|512K| X
A3I5 Translucent Texture 64 | 256 | 1K | 4K | 16K | — | 64K | — |256K |512K| X
A5I3 Translucent Texture 64 | 256 | 1K | 4K | 16K | — | 64K | — |256K|512K| X
Direct Color Texture 128 | 512 | 2K 8K | 32K | — |128K| — |[512K| X X
Compressed Texture Image 16 64 | 256 | 1K 4K — | 16K | — | 64K | — |256K
Compressed Texture Index 8 32 128 | 512 | 2K — 8K — | 32K | — |128K
LB RNl 16 | 64 | 256 | 1K | 4K | — | 16K | — | 64K | (96K) | (96K)

Texture Interpolation Palettes

X: Outside of specifications
—: Omitted

Bold: Maximum value

(): The maximum data value exceeds the RAM capacity. Therefore the maximum usable RAM capacity is

specified.

© 2003-2007 Nintendo 353
CONFIDENTIAL

NTR-06-0180-001-G
Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 354 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

NITRO Programming Manual

Appendix C. Data Formats
BG, OBJ Character Data

Format

16-color Character

256-color Character

Bitmap OBJ

Format

Direct Color Bitmap
OBJ

BG Screen Data

Format

Normal Character BG

Character name
Screen

Palette Vflip | Hflip

Rotate Character BG

Character name
Screen

Expand/rotate

Character BG Screen Character name

Palette

Bitmap BG Data

Format

256-color Bitmap BG Color No.

Large Screen

256-color Bitmap BG Color No.

Direct Color Bitmap ARy

BG HA BLUE GREEN RED

Palette Data

Format

BG, OBJ Palette Color

© 2003-2007 Nintendo 355 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

Other Graphics Function Data

Format

Clear Color Image

Fractional

Integer portion)
Clear Depth Image portion

Clear depth

ALP
HA BLUE GREEN RED

Display Capture

Texture Data

Format

4-color Texture

16-color Texture

256-color Texture

A5I3 Translucent
Texture

A3I5 Translucent
Texture

Direct Color Texture

Compressed Texture Data (Note: 32-bit notation)

F A 31 30 29 28 27 26 25 24 23 222120191817 16151413121110 9 8 7 6 5 4 3 2 1 0
orma

Compressed texture
image

T33 | T32 [T31 | T30 | T23 | T22 | T21

T10 | TO3 | TO2 | TO1

F:ompressed texture Palette Address
index

NTR-06-0180-001-G 356

© 2003-2007 Nintendo
Released: July 27, 2007

CONFIDENTIAL

NITRO Programming Manual

Texture Palette Data

Format

Texture palette color

OAM Data

Format

Rotation|

OBJ attribute 0 Form | S99 Mosaid OBJ mode PP y-Coordinate

mode SIz€ |scaling

, V-flip | H-flip _

OBJ attribute 1 Size x-Coordinate

Affine transformation parameter number

. Order of

OBJ attribute 2 Palette Number Priority Character name
Affine transformation [SI¢L | Integer part | Decimal part
parameter PA Distance in x direction for same line
Affine transformation |SllL | Integer part | Decimal part
parameter PB Distance in in x direction for next line
Affine transformation [SI¢L | Integer part | Decimal part
parameter PC Distance in in y direction for same line
Affine transformation Sl | Integer part | Decimal part
parameter PD Distance in in y direction for next line

Sound Data

Format

PCM 8 bit

PCM16 bit

ADPCM

© 2003-2007 Nintendo 357 NTR-06-0180-001-G
CONFIDENTIAL Released: July 27, 2007

NITRO Programming Manual

NTR-06-0180-001-G 358 © 2003-2007 Nintendo
Released: July 27, 2007 CONFIDENTIAL

	1 System
	1.1 System Outline
	1.1.1 NITRO Processor
	1.1.2 Main Memory
	1.1.3 LCD
	1.1.4 Digital Keys
	1.1.5 Touch Screen
	1.1.6 Microphone
	1.1.7 RTC
	1.1.8 Wireless Communications
	1.1.9 Nintendo DS Game Card
	1.1.10 DS Accessories

	1.2 Memory Map
	1.3 Accessing Devices Connected to the Subprocessor
	1.4 Startup Mode
	1.4.1 NITRO Mode
	1.4.2 AGB Compatibility Mode

