NITRO-DWC Programming Manual
Nintendo Wi-Fi Connection

Version 1.4.3

The contents in this document are highly
confidential and should be handled accordingly.

0 2005-2007 Nintendo NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

Confidential
These coded instructions, statements, and computer programs contain proprietary information of Nintendo
of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be
disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written

consent of Nintendo.

NTR-06-0429-001-F 2 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

Table of Contents

A [011 (oo 11 L1 1 o] IO T TSP PP PP OPPPPTPTI 7
2 User Management Under NITRO-DWCuuiiiiiieiiiiiiieeie e e e s s sttt ee e e e s s s stteaeesaeesssssssaneeeeeeessnsnnannesaesssanns 8
2.1 Managing Wi-Fi USer INfOIMALIONoooiiuiiiiiiie ittt e e e e e e e e e as 8
21.1 USEr ID and PIAYET IDcc.oiiiiii e 9
2.1.2 The Difference Between a User ID and PIayer ID..........ccooviiiiiiiiiie e e e 9
2.1.3 Player Information by Game: LOGIN 1Dueiiiiiiiiiiiiiiii ettt e e 10
2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Gamesccccccveeeenne 11

2.2 Friend ManagemMENt OVEIVIEW.......ccuia it iiiiiiiiieea ettt e e e e e e ettt e e e e e e s abbbe e e e e e e e s anbbbeeeeaaaeeaaannbeseaeaans 12
22.1 Building Friend RelatioNShIPSueiiiii et 12
2.2.2 Building Friendships Using DS Wireless COmMmMUNICALIONS..........c.ueevveeeiiiiiiiinireeeessiiiiiieeeeeee e 13
2.2.3 Building Friendships Using Friend RegiStration KEYScooiuiiiiiiiiiiiiiiiiiiee e 14
2.2.4 Friend Information Saved by GAmMESc..uueiiiiii i e e e e 14

2.3 [detT o (o] g I o F=TaTo |1 To T TP UUTTT PRI 15
23.1 Removing the Association Between a DS and a DS Card.........ccceevieeiniiiiiiiieiieeeeiiieeeee e 15

K O VL O [1 F=1 4= LA Lo] PO UP T PPR TR 16
N O (T 1] g To [UL g D T | - TP RTTP 18
5 CONNECHON PrOCESSeiiriiiitiieitet ettt ettt es e e e et e n et e s e e e nn e e s e e ne e e nn e e e neeennneennns 21
5.1 CoNNECHING 10 e INTEINEL. ... et e e et e e e e e e s et be e e e e e e e e e anneees 21
5.2 Disconnecting from the INTEINEL..........oo e e e e 23
53 Connecting to the Nintendo Wi-Fi CONNECION SEIVETcciiiiiiiiiiiiieiiae e 23

6 Creating Friend Rosters and INfOrMation..............oviieiiiiiiiiiire e e e e e e e e s s snnrnreeeee s 26
6.1 Exchanging Friend Information via DS Wireless COmMmMUNICAtIONSeeviiiriiiiiiiieeieeeeeniiieeeeenn 26
6.2 Exchanging Friend RegiStration KEYS...........uiiiii ittt ee e e e e e e e snneeaeee e s 27
6.3 SyNChronizing FrienNd ROSIEIS.........uiiiiiiiii ittt e e e et e e e e e e e e e anb e e e e e e e e e e e nneeees 29
6.4 Obtaining Friend INfOrMAatioN TYPES....coia ittt e e et e e e e e e e bee e e e e e e e e aneeees 32
6.5 ODbBtaINING FIIENA SEATUSveiiieeiiiiiiiiiee e e e s e s s e e e e s e s st e e e e e e s s s ssnetn e eeaeessansnnranreeeeesaannnneens 33

A |7 = 1 3 10 = 14T S 36
7.1 Peer Matchmaking Without Specifying Friendscooii e 36
7.2 Peer Matchmaking by Specifying FHENUS.ccooi i 38
7.3 Evaluating Candidate Players for MatChmakingccouiiriiiiiiiiii e 39
7.4 Server-Client MatChmMakKing. e e e e et e e e e e e e e aneeees 41
7.5 Increasing MatChmaking SPEEQ..........ccuuviiiiiii e e s e e e s s s r e e e e e s e ansarreeeeeeeeeanns 44
7.6 Names that Cannot be Used for Matchmaking INdeX KEYS.........uuvviiiiiiiiiiiiiiieee s cciiieeee e e e siieeeee e 44

8 Sending and RECEIVING DALAc.cocuviiiiiiie i it e e e e e s s e e e e e e s st e e e e e s s st e taeereeeseasntraeeeeeeessasnsrnnneeees 45
8.1 Peer-10-Peer Data EXCHANQEuiiii ettt e e e et e e e e e e e e nbbeeeaa e s 45

0 2005-2007 Nintendo NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

8.2 104 (o171 o To [OTo] o1 T=To1 o] 1 1S TP 48
8.3 Yardstick for Buffer Size Specified by DWC_InitFriendSMatChcccuveeiiiiiiiiiiieeeeeeen 49
8.4 Emulating Delays and PACKET LOSSuuiiii ittt e e e e e s snbbeeeeeae e e e aanes 50
8.5 Amount of Data Sent and RECEIVEAcuuiiiiiiiiiiiiiie et 51
9 HTTP COMMUNICALION ...ttt s sn e s s e s ee e 53
9.1 Preparing to Use the GHTTP LIDIAIYooiii ettt a e e e e e e e e e e nnes 53
9.2 (0]] [oT=To [TgTo i B -1 - W PP TP PPPPPTR 53
9.3 Do)V Y a1 (o= Te 1 [o [B - = PR TP PPRRRPR 55
9.4 CloSING the GHTTP LIDFAIY ...ttt e e e e e et e e e e e e e e et e e e e e e e e e annnreeeeaaeens 58
10 COMMUNICALION EFTOIS ..ciiiiiiiiiiieiitie ittt ettt e et e s e e e et e n bt e e be e e sen e e sare e e nn e e enneeennnees 59
(B0 R ¢ (o gl = g T |1 o USRS 59
10.2 LISt Of EITOr COUES. ...ceiiiiiiie ettt ekttt e et bt e et e e e et e e e abbe e e e anbe e e e annees 61
O 1= ATV o] QRS (o] = o L= IS T U o] o Lo o (PR 62
NTR-06-0429-001-F 4 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

