ACTIMAGINE
VX Middleware for NINTENDO DS

Quick start guide
version 1.5.0.0 (September 5™ 2006)

Introduction

The VX Middleware for NINTENDO DS is divided into different components:
- The VX Video Codec for Windows.
- The AviToDs conversion tool.
- Video resources.
- Three sample codes.
- The libVX libraries and prototype files.

Each of these components will be described below.

Version 1.5.0.0 (September 5h 2006)
. Modifications done in the three sample codes in functionVXDemo_StartSoundStream.
The process of moving unstreamed audio data to the beginning of the audio buffer before
restart has been removed : it was too slow under some conditions.
Audio data is now simply dumped.

. Added description about TCM usage.
Version 1.4.0.1 (March 20" 2006)
. Logo data to be displayed is modified and added (Refer to
libVX/docs/README/AboutLogo.pdf for the display condition).
Logo data is available in libVX/data/logo/ .
Version 1.4.0.0 (February 150 2006)
. Modification of AviToDs tool to avoid crash issue caused by problematic Avi files, now
outputs the following message : "Error: non standard or corrupted AVI file, please check
file format.".
. —debugsound <ouputfile.wav> option added to AviToDs tool to ouput a wav file for

previewing the compressed sound without the need of a NINTENDO DS development
kit.



. Modifications done in the three sample codes :
. You can pause/resume video playback by using START button.
. You can stop video playback by using B button.
. You can restart video playback by using A button.
. You can select loop disable/enable by using SELECT button.
. LCD power is off/on when DS cover is closed/opened.
. Use of #pragma unused instead of dummy affectation in callbacks to avoid compiler
warnings.

. Modification of html documentation concerning VX_Malloc/VX_Free functions : now
describes where these functions are called internally in libVX library.

Version 1.3.0.2 (December 05 2005)

. Note added in this documentation explaining in detail the use of Keyframe Interval
parameter in VX Video Codec for Windows.

Version 1.3.0.2 (November 280 2005)

. Typo error in vx.html removed, was displaying VX_CloseMovie.htm' in
libVX Library->Function List section instead of VX_CloseMovie.

. VX_UnpackFramelmage and VX_BlitFramelmage functions have a more detailed
description in the html documentation.

. VX_SkipFramelmage function has been put back on: hiding its functionality
in libVX was causing a delay of several frames between video and audio.
A detailed description is provided in the html documentation to better understand its use.

. Sample codes modified to use the VX_SkipFramelmage function.

. Wrong use of Sub 2D graphic engine functions in the sample code dualScreen fixed: the
first blitted frame was never displayed.
Functions modified in the sample are NitroMain, VXDemo_Flip and
VXDemo_GetSubBackBuffer.

. Redundant nbFrameBuffered variable increment removed in sample code
dualScreen: was causing a skip instead of a blit of the first frame.

Version 1.3.0.1 (October 31™ 2005)

. Added logo bit map file to the package.

A NOTICE regarding the logo which should be displayed for a certain period of
time,has

been added on Readme-1ibVX-1_3 0_1.txt.

Version 1.3.0.0 (October 21* 2005)



. ActimagineAviToDS program renamed AviToDS.
. VX Windows Codec renamed VX Video Codec

. VX_SkipFramelmage function removed: its functionality is now hidden into the libVX
APL.

. Modifications in the sample codes:
. Unused function prototype declarations removed.
. Playback speed can be controlled by the video framerate with a periodic alarm
(case when a video does not contain any audio).
. VX_SkipFramelmage calls removed.

. VX Core now renamed /ibVX, directory and file structure have been changed.
. Functions and types reference moved from this document to html format.
Version 1.2.0.0 (August 3™ 2005)
.New Vx Windows codec version 1,2,0,0:
.Fixed a bug in the bitstream format which could cause a crash in rare cases, video
bitstream format is no longer compatible with the old VX Core libraries.
.Quality of the compressed videos slightly improved.
.Renamed Actimagine Windows Codec For Nintendo DS.
.VX Core libraries modified to take into account the new video bitstream format.
. Fixed rare audio compression distortion. Quality slightly improved.
Version 1.1.0.0 (July 27" 2005)
.VX_UnpackFrameSound renamed VX_GetFrameNbAudioPacket in the SDK.