	1.5 Destination

	2 Memory
	2.1 External Memory
	2.1.1 Main Memory
	2.1.1.1 Look-Ahead Buffer
	2.1.1.2 Burst Mode

	2.2 NITRO Processor's Internal Memory
	2.2.1 VRAM
	2.2.2 Work RAM
	2.2.3 I/O Registers

	2.3 Memory Map for Game Card Boot

	3 Main Processor Core (ARM946E-S)
	3.1 Protection Unit
	3.2 Tightly Coupled Memory (TCM)
	3.2.1 Instruction TCM
	3.2.2 Data TCM

	3.3 Cache Memory
	3.3.1 Instruction Cache
	3.3.1.1 Determining Hits and Misses

	3.3.2 Data Cache
	3.3.2.1 Determining Hits and Misses

	3.3.3 Cache Operations
	3.3.4 Optimizing the Cache

	3.4 Write Buffer
	3.4.1 Write Buffer Operations

	3.5 Ensuring Coherency
	3.5.1 Write-Back Mode
	3.5.2 Write-Through Mode

	4 Display
	4.1 Display System
	4.2 LCD
	4.2.1 LCD Controller Specifications

	4.3 Display Status
	4.4 Display Control
	4.4.1 Top LCD/Bottom LCD Output Switching
	4.4.2 Display Control of 2D Graphics Engine A
	4.4.3 2D Graphics Engine B Display Controls
	4.4.4 Display Modes
	4.4.4.1 Graphics Display Mode
	4.4.4.2 VRAM Display Mode
	4.4.4.3 Main Memory Display Mode

	4.5 Display Capture
	4.6 Master Brightness

	5 2D Graphics
	5.1 Controlling the 2D Display
	5.2 BG
	5.2.1 BG Mode
	5.2.1.1 2D Graphics Engine A
	5.2.1.2 2D Graphics Engine B
	5.2.1.3 Basic Features for Each Type of BG
	5.2.1.4 Specifications for Different BG Types

	5.2.2 BG Control
	5.2.2.1 Screen Sizes and Display Screens

	5.2.3 Character BG
	5.2.3.1 VRAM Maps of BG Data
	5.2.3.2 Text BG
	5.2.3.3 Affine BG
	5.2.3.4 256-Color x 16-Palette Character BG (Affine Extended BG)

	5.2.4 Bitmap BG
	5.2.4.1 256-Color Bitmap BG (Affine Extended BG)
	5.2.4.2 Direct-Color Bitmap BG (Affine Extended BG)
	5.2.4.3 Large-Screen 256-Color Bitmap BG

	5.2.5 BG Scroll
	5.2.6 BG Rotation and Scaling (Affine Transformation)

	5.3 OBJ
	5.3.1 OBJ Display Control
	5.3.2 OAM
	5.3.2.1 Memory Map
	5.3.2.2 OAM Data Format
	5.3.2.3 OBJ Rotation and Scaling (Affine Transformation)

	5.3.3 Character OBJ
	5.3.3.1 Character Data Format
	5.3.3.2 Mapping Modes for Character OBJ Data

	5.3.4 Bitmap OBJ
	5.3.4.1 Bitmap OBJ Data
	5.3.4.2 Blending with BG
	5.3.4.3 Mapping Modes for Bitmap OBJ Data

	5.4 Backdrop
	5.5 Color Palettes
	5.5.1 Standard Palettes
	5.5.2 Extended Palettes
	5.5.2.1 BG Extended Palettes
	5.5.2.2 OBJ Extended Palettes

	5.6 Windows
	5.6.1 Precedence of Windows

	5.7 Color Special Effects
	5.8 Mosaic
	5.9 Display Priority

	6 3D Graphics
	6.1 3D Display Control
	6.2 Geometry Engine
	6.2.1 Overview
	6.2.2 Coordinate System
	6.2.3 Coordinate Transformations
	6.2.4 Projection Transformations
	6.2.5 Depth Buffering
	6.2.6 Geometry Commands
	6.2.7 Swapping the Rendering Engine's Reference Data
	6.2.8 Viewport
	6.2.9 Matrices
	6.2.9.1 Manipulating the Current Matrix
	6.2.9.2 Matrix Stack
	6.2.9.3 Reading the Current Matrix

	6.2.10 Light
	6.2.11 Material
	6.2.11.1 Lighting (Illumination Process)

	6.2.12 Polygon Attributes
	6.2.13 Polygons
	6.2.14 Texture Mapping
	6.2.14.1 Texture Coordinate Transformations

	6.2.15 Tests
	6.2.16 Status
	6.2.16.1 Data Storage Capacity of Polygon List RAM and Vertex RAM

	6.2.17 Warnings Regarding Calculation Precision

	6.3 Rendering Engine
	6.3.1 Overview
	6.3.2 Rendering Methods
	6.3.2.1 Line Buffer Rendering
	6.3.2.2 Buffers in the Rendering Engine
	6.3.2.3 Blank Periods
	6.3.2.4 Number of Polygons that can be Drawn with One Line