Code
Code 3-1 DWC INILIAIZALIONeeiiiiieeie ettt e e e e e e bbb e e e e e e e e aanbbae e e e e e e e e annneees 17
(00 To (I B R O 1= Y- 11 g To U 1= g I | - SR 19
COodE 4-2 SAVING USEE DALAeeiiiiiiiiiiiiiii it e ettt e e e e e ettt e e e e e s e bbbt e e e e e e e s e annbbaaeeaaeesaannnneees 20
Code 5-1 Connecting t0 the INTEIMEL........ueiiii e e s e e e e e s e nnnnnees 22
Code 5-2 Disconnecting from the INEINEL ... e 23
Code 5-3 Connecting to the Nintendo Wi-Fi CONNECION SEIVETc.cuviiiieeeiiiiiieeee e e e e e 24
Code 6-1 Exchanging Friend Information Using DS Wireless Communicationscccueveeeeeeiinnnnnen. 26
Code 6-2 Exchanging Friend RegiStration KEYScuuceiiiiiiiiiiiii it sre e e e s senen e e e e e s 28
Code 6-3 The Friend Roster Synchronization PrOCESS...........uuiiiiiaiiiiiiiiiei et 30
Code 6-4 Obtaining Friend INfOrmMation TYPESuuuuieiieeiiiiiiiiiee e e e s sseie e e e e e e s st e e e e e s s s snnrnereeeeesennnnnnees 33
Code 6-5 Getting @ FrieNd’S STALUSuuviiiieeiiiiiiieie e e s s e e e e e s s e e e e e s s e snnraereeeeessennnnnees 34
Code 7-1 Peer Matchmaking Without Specifying Friends. ... 36
Code 7-2 Peer Matchmaking by Specifying FriendScccuuviiiiie i 38
Code 7-3 Evaluating Candidate Players for Matchmaking ... 40
Code 7-4 Server/Client MatChmMakKingeeieeiiiiiiieieie e s s e e e e s s e e e e e s s e ss e e e e e e e e e e nnnnnees 41
Code 8-1 Setup for Data EXCRANGEueiiiiiiiiiiie ettt e e e e e e naenees 45
(@00 [cIR S B A Y= T o o 10 To [I - - SR 48
Code 8-3 Emulating Delays and PacCKet LOSS.........uuuiiiiiiiiiiiiiieie ettt e 50
Code 9-1 Initializing the GHTTP LIBIArycocciiiiieeiee et e e e e e e e e e 53
(oo (SIS B N U ol (o T=To [o T B - | v- B TP PPPP R 54
(@oTo [SIRe oS B B L0111V a1 [oT- To [T g Yo [N I - | - SR 56
Code 10-1 Error HANAIING PrOCESSttt et e e et e e e e e e e e anbb e e e e e e e e e e nnnenees 59
Code 11-1 AcCCeSSING the StOrAQgE SEIVET ...cocoiiiiiiieie et e e e e e e e e e e e e e eaaneees 62
Tables
Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keyscccccovevivireieeeiiiiciinnnnnenn. 44
Table 8-1 Communication Data BreakaOWNooiiiiiiiiiiieeiiie ettt e e e saneeeeeeee s 51
Figures
Figure 2-1 Save State of the User ID onthe DS and DS Cardccccvvveeeiiiiiiieeieee e e e e s svineeeeee s 8
Figure 2-2 Using Multiple Nintendo DS systems and DS Cards..........cceuueaiiiiiiiiieaaeeiiiiieeee e eiieeeeeee s 8
Figure 2-3 How Data is Stored 0N the INEINEL...........ci i e errrae e e e s 9
Figure 2-4 Configuration Of @ LOGIN IDc.coiiiiiiiiiiiiee e e e 10
Figure 2-5 Comprehensive Diagram of Terminology for Nintendo Wi-Fi Connection Authentication 11
Figure 2-6 Creating Friendships Using DS Wireless COMMUNICAtIONScccvvveveeeeeiiiiiiinineeee e s 13
Figure 2-7 Creating Friendships Using Friend Registration Keys...........ccccciiiiiiiiiiiiiiiiiieeeeeee e 14
0 2005-2007 Nintendo 5 NTR-06-0429-001-F

CONFIDENTIAL

Released: August 15, 2007

NITRO-DWC Programming Manual

Revision History

Version

Revision Date

Description

1.4.3

2007/07/21

Corrected an error in Code 7.3 Evaluating Candidate Players for Matchmaking: changed
s_int_keyto&s_int_key.

1.4.2a

2007/04/27

Corrected typographical errors and changed dates to international format.

1.4.2

2007/02/15

Revised text within Code 6-1, Exchanging Friend Information Using DS Wireless
Communications, (s_f ri endDat a—ownFr i endDat a).

141

2006/08/09

Revised text within 8.3, Yardstick for Buffer Size Specified by DAC_| ni t Fri endsMat ch
and Table 8 2, Communication Data Breakdown.

1.4.0

2006/06/19

Changed the conditions for displaying error codes in 10.1 Error Handling.

1.3.0

2006/06/06

Revised the section "Examples of When a Temporary login ID May be Duplicated" in 2.1.3
Player Information by Game: login ID.

Changed the memory size to 230 kbytes from 200 kbytes in Chapter 3, Initializing NITRO-
DWC.

Added 7.6 Names That Cannot Be Used for Matchmaking Index Keys.
Miscellaneous changes (unified terminology, made corrections, etc.)

1.2.0

2006/03/10

Added 2 User Management Under NITRO-DWC.

Added 7.5 Increasing Matchmaking Speed.

Added 8.5 Amount of Data Sent/Received.

Miscellaneous changes (review of text, changes in terminology, etc.)

1.1.0

2006/01/30

Updated Code 6-3 Synchronizing Friend Rosters.
Corrected error in Code 6-4 Friend Information Types” (“stablished” -> “established”).

Corrected error in Code 7-3 Evaluating Candidate Players for Matchmaking” (“anymatch” ->
“anymatch test”).

Changed data load function in “11 Accessing the Storage Server” to a newly added function.

1.0.0

2005/12/28

Initial Version.

