
 2005-2007 Nintendo NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual
Nintendo Wi-Fi Connection

Version 1.4.3

The contents in this document are highly

confidential and should be handled accordingly.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 2  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo

of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be

disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NITRO-DWC Programming Manual

 2005-2007 Nintendo NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

Table of Contents

1 Introduction ...7

2 User Management Under NITRO-DWC ...8

2.1 Managing Wi-Fi User Information ...8

2.1.1 User ID and Player ID ...9

2.1.2 The Difference Between a User ID and Player ID...9

2.1.3 Player Information by Game: Login ID ..10

2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games11

2.2 Friend Management Overview..12

2.2.1 Building Friend Relationships..12

2.2.2 Building Friendships Using DS Wireless Communications...13

2.2.3 Building Friendships Using Friend Registration Keys ...14

2.2.4 Friend Information Saved by Games ..14

2.3 Exception Handling ...15

2.3.1 Removing the Association Between a DS and a DS Card..15

3 DWC Initialization..16

4 Creating User Data ...18

5 Connection Process..21

5.1 Connecting to the Internet...21

5.2 Disconnecting from the Internet ..23

5.3 Connecting to the Nintendo Wi-Fi Connection Server..23

6 Creating Friend Rosters and Information..26

6.1 Exchanging Friend Information via DS Wireless Communications ..26

6.2 Exchanging Friend Registration Keys...27

6.3 Synchronizing Friend Rosters...29

6.4 Obtaining Friend Information Types..32

6.5 Obtaining Friend Status ..33

7 Matchmaking...36

7.1 Peer Matchmaking Without Specifying Friends ..36

7.2 Peer Matchmaking by Specifying Friends...38

7.3 Evaluating Candidate Players for Matchmaking...39

7.4 Server-Client Matchmaking...41

7.5 Increasing Matchmaking Speed..44

7.6 Names that Cannot be Used for Matchmaking Index Keys..44

8 Sending and Receiving Data ..45

8.1 Peer-to-Peer Data Exchange..45

NITRO-DWC Programming Manual

NTR-06-0429-001-F 4  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

8.2 Closing Connections... 48

8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch .. 49

8.4 Emulating Delays and Packet Loss.. 50

8.5 Amount of Data Sent and Received ... 51

9 HTTP Communication .. 53

9.1 Preparing to Use the GHTTP Library ... 53

9.2 Uploading Data... 53

9.3 Downloading Data .. 55

9.4 Closing the GHTTP Library .. 58

10 Communication Errors.. 59

10.1 Error Handling .. 59

10.2 List of Error Codes.. 61

11 Network Storage Support ... 62

NITRO-DWC Programming Manual

 2005-2007 Nintendo 5 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

Code

Code 3-1 DWC Initialization ...17

Code 4-1 Creating User Data...19

Code 4-2 Saving User Data ...20

Code 5-1 Connecting to the Internet ..22

Code 5-2 Disconnecting from the Internet ...23

Code 5-3 Connecting to the Nintendo Wi-Fi Connection Server ...24

Code 6-1 Exchanging Friend Information Using DS Wireless Communications26

Code 6-2 Exchanging Friend Registration Keys ..28

Code 6-3 The Friend Roster Synchronization Process..30

Code 6-4 Obtaining Friend Information Types ...33

Code 6-5 Getting a Friend’s Status ..34

Code 7-1 Peer Matchmaking Without Specifying Friends..36

Code 7-2 Peer Matchmaking by Specifying Friends ..38

Code 7-3 Evaluating Candidate Players for Matchmaking ..40

Code 7-4 Server/Client Matchmaking ..41

Code 8-1 Setup for Data Exchange ...45

Code 8-2 Sending Data..48

Code 8-3 Emulating Delays and Packet Loss..50

Code 9-1 Initializing the GHTTP Library ..53

Code 9-2 Uploading Data...54

Code 9-3 Downloading Data ..56

Code 10-1 Error Handling Process ..59

Code 11-1 Accessing the Storage Server ..62

Tables

Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keys ..44

Table 8-1 Communication Data Breakdown...51

Figures

Figure 2-1 Save State of the User ID on the DS and DS Card ..8

Figure 2-2 Using Multiple Nintendo DS systems and DS Cards..8

Figure 2-3 How Data is Stored on the Internet...9

Figure 2-4 Configuration of a Login ID...10

Figure 2-5 Comprehensive Diagram of Terminology for Nintendo Wi-Fi Connection Authentication11

Figure 2-6 Creating Friendships Using DS Wireless Communications ...13

Figure 2-7 Creating Friendships Using Friend Registration Keys..14

NITRO-DWC Programming Manual

NTR-06-0429-001-F 6  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

Revision History

Version Revision Date Description

1.4.3 2007/07/21 Corrected an error in Code 7.3 Evaluating Candidate Players for Matchmaking: changed
s_int_key to &s_int_key.

1.4.2a 2007/04/27 Corrected typographical errors and changed dates to international format.

1.4.2 2007/02/15 Revised text within Code 6-1, Exchanging Friend Information Using DS Wireless
Communications, (s_friendData→ownFriendData).

1.4.1 2006/08/09 Revised text within 8.3, Yardstick for Buffer Size Specified by DWC_InitFriendsMatch
and Table 8 2, Communication Data Breakdown.

1.4.0 2006/06/19 Changed the conditions for displaying error codes in 10.1 Error Handling.

1.3.0 2006/06/06 Revised the section "Examples of When a Temporary login ID May be Duplicated" in 2.1.3
Player Information by Game: login ID.

Changed the memory size to 230 kbytes from 200 kbytes in Chapter 3, Initializing NITRO-
DWC.

Added 7.6 Names That Cannot Be Used for Matchmaking Index Keys.

Miscellaneous changes (unified terminology, made corrections, etc.)

1.2.0 2006/03/10 Added 2 User Management Under NITRO-DWC.

Added 7.5 Increasing Matchmaking Speed.

Added 8.5 Amount of Data Sent/Received.

Miscellaneous changes (review of text, changes in terminology, etc.)

1.1.0 2006/01/30

Updated Code 6-3 Synchronizing Friend Rosters.

Corrected error in Code 6-4 Friend Information Types” (“stablished” -> “established”).

Corrected error in Code 7-3 Evaluating Candidate Players for Matchmaking” (“anymatch” ->
“anymatch test”).

Changed data load function in “11 Accessing the Storage Server” to a newly added function.

1.0.0 2005/12/28 Initial Version.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 7 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

1 Introduction

The NITRO-DWC library (DWC library) is designed with the goal of making Nintendo Wi-Fi

Connection "easy to use, free of worries, and free of charge.” Specific benefits include the following.

� Making it easy to connect by sheltering users from complicated and detailed Internet settings.

� Making it easy to communicate with friends with whom friendships were established by using

wireless communications or by exchanging friend registration keys when not connected to the

Internet.

� Making it easy to remain secure by ensuring that one user cannot easily access another user’s

Internet-related information when a DS changes hands.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 8  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

2 User Management Under NITRO-DWC

2.1 Managing Wi-Fi User Information

Information required for Nintendo Wi-Fi Connection authentication includes a user ID, player ID, and

password. This information is managed while treating the Nintendo DS and DS Card as a pair (see

Figure 2-1).

Figure 2-1 Save State of the User ID on the DS and DS Card

【DS 本

体】

ユーザーID

【DS カー

ド】

ユーザーID

� The user ID and password used for Nintendo Wi-Fi Connection authentication are saved on the

Nintendo DS.

� The user ID and player ID used for Nintendo Wi-Fi Connection authentication are saved on the

DS Card.

This information is used by the Nintendo Wi-Fi Connection for authentication. If the user ID saved on

the DS Card differs from the user ID saved on the DS, data saved on Nintendo Wi-Fi Connection

cannot be accessed. This prevents the unauthorized access of data (see Figure 2-2).

Figure 2-2 Using Multiple Nintendo DS systems and DS Cards

NITRO-DWC Programming Manual

 2005-2007 Nintendo 9 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

2.1.1 User ID and Player ID

The user ID is generated offline and is designed to be as unique as possible. After it is generated, it

becomes the user ID for connecting to the Internet, authenticating, and registering with the system. If

the ID is found to already be in use during authentication, a new, unique user ID will be assigned.

To ensure that the user ID is unique, part of the Nintendo DS system’s MAC address is used.

Although this prevents the same user ID from being used on different DS, duplication might occur

when a user ID is moved1 or regenerated.

The player ID is a random 32-bit ID. Because data on the Internet server is managed using the

combined user ID, player ID, and Game Code, a player ID only needs to be unique with respect to the

user ID and Game Code. If the player ID is duplicated, a unique player ID will be assigned during

authentication.

2.1.2 The Difference Between a User ID and Player ID

Because a user ID is issued to each DS, a user that uses the same DS must use a single user ID for

all games. Since player IDs are issued to DS Cards, you can use different player IDs when using the

same DS (user ID) and the same Game Code (see Figure 2-3).

Figure 2-3 How Data is Stored on the Internet

1 User Information stored on the DS can be moved using the “Nintendo Wi-Fi Connection setup” feature, provided by
DWC.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 10  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

2.1.3 Player Information by Game: Login ID

The combined user ID + player ID + Game Code are called the “login ID” (see Figure 2-4). User

information saved on the Internet server is called a “profile,” while the ID used to manage profiles on

the server is called a “profile ID.”

Figure 2-4 Configuration of a Login ID

Inside the DWC library, the login ID or profile ID is used to search for the profiles of other users on the

Internet server.

The login ID is generated when not connected to the Internet and becomes a temporary login ID.

Although a user is likely to use this login ID as is, it might not be available. In this case, a unique,

approved login ID (authenticated login ID) is generated. There is a one-to-one correspondence

between authenticated login IDs and assigned profile IDs.

A temporary login ID may be duplicated under the following circumstances.

� The login ID is created with a user ID that was not authenticated, the same user ID already is

registered in the Authentication server by another person, and the login ID was created with the

same player ID for the same game.