.Added a pitch parameter to the function VX_BlitFramelmage. See the following
documentation for more details. Set outFrameBufferPitch to 256 for fullscreen videos.

New Vx Windows codec version 1,1,1,1:
. Fixed bug in codec interface (slider).
. Fixed minor bug in codec core (quality slightly improved).

. Fixed a bug which could cause an ARM9 exception or an assertion error.

. Now detects sound buffer underflow in sample codes: displays "Sound underflow !!!!"
in debug console.

. macro SND_CHANNEL_LOOP_REPAET replaced by
SND_CHANNEL_LOOP_REPEAT in the SND_SetupChannelPcm call of the sample
codes.



. New sample movies provided by NINTENDO.
. Improved documentation of ActimagineAviToDs.

. Added stereo sound support in the SDK:

. VX_GetNbAudioTrack function added.

. VX_SkipFrameSoundOnePacket function added.

. ActimagineAviToDs tool now accepts stereo PCM sound data.
. To integrate stereo sound, binary format of .vx files has changed: you must reconvert
your resources with the ActimagineAviToDs conversion tool.

. New sample VX_Sample_From_File_Stereo added.
. Every NNS_* function replaced by SND_* equivalent in the sample codes.
Version 1.0.0.3 (June 1% 2005)

.New Vx Windows codec version 1,1,1,0:
This codec fixes compatibility problems with external Windows applications as described
below.
There is a new configuration interface:
. Enhanced Chominance checkbox is removed (always on now).
. Distortion parameter replaced by a more understandable Quality parameter.
See following documentations for more details.

. Binary format of .vx files no longer compatible with earlier versions of the SDK, you
must reconvert your resources with the ActimagineAviToDs conversion tool.

. F'S_Init() is now called with DMA number 1 as parameter in the samples (DMA 0 is no
longer usable for filesystem functions in the latest NITRO SDK).

. Memory leaks removed in the VX_CloseMovie function.

. Upper/lower case distinction of the video fourcc removed in the ActimagineAviToDS
conversion tool.

. Modifications of the Vx Windows codec have been done to circumvent the non standard
way TMPGEnc application uses windows codecs.

. Sound glitches due to heavy decode processing time fixed.

. VX_ReadFrame function optimized (could take several milliseconds to execute, now
takes only 200 microseconds), file reads done asynchronously when playback is done
from an FS_File.

. VX_SkipFramelmage function added : useful when you have a long sequence of hard to
unpack frames, call it alternatively with VX_BlitFramelmage to save time for the



unpack of the next frame. See the following documentation and the samples for more
details.

. The maximum number of frames which can be unpacked without been blitted or
skipped is now user definable. Prototype changes of functions
VX_OpenMovieFromMemory and VX_OpenMovieFromFile made to allow this feature.
See the following documentation and the samples for more details.

. Phantom sound problem fixed: modifications in the sound compression routine of
ActimagineAviToDS program have been done. Remove old .cbk files if any.

. AfterEffects problem with Vx Windows Codec: modifications of the Vx Codec has been
done to circumvent an AfterEffects bug. The codec now works with AfterEffects 5.5 and
6.5.

Due to AfterEffects non standard way to use Windows codecs, batch processing is not yet
possible. VirtualDub batch processing works perfectly though.

Version 1.0.0.2 (April 21°2005)

. Problem of playback looping when streaming from memory fixed.
. New function VX_GetlFramelnfo added in the SDK.

Version 1.0.0.1 (March 140 2005)

. new video codec: much faster compression, faster playback.

. new audio codec: selectable quality, faster playback.