NTR-06-0429-001-F
Released: August 15, 2007

6 0 2005-2007 Nintendo
CONFIDENTIAL

NITRO-DWC Programming Manual

1 Introduction

The NITRO-DWC library (DWC library) is designed with the goal of making Nintendo Wi-Fi
Connection "easy to use, free of worries, and free of charge.” Specific benefits include the following.

e Making it easy to connect by sheltering users from complicated and detailed Internet settings.

e Making it easy to communicate with friends with whom friendships were established by using
wireless communications or by exchanging friend registration keys when not connected to the
Internet.

e Making it easy to remain secure by ensuring that one user cannot easily access another user’s
Internet-related information when a DS changes hands.

0 2005-2007 Nintendo 7 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

2 User Management Under NITRO-DWC

2.1

Managing Wi-Fi User Information

Information required for Nintendo Wi-Fi Connection authentication includes a user ID, player ID, and
password. This information is managed while treating the Nintendo DS and DS Card as a pair (see
Figure 2-1).

Figure 2-1 Save State of the User ID on the DS and DS Card

Nintendo DS

User ID

Password

=

DS Card
P User ID
— Player ID

e The user ID and password used for Nintendo Wi-Fi Connection authentication are saved on the
Nintendo DS.
e The user ID and player ID used for Nintendo Wi-Fi Connection authentication are saved on the
DS Card.

This information is used by the Nintendo Wi-Fi Connection for authentication. If the user ID saved on
the DS Card differs from the user ID saved on the DS, data saved on Nintendo Wi-Fi Connection
cannot be accessed. This prevents the unauthorized access of data (see Figure 2-2).

Figure 2-2 Using Multiple Nintendo DS systems and DS Cards

-
(N[Card st i)
[| DS, Unit A DS, Unit A ard storage region Connectable
E®== User ID: 00000001] User ID: 00000001 ©
§ RN y,
([1 (Card st i)
DS, Unit A DS, Unit B ard storage region
E=== User ID: 00000001 u E User ID: 00000001 o Connectable
N RN Y,
() Card storage region)
[| DS, Unit B || . DS, Unit A « Unconnectable
WS User ID: 00000002 ‘ User ID: 00000001
§ RN y,
\

NTR-06-0429-001-F
Released: August 15, 2007

[0 2005-2007 Nintendo
CONFIDENTIAL

NITRO-DWC Programming Manual

211

User ID and Player ID

The user ID is generated offline and is designed to be as unique as possible. After it is generated, it
becomes the user ID for connecting to the Internet, authenticating, and registering with the system. If
the ID is found to already be in use during authentication, a new, unique user ID will be assigned.

To ensure that the user ID is unique, part of the Nintendo DS system’s MAC address is used.
Although this prevents the same user ID from being used on different DS, duplication might occur
when a user ID is moved® or regenerated.

The player ID is a random 32-bit ID. Because data on the Internet server is managed using the
combined user ID, player ID, and Game Code, a player ID only needs to be unique with respect to the
user ID and Game Code. If the player ID is duplicated, a unique player ID will be assigned during

authentication.

2.1.2 The Difference Between a User ID and Player ID

Because a user ID is issued to each DS, a user that uses the same DS must use a single user ID for
all games. Since player IDs are issued to DS Cards, you can use different player IDs when using the
same DS (user ID) and the same Game Code (see Figure 2-3).

Figure 2-3 How Data is Stored on the Internet

-

Game types are
identified by their

Players of the same
game are identified by

Data on the server
is created for
each player

/—/
Vamm—

Data on the server

Data on the server

» Data on the server

Game Code player ID
Different systems
are identified by \/ \
user ID Save data >
—
—__
Save data P
J
\
P Save data
e
- NG
O
DS DS Card

(&

Internet Server

/

User Information stored on the DS can be moved using the “Nintendo Wi-Fi Connection setup” feature, provided by

DWC.

0 2005-2007 Nintendo
CONFIDENTIAL

NTR-06-0429-001-F
Released: August 15, 2007

NITRO-DWC Programming Manual

2.1.3 Player Information by Game: Login ID

The combined user ID + player ID + Game Code are called the “login ID” (see Figure 2-4). User
information saved on the Internet server is called a “profile,” while the ID used to manage profiles on
the server is called a “profile ID.”

Figure 2-4 Configuration of a Login ID

Login ID

User ID: Created for each DS
Player ID: Created for each player
Game Code: Assigned to each game

- J

Inside the DWC library, the login ID or profile ID is used to search for the profiles of other users on the
Internet server.

The login ID is generated when not connected to the Internet and becomes a temporary login ID.
Although a user is likely to use this login ID as is, it might not be available. In this case, a unique,
approved login ID (authenticated login ID) is generated. There is a one-to-one correspondence
between authenticated login IDs and assigned profile IDs.

Atemporary login ID may be duplicated under the following circumstances.

e Thelogin ID is created with a user ID that was not authenticated, the same user ID already is
registered in the Authentication server by another person, and the login ID was created with the
same player ID for the same game.

e Multiple DS systems created login IDs with the same player ID for the same game using the
same unauthenticated user ID.

NTR-06-0429-001-F 10 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games

Games must save this information for Nintendo Wi-Fi Connection authentication as backup on the DS
Card.

The size of the information used for authentication is 64 bytes.

The Nintendo Wi-Fi Connection authentication information includes the temporary login ID, the
authenticated login ID, and the profile ID. Developers do not need to fully understand the details of
this because this information is created and updated by the DWC library.

Information for Nintendo Wi-Fi Connection authentication must also be saved for each player when
multiple players can use the same DS Card.

Figure 2-5 shows the Nintendo Wi-Fi Connection authentication terminology covered so far.

Figure 2-5 Comprehensive Diagram of Terminology for Nintendo Wi-Fi Connection
Authentication

(")

[Profile]
Profile ID: Determined at time of authentication
Temporary login ID: Saved for searches by other users

Internet Server

)

[DS Card]

W Player ID: Created when the player is created
User ID: Used for confirming the DS

Profile ID: Obtained after authentication

I

[DS]
- User ID: Created only once by Nintendo Wi—Fi
Connection—compatible software

0 2005-2007 Nintendo 11 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

2.2 Friend Management Overview

2.2.1 Building Friend Relationships

To be able to easily start communication with friends using DWC, friend relationships are built by an

Internet server. Friendships are built by exchanging user information. Established friendships are

saved in the profile of each user.