� Multiple DS systems created login IDs with the same player ID for the same game using the

same unauthenticated user ID.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 11 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games

Games must save this information for Nintendo Wi-Fi Connection authentication as backup on the DS

Card.

The size of the information used for authentication is 64 bytes.

The Nintendo Wi-Fi Connection authentication information includes the temporary login ID, the

authenticated login ID, and the profile ID. Developers do not need to fully understand the details of

this because this information is created and updated by the DWC library.

Information for Nintendo Wi-Fi Connection authentication must also be saved for each player when

multiple players can use the same DS Card.

Figure 2-5 shows the Nintendo Wi-Fi Connection authentication terminology covered so far.

Figure 2-5 Comprehensive Diagram of Terminology for Nintendo Wi-Fi Connection

Authentication

NITRO-DWC Programming Manual

NTR-06-0429-001-F 12  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

2.2 Friend Management Overview

2.2.1 Building Friend Relationships

To be able to easily start communication with friends using DWC, friend relationships are built by an

Internet server. Friendships are built by exchanging user information. Established friendships are

saved in the profile of each user.

There are two methods of exchanging the user information used to create a friendship.

� Using DS Wireless Communication

Using this method, the players exchange login or profile IDs. The login ID is used if the player in

question has never logged in before. Even though each of these was created locally, it is highly

likely that they are unique, but not guaranteed. However, because the probability of duplication is

less than 2-75, no special countermeasure against duplication is required. The profile ID is used

for players who have logged in at least once before. This creates friendships with certainty,

because a particular party can always be specifically identified.

� Exchanging friend registration keys

Using this method, the players exchange friend registration keys, included in the profile ID, as

information used for error checking. A player must have connected to the Internet at least once

to use a profile ID. You must create an interface that allows input to be confirmed and re-entered

in case it is incorrectly input.

The information exchanged can be created using DWC. DWC includes functions for automatically

creating the most applicable information possible based on information used for Nintendo Wi-Fi

Connection authentication saved on the DS Card.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 13 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

2.2.2 Building Friendships Using DS Wireless Communications

A mechanism is provided that allows friendships to automatically be established later on the Internet

when information is exchanged with another party during DS Wireless Communications. The

information exchanged is created from the login ID or profile ID included in user data.

Note: The exchange of this information via DS Wireless Communications is not supported by DWC.

Be sure that applications handle the exchange of created information.

Figure 2-6 Creating Friendships Using DS Wireless Communications

NITRO-DWC Programming Manual

NTR-06-0429-001-F 14  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

2.2.3 Building Friendships Using Friend Registration Keys

The term “friend registration key” refers to information that can be used to specifically identify another

user when establishing a friendship. A mechanism is provided that allows friendships to be created by

exchanging this friend registration key (see Figure 2-7). Because the friend registration key is

manually entered by users, it should not be unnecessarily long. It is created using the profile ID

obtained by connecting at least once to the Internet rather than using the login ID.

Figure 2-7 Creating Friendships Using Friend Registration Keys

The friend registration key is a 12-digit number.

Pay attention to the following points when developing games.

� You must create a user interface for issuing friend registration keys. Since a key cannot be

issued unless a player connects to the Internet at least once. A message to this effect must be

displayed.

� You must create a user interface for entering the friend registration key. The user interface must

allow the user to correct an incorrectly input friend registration key. It should also allow users to

save and edit the entered data as many times as necessary.

2.2.4 Friend Information Saved by Games

Games must save exchanged friend information for the maximum number of players to be managed

as friends in a backup area. This is required so users can edit friendships when they are not

connected to the Internet. Friend-related information used by the actual game (such as nicknames

and win-loss record) must also be saved. DWC treats all of this as friend information without regard to

the type of data (login ID, profile ID, and friend registration key).

To store friend information used by DWC, 12 bytes per player are required.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 15 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

2.3 Exception Handling

2.3.1 Removing the Association Between a DS and a DS Card

For security reasons, Nintendo Wi-Fi Connection treats the DS and DS Card as a set. This can be

inconvenient for a user if the DS is resold or broken, as the ability to connect to Nintendo Wi-Fi

Connection is lost.

To solve this problem, there is a DWC mechanism that allows the user to delete the data that associates

a DS Card with a given DS by destroying information stored in the profile. Because this deletes all

Internet friendships, you must create an interface to warn the user before deleting the data.

Even if Internet friendships are deleted, friend information for other parties remains on the DS Card of

the deleted user. This allows friendships to be restored by using this information and sending a new

friend registration key to the other party. Since it is necessary in these cases to prompt the user to

register the deleted user as a friend again, each application needs to include a message for notifying

the user of the required procedure.

With regard to specific processing, the currently saved association on the DS Card is deleted. If a

user wants to create a new association, it must be handled by creating new user data and destroying

the previous user data. Furthermore, even if user data is updated, friendships on the friend roster

saved on the DS Card remain established. If a specification where the friend roster remains intact is

used, be sure to clear the friendship established flag included in the friend information when letting

the user know that friendships remain established.

Note: Refer to the flow diagram in the Nintendo Wi-Fi Connection Programming Guidelines.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 16  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

3 DWC Initialization

Before calling any of its library functions, you must initialize the DWC library as shown in Code 3-1

using the DWC_Init function, which performs the following processes.

� Generates information for user authentication stored in the DS

� Checks if the connection target information stored in the DS’s backup memory is valid

Also use the DWC_SetMemFunc function to configure the Internet, Nintendo Wi-Fi Connection, and

the functions that allocate and free internal memory used for matchmaking and friend relationship

processing. (These topics are covered in Chapter 4 Creating User Data and subsequent chapters.)

For four player matchmaking, the DWC library requires approximately 230 kilobytes of memory.

Removing one player from the maximum matchmaking number reduces the required memory by

approximately 20 kilobytes. (This is true when the sendBufSize and recvBufSize arguments of

the DWC_InitFriendsMatch function are both set to the default value of 8 kilobytes.)

NITRO-DWC Programming Manual

 2005-2007 Nintendo 17 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

Code 3-1 DWC Initialization

void init_dwc(void)

{

u8 work[DWC_INIT_WORK_SIZE] ATTRIBUTE_ALIGN(32);

// Initialize the DWC library

if (DWC_Init(work) == DWC_INIT_RESULT_DESTROY_OTHER_SETTING)

disp_init_warning_msg(); // Display warning message

// Set functions for allocating and freeing memory

DWC_SetMemFunc(AllocFunc, FreeFunc);

:

}

// Function for allocating memory

void* AllocFunc(DWCAllocType name, u32 size, int align)

{

void * ptr;

OSIntrMode old;

(void)name;

(void)align;

old = OS_DisableInterrupts();

ptr = OS_AllocFromMain(size);

OS_RestoreInterrupts(old);

return ptr;

}

// Function for freeing memory

void FreeFunc(DWCAllocType name, void* ptr, u32 size)

{

OSIntrMode old;

(void)name;

(void)size;

if (!ptr) return;

old = OS_DisableInterrupts();

OS_FreeToMain(ptr);

OS_RestoreInterrupts(old);

}

To read more about user authentication and other related topics, see the Nintendo Wi-Fi Connection

Guidelines.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 18  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

4 Creating User Data

The DWC library performs typical processes based on user data.

� Authenticating users

� Creating friend relationships

Even when the DS is not connected to the Internet, it requires user data to create the friend

information that is exchanged to create friend relationships via DS Wireless Communications.

If user data is not yet created or the user data is damaged, create the user data with the

DWC_CreateUserData function and store the user data in the DS Card backup memory.

Be sure the application allocates memory for saving the DWCUserData structure. User data for

several people is required when a single DS Card supports multiple players.

If player data is already created, be sure to check its validity using the DWC_CheckUserData

function after loading it from backup into memory (see Code 4-1).

NITRO-DWC Programming Manual

 2005-2007 Nintendo 19 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

Code 4-1 Creating User Data

BOOL create_userdata(void)

{

// If there is backup data and user data in that backup data, load all and

// return TRUE.

if (DTUDs_CheckBackup())

{

(void)DTUD_LoadBackup(0, &s_PlayerInfo, sizeof(DTUDPlayerInfo));

OS_TPrintf("Load From Backup\n");

if (DWC_CheckUserData(&s_PlayerInfo.userData))

{

DWC_ReportUserData(&s_PlayerInfo.userData);

return TRUE;

}

}

// If valid user data has not been saved

OS_TPrintf("no Backup UserData\n");

// Create user data

DWC_CreateUserData(&s_PlayerInfo.userData, DTUD_INITIAL_CODE);

OS_TPrintf("Create UserData.\n");

DWC_ReportUserData(&s_PlayerInfo.userData);

return FALSE;

}

NITRO-DWC Programming Manual

NTR-06-0429-001-F 20  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

The DWC_CheckDirtyFlag function can be used to check whether it is necessary to save user data

to the DS Card. Always use the DWC_ClearDirtyFlag function to clear the DirtyFlag before

saving the user data to backup memory as shown in Code 4-2.

Code 4-2 Saving User Data

void check_and_save_userdata(void)

{

if (DWC_CheckDirtyFlag(&s_PlayerInfo.userData))

{

DWC_ClearDirtyFlag(&s_PlayerInfo.userData);

DTUD_SaveBackup(0, &s_PlayerInfo.userData, sizeof(DWCUserData));

}

}

Before connecting to the Internet, be sure to check user data according to the following procedure.

� Use the DWC_CheckHasProfile function to check whether the user has already connected to

the Internet and obtained a profile in the user data. If there is no profile, the user data is updated

and the DS system and DS card are treated as a set.

� Check whether the DS and DS Card are being used correctly using the

DWC_CheckValidConsole function. It is impossible to connect to the Internet if the DS and DS

Card are not correct because authentication will fail.

Note: Be sure to check the flow charts included in Nintendo Wi-Fi Connection Programming

Guidelines.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 21 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

5 Connection Process

The DWC library performs a two-phase process when connecting to the Internet.