. samples reworked for optimized playback:
. asynchronous video buffer flipping.
. decompressed frames buffering: smoother playback of difficult frames, no more
sound glitches.

.new SDK functions :
. VX _GetNblFrame.
. VX_JumpTolframe.

Version 1.0.0.0 (February 8" 2005)
. first release.

VX Video Codec for Windows

Codec installation

1- Go to the libVX/tools/bin directory.
2- Right click on vxsl.inf and select Install. This installs the VX codec.



Copying Files... x|

v dll
To CAWIMDOWShSystem32

Cancel

Video editing tool

We recommend using the freeware VirtualDub as a video tool to compress your videos. You can
download it at http://www.virtualdub.org.
You can also use “off the shelf” products like Adobe Premiere® or Adobe After Effects®.

Video Preparation and Processing

Video preparation and processing are very important. They will contribute to 50% of the final
video quality, the remaining 50% coming from the video codec itself.

Rule #1: Use the best video source you can get
Rule #2: Resolution of the video sources should be big, at least 640x480
Many processes (like contrast/gamma) will benefit from the size of the video to convey less

errors (after the final downsize), because they are applied to more pixels beforehand.

Rule #3: Delay the final downsizing to DS resolution as late as possible in your processing
pipeline

Rule #4: Source video should be uncompressed or not compressed much

Rule #5: be careful of the source video frame rate

Typical videos captured from TV are 30 fps. However, the original frame rate (cinema) is often
24 fps. In that case you should convert the movie back to 24 fps with an “inverse telecine”
method to ensure better quality. This kind of method is available in VirtualDub in the
Video/Frame rate menu.

Rule #6: When lowering frame rate, only use ‘“decimation’ methods
See the Video/Frame rate menu in VirtualDub.



¥ideo frame rate control 2 x|

— Saource rate adjustment
&' Mo change

" Change to I frarnes per second

" Change o video and audio durations match

Mate: Changing the framerate will cause audio/viden despnchronization.

— Frame rate decimation

% Process all frames

{~ Process every other frame [decimate by 2] Framerate decimation will not
{~ Process evern third frame [decimate by 3] affect afv sync.
™ Decimate by

— lnverse telecine [3:2 pulldown remonal]

%' Mone [progressive] [Jffzet: I'I

" Reconstruct from fields - adaptive
™ Reconstruct from fields - manual
™ Reconstruct from blurred fields - manual

| It polarity

] I Cancel

Rule #7: in the final video, keep as much as possible the same aspect ratios as the source
video (in general 10% difference is ok)

Your source videos will probably have an aspect ratio of 4/3 (TV), 16/9 (cinema) or 2.35
(cinema also). DS aspect ratio is 4/3 (256/192). To convert from source aspect ratio to DS aspect
ratio, you will have to crop your video (remove a part of the image) or add black bars.

Rule #8: downsize using a “Precise bicubic” (or better) method
You can choose the target resolution of the videos with the following restrictions:
- Final resolution must not exceed 256x192 for DS.
- Width and height of the target resolution must be multiples of 16.
Again, do not forget to preserve the original aspect ratio.

Rule #9: when storing intermediate movies, use a lossless video codec
We recommend using Huffyuv for storing intermediate files.
See http://neuron2.net/www.math.berkeley.edu/benrg/huffyuv.html.

Video Compression

Once the video is prepared, compressing it is very straightforward.

1- In VirtualDub, open the Video — Compression menu and choose Actimagine VX Video Codec For
NINTENDO DS



«| Video codec information

Actimagine Vi Video Codec For Nintendo DS B e No
E&%‘fbfﬂe{: by Radius FOURCE code s’

Indeo® video 5.10 Driver name vs 1 .dll

Intel 4:2:0 Video V2.50

Intel Indeo(R) Video R3.2 e

Intel Indeo® Video 4.5 Format restrictions:

Intel I'YUV codec Width must be a multiple of 16

Microsoft H 261 Video Codec |- Height must be a multiple of 16

Microsoft H.263 Video Codec Walid depths: 24

Microsoft RLE j
Duality | "m0 Corfigwre | bout |
I™ lse target datarate of I kilobtesdsecond
[T Force keyframes every I frames Cancel

3- Click on the Configure button

Actimagine Vx Video Codec Configuration For Nintendo 5[
Options
Cluaality J I'I oo.a

[ Place keyframe |3':”:' K.eyframe Interval

Cancel |

3- Set the parameter values:

. Quality manages image quality, artifacts and data-rate, valid values are between 0 and

100 inclusive.