There are two methods of exchanging the user information used to create a friendship.

Using DS Wireless Communication

Using this method, the players exchange login or profile IDs. The login ID is used if the player in
question has never logged in before. Even though each of these was created locally, it is highly
likely that they are unique, but not guaranteed. However, because the probability of duplication is
less than 277°, no special countermeasure against duplication is required. The profile ID is used
for players who have logged in at least once before. This creates friendships with certainty,
because a particular party can always be specifically identified.

Exchanging friend registration keys

Using this method, the players exchange friend registration keys, included in the profile ID, as
information used for error checking. A player must have connected to the Internet at least once
to use a profile ID. You must create an interface that allows input to be confirmed and re-entered
in case it is incorrectly input.

The information exchanged can be created using DWC. DWC includes functions for automatically

creating the most applicable information possible based on information used for Nintendo Wi-Fi

Connection authentication saved on the DS Card.

NTR-06-0429-001-F 12 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

2.2.2 Building Friendships Using DS Wireless Communications

A mechanism is provided that allows friendships to automatically be established later on the Internet
when information is exchanged with another party during DS Wireless Communications. The
information exchanged is created from the login ID or profile ID included in user data.

Note: The exchange of this information via DS Wireless Communications is not supported by DWC.

Be sure that applications handle the exchange of created information.

Figure 2-6 Creating Friendships Using DS Wireless Communications

/ Friend
Information

m — ’- -m‘ — ’u
H f— —
'
Information
By exchanging friend information Friendships can be established

via DS Wireless Communications when connected to the Internet

- /

0 2005-2007 Nintendo 13 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

2.2.3 Building Friendships Using Friend Registration Keys

The term “friend registration key” refers to information that can be used to specifically identify another
user when establishing a friendship. A mechanism is provided that allows friendships to be created by
exchanging this friend registration key (see Figure 2-7). Because the friend registration key is
manually entered by users, it should not be unnecessarily long. It is created using the profile ID
obtained by connecting at least once to the Internet rather than using the login ID.

Figure 2-7 Creating Friendships Using Friend Registration Keys

nd

n
registration ke:

By exchanging friend registration keys Friendships can be established
and registering them with your DS when connected to the Internet

The friend registration key is a 12-digit number.
Pay attention to the following points when developing games.

e You must create a user interface for issuing friend registration keys. Since a key cannot be
issued unless a player connects to the Internet at least once. A message to this effect must be
displayed.

e You must create a user interface for entering the friend registration key. The user interface must
allow the user to correct an incorrectly input friend registration key. It should also allow users to
save and edit the entered data as many times as necessary.

2.2.4 Friend Information Saved by Games

Games must save exchanged friend information for the maximum number of players to be managed
as friends in a backup area. This is required so users can edit friendships when they are not
connected to the Internet. Friend-related information used by the actual game (such as nicknames
and win-loss record) must also be saved. DWC treats all of this as friend information without regard to
the type of data (login ID, profile ID, and friend registration key).

To store friend information used by DWC, 12 bytes per player are required.

NTR-06-0429-001-F 14 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

2.3 Exception Handling

2.3.1 Removing the Association Between a DS and a DS Card

For security reasons, Nintendo Wi-Fi Connection treats the DS and DS Card as a set. This can be
inconvenient for a user if the DS is resold or broken, as the ability to connect to Nintendo Wi-Fi
Connection is lost.

To solve this problem, there is a DWC mechanism that allows the user to delete the data that associates
a DS Card with a given DS by destroying information stored in the profile. Because this deletes all
Internet friendships, you must create an interface to warn the user before deleting the data.

Even if Internet friendships are deleted, friend information for other parties remains on the DS Card of
the deleted user. This allows friendships to be restored by using this information and sending a new
friend registration key to the other party. Since it is necessary in these cases to prompt the user to
register the deleted user as a friend again, each application needs to include a message for notifying
the user of the required procedure.

With regard to specific processing, the currently saved association on the DS Card is deleted. If a
user wants to create a new association, it must be handled by creating new user data and destroying
the previous user data. Furthermore, even if user data is updated, friendships on the friend roster
saved on the DS Card remain established. If a specification where the friend roster remains intact is
used, be sure to clear the friendship established flag included in the friend information when letting
the user know that friendships remain established.

Note: Refer to the flow diagram in the Nintendo Wi-Fi Connection Programming Guidelines.

0 2005-2007 Nintendo 15 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

3 DWC Initialization

Before calling any of its library functions, you must initialize the DWC library as shown in Code 3-1
using the DWC | ni t function, which performs the following processes.

e Generates information for user authentication stored in the DS
e Checks if the connection target information stored in the DS’s backup memory is valid

Also use the DWC_Set MenmFunc function to configure the Internet, Nintendo Wi-Fi Connection, and
the functions that allocate and free internal memory used for matchmaking and friend relationship
processing. (These topics are covered in Chapter 4 Creating User Data and subsequent chapters.)

For four player matchmaking, the DWC library requires approximately 230 kilobytes of memory.
Removing one player from the maximum matchmaking number reduces the required memory by
approximately 20 kilobytes. (This is true when the sendBuf Si ze and r ecvBuf Si ze arguments of
the DWC | ni t Fri endsMat ch function are both set to the default value of 8 kilobytes.)

NTR-06-0429-001-F 16 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

Code 3-1 DWOC Initialization

void init_dwe(void)

{
u8 work[DWC_INI T_WORK SIZE] ATTRI BUTE_ALI GN(32);
/1 Initialize the DAC library
if (DACInit(work) == DWC | NI T_RESULT_DESTROY_OTHER SETTI NG)
disp_init_warning_nsg(); // Display warning nessage
/1 Set functions for allocating and freei ng nenory
DWC_Set MenfFunc(Al | ocFunc, FreeFunc);
}

/1 Function for allocating nenory
voi d* Al l ocFunc(DWCAl | ocType nane, u32 size, int align)

{
void * ptr;
CsSl nt r Mode ol d;
(voi d) nane;
(void)align;
old = OS Disablelnterrupts();
ptr = OS_All ocFronmMVai n(size);
OS Restorelnterrupts(old);
return ptr;

}

/1 Function for freeing nmenory
voi d FreeFunc(DWCAI | ocType name, void* ptr, u32 size)

{
Csl nt r Mode ol d;
(voi d) nane;
(void)si ze;
if (!'ptr) return;
old = OS _Disablelnterrupts();
OS_FreeToMai n(ptr);
OS Restorelnterrupts(old);
}
To read more about user authentication and other related topics, see the Nintendo Wi-Fi Connection
Guidelines.
0 2005-2007 Nintendo 17 NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

4 Creating User Data

The DWC library performs typical processes based on user data.

e Authenticating users
e Creating friend relationships

Even when the DS is not connected to the Internet, it requires user data to create the friend
information that is exchanged to create friend relationships via DS Wireless Communications.