� Connects to the Internet (making a Nintendo Wi-Fi Connection to get an IP address)

� Connects to the Nintendo Wi-Fi Connection server (referred to as "server")

When a DS connects to the Internet for the first time, the Nintendo authentication server issues a user

ID for that DS. This user ID is stored in the DS backup memory.

After this initial connection is established, the DWC library stores this user ID and the player ID in the

previously created user data to generate a profile. The GS profile ID that corresponds to this

generated profile is stored in the user data.

5.1 Connecting to the Internet

When the DS first connects to the Internet to obtain the IP address, Nintendo's authentication server

issues a user ID to that DS. Tests are also performed to confirm that the DS can connect to the

connection test server using TCP communication and that the Internet connection is functioning

normally.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 22  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

All these processes are performed automatically by calling the DWC_*Inet functions, as shown in

Code 5-1.

Code 5-1 Connecting to the Internet

static DWCInetControl s_ConnCtrl; // Retain until the Internet connection is

disconnected

BOOL connect_to_inet(void)

{

// Initialization process for Internet connection

DWC_InitInet(&s_ConnCtrl);

// Start establishing connection

DWC_SetAuthServer(DWC_CONNECTINET_AUTH_RELEASE);

DWC_ConnectInetAsync();

// The connection process

while (!DWC_CheckInet())

{

DWC_ProcessInet();

// V-Blank wait process

// During the connection process you need to pass the

// process time to threads that have lower priority than

// the main thread. Use the OS_WaitIrq function for this.

GameWaitVBlankIntr();

}

// Confirm the connection result

if (DWC_GetInetStatus() != DWC_CONNECTINET_STATE_CONNECTED)

{

handle_error();

return FALSE;

}

// Connected

:

}

NITRO-DWC Programming Manual

 2005-2007 Nintendo 23 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

5.2 Disconnecting from the Internet

Call the DWC_CleanupInet* functions as shown in Code 5-2 to disconnect the DS from the Internet.

Even if a communication error occurs and the DS is disconnected automatically, you must call this

function because the library memory needs to be freed.

Code 5-2 Disconnecting from the Internet

void disconnect_func(void)

{

while (!DWC_CleanupInetAsync())

{

GameWaitVBlankIntr();

}

:

}

5.3 Connecting to the Nintendo Wi-Fi Connection Server

To connect to the Nintendo Wi-Fi Connection server, use the DWC_InitFriendsMatch function

shown in Code 5-3 to initialize matchmaking and friend relationship features.

The arguments to this function are summarized below.

� Pointers to the control objects of these features

� User data

� Product ID

� Game name and secret key provided by GameSpy

� Send and receive buffer sizes used for communication between Nintendo DS systems

� Friend roster

� Maximum number of friends in the friend roster

The specified control objects are used in the DWC library until the DWC_ShutdownFriendsMatch

function is called.

Chapter 8 describes the sizes of the Send and Receiver buffers in detail. When 0 is specified, as is

the case in the sample program below, the buffers use 8 kbytes by default.

The friend roster is an array of friend information in the DWCFriendData structure. Chapter 6

Creating Friend Rosters and Information, discusses friend rosters and friend information in detail.

Next, call the DWC_LoginAsync function to make the connection to the server (see Code 5-3).

The first argument of this function is the player’s screen name. If players use names in your game

application, you must specify the screen name in this argument. The screen name used in the game

is sent to the authentication server to confirm and check for inappropriate names.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 24  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

You can check the results of this function by calling the DWC_GetIngamesnCheckResult function

(see Code 5-3).

The second argument of the DWC_LoginAsync function is not currently used. Pass NULL for this

argument. The remaining arguments represent the callback to use after login completes and the

parameters of the callback.

After calling this function, call the DWC_ProcessFriendsMatch function repeatedly to advance the

login process, approximately once per game frame.

Next, the DWC_ProcessFriendsMatch function executes all matchmaking and friend-related

processing until the DWC_ShutdownFriendsMatch function is called. After login completes, be sure

to call DWC_ProcessFriendsMatch function to make sure that network processes (for example,

updating the friend roster) do not start while the DS is connected to another client.

Code 5-3 Connecting to the Nintendo Wi-Fi Connection Server

static BOOL s_logined = FALSE;

static DWCFriendsMatchControl s_FMCtrl;

void connect_to_wifi_connection(void)

{

DWC_InitFriendsMatch(&s_FMCtrl, DTUD_GetUserData(),

GAME_PRODUCTID, GAME_NAME, GAME_SECRET_KEY,

0, 0,

DTUD_GetFriendList(), FRIEND_LIST_LEN);

// Login using function for authentication

s_logined = FALSE;

if (!DWC_LoginAsync(L”name”, NULL, cb_login, NULL))

{

// Connection process fails to start.

return;

}

// Polling to see if connected

while (!s_logined)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error occurs

handle_error();

return;

NITRO-DWC Programming Manual

 2005-2007 Nintendo 25 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

}

GameWaitVBlankIntr();

}

// Connection process completed

if (DWC_GetIngamesnCheckResult() == DWC_INGAMESN_INVALID)

{

// Special process performed when inappropriate in-game screenname was detected

disp_ingamesn_warning();

}

:

}

// Callback when logged in

void cb_login(void)

{

if (error == DWC_ERROR_NONE)

{

check_and_save_userdata();

s_logined = TRUE;

}

}

The DWC_ShutdownFriendsMatch function ends the matchmaking and friend relationship features

and frees the memory reserved internally by the library.

When the DS connects to the server for the first time using the user data specified by the

DWC_InitFriendsMatch function, the DS and the DS Card are treated as a pair. When they are

treated as a pair, the DS Card that stores the specified user data cannot be used with another DS to

connect.

Furthermore, the user data is always updated when the first connection is made. Once the login

completes, the application should call a login callback and the DWC_CheckDirtyFlag function to

check the updated user data. If necessary, save the updated data to the DS Card.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 26  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

6 Creating Friend Rosters and Information

The DWC library has two procedures for establishing friend relationships among players.

� Exchanging friend information using DS Wireless Communications

� Exchanging friend registration keys

6.1 Exchanging Friend Information via DS Wireless Communications

During DS Wireless Communications, the DWC_CreateExchangeToken function is used to create

friend information based on the local user data for exchange with other players (see Code 6-1).

Friend information that the DS receives should be saved in the friend roster using the application.

Code 6-1 Exchanging Friend Information Using DS Wireless Communications

DWCUserData s_userData;

DWCFriendData s_friendList[FRIEND_LIST_LEN];

// Exchange friend information

void exchange_friend_data(void)

{

int i, j;

DWCFriendData ownFriendData;

DWCFriendData recvFriendList[FRIEND_LIST_LEN];

// Create friend information from local user data to send

DWC_CreateExchangeToken(s_userData, &ownFriendData);

// Send & receive friend information via MP communication

MP_start((u16 *)&ownFriendData, (u16 *)recvFriendList);

:

// Save the received friend information in an open slot in the friend roster.

// Do not save if the same friend information already exists.

for (i = 0; i < num_recv_data; ++i)

{

int index;

for (j = 0, index = -1; j < FRIEND_LIST_LEN; ++j)

{

if (DWC_IsValidFriendData(&s_friendList[j]))

{

// If the friend roster has valid data, check if it is the same as

NITRO-DWC Programming Manual

 2005-2007 Nintendo 27 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

// the received friend information and do not save if it is the same.

if (DWC_IsEqualFriendData(&recvFriendList[i],

&s_friendList[j]))

break;

}

else

{

// Records an available friend roster index

if (index == -1) index = j;

}

}

// Save valid friend information that does not overlap in friend roster

if (j >= FRIEND_LIST_LEN && index >= 0)

{

s_friendList[index] = recvFriendList[i];

}

}

:

}

6.2 Exchanging Friend Registration Keys

A player that has connected at least once to Nintendo Wi-Fi Connection is assigned a GS profile ID

that is saved in the user data. Any player that has a GS profile ID can create a friend registration key

that adds special error checking information to the GS profile ID. This friend registration key is a 12-

digit decimal number that players can exchange. Once this friend registration key has been entered,

friend data can be exchanged.

After the friend registration key is entered, the DWC_CreateFriendKeyToken function is called to

convert the key into friend information and save the friend information to the friend roster (see Code

6-2).

Use the DWC_CheckFriendKey function to check if the entered friend registration key is valid as

shown in Code 6-2. Even if this function is called, the error does not correct itself, so prepare a user

interface so that the user can enter the key until the key information is correct.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 28  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

Code 6-2 Exchanging Friend Registration Keys

// Display Friend Registration Key

void disp_friend_key(void)

{

u64 friend_key;

// Create friend registration key from local user data

if ((friend_key = DWC_CreateFriendKey(&s_userData)) != 0)

{

// Display friend registration key

disp_message("FRIEND CODE : %lld", friend_key);

}

else

{

// Display message that there is no friend registration key

disp_message("FRIEND CODE : not available");

}

:

}

/* Create friend information from friend registration key and register in

friend roster */

BOOL register_friend_key(void)

{

u64 friend_key;

DWCFriendData friendData;

while (1)

{

char friend_key_string[13];

// Get user to manually enter friend registration key

input_friend_key(friend_key_string);

/* Convert entered friend registration key string into u64 numerical

value */

friend_key = charToU64(friend_key_string);

// Check that friend registration key is correct and proceed if OK.

// If there is a problem, display message and have it entered again

if (DWC_CheckFriendKey(s_userData, friend_key)) break;

NITRO-DWC Programming Manual

 2005-2007 Nintendo 29 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

else disp_warning_message();

}

// Create Friend information from correct Friend Registration Key

DWC_CreateFriendKeyToken(&friendData, friend_key);

{

int index;

/* Using same method as MP communication, search for open slot and

overlaps in friend roster and register friend information. */

:

s_friendList[index] = friendData;

:

}

}

6.3 Synchronizing Friend Rosters

For a friend roster stored in the application (local friend roster) to be valid on the Internet, you need to

call the DWC_UpdateServersAsync function and update the friend roster stored on the GameSpy

server (server friend roster) as shown in Code 6-3.