	6.3.3 Initializing the Rendering Buffers
	6.3.3.1 Initializing with the Clear Registers
	6.3.3.2 Initializing with Clear Images

	6.3.4 Rasterizing
	6.3.4.1 Opaque Polygons
	6.3.4.2 Translucent Polygons
	6.3.4.3 Wireframes
	6.3.4.4 Shadow Polygons
	6.3.4.5 Toon Shading/Highlight Shading

	6.3.5 Textures
	6.3.5.1 Texture Blending
	6.3.5.2 Texture Formats

	6.3.6 Alpha-Test
	6.3.7 Alpha-Blending
	6.3.7.1 3D Alpha-blending
	6.3.7.2 2D and 3D Alpha-Blending Preprocess

	6.3.8 Edge Marking
	6.3.9 Fog Blending
	6.3.9.1 3D Fog
	6.3.9.2 Fog Preprocessing for 2D

	6.3.10 Anti-aliasing
	6.3.11 Status

	6.4 2D Graphics Features you can Apply to the 3D Screen after Rendering
	6.4.1 Raster Scroll
	6.4.2 Order of Display Priority with a 2D Screen
	6.4.3 Windows
	6.4.4 Color Effects
	6.4.4.1 Alpha-Blending with the 2D Screen
	6.4.4.2 Shininess Up/Down

	7 DMA
	8 Timer
	9 Interrupts
	9.1 Interrupt Master Enable Register
	9.2 Interrupt Enable Register
	9.3 Interrupt Request Register
	9.4 Interrupt Cautions
	9.4.1 Clearing IME and IE
	9.4.2 Multiple Interrupts
	9.4.3 Interrupt Delays During DMA Operation
	9.4.4 Interrupts from ARM7

	10 Power Management
	10.1 Sleep Mode
	10.2 Controlling Various Power Supplies
	10.2.1 Sound
	10.2.2 LCD Backlight
	10.2.3 LCD
	10.2.4 Microphone
	10.2.5 System
	10.2.6 Graphics

	10.3 Power Status
	10.3.1 Low Battery State
	10.3.2 DS Open/Closed State

	11 Accelerators
	11.1 Divider
	11.1.1 Number of Calculation Cycles

	11.2 Square-Root Unit
	11.2.1 Number of Calculation Cycles

	12 Keys
	12.1 Input Keys
	12.2 Interrupt Handling for Key Input

	13 Sound
	13.1 Hardware Specifications
	13.1.1 Data Format
	13.1.1.1 8bitPCM Data Format
	13.1.1.2 16bitPCM Data Format
	13.1.1.3 IMA-ADPCM Data Format
	13.1.1.4 PSG Rectangular Waveforms
	13.1.1.5 Noise

	13.1.2 Channels
	13.1.3 Mixer
	13.1.4 Master Volume
	13.1.5 Sound Capture
	13.1.6 Power Control
	13.1.7 Cautions

	13.2 Sound Block Diagrams
	13.2.1 Overall Sound
	13.2.2 Channels 0 - 3 and Sound Capture 0 1
	13.2.3 Channels 4 7
	13.2.4 Channels 8 15
	13.2.5 Examples of Using Sound
	13.2.5.1 Normal Use Example
	13.2.5.2 Reverb Example
	13.2.5.3 Effect Example

	13.3 NITRO-Composer
	13.3.1 NITRO-Composer Playback Method
	13.3.1.1 Sequence Playback
	13.3.1.2 Waveform Playback
	13.3.1.3 Stream Playback

	14 Wireless Communications
	14.1 Hardware Specifications
	14.2 Wireless Manager
	14.2.1 Internet Play
	14.2.2 Multi-Card Play
	14.2.3 Single-Card Play

	15 Touch Panel
	15.1 Touch Panel Structure

	16 Microphone
	17 Real-Time Clock (RTC)
	18 Internal Flash Memory
	18.1 Touch Panel Calibration Data
	18.2 Owner Information Data
	18.3 NITRO Initial Setting Data
	18.4 RTC Operation Information Data

	Appendix A. Register List
	A.1 Addresses 0x04000000 and Higher
	A.2 Addresses 0x04001000 and higher (2D Graphics Engine B-related)
	A.3 Addresses 0x04100000 and higher

	Appendix B. List of VRAM Data Capacities
	Appendix C. Data Formats

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