If user data is not yet created or the user data is damaged, create the user data with the
DWC Cr eat eUser Dat a function and store the user data in the DS Card backup memory.

Be sure the application allocates memory for saving the DWCUser Dat a structure. User data for
several people is required when a single DS Card supports multiple players.

If player data is already created, be sure to check its validity using the DWC_CheckUser Dat a
function after loading it from backup into memory (see Code 4-1).

NTR-06-0429-001-F 18 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

Code 4-1 Creating User Data

BOOL create_userdata(void)

{
/[l 1If there is backup data and user data in that backup data, |oad all and
[/ return TRUE.
i f (DTUDs_CheckBackup())

{
(voi d) DTUD_LoadBackup(0, &s_Playerlnfo, sizeof (DTUDPl ayerlnfo));

OS _TPrintf("Load From Backup\n");
if (DWC_CheckUserData(&s_Playerlnfo.userData))

{
DWC Report UserData(&s_Pl ayerl nfo. userData);

return TRUE;

/l 1f valid user data has not been saved
OS TPrintf("no Backup UserData\n");

/|l Create user data
DWC Creat eUserDat a(&s_Pl ayer | nfo. userData, DTUD | NI TI AL_CODE);

OS TPrintf("Create UserData.\n");
DWC Report UserData(&s_Pl ayerl nfo. userData);

return FALSE;

0 2005-2007 Nintendo 19 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

The DWC_CheckDi rt yFl ag function can be used to check whether it is necessary to save user data
to the DS Card. Always use the DAC_Cl ear Di rt yFI ag function to clear the Di rt yFI ag before
saving the user data to backup memory as shown in Code 4-2.

Code 4-2 Saving User Data

voi d check_and_save_userdata(void)

{
if (DWC_CheckDirtyFl ag(&s_Pl ayerlnfo.userData))
{
DWC Cl earDirtyFl ag(&s_Pl ayerlnfo.userData);
DTUD_SaveBackup(0, &s_Pl ayerl nfo. userData, sizeof (DWUserData));
}
}

Before connecting to the Internet, be sure to check user data according to the following procedure.

e Usethe DAWC_CheckHasPr of i | e function to check whether the user has already connected to
the Internet and obtained a profile in the user data. If there is no profile, the user data is updated
and the DS system and DS card are treated as a set.

e Check whether the DS and DS Card are being used correctly using the
DWC CheckVal i dConsol e function. It is impossible to connect to the Internet if the DS and DS
Card are not correct because authentication will fail.

Note: Be sure to check the flow charts included in Nintendo Wi-Fi Connection Programming
Guidelines.

NTR-06-0429-001-F 20 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

5 Connection Process

The DWC library performs a two-phase process when connecting to the Internet.

e Connects to the Internet (making a Nintendo Wi-Fi Connection to get an IP address)
e Connects to the Nintendo Wi-Fi Connection server (referred to as "server")

When a DS connects to the Internet for the first time, the Nintendo authentication server issues a user
ID for that DS. This user ID is stored in the DS backup memory.

After this initial connection is established, the DWC library stores this user ID and the player ID in the
previously created user data to generate a profile. The GS profile ID that corresponds to this
generated profile is stored in the user data.

5.1 Connecting to the Internet

When the DS first connects to the Internet to obtain the IP address, Nintendo's authentication server
issues a user ID to that DS. Tests are also performed to confirm that the DS can connect to the

connection test server using TCP communication and that the Internet connection is functioning
normally.

0 2005-2007 Nintendo 21 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

All these processes are performed automatically by calling the DAC_* | net functions, as shown in
Code 5-1.

Code 5-1 Connecting to the Internet

static DWlnetControl s _ConnCtrl; // Retain until the Internet connection is

di sconnect ed
BOOL connect _to_inet(void)

{

/1 Initialization process for Internet connection

DWC Initlnet(&_ConnCtrl);

/] Start establishing connection

DWC_Set Aut hSer ver (DWC_CONNECTI NET_AUTH_RELEASE) ;

DWC Connect | net Async() ;

/1 The connection process

while (! DWC_Checklnet())

{
DWC Processl net ();
/1 V-Blank wait process
/1 During the connection process you need to pass the
/] process time to threads that have |ower priority than
/1 the main thread. Use the OS Waitlrqg function for this.
GaneWi t VBl ankl ntr () ;

}

/] Confirmthe connection result

if (DAC_GetlnetStatus() != DWC_CONNECTI NET_STATE_CONNECTED)

{
handl e_error();
return FALSE;

}

/1 Connect ed

}
NTR-06-0429-001-F 22 0 2005-2007 Nintendo

Released: August 15, 2007

CONFIDENTIAL

NITRO-DWC Programming Manual

5.2 Disconnecting from the Internet

Call the DWC_d eanupl net * functions as shown in Code 5-2 to disconnect the DS from the Internet.
Even if a communication error occurs and the DS is disconnected automatically, you must call this

function because the library memory needs to be freed.

Code 5-2 Disconnecting from the Internet

voi d di sconnect _func(void)

{
while (! DWC_d eanupl net Async())
{
GaneWi t VBl ankl ntr () ;
}
}

5.3 Connecting to the Nintendo Wi-Fi Connection Server

To connect to the Nintendo Wi-Fi Connection server, use the DAC | ni t Fri endsMat ch function
shown in Code 5-3 to initialize matchmaking and friend relationship features.