To synchronize the friend rosters, you must first complete the login process with the

DWC_LoginAsync function.

Specify the following function arguments: the player name (the old specification — specify NULL), the

callback and its parameters when the friend roster completes synchronization, the callback and its

parameters for a change notification in friend status (discussed later), and the callback and its

parameters when the friend roster is deleted.

The friend roster synchronization process involves two main tasks: sending requests to establish

friend relationships for friends that are on the local but not the server friend roster, and deleting

friends that are on the server but not the local friend roster.

If a request to establish a friend relationship is sent while the other party is offline, call the

DWC_LoginAsync function to save the request on the server and immediately deliver the request the

next time the contacted partner logs in. The friend relationship is only established after the information

is saved in the local friend roster of the other party.

Note that this process only registers the other party as your friend. When the other party receives the

request to establish a friend relationship, the contacted partner follows the same process to register

the initiating partner as a friend.

After the friend roster synchronization process completes, the callback is called after the local and

server friend rosters are checked, needed requests to establish friend relationships are sent, and

unneeded friend information is deleted. Be aware that even if the callback has returned, this state

NITRO-DWC Programming Manual

NTR-06-0429-001-F 30  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

does not indicate that all friend relationships are established. If the isChanged argument of the

callback is set to TRUE, this indicates that the friend information in the local friend roster is updated

and needs to be saved. If a friend relationship is established at a time other than during the friend

roster synchronization process, the callback for an established friend relationship specified by the

DWC_SetBuddyFriendCallback function is called.

If multiple sets of friend information for the same friend are discovered during the friend roster

synchronization process, all but one set are automatically deleted. A callback is called for each

deleted set by comparing the friend roster index of the deleted friend information and the friend roster

index of the matching friend.

Code 6-3 The Friend Roster Synchronization Process

BOOL s_update = FALSE;

BOOL s_updateFriendList= FALSE;

void sync_friend_list(void)

{

// Set the callback for establishment of friend relationship

DWC_SetBuddyFriendCallback(cb_buddyFriend, NULL);

// Synchronize local Friend roster and server Friend roster

if (!DWC_UpdateServersAsync(NULL,

cb_updateServers, NULL,

NULL, NULL,

cb_deleteFriend, NULL))

{

// Synchronization process fails to start

return;

}

while (!s_update)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation

handle_error();

return;

}

GameWaitVBlankIntr();

}

NITRO-DWC Programming Manual

 2005-2007 Nintendo 31 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

:

while (1)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation

handle_error();

return;

}

// To update the friend list asynchronously, perform the following

// processing when appropriate and collect the updated local friend list

// and save.

if (s_updateFriendList)

{

// Save the friend list if it has been updated

s_updateFriendList = FALSE;

save_friendList();

}

game_loop();

GameWaitVBlankIntr();

}

:

}

// Callback for when Friend roster synchronization has completed

void cb_updateServers(DWCError error, BOOL isChanged, void* param)

{

if (error == DWC_ERROR_NONE)

{

// Friend roster synchronization successful

s_update = TRUE;

// Must be saved if Friend roster has been changed

if (isChanged) s_updateFriendList = TRUE;

}

}

NITRO-DWC Programming Manual

NTR-06-0429-001-F 32  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

// Callback for when there is a Friend roster deletion

void cb_deleteFriend(int deletedIndex, int srcIndex, void* param)

{

OS_TPrintf("friend[%d] was deleted (equal friend[%d]).\n",

deletedIndex, srcIndex);

s_updateFriendList = TRUE;

}

// Callback for when friend relationship has been established

void cb_buddyFriend(int index, void* param)

{

OS_TPrintf("Got friendship with friend[%d].\n", index);

s_updateFriendList= TRUE;

}

6.4 Obtaining Friend Information Types

Code 6-4 shows how you can obtain the data type set in the friend information using the

DWC_GetFriendDataType function.

The possible data types are listed below.

� DWC_FRIENDDATA_NODATA No stored friend information

� DWC_FRIENDDATA_LOGIN_ID ID for the state when a connection to Nintendo Wi-Fi

Connection has never been made

� DWC_FRIENDDATA_FRIEND_KEY Friend registration key

� DWC_FRIENDDATA_GS_PROFILE_ID GS profile ID

When the contacted partner has not yet obtained a GS profile ID, the data type

DWC_FRIENDDATA_LOGIN_ID indicates that friend information was downloaded via DS Wireless

Communications.

Once the contacted partner has obtained a GS profile ID and initiating partner has completed the

friend roster synchronization process, the data type changes to DWC_FRIENDDATA_GS_PROFILE_ID.

The data type DWC_FRIENDDATA_FRIEND_KEY indicates that the friend relationship is not yet

established for the GS profile ID registered using the friend registration key. Once the friend

relationship is established, the data type changes to DWC_FRIENDDATA_GS_PROFILE_ID.

You can use the DWC_IsBuddyFriendData function to determine whether a friend relationship has

been established from the friend information.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 33 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

Code 6-4 Obtaining Friend Information Types

void disp_friendList(void)

{

int i;

for (i = 0; i < FRIEND_LIST_LEN; ++i)

{

// Get the friend information type

int type = DWC_GetFriendDataType(&s_friendList[i]);

OS_TPrintf("friend[%d] type %d.\n", type);

if (type == DWC_FRIENDDATA_GS_PROFILE_ID)

{

// Show friend relationship if GS profile ID

if (DWC_IsBuddyFriendData(&s_friendList[i]))

{

OS_TPrintf("Friendship is established.\n");

}

else

{

OS_TPrintf("Friendship is not yet established.\n");

}

}

}

:

}

6.5 Obtaining Friend Status

All players maintain their own status when using Nintendo Wi-Fi Connection. Nintendo Wi-Fi

Connection is managed by a server operated by GameSpy.

There are two player states that the application can reference.

� The communication state

� A status string or binary data

The communication state is defined by the DWC_STATUS_* constants, which are set automatically by

the DWC library.

The application sets the status string with the DWC_SetOwnStatusString function and the binary

data with the DWC_SetOwnStatusData function as shown in Code 6-5.

Status strings must terminate with NULL and can be up to 256 text characters long, including the

NULL terminator. Binary data are converted inside the function into a string, and the approximate

NITRO-DWC Programming Manual

NTR-06-0429-001-F 34  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

number of text characters will be data size x 1.5. The string should not include '/' or '\\' because these

text characters are used by the library as identifiers.

The current status of a friend can be obtained if a friend relationship has been established. Specify a

friend status change callback as the argument in the DWC_UpdateServersAsync function to enable

a user to receive notices whenever friend status changes.

To obtain friend status, use the DWC_GetFriendStatus* function group. For this group of functions,

communication doesn’t occur while accessing the friend status list maintained by the DWC library.

However, processing these functions takes several hundred microseconds, so take care when calling

the functions frequently over a short period of time.

Furthermore, if there is a sudden loss of power during communication, the player's status will remain

in the previous state for a few minutes.

Code 6-5 Getting a Friend’s Status

void sync_friend_list(void)

{

int i;

// Synchronize local friend roster and server friend roster

if (!DWC_UpdateServersAsync(NULL,

cb_updateServers, NULL,

cb_friendStatus, NULL,

NULL, NULL))

{

// Synchronization process fails to start

return;

}

:

// Friend roster synchronization completed

:

// Set lcoal status test string

DWC_SetOwnStatusString("location=city,level=1");

:

for (i = 0; i < FRIEND_LIST_LEN; ++i)

{

if (DWC_IsValidFriendData(&friendList[i])

{

u8 status;

char* statusString;

NITRO-DWC Programming Manual

 2005-2007 Nintendo 35 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

// If friend information is valid, get the status of that friend

status = DWC_GetFriendStatus(&friendList[i], statusString);

// Display the status of friend

disp_friend_status(status, statusString);

}

}

:

}

// Callback notifying change in friend's status

void cb_friendStatus(int index, u8 status, const char* statusString, void*

param)

{

OS_TPrintf("Friend[%d] status -> %d (statusString : %s).\n",

index, status, statusString);

}

NITRO-DWC Programming Manual

NTR-06-0429-001-F 36  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

7 Matchmaking

The DWC library provides two methods of matchmaking: peer matchmaking and server-client

matchmaking.

In peer matchmaking, the Nintendo DS systems are not distinguished as servers and clients. There

are two implementation methods.

� Not specifying friends

� Specifying friends

7.1 Peer Matchmaking Without Specifying Friends

This method performs matchmaking for players in the general public.

Call the DWC_ConnectToAnybodyAsync function to begin peer matchmaking without specifying

friends. The function's arguments are: the desired number of connected players including the local

player, a filter string for matchmaking conditions, a matchmaking completion callback and its

parameters when matchmaking completes, and a player evaluation callback and its parameters. (This

last callback is explained later.)

Use the filter string to narrow the search for matchmaking candidates. The matchmaking index keys

(in Code 7-1, the key names are str_key and int_key) need to be registered in advance using

the DWC_AddMatchKey* function. The key names are saved inside the library, but only pointers to

the key values are stored in the library. Consequently, you should retain key values until matchmaking

completes.

Note: There are certain names that cannot be used as Matchmaking index keys. For details, see

paragraph 7.6 Names that Cannot be Used for Matchmaking Index Keys.