High Quality gives high quality and high data-rate.
Low Quality gives low quality and low data-rate.

. Place keyframe places keyframes automatically every Keyframe Interval frames
approximately. If it is not selected, the video will have only one keyframe (the first
frame). If you need FastForward/Rewind functionality, a maximum interval of 300
frames is recommended (approximately one keyframe every 12 seconds at 24 fps). Valid
values of Keyframe Interval parameter are between 10 and 500 inclusive.

You can use the excel file vx.xls (located in directory libVX/fools/etc) which helps you to
choose the correct Quality parameter to achieve the desired target size. Just compress 2
times your video with different qualities, then fill in the blue cells in the excel file with



the two qualities and size values to obtain the target quality needed to have the desired
file size (it uses linear interpolation).

Ed Microsoft Excel - ¥H.x1s =10] x|

File Edit Wew Insert Formak  Tools

Data  Window  Help -8 X
DS H SR Mo - 2 A2
ia¥ad%adT¥a g it
c14 - 25

A B C D o
1 -]
2 |pass 1 J
3 |pass 2
4 |target
]
5
? -
4 4 » w['Sheetl {shestz 4|4| | L”_‘

FLIF A

4- Close the dialog boxes and launch the compression process.

Note:

The Keyframe Interval parameter of the VX Video Codec for Windows is just an
indication to know approximately when it should place key-frames. This parameter is used by
the codec to look for a scene-cut around the ‘theoretically’ perfect position and place the key-
frame there because putting it elsewhere would result in unpleasant visual effects.

If you want precise control of the placement of key-frames (for example to be able to
play a movie from a given set of points), you should cut your source movies into parts.

You can do this with VirtualDub using ‘Edit -> Set Selection start/end’ and save each part using
‘File -> Save as AVI'.

Each part should begin at a point where the user wants to begin the playback.

Then you compress each part with the VX Video Codec for Windows.

This way, once compressed, you will be sure that there is a key-frame at all important points (at
the beginning of each part) and there is no need to add additional key-frames (you can leave
Place Keyframe unchecked in the codec options).

If you want to have a single movie file, you can merge the compressed movies.

You can do this with VirtualDub using ‘File -> Open’, then ‘File -> Append’ (to add all parts),
set ‘Video -> Direct Stream Copy’ (to keep the video compressed) and finally ‘File -> Save as
AVT.

There is one limitation to merge movie files : you must use the same compression Quality
parameter for all parts to be merged.



Sound Preparation

o Audio format in the final AVI file must be uncompressed 16 bit mono or stereo.

o Audio should be normalized at 100% so it can use the whole dynamic range of the DS.



AviToDs conversion program

AviToDs.exe is a console program used to convert an input avi file containing VX compressed
video frames to a binary file suitable for the libVX libraries.

It is located in the directory libVX/tools/bin.

This tool compresses the sound during conversion.

Syntax: AviToDs <commands>
<commands> can be:
-in <inputfile.avi>
-out <outputfile.vx>
-codebook: always rebuild the audio codebook
-nocodebook : never rebuild the audio codebook
-quality: audio quality factor, default value is 128, value must be positive
-debugsound <outputfile.wav>

A typically good trade-off between sound quality and data-rate is to use 32.768Hz sound and
leave the default quality parameter (128). This should give a sound data-rate around 32kbit/s.