The arguments to this function are summarized below.

e Pointers to the control objects of these features

e User data

e Product ID

e Game name and secret key provided by GameSpy

e Send and receive buffer sizes used for communication between Nintendo DS systems
e Friend roster

e Maximum number of friends in the friend roster

The specified control objects are used in the DWC library until the DWC_Shut downFri endsMat ch
function is called.

Chapter 8 describes the sizes of the Send and Receiver buffers in detail. When 0 is specified, as is
the case in the sample program below, the buffers use 8 kbytes by default.

The friend roster is an array of friend information in the DWCFr i endDat a structure. Chapter 6
Creating Friend Rosters and Information, discusses friend rosters and friend information in detail.

Next, call the DAC_Logi nAsync function to make the connection to the server (see Code 5-3).

The first argument of this function is the player’s screen name. If players use names in your game
application, you must specify the screen name in this argument. The screen name used in the game
is sent to the authentication server to confirm and check for inappropriate names.

0 2005-2007 Nintendo 23 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

You can check the results of this function by calling the DWC_Get | nganesnCheckResul t function
(see Code 5-3).

The second argument of the DAWC_Logi nAsync function is not currently used. Pass NULL for this
argument. The remaining arguments represent the callback to use after login completes and the
parameters of the callback.

After calling this function, call the DAC_Pr ocessFri endsMat ch function repeatedly to advance the
login process, approximately once per game frame.

Next, the DAC_Pr ocessFri endsMat ch function executes all matchmaking and friend-related
processing until the DAC_Shut downFr i endsMat ch function is called. After login completes, be sure
to call DWC_Pr ocessFri endsMat ch function to make sure that network processes (for example,
updating the friend roster) do not start while the DS is connected to another client.

Code 5-3 Connecting to the Nintendo Wi-Fi Connection Server

static BOOL s_| ogi ned = FALSE;
stati c DWCFri endsMat chControl s FMXtrl ;

voi d connect _to_w fi_connection(void)

{
DWC | nitFriendsMatch(&s_FMCtrl, DTUD Get UserData(),
GAME_PRODUCTI D, GAME_NAME, GAME_SECRET_KEY,
0, O,
DTUD Get Fri endLi st (), FRIEND LI ST_LEN);
/1 Login using function for authentication
s_|l ogi ned = FALSE;
if (!DWC _Logi nAsync(L"nanme”, NULL, cb_login, NULL))
{
/'l Connection process fails to start.
return;
}
/[l Polling to see if connected
while (!'s_| ogined)
{
DWC ProcessFri endsiat ch();
if (DWC_GetlLastErrorEx(NULL, NULL))
{
/'l Error occurs
handl e_error();
return;
NTR-06-0429-001-F 24 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

GameWai t VBl ankl ntr();

/1 Connection process conpl eted
if (DWC_GCetl ngamesnCheckResult() == DWC | NGAMESN | NVALI D)
{
/| Special process performed when inappropriate in-game screennane was detected

di sp_i nganesn_war ni ng() ;

/1 Call back when | ogged in
void cb_login(void)

{
if (error == DWC_ERROR_NONE)
{
check_and_save_userdata();
s_l ogi ned = TRUE;
}
}

The DWC_Shut downFr i endsMat ch function ends the matchmaking and friend relationship features
and frees the memory reserved internally by the library.

When the DS connects to the server for the first time using the user data specified by the

DWC | ni t Fri endsMat ch function, the DS and the DS Card are treated as a pair. When they are
treated as a pair, the DS Card that stores the specified user data cannot be used with another DS to
connect.

Furthermore, the user data is always updated when the first connection is made. Once the login
completes, the application should call a login callback and the DAC_CheckDi rt yFI ag function to
check the updated user data. If necessary, save the updated data to the DS Card.

0 2005-2007 Nintendo 25 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

6

Creating Friend Rosters and Information

The DWC library has two procedures for establishing friend relationships among players.

Exchanging friend information using DS Wireless Communications
Exchanging friend registration keys

6.1 Exchanging Friend Information via DS Wireless Communications
During DS Wireless Communications, the DAC_Cr eat eExchangeToken function is used to create
friend information based on the local user data for exchange with other players (see Code 6-1).
Friend information that the DS receives should be saved in the friend roster using the application.

Code 6-1 Exchanging Friend Information Using DS Wireless Communications
DWCUser Data s_userDat a;
DWCFri endData s_friendList[] FRIEND LI ST_LEN];
/'l Exchange friend information
voi d exchange friend _data(void)
{
int i, j;
DWCFr i endDat a ownFr i endDat a;
DWCFri endDat a recvFri endLi st[FRIEND LI ST_LEN];
[/l Create friend information fromlocal user data to send
DWC_Cr eat eExchangeToken(s_userData, &ownFriendData);
/'l Send & receive friend information via MP conmuni cation
MP_start((ul6 *)&wnFriendData, (ul6é *)recvFriendList);
/1 Save the received friend information in an open slot in the friend roster.
/! Do not save if the sane friend informati on al ready exists.
for (i =0; i < numrecv_data; ++)
{
int index;
for (j =0, index = -1; j < FRIEND LI ST_LEN; ++j)
{
if (DAC_IsValidFriendData(&s_friendList[j]))
{
/1 If the friend roster has valid data, check if it is the sane as
NTR-06-0429-001-F 26 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

/'l the received friend i nformation and do not save if it is the sane.
if (DWC_IsEqual FriendData(& ecvFriendList[i],
& _friendList][j]))

br eak;
}
el se
{
// Records an available friend roster index
if (index == -1) index = j;
}

/'l Save valid friend informati on that does not overlap in friend roster
if (J > FRIEND_LIST_LEN && index >= 0)
{

s_friendList[index] = recvFriendList[i];

6.2 Exchanging Friend Registration Keys

A player that has connected at least once to Nintendo Wi-Fi Connection is assigned a GS profile ID
that is saved in the user data. Any player that has a GS profile ID can create a friend registration key
that adds special error checking information to the GS profile ID. This friend registration key is a 12-
digit decimal number that players can exchange. Once this friend registration key has been entered,
friend data can be exchanged.

After the friend registration key is entered, the DAC_Cr eat eFr i endKeyToken function is called to
convert the key into friend information and save the friend information to the friend roster (see Code
6-2).

Use the DNC_CheckFr i endKey function to check if the entered friend registration key is valid as
shown in Code 6-2. Even if this function is called, the error does not correct itself, so prepare a user
interface so that the user can enter the key until the key information is correct.