Code 7-1 Peer Matchmaking Without Specifying Friends

static BOOL s_matched = FALSE;

static BOOL s_canceled = FALSE;

static const char* s_str_key = "anymatch_test";

static const int s_int_key = 10;

void do_anybody_match(void)

{

// Set the matchmaking index keys

DWC_AddMatchKeyString(0, "str_key", s_str_key);

DWC_AddMatchKeyInt(0, "int_key", s_int_key);

// Start matchmaking without specifying friends

NITRO-DWC Programming Manual

 2005-2007 Nintendo 37 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

DWC_ConnectToAnybodyAsync(4,

"str_key = 'anymatch_test' and int_key = 10",

cb_anymatch, NULL,

NULL, NULL);

// Poll to see if matchmaking has completed

while (!s_matched)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation

handle_error();

return;

}

GameWaitVBlankIntr();

}

// Matchmaking has completed

:

}

// Callback for when matchmaking has completed

void cb_anymatch(DWCError error, BOOL cancel, void* param)

{

if (error == DWC_ERROR_NONE)

{

if (cancel) s_canceled = TRUE;

else s_matched = TRUE;

}

}

NITRO-DWC Programming Manual

NTR-06-0429-001-F 38  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

7.2 Peer Matchmaking by Specifying Friends

This method performs matchmaking for friends registered in friend rosters.

Use the DWC_ConnectToFriendsAsync function to begin peer matchmaking by specifying friends,

as shown in Code 7-2 . The function's arguments are: the friend roster index array (the index list) of

friends to perform matchmaking, the number of elements in the index list, the desired number of

connected players including the host player, whether to allow matchmaking with friends from friend

rosters of other friends, a matchmaking completion callback and its parameters, and a player

evaluation callback and its parameters. (This callback is explained later.)

If NULL is specified for the index list, all friends in a friend roster are treated as matchmaking

candidates.

Peer matchmaking by specifying friends uses the DWC_InitFriendsMatch function to specify the

friend roster.

Furthermore, because each player has a different friend roster and there is a high probability that a

different index list is specified. The success rate of matchmaking drops dramatically when you

disallow matchmaking with friends of friends

Code 7-2 Peer Matchmaking by Specifying Friends

static BOOL s_matched = FALSE;

static BOOL s_canceled = FALSE;

void do_friend_match(void)

{

// Start matchmaking with specifying friends

DWC_ConnectToFriendsAsync(NULL, 0, 4, TRUE,

cb_friendmatch, NULL,

NULL, NULL);

// Poll to see if matchmaking has completed

while (!s_matched)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation

handle_error();

return;

}

NITRO-DWC Programming Manual

 2005-2007 Nintendo 39 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

GameWaitVBlankIntr();

}

// Matchmaking has completed

:

}

// Callback for when matchmaking has completed

void cb_friendmatch(DWCError error, BOOL cancel, void* param)

{

if (error == DWC_ERROR_NONE)

{

if (cancel) s_canceled = TRUE;

else s_matched = TRUE;

}

}

7.3 Evaluating Candidate Players for Matchmaking

During peer matchmaking, players who have been identified as matchmaking candidates can be

evaluated using game-specific criteria listed in order of preference.

When an evaluation callback is set as an argument of the function that starts peer matchmaking, that

callback is called every time a player is identified as a possible matchmaking candidate during

matchmaking. Use the DWC_GetMatch*Value function inside this callback to reference the

matchmaking index keys that were registered by the DWC_AddMatchKey* function as shown in Code

7-3. Evaluate each player based on these values and use the evaluated value as the return value.

Players whose evaluated value is less than zero are removed as matchmaking candidates.

Note that this method is designed to make selecting players with the highest evaluated values easier,

but this method does not guarantee that players with the highest evaluated values will be selected for

matchmaking.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 40  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

Code 7-3 Evaluating Candidate Players for Matchmaking

static const char* s_str_key = "anymatch_test";

static const int s_int_key = 10;

void do_anybody_match(void)

{

// Set matchmaking index keys

DWC_AddMatchKeyString(0, "str_key", s_str_key);

DWC_AddMatchKeyInt(0, "int_key", &s_int_key);

// Start matchmaking by specifying friends

DWC_ConnectToAnybodyAsync(4,

"str_key = 'anymatch_test'",

cb_anymatch, NULL,

cb_eval, NULL);

:

}

// Player evaluation callback

int cb_eval(int index, void* param)

{

int eval_int;

// Get the value for the matchmaking index key int_key

eval_int = DWC_GetMatchIntValue(index, "int_key", -1);

if (eval_int >= 0)

{

// Sees which are close to local value and takes it as evaluated value

return MATH_ABS(s_int_key - eval_int) + 1;

}

else

{

// Does not match make players that do not have the int_key key

return 0;

}

}

NITRO-DWC Programming Manual

 2005-2007 Nintendo 41 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

7.4 Server-Client Matchmaking

In server-client matchmaking among friends, the Nintendo DS systems take on clearly defined roles

as servers and clients. Server-client matchmaking is the same as peer matchmaking to the extent

that the completed network is a mesh network.

The server DS specifies the number of players allowed to connect (this number includes the server

DS), a matchmaking completion callback and its parameters, and a notify newly connected clients

callback and its parameters. The server DS calls the DWC_SetupGameServer function and then

waits for the client Nintendo DS systems to connect. The code for this process is shown in Code 7-4.

The client Nintendo DS systems specify an index list of friends allowed to connect, a matchmaking

completion callback and its parameters, and a notify newly connected clients callback and its

parameters. The client DS calls the DWC_ConnectToGameServerAsync function. With this function

configuration, the client Nintendo DS systems will try to connect if matchmaking has started with the

friend established as the server DS.

When server-client matchmaking completes, the server DS has a friend relationship with every

connected client DS. However, the client Nintendo DS systems may have friend relationships through

their friends via their connection to the server DS.

The matchmaking completion callback is called when the client DS successfully connects to the

server DS, and also when a new client DS is added to the mesh network to which it belongs. The

newly connected client notification callback is called when a new client DS starts the connection to

the mesh network to which it belongs.

Code 7-4 Server/Client Matchmaking

static BOOL s_matched = FALSE;

void do_server_match(void)

{

// Start matchmaking as server DS

DWC_SetupGameServer(4,

cb_sc_match, (void *)CB_CONNECT_SERVER,

cb_sc_new, NULL);

while (1)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation.

handle_error();

NITRO-DWC Programming Manual

NTR-06-0429-001-F 42  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

return;

}

if (s_matched)

{

// If connection has been made with new client

init_new_connection();

s_matched = FALSE;

}

GameWaitVBlankIntr();

}

:

}

void do_client_match(void)

{

// Start matchmaking as client DS

DWC_ConnectToGameServerAsync(0,

cb_sc_match, (void *)CB_CONNECT_CLIENT,

cb_sc_new, NULL);

// Poll to see if matchmaking completed

while (!s_matched)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation.

handle_error();

return;

}

GameWaitVBlankIntr();

}

// Matchmaking completed

:

}

// Callback for when matchmaking completed

NITRO-DWC Programming Manual

 2005-2007 Nintendo 43 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

void cb_sc_match(DWCError error, BOOL cancel, BOOL self, BOOL isServer, int

index, void* param)

{

if (error == DWC_ERROR_NONE)

{

if (!cancel)

{

// Connection successful

s_matched = TRUE;

}

else if (self || isServer)

{

// If local system cancels matchmaking, or if the local system is a

// client DS and the server DS has cancelled matchmaking

s_canceld = TRUE;

}

/* Do nothing even if some other newly connecting client cancels

matchmaking */

}

}

// Callback to notify a newly connected client

void cb_sc_new(int index, void* param)

{

OS_TPrintf("Newcomer : friend[%d].\n", index);

}

Because server-client matchmaking creates a mesh network similar to peer matchmaking, the client

Nintendo DS systems can continue to communicate even after the server DS disconnects. However,

because server-client matchmaking cannot continue to function without a server DS, it is

recommended that you implement a way to disconnect all Nintendo DS systems when the server DS

disconnects. The server DS can also filter client connection requests by calling the

DWC_StopSCMatchingAsync function during matchmaking.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 44  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

7.5 Increasing Matchmaking Speed

During peer matchmaking without specifying friends, you can increase the speed of matchmaking

using filters when getting a list of matchmaking candidates from the matchmaking server (see Code

7-1). The matchmaking candidate list stored on the matching server has various conditions attached.

Matchmaking is more likely to fail when this list is obtained unconditionally and matchmaking

candidates are filtered inside the evaluation callback. This also takes more time by repeatedly re-

obtaining the list and performing matchmaking. You can reduce matchmaking failures and increase

matchmaking speed using a filter function to form the obtained matchmaking candidate list into a list

of acceptable matchmaking candidates.

Conversely, matchmaking efficiency can drop and time may be lost if excessive filtering is performed

inside the evaluation callback in situations where the number of candidates is likely to be low (such as

when seeking players of the same skill level or in the same geographical region).

Consider the following when seeking to increase the matchmaking speed.

� Use a filter function to form a list of available candidates from the obtained matchmaking

candidate list

� Adopt a specification where matches are made aggressively without too much filtering inside the

evaluation callback

7.6 Names that Cannot be Used for Matchmaking Index Keys

There are certain key names that cannot be registered as Matchmaking Index Keys by the

DWC_AddMatchKey* function because the key names are used by the library and the server. Do not

use any of the names listed in Table 7-1.

Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keys

country region hostname gamename gamever hostport

mapname gametype gamevariant numplayers numteams maxplayers

gamemode teamplay fraglimit teamfraglimit timeelapsed timelimit

roundtime roundelapsed password groupid player_ score_

skill_ ping_ team_ deaths_ pid_ team_t

score_t dwc_pid dwc_mtype dwc_mresv dwc_mver dwc_eval

NITRO-DWC Programming Manual

 2005-2007 Nintendo 45 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

8 Sending and Receiving Data

8.1 Peer-to-Peer Data Exchange

Once matchmaking completes and the Nintendo DS system connections are established (that is, a mesh

network is formed), you must set up for data exchange before the Nintendo DS systems can communicate.

First, set up a receive buffer so each DS can receive data from other Nintendo DS systems. Call the

DWC_SetRecvBuffer function. For the aid argument, specify the AID that serves as the ID number

of each DS. The AID accepts values between 0 and N, where N is one less than the number of

Nintendo DS systems in the network. Therefore, if matchmaking four players completes, the four

Nintendo DS systems are assigned the AID numbers 0, 1, 2, and 3. If the DS system assigned AID =

1 leaves the network, the remaining systems maintain the assigned AID numbers 0, 2, and 3. Any

data that arrives before setting up the receive buffer is deleted.