By comparison, an average video data-rate for a full-screen (256x192) high quality (30fps) video
can typically be around 400kbit/s (this depends highly on the video).

You should keep in mind the video data-rate when tuning audio quality as audio generally
doesn’t use much of the available space. On the other hand, low data-rate video can make audio
data-rate more significant.

If you are not satisfied with the sound quality or data-rate, you can adjust both sampling
frequency and the quality parameter.

The quality parameter ranges from O to 1000. Resulting data-rates then ranges from 0.6 to 1.25
bit/sample. Low quality gives low data-rates; high quality gives high data-rates. Good trade-offs
between quality and data-rate can be found around the default value (128).

If the sound quality is not good enough at 16kHz with a high quality parameter, we recommend
increasing sampling frequency at 32kHz (but it will also increase data-rate accordingly).
In the same way, if data-rate is too high, even with a low quality parameter, we recommend
decreasing sampling frequency.

A codebook (.cbk) file is an “audio analysis” file generated the first time a video is converted.
If the same file is converted another time, the codebook is not re-calculated (which saves time).

The codebook option forces the re-calculation of the codebook, even if the video file has not
changed.

The nocodebook option is useful when you convert a video file which changes many times with
always the same audio inside (for example you test different video compression parameters).

If you use the nocodebook option, the codebook will not be recalculated every time, it will be
done only at the first time, which saves time.



The debugsound option allows you to output the resulting compressed sound in WAV format :
useful when you want to have a quick preview of the quality of the compressed sound without
the need of a NINTENDO DS development kit.

VX videos

You will find in the libVX/buid/demos/libVX/data directory the resources used to make the VX
movies for NINTENDO DS:
- scrl_audio_mono.avi, scrl_audio_stereo.avi, scrU_audio_mono.avi, scrD.avi : the
avi sources (already compressed using the VX Video Codec for Windows).
- scrl_audio_mono.vx, scrl_audio_stereo.vx, scrU_audio_mono.vx, scrD.vx : the
resources obtained by using the AviToDs program.

These resources are used in the sample code described below.

Sample codes

You will find in the libVX/build/demos/libVX directory three different sample codes:
- fromFile is a basic sample code showing how to use the libVX libraries to play a simple
video file with mono sound.
- dualScreen is a basic sample code showing how to use the libVX libraries to play two
different video files (with mono sound) on the upper and lower screens.
- fromFileStereo is a basic sample code showing how to use the 1ibVX libraries to play a
simple video file with stereo sound.

These three samples are well documented. You are invited to have a look at them to learn how to
use the 1ibVX libraries.

libVX libraries and prototype files

Prototype files:
- ‘vx.h’ in directory libVX/include/nitro.
- ‘libVX.h’ in directory libVX/include/nitro/vx.

Library files:
- three versions of file ‘libVX.a’ :
- in directory libVX/lib/ARM9-TS/Debug for Debug builds.
- in directory libVX/lib/ARM9-TS/Release for Release builds.
- in directory libVX/lib/ARM9-TS/Rom for Rom builds.



Using the library:
Include the file ‘vx.h’ in your source code and link with one the three versions of the ‘libVX.a’

library.
For further details, see the html documentation of 1ibVX and have a look at the sample codes.

About TCM usage

libVX utilizes these sizes of TCM(Tightly-Coupled Memory) when playing back movies.
- 26784 bytes of ITCM
- 4064 bytes of DTCM

ITCM portion of libVX is set as autoload , it cannot be overlaid.

You can do whatever you want with the ITCM portion allocated by libVX when not playing
videos as long as you save it before erasing it and restore it before reusing libVX.

Here is an exhaustive list of libVX functions who are calling ITCM located code :

- 'VX_UnpackFramelmage' function calls ITCM located 'VxUnpack' internal function.
- 'VX_BIlitFramelmage' function calls ITCM located 'YuvToArgb' internal function.

- 'VX_BIlitFrameSoundOnePacket' function calls ITCM located 'SxUnpack' internal
function