0 2005-2007 Nintendo 27 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

Code 6-2 Exchanging Friend Registration Keys

/1 Display Friend Registration Key

voi d disp_friend key(void)

{
u64 friend_key;
/] Create friend registration key fromlocal user data
if ((friend_key = DAC CreateFriendKey(& userData)) !=0)
{
/1l Display friend registration key
di sp_nessage("FRIEND CODE : %1d", friend_key);
}
el se
{
/1 Display nessage that there is no friend registration key
di sp_nessage("FRIEND CODE : not avail able");
}
}

/* Create friend information fromfriend registration key and register in

friend roster */
BOCOL register_friend_key(void)

{

u64 friend_key;
DWCFri endDat a fri endDat a;

while (1)

{

char friend_key string[13];

/1 Get user to nanually enter friend registration key
i nput_friend_key(friend_key string);

/* Convert entered friend registration key string into u64 nuneri cal
val ue */
friend_key = char ToU64(friend_key string);

/1 Check that friend registration key is correct and proceed if OK
/1 |If there is a problem display nessage and have it entered again
if (DWC_CheckFriendKey(s _userData, friend_key)) break;

NTR-06-0429-001-F

28 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

el se di sp_warni ng_nessage() ;

I/l Create Friend information fromcorrect Friend Registration Key
DWC Creat eFri endKeyToken(&friendData, friend_key);

{
i nt index;
/* Using sane method as MP communi cation, search for open slot and
overlaps in friend roster and register friend information. */
s_friendList[index] = friendData;
}

6.3 Synchronizing Friend Rosters

For a friend roster stored in the application (local friend roster) to be valid on the Internet, you need to
call the DAC_Updat eSer ver sAsync function and update the friend roster stored on the GameSpy
server (server friend roster) as shown in Code 6-3.

To synchronize the friend rosters, you must first complete the login process with the
DWC Logi nAsync function.

Specify the following function arguments: the player name (the old specification — specify NULL), the
callback and its parameters when the friend roster completes synchronization, the callback and its
parameters for a change natification in friend status (discussed later), and the callback and its
parameters when the friend roster is deleted.

The friend roster synchronization process involves two main tasks: sending requests to establish
friend relationships for friends that are on the local but not the server friend roster, and deleting
friends that are on the server but not the local friend roster.

If a request to establish a friend relationship is sent while the other party is offline, call the

DWC Logi nAsync function to save the request on the server and immediately deliver the request the
next time the contacted partner logs in. The friend relationship is only established after the information
is saved in the local friend roster of the other party.

Note that this process only registers the other party as your friend. When the other party receives the
request to establish a friend relationship, the contacted partner follows the same process to register
the initiating partner as a friend.

After the friend roster synchronization process completes, the callback is called after the local and
server friend rosters are checked, needed requests to establish friend relationships are sent, and
unneeded friend information is deleted. Be aware that even if the callback has returned, this state

0 2005-2007 Nintendo 29 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

does not indicate that all friend relationships are established. If the i sChanged argument of the
callback is set to TRUE, this indicates that the friend information in the local friend roster is updated
and needs to be saved. If a friend relationship is established at a time other than during the friend
roster synchronization process, the callback for an established friend relationship specified by the
DWC Set BuddyFri endCal | back function is called.

If multiple sets of friend information for the same friend are discovered during the friend roster
synchronization process, all but one set are automatically deleted. A callback is called for each
deleted set by comparing the friend roster index of the deleted friend information and the friend roster
index of the matching friend.

Code 6-3 The Friend Roster Synchronization Process

BOCOL s_updat e = FALSE;
BOOL s_updat eFri endLi st = FALSE;

void sync_friend_ list(void)

{
/1 Set the callback for establishnent of friend relationship
DWC_Set BuddyFri endCal | back(cb_buddyFri end, NULL);
/1 Synchronize |ocal Friend roster and server Friend roster
if (!DWC _UpdateServersAsync(NULL,
cb_updat eServers, NULL,
NULL, NULL,
cb_del eteFriend, NULL))
{
/'l Synchronization process fails to start
return;
}
while (!s_update)
{
DWC Pr ocessFri endsiat ch() ;
if (DWC_GetlLastErrorEx(NULL, NULL))
{
[/ Error generation
handl e_error();
return;
}
GaneWai t VBl ankl ntr () ;
}
NTR-06-0429-001-F 30 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

while (1)

{
DWC Pr ocessFri endsiat ch() ;

if (DWC_GetlLastErrorEx(NULL, NULL))

{
/1 Error generation
handl e_error();
return;

}

/1 To update the friend list asynchronously, performthe follow ng

/1 processing when appropriate and collect the updated local friend |ist
/1 and save.

if (s_updateFriendList)

{
/1 Save the friend list if it has been updated
s_updat eFri endLi st = FALSE;
save_friendList();

}

gane_| oop();

GaneWi t VBl ankl ntr () ;

/1 Callback for when Friend roster synchronization has conpl eted
voi d cb_updat eServers(DWCError error, BOOL i sChanged, void* param)

{
if (error == DWC_ERROR_NONE)
{
/1 Friend roster synchronization successf ul
s_updat e = TRUE;
/1l Must be saved if Friend roster has been changed
if (isChanged) s_updateFriendList = TRUE;
}
}
O 2005-2007 Nintendo 31 NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

// Callback for when there is a Friend roster deletion

voi d cb_del eteFri end(int del etedlndex, int srclndex, void* param)

{
OS TPrintf("friend %] was deleted (equal friend[%l]).\n",
del et edl ndex, srclndex);
s_updat eFri endLi st = TRUE;
}

/1 Callback for when friend rel ati onship has been established
voi d cb_buddyFriend(int index, void* param)
{
OS TPrintf("Got friendship with friend[%].\n", index);
s_updat eFri endLi st = TRUE;

6.4 Obtaining Friend Information Types

Code 6-4 shows how you can obtain the data type set in the friend information using the
DWC Cet Fri endDat aType function.