Next, configure the send and receive callbacks using the DWC_SetUserSendCallback() and

DWC_SetUserRecvCallback functions. Call the receive callback when a DS receives data from

another DS. Call the send callback immediately after transmission of specified data completes.

In this context, note that "transmission completes" means that the data has been passed to the lower

layer transmission function. It does not indicate that the partner DS has received the data.

To configure the connection close callback, call the DWC_SetConnectionClosedCallback

function when the local or partner DS leaves the network by the procedure to officially disconnect

(see Code 8-1).

These settings are not cleared until the DWC_ShutdownFriendsMatch function is called. Hence, it

is not always necessary to set them immediately after matchmaking completes.

Code 8-1 Setup for Data Exchange

static u8 s_RecvBuffer[3][SIZE_RECV_BUFFER];

void prepare_communication(void)

{

u8* pAidList;

int num = DWC_GetAIDList(&pAidList);

int i, j;

for (i = 0, j = 0; i < num; ++i)

{

if (pAidList[i] == DWC_GetMyAID())

{

j++;

continue;

NITRO-DWC Programming Manual

NTR-06-0429-001-F 46  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

}

// Set the receive buffer for AIDs other than local AID

DWC_SetRecvBuffer(pAidList[i], &s_RecvBuffer[i-j], SIZE_RECV_BUFFER);

}

// Set the send callback

DWC_SetUserSendCallback(cb_send);

// Set the receive callback

DWC_SetUserRecvCallback(cb_recv);

// Set the connection close callback

DWC_SetConnectionClosedCallback(cb_closed, NULL);

}

// Callback for sent data

void cb_send(int size, u8 aid)

{

OS_TPrintf("to aid = %d size = %d\n", aid, size);

}

// Callback for received data

void cb_recv(u8 aid, u8* buffer, int size)

{

OS_TPrintf("from aid = %d size = %d buffer[0] = %X\n",

aid, size, buffer[0]);

}

// Connection close callback

void cb_closed(DWCError error, BOOL isLocal, BOOL isServer, u8 aid, int

index, void* param)

{

if (error == DWC_ERROR_NONE)

{

if (isLocal)

{

OS_TPrintf("Closed connection to aid %d (friendListIndex = %d).\n",

aid, index);

}

else

{

NITRO-DWC Programming Manual

 2005-2007 Nintendo 47 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

OS_TPrintf("Connection to aid %d (friendListIndex = %d)

//was closed.\n", aid, index);

}

}

}

There are two kinds of data transmission: reliable transmission and unreliable transmission. Both use

UDP communication, but as with TCP communication, reliable transmission does not experience

packet loss and maintains packet order. However, the tradeoff is that reliable transmission takes

longer to complete because every sent packet is checked upon receipt.

Because unreliable transmission uses UDP communication, problems with packet loss and packet

order can occur. However, transmission is very fast because no packets are checked or resent.

If data transmission occurs at a layer lower than the DWC library, the data accumulates in the send

buffer that has a size specified by the DWC_InitFriendsMatch function. If the send buffer does not

have enough free space when reliable transmissions are attempted, any unsent data are retained as-

is. They are sent from inside the DWC_ProcessFriendsMatch function as soon as space is freed in

the send buffer.

Note that the default maximum amount of data that can be sent at once is 1465 bytes. If you try to

send more than this maximum amount of data, the data is divided up and the send is suspended. You

can change the maximum size of the send buffer using the DWC_SetSendSplitMax function.

However, because communication devices with various settings need to be accommodated, do not

set a maximum size larger than the default maximum.

Do not delete the send buffer if data for transmission is retained and suspended in this way. Also be

aware that the next data set cannot be sent while data is retained and suspended.

Use the DWC_IsSendableReliable function to check if space is available in the send buffer, the

send target AID is valid, and reliable transmission is possible (see Code 8-2).

If you attempt to send more than the maximum amount of data using unreliable transmission, the

transmission will fail and FALSE will be returned.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 48  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

Code 8-2 Sending Data

static u8 s_SendBuffer[SIZE_SEND_BUFFER];

void send_data(void)

{

// Send data using unreliable transmission to all connected DS systems.

// Ignore local AID if passed.

DWC_SendUnreliableBitmap(DWC_GetAIDBitmap(),

s_SendBuffer, SIZE_SEND_BUFFER);

:

// Check whether reliable transmission is possible for DS with AID=0

if (!DWC_IsSendableReliable(0)) return;

// Send data using reliable transmission to a specific DS

DWC_SendReliableBitmap(0, s_SendBuffer, SIZE_SEND_BUFFER);

:

}

8.2 Closing Connections

Call the DWC_CloseAllConnectionsHard function to close the connection with all Nintendo DS

systems in the mesh network. When the close process is executed, the connection close callback set

by DWC_SetConnectionClosedCallback() is called before exiting this function. The close

notification also notifies other Nintendo DS systems that were connected and the connection close

callback is called.

The server DS in server-client matchmaking calls this DWC_CloseAllConnectionsHard function

even if there are no other connected systems at the time. This function call frees any remaining

regions of memory that were used for matchmaking and restores the communication state to the

online state. Calling this function does not close the connection with Nintendo Wi-Fi Connection

server.

The following functions are also provided: the DWC_CloseConnectionHard function closes a

connection by specifying an AID and the DWC_CloseConnectionHardBitmap function closes

multiple connections by specifying an AID bitmap. These functions are designed for use in unusual

circumstances, such as closing connections for a DS that becomes unavailable for communication

because the power is turned off.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 49 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch

The buffer sizes specified by the DWC_InitFriendsMatch function become the buffer sizes

adopted internally by the DWC. When data is sent using reliable communication, the Send buffer

stores data for which ACK is not returned. The Receive buffer stores data that did not reach the

Receive buffer in the correct order.

With reliable communication, you need as much capacity as possible to deal with instantaneous

network interruptions. The Send and Receive buffers both need to be large enough to handle as

much interruption time as the game's specifications permit.

Although the Send and Receive buffers are generally not used with unreliable communication, you

still need a Send buffer of at least 1 kbyte and a Receive buffer of at least 128 bytes, because DWC

uses reliable communication internally when connecting peer-to-peer.

Table 8-1 Yardstick for Buffer Sizes

Kind of Communication Yardstick for Buffer Size Comments

Send buffer
size

Minimum of
1 kbyte

Reliable
Communication

Receive
buffer size

Compute buffer size as: (allowable duration in seconds of
instantaneous interruption as per the game specs) x
(amount of reliable data per second) + (total size of reliable
data).

Total size of reliable data = 7 x (number of divisions in the
data being sent) + (size of data being sent) + 15

Minimum of
128 bytes

Send buffer
size

(Max. data size for unreliable communication)＋ 2 bytes Minimum of
1 kbyteUnreliable

Communication
Receive
buffer size Minimum of 128 bytes

Note: The number of divisions in the data sent indicates the number into which the data is divided

when the total data size exceeds the maximum amount of data that can be sent at any one time.

This is specified by the DWC_SetSendSplitMax function (default size: 1,465 bytes).

The following shows an example of how to calculate the required size of the Send and Receive

buffers.

Assume that:

� The game spec allows an instantaneous interruption to last for as long as 1 second.

� Communication is performed once every 3 frames.

� The maximum amount of data that can be sent at one time is 64 bytes.

� The game is sending 100 bytes of data using reliable communication.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 50  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

In this case, the required size of the Send and Receive buffers is:

1 (second) x (60 (frames) ÷3) x (7 x 2 (divisions) + 100 (bytes) + 15) = 2580 (bytes).

8.4 Emulating Delays and Packet Loss

The DWC library can emulate delays and packet loss for sending and receiving data. For send delays,

the send data is copied to another buffer and kept for a specified amount of time. This data will not be

sent to the partner because the data is deleted when the connection is closed. For this reason, using

only the receive delay is recommended.

The packet loss rate (in units of percent), the delay time (in units of milliseconds), and the AID of the

receiving DS are specified in Code 8-3.

Code 8-3 Emulating Delays and Packet Loss

void set_trans_emulation(void)

{

DWC_SetSendDrop(30, 0);

DWC_SetRecvDrop(30, 0);

DWC_SetSendDelay(300, 0);

DWC_SetRecvDelay(300, 0);

:

}

NITRO-DWC Programming Manual

 2005-2007 Nintendo 51 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

8.5 Amount of Data Sent and Received

Table 8-1 shows the amount of data transmitted during reliable and unreliable communication.

Table 8-1 Communication Data Breakdown

Send Data Items Send Data Size

Preamble 192 bits (24 bytes)

MAC 24 bytes

LLC 8 bytes

IP 20 bytes

UDP 8 bytes

Reliable Communications Unreliable
Communications

Header send Data send Receive
check Data sendDATA

15 bytes 7 + XXX bytes 5 bytes XXX bytes

FCS 4 bytes

B (random time for avoiding packet
collision)

MAX 600 µs (microseconds)

Note: The header send and receive check are sent before and after the “data send” event during

reliable communication.

Although you can find the data send time for each transmission based on the formula Preamble +

(MAC + LLC + IP + UDP + DATA + FCS) x 4 + B [µs], it is difficult to accurately calculate the amount

of data sent and received. This is due to the fact that the transmission time varies depending on

factors such as the number of retries required due to bandwidth conditions, the number of sent

packets, and the amount of transmission standby to avoid packet collisions.

This section provides figures obtained in experiments for the amount of data sent/received.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 52  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

Experiments were conducted by measuring throughput, CPU load, and the packet loss ratio while

varying conditions such as the use of reliable or unreliable communication, the AP model and

manufacturer, the amount of radio usage, the send size, and the send frequency. As a result, the

following became clear.

� Send frequency (the number of packets issued) is greatly affected by the presence of back-off

time (including empty intervals between communication and random time for avoiding packet

collisions) of the header part and wireless communication

� In a four-unit mesh network where data is sent at a rate of once every three frames and the radio

noise is under 10%, the upper limit of send size is in the range 120-150 bytes

� In a four-unit mesh network where data is sent at a rate of once every three frames and the radio

noise is around 50%, the upper limit of send size is in the range 100-120 bytes

� When using reliable communication, traffic congestion occurs easily because congestion is

exacerbated by the need to repeatedly resend data when the network is busy. Once this occurs,

recovery time is extended.

Note: Radio noise is generated by using WMTestTool from another DS.

Based on the experimental results above, Nintendo titles communicate as listed below.

� Four-unit mesh network, unreliable communication

Nth frame: Send to Party 1

(N＋1)th frame: Do not send

(N＋2)th frame: Send to Party 2

(N＋3)th frame: Do not send

(N＋4)th frame: Send to Party 3

(N＋5)th frame: Do not send

(Repeats from this point on)

Communication every 60 to 104 bytes

� Four-unit server-client type connection, reliable communication

Send frequency is three frames with a usual send size of 1 to 40 bytes (up to 256 bytes).

NITRO-DWC Programming Manual

 2005-2007 Nintendo 53 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

9 HTTP Communication

The DWC library provides the GHTTP library to upload and download data using HTTP. You can use

this feature alone without the matchmaking and friend relationship features.

9.1 Preparing to Use the GHTTP Library

You need to initialize the GHTTP library before using it by calling the DWC_InitGHTTP function as

shown in Code 9-1.

Specify NULL for the argument. The returned value will always be TRUE.

If the DWC_InitGHTTP function has been called and the connection to the Internet has been

established, the GHTTP library features are available for use.

Code 9-1 Initializing the GHTTP Library

void init_ghttp(void)

{

// Initialize DWC library

init_dwc();

// Make connection to Internet

if (connect_to_inet()) return;

// Initialize GHTTP

DWC_InitGHTTP(NULL);

}

9.2 Uploading Data

Code 9-2 shows the uploading data process. To upload data to the HTTP server using the GHTTP

library, you must first call the DWC_GHTTPNewPost function and create a DWCGHTTPPost type object.

Next, use the DWC_GHTTPPostAddString function to add the data you want to upload to this object.

For the arguments of the DWC_GHTTPPostAddString function, specify the pointer to the

DWCGHTTPPost type object, the pointer to the key string that specifies the data, and the pointer to the

actual data (the value string) that you want to add.

The key and value strings are both copied and saved in the library.

Both strings must terminate with NULL. When NULL is specified for the value string, the string that

contains only the NULL terminator is specified.

To begin the actual data upload, use the DWC_PostGHTTPData function. For the arguments of this

NITRO-DWC Programming Manual

NTR-06-0429-001-F 54  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

function, pass the upload URL destination, the pointer to the DWCGHTTPPost type object, and the

completion callback and its parameters.

After the upload starts, all of the communication processes are carried out inside the

DWC_ProcessGHTTP function. Call this function approximately once per game frame.

The DWCGHTTPPost type object is released immediately after the upload completes and the

completion callback returns.

In Code 9-2, the actual data sent to the HTTP server is a string similar to the one below.

"key1=value1&key2=value2"

If data has been already added to identical DWCGHTTPPost type objects, the following string is

added .

"key1=value1&key2=value2&key3=value3&key4=value4 …"

Code 9-2 Uploading Data

static int s_send_cb_level = 0;

void post_ghttp_data(void)

{

int req;

DWCGHTTPPost post;

// Create the DWCGHTTPPost type object

DWC_GHTTPNewPost(&post);

// Set the data to upload to the DWCGHTTPPost type object

DWC_GHTTPPostAddString(&post, "key1", "value1");

DWC_GHTTPPostAddString(&post, "key2", "value2");

// Start uploading data

s_send_cb_level++;

req = DWC_PostGHTTPData("http://www.test.net", &post, cb_post, NULL);

if (req < 0)

{

// Error generation.

handle_error();

return;

}

while (s_send_cb_level)

{

NITRO-DWC Programming Manual

 2005-2007 Nintendo 55 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

// Proceed with the upload process

DWC_ProcessGHTTP();

GameWaitVBlankIntr();

}

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation.

handle_error();

return;

}

// Data upload has succeeded

:

}

// Callback for when upload has completed

void cb_post(const char* buf, int buflen, DWCGHTTPResult result, void* param)

{

s_send_cb_level--;

}

9.3 Downloading Data

The library provides two functions for downloading data from the HTTP server: the simple

DWC_GetGHTTPData function and the expanded DWC_GetGHTTPDataEx function shown in Code 9-3.

For the arguments of the DWC_GetGHTTPDataEx function, pass the data download URL target, the

size of the receive buffer, whether to release the receive buffer after the download completes, a

callback to obtain the communication state and its parameters, and a completion callback and its

parameters.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 56  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

If the receive buffer size is set to zero, 2048 bytes are initially secured for the memory region.

Additional 2048 byte chunks are then secured for receive data up to the limit of the heap region

allocated by the application.

If a callback for getting the communication status has been specified, the callback will be called when

the download sequence status changes (for example, when requests are being sent and data is being

received). If data is being received, you can also check the received data size.

When the download completes, the completion callback is called. If the settings are configured to

release the receive buffer after the download completes, the buffer is released immediately after the

process has exited from this completion callback. Consequently, ensure received data is copied for

use.

If the settings are configured not to release the receive buffer, the GHTTP library will not release the

receive buffer. At a convenient time, release the pointer to the receive buffer passed by the completion

callback argument in the application. To release the receive buffer, use the DWC_Free function.

The DWC_GetGHTTPData function has the same behavior as DWC_GetGHTTPDataEx function with

the arguments bufferlen set to 0, buffer_clear set to TRUE, and progressCallback set to

NULL.

After downloading starts, all communication processes occur inside the DWC_ProcessGHTTP

function. Call this function approximately once every game frame.

Code 9-3 Downloading Data

static char s_recvBuffer[2][SIZE_RECV_BUFFER];

static int s_get_cb_level = 0;

void get_ghttp_data(void)

{

// Start data download using simple function

s_get_cb_level++;

req = DWC_GetGHTTPData("http://www.test.net", cb_get, GET_TYPE_NORMAL);

if (req < 0)

{

// Error generation.

handle_error();

return;

}

// Start data download using expanded function

s_get_cb_level++;

req = DWC_GetGHTTPDataEx("http://www.test.net",

RECV_SIZE, TRUE,

NITRO-DWC Programming Manual

 2005-2007 Nintendo 57 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NULL, cb_get, GET_TYPE_EX);

if (req < 0)

{

// Error generation

handle_error();

return;

}

while (s_get_cb_level)

{

// Proceed with the download process

DWC_ProcessGHTTP();

GameWaitVBlankIntr();

}

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation.

handle_error();

return;

}

// Data download has succeeded

:

}

// Callback for when download has completed

void cb_get(const char* buf, int buflen, DWCGHTTPResult result, void* param)

{

s_get_cb_level--;

if (result == DWC_GHTTP_SUCCESS)

{

if ((int)param == GET_TYPE_NORMAL)

{

MI_CpuCopy8(buf, s_recvBuffer[0], SIZE_RECV_BUFFER);

}

else if ((int)param == GET_TYPE_EX)

{

MI_CpuCopy8(buf, s_recvBuffer[1], SIZE_RECV_BUFFER);

NITRO-DWC Programming Manual

NTR-06-0429-001-F 58  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

}

}

}

9.4 Closing the GHTTP Library

Call the DWC_ShutdownGHTTP function to close the GHTTP library.

You must call the DWC_InitGHTTP() and DWC_ShutdownGHTTP function the same number of times.

If you do not call these functions the same number of times, memory secured by the GHTTP library

will not be freed.

NITRO-DWC Programming Manual

 2005-2007 Nintendo 59 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

10 Communication Errors

The DWC library provides an error handling system for all DWC modules. In this system, DWC errors

are treated like application errors.

10.1 Error Handling

You can obtain the error status in the DWC library using DWC_GetLastErrorEx function, as shown

in Code 10-1. The error classification is the return value. The arguments are the error code and the

pointer to the storage location for the error handling type.

The error code is 0 or a negative number. If you are going to show the error code, be sure to invert

the sign so the value is shown as a positive number. However, if it is a recoverable error and the DS

was not disconnected from Nintendo Wi-Fi Connection, you do not need to display the error code.

The error process type indicates the recovery process required after the error occurs, and a routine

error process can be created for each value.

Once the error state has been entered, the DWC library will reject most functions. To return from the

error state, call the DWC_ClearError function.

Code 10-1 Error Handling Process

void main_loop(void)

{

while (1)

{

DWC_ProcessFriendsMatch();

handle_error(); // Error-handling process

GameWaitVBlankIntr();

}

:

}

// Error-handling process

void handle_error(void)

{

int dwcError, gameError;

dwcError = handle_dwc_error();

gameError = handle_game_error();

:

NITRO-DWC Programming Manual

NTR-06-0429-001-F 60  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

}

int handle_dwc_error(void)

{

int errcode;

DWCError err;

DWCErrorType errtype;

// Get the error

err = DWC_GetLastErrorEx(&errcode, &errtype);

// If there is no error, return without doing anything

if (err == DWC_ERROR_NONE) return 0;

// Clear the error

DWC_ClearError();

// Display an error message

disp_error_message(err);

// If error code is -10000 or lower, display the code as a positive number

if (errcode <= -10000) disp_message("%d", -1*errcode);

if (errtype == DWC_ETYPE_SHUTDOWN_FM)

{

// End the FriendsMatch process

DWC_ShutdownFriendsMatch();

}

else if (errtype == DWC_ETYPE_DISCONNECT)

{

/* End the FriendsMatch process and perform cleanup on Internet

connection */

DWC_ShutdownFriendsMatch();

disconnect_func();

}

else if (errtype == DWC_ETYPE_FATAL)

{

// Fatal Error, so nothing can be done after prompting to turn power off

while (1) ;

}

/* If only a minor error, you can just clear the error and resume the

FriendsMatch process */

NITRO-DWC Programming Manual

 2005-2007 Nintendo 61 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

return err;

}

10.2 List of Error Codes

This list provides the main error codes that occur during the matchmaking and friend relationship

process.

If the last three digits of an error code are 010 or 020, these errors are likely to occur if the GameSpy

server is in an unstable state (for example, during maintenance).

� 61010 A communication error occurred with the GameSpy GP server during GP server login.

� 61020 A communication error occurred with the GameSpy GP server during GP server login.

� 61070 A login timeout error occurred during GP server login.

� 71010 A communication error occurred with the GameSpy GP server while synchronizing

friend rosters.

� 80430 Connection to the client DS failed for server-client matchmaking because the server DS

that the Client DS was attempting to connect with or the client DS connected to the

server DS was powered off.

� 81010 A communication error occurred with the GameSpy GP server during matchmaking.

� 81020 A communication error occurred with the GameSpy master server during matchmaking.

� 84020 Communication from the GameSpy master server was interrupted during matchmaking.

Either the master server is down or the firewall is blocking UDP.

� 85020 A communication error occurred with the GameSpy master server during matchmaking.

� 85030 The GameSpy master server DNS failed during matchmaking. All error codes with 030

as the last three digits indicate DNS errors.

� 86420 NAT negotiations failed the set number of times during one matchmaking session.

There may be a problem with the router. In server-client matchmaking, this error only

occurs when the client DS that has started connecting and NAT negotiation has failed

one time.

� 97003 A socket error has occurred in a lower layer than the DWC library after matchmaking

completes.

Error codes with 1010 or 1020 as the last four digits and error code 85020 are known to occur

frequently in the NITRO Wi-Fi library for NitroWiFi, Version 1.0 RC2 and earlier, when TCP transfers

with the GameSpy server are delayed.

NITRO-DWC Programming Manual

NTR-06-0429-001-F 62  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

11 Network Storage Support

The DWC library can store data onto the network storage server provided by GameSpy. Code 11-1

shows you how to use this feature.

To access this storage server, complete the process up to the login using the DWC_LoginAsync

function. Next, log in to the storage server using the DWC_LoginToStorageServerAsync function.

The data to save on the storage server can have public or private attributes. If the data is saved using

the DWC_SavePublicDataAsync function, the data attributes are public and other players can

reference the data.

If the data is saved using the DWC_SavePrivateDataAsync function, the data attributes are private

and other players cannot reference the data.

To load data from the storage server, call the DWC_LoadOwnPublicDataAsync function to load your

own public data, DWC_LoadOwnPrivateDataAsync function to load your own private data, and the

DWC_LoadOthersDataAsync function to load the friend data saved in your friend roster. Friends are

specified by the friend roster index.

When saving or loading data completes, the appropriate callback set by the

DWC_SetStorageServerCallback function is called. These callbacks are always called in the

order that the save and load functions were called.

A string that combines key and value can be specified as saved data. The key/value combinations are

repeated by delimiting with \\, as in \\name\\mario\\stage\\3. If this example data is specified,

“mario” will be registered in the key value name and “3” is registered in the key value stage as a

string.

To load data saved on the storage server, specify the keys that you want to retrieve as

\\name\\stage, separating the name and stage with \\.

In this case, the string that you can get with a load callback would be in the format of

\\name\\mario\\stage\\3.

If you attempt to load a key that does not exist on the storage server or a key that was saved by a

friend who used the private attribute, the success argument of the callback function will be FALSE. If

you specify multiple keys to load and only some of the keys fall into these two categories, the

success argument will be TRUE, but these keys will not be included with the loaded data.

After storage server processing completes, call the DWC_LogoutFromStorageServer function to

log out from the storage server (as in Code 11-1).

Code 11-1 Accessing the Storage Server

static int s_cb_level = 0;

static BOOL s_storage_logined = FALSE;

void access_net_storage(void)

NITRO-DWC Programming Manual

 2005-2007 Nintendo 63 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

{

// Login to the storage server

if (!DWC_LoginToStorageServerAsync(cb_storage_login, NULL))

{

OS_TPrintf("DWC_LoginToStorageServerAsync() failed.\n");

return;

}

// Wait for login to storage server to complete

while (!s_storage_logined)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation

handle_error();

return;

}

GameWaitVBlankIntr();

}

// Set callbacks for the time when saving and loading complete

DWC_SetStorageServerCallback(cb_save_storage, cb_load_storage);

// Save public data

s_cb_level++;

if (!DWC_SavePublicDataAsync("\\name\\mario\\stage\\3", NULL))

{

OS_TPrintf("DWC_SavePublicDataAsync() failed.\n");

return;

}

// Save private data

s_cb_level++;

if (!DWC_SavePrivateDataAsync("\\id\\100", NULL))

{

OS_TPrintf("DWC_SavePrivateDataAsync() failed.\n");

return;

}

// Wait for saving to complete

while (s_cb_level > 0)

{

DWC_ProcessFriendsMatch();

NITRO-DWC Programming Manual

NTR-06-0429-001-F 64  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation

handle_error();

return;

}

GameWaitVBlankIntr();

}

// Load local saved data

s_cb_level++;

if (!DWC_LoadOwnDataAsync("\\id\\stage", NULL))

{

OS_TPrintf("DWC_LoadOwnDataAsync() failed.\n");

return;

}

// Load ones own private save data

s_cb_level++;

if (!DWC_LoadOwnPrivateDataAsync(“\\id”, NULL))

{

OS_TPrintf(“DWC_LoadOwnPrivateDataAsync() failed.\n”);

return;

}

// Load another player's saved data

s_cb_level++;

if (!DWC_LoadOthersDataAsync("\\name", 0, NULL))

{

OS_TPrintf("DWC_LoadOthersDataAsync() failed.\n");

return;

}

// Wait for loading to complete

while (s_cb_level > 0)

{

DWC_ProcessFriendsMatch();

if (DWC_GetLastErrorEx(NULL, NULL))

{

// Error generation

handle_error();

return;

}

GameWaitVBlankIntr();

NITRO-DWC Programming Manual

 2005-2007 Nintendo 65 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

}

// Log out from storage server

DWC_LogoutFromStorageServer();

:

}

// Callback for the tune when logged in to storage server

void cb_storage_login(DWCError error, void* param)

{

if (error == DWC_ERROR_NONE)

{

s_storage_logined = TRUE;

s_cb_level = 0;

}

}

// Callback for when data is saved to storage server

void cb_save_storage(BOOL success, BOOL isPublic, void* param)

{

OS_TPrintf("result %d, isPublic %d.\n", success, isPublic);

s_cb_level--;

}

// Callback for the time when data loaded from storage server

void cb_load_storage(BOOL success, int index, char* data, int len, void* param

)

{

OS_TPrintf("result %d, index %d, data '%s', len %d\n",

success, index, data, len);

s_cb_level--;

}

NITRO-DWC Programming Manual

NTR-06-0429-001-F 66  2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

Microsoft, Windows, Internet Explorer and Visual Studio are registered trademarks or trademarks of Microsoft Corporation in the

United States and other countries.

Metrowerks and CodeWarrior are registered trademarks or trademarks of Metrowerks Inc. in the United States and other countries.

Avid, Softimage, SOFTIMAGE|3D and SOFTIMAGE|XSI are registered trademarks or trademarks of Avid Technology Inc.

Maya, Discreet and 3ds max are registered trademarks or trademarks of Autodesk Inc./Autodesk Canada Inc. in the United States and

other countries.

Adobe, Photoshop, Acrobat and Acrobat Reader are registered trademarks or trademarks of Adobe Systems Incorporated.

OPTPiX, web technology and iMageStudio are registered trademarks or trademarks of Web Technology Corp.

All other company names and product names mentioned in this document are the registered trademarks or trademarks of the

respective companies.

© 2005-2007 Nintendo

The contents of this document cannot be

duplicated, copied, reprinted, transferred,

distributed or loaned in whole or in part without

the prior approval of Nintendo.

	1 Introduction
	2 User Management Under NITRO-DWC
	2.1 Managing Wi-Fi User Information
	2.1.1 User ID and Player ID
	2.1.2 The Difference Between a User ID and Player ID
	2.1.3 Player Information by Game: Login ID
	2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games

	2.2 Friend Management Overview
	2.2.1 Building Friend Relationships
	2.2.2 Building Friendships Using DS Wireless Communications
	2.2.3 Building Friendships Using Friend Registration Keys
	2.2.4 Friend Information Saved by Games

	2.3 Exception Handling
	2.3.1 Removing the Association Between a DS and a DS Card

	3 DWC Initialization
	4 Creating User Data
	5 Connection Process
	5.1 Connecting to the Internet
	5.2 Disconnecting from the Internet
	5.3 Connecting to the Nintendo Wi-Fi Connection Server

	6 Creating Friend Rosters and Information
	6.1 Exchanging Friend Information via DS Wireless Communications
	6.2 Exchanging Friend Registration Keys
	6.3 Synchronizing Friend Rosters
	6.4 Obtaining Friend Information Types
	6.5 Obtaining Friend Status

	7 Matchmaking
	7.1 Peer Matchmaking Without Specifying Friends
	7.2 Peer Matchmaking by Specifying Friends
	7.3 Evaluating Candidate Players for Matchmaking
	7.4 Server-Client Matchmaking
	7.5 Increasing Matchmaking Speed
	7.6 Names that Cannot be Used for Matchmaking Index Keys

	8 Sending and Receiving Data
	8.1 Peer-to-Peer Data Exchange
	8.2 Closing Connections
	8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch
	8.4 Emulating Delays and Packet Loss
	8.5 Amount of Data Sent and Received

	9 HTTP Communication
	9.1 Preparing to Use the GHTTP Library
	9.2 Uploading Data
	9.3 Downloading Data
	9.4 Closing the GHTTP Library

	10 Communication Errors
	10.1 Error Handling
	10.2 List of Error Codes

	11 Network Storage Support