The possible data types are listed below.

o DWC FRI ENDDATA NCDATA No stored friend information

e DWC FRI ENDDATA LOG N ID ID for the state when a connection to Nintendo Wi-Fi
Connection has never been made

e DWC FRI ENDDATA FRI END KEY Friend registration key

o DWC_FRI ENDDATA GS_PROFI LE_I D GS profile ID

When the contacted partner has not yet obtained a GS profile ID, the data type
DWC_FRI ENDDATA LGA N I Dindicates that friend information was downloaded via DS Wireless
Communications.

Once the contacted partner has obtained a GS profile ID and initiating partner has completed the
friend roster synchronization process, the data type changes to DAWC_FRI ENDDATA_GS_PROFI LE_| D.

The data type DWC_FRI ENDDATA _FRI END_KEY indicates that the friend relationship is not yet
established for the GS profile ID registered using the friend registration key. Once the friend
relationship is established, the data type changes to DWC_FRI ENDDATA GS PRCFI LE | D.

You can use the DWC | sBuddyFr i endDat a function to determine whether a friend relationship has
been established from the friend information.

NTR-06-0429-001-F 32 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

Code 6-4 Obtaining Friend Information Types

void disp friendList(void)
{

int i;

for (i =0; i < FRIEND LIST _LEN, ++i)

{
I/l Get the friend i nformation type
int type = DWC Get Fri endDat aType(&s_friendList[i]);
OS TPrintf("friend[%] type %l.\n", type);

if (type == DWC_FRI ENDDATA GS_PRCFILE_I D)
{
/1 Show friend relationship if GS profile ID
if (DWC_IsBuddyFriendData(& _friendList[i]))
{
OS TPrintf("Friendship is established.\n");

}

el se

{
OS TPrintf("Friendship is not yet established.\n");

6.5 Obtaining Friend Status

All players maintain their own status when using Nintendo Wi-Fi Connection. Nintendo Wi-Fi
Connection is managed by a server operated by GameSpy.

There are two player states that the application can reference.

e The communication state
e Astatus string or binary data

The communication state is defined by the DAC_STATUS_* constants, which are set automatically by
the DWC library.

The application sets the status string with the DWC_Set OamnSt at us St ri ng function and the binary
data with the DWC_Set Owmn St at usDat a function as shown in Code 6-5.

Status strings must terminate with NULL and can be up to 256 text characters long, including the
NULL terminator. Binary data are converted inside the function into a string, and the approximate

0 2005-2007 Nintendo 33 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

number of text characters will be data size x 1.5. The string should not include '/ or \\' because these
text characters are used by the library as identifiers.

The current status of a friend can be obtained if a friend relationship has been established. Specify a
friend status change callback as the argument in the DANC_Updat eSer ver sAsync function to enable
a user to receive notices whenever friend status changes.

To obtain friend status, use the DWC_Get Fri endSt at us* function group. For this group of functions,
communication doesn’t occur while accessing the friend status list maintained by the DWC library.
However, processing these functions takes several hundred microseconds, so take care when calling
the functions frequently over a short period of time.

Furthermore, if there is a sudden loss of power during communication, the player's status will remain
in the previous state for a few minutes.

Code 6-5 Getting a Friend’s Status

void sync_friend_list(void)

{

int i;

/1 Synchronize |ocal friend roster and server friend roster
if (!DWC _UpdateServersAsync(NULL,
cb_updat eServers, NULL,
cb_friendStatus, NULL,
NULL, NULL))

/'l Synchronization process fails to start
return;

/1 Friend roster synchronization conpl eted

/] Set |coal status test string
DWC Set OmSt atusString("location=city,|evel =1");

for (i = 0; i < FRIEND LIST_LEN, ++i)

if (DAC_IsValidFriendData(& riendList[i])
{

u8 st at us;

char* statusString;

NTR-06-0429-001-F 34 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

[/ |If friend information is valid, get the status of that friend
status = DWC GetFriendStatus(& riendList[i], statusString);

/1 Display the status of friend

di sp_friend_status(status, statusString);

/1 Callback notifying change in friend s status
void cb_friendStatus(int index, u8 status, const char* statusString, void*
par am)
{
OS TPrintf("Friend[%] status -> % (statusString : %).\n",

i ndex, status, statusString);

0 2005-2007 Nintendo 35 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

7 Matchmaking

The DWC library provides two methods of matchmaking: peer matchmaking and server-client

matchmaking.

In peer matchmaking, the Nintendo DS systems are not distinguished as servers and clients. There

are two implementation methods.

e Not specifying friends
e Specifying friends

7.1 Peer Matchmaking Without Specifying Friends

This method performs matchmaking for players in the general public.

Call the DWC_Connect ToAnybodyAsync function to begin peer matchmaking without specifying
friends. The function's arguments are: the desired humber of connected players including the local
player, a filter string for matchmaking conditions, a matchmaking completion callback and its
parameters when matchmaking completes, and a player evaluation callback and its parameters. (This

last callback is explained later.)

Use the filter string to narrow the search for matchmaking candidates. The matchmaking index keys
(in Code 7-1, the key names are st r _key and i nt _key) need to be registered in advance using
the DWC_AddMat chKey* function. The key names are saved inside the library, but only pointers to
the key values are stored in the library. Consequently, you should retain key values until matchmaking

completes.

Note: There are certain names that cannot be used as Matchmaking index keys. For details, see

paragraph 7.6 Names that Cannot be Used for Matchmaking Index Keys.

Code 7-1 Peer Matchmaking Without Specifying Friends

static BOOL s_matched = FALSE;
static BOOL s_cancel ed = FALSE;
static const char* s_str_key = "anymatch_test";

static const int s_int_key = 10;

voi d do_anybody nmatch(void)

{
/1 Set the matchmaking i ndex keys
DWC AddWat chKeyString(0, "str_key", s_str_key);
DWC _AddMat chKeyl nt (0, "int_key", s_int_key);
/1 Start matchmaki ng without specifying friends
NTR-06-0429-001-F 36 0 2005-2007 Nintendo

Released: August 15, 2007

CONFIDENTIAL

NITRO-DWC Programming Manual

DWC_Connect ToAnybodyAsync(4,
"str_key = '"anymatch_test' and int_key = 10",
cb_anymat ch, NULL,

NULL, NULL);

/1 Poll to see if matchnmaki ng has conpl et ed
while (!s_matched)

{
DWC Pr ocessFri endsiat ch() ;
if (DWC_GetlLastErrorEx(NULL, NULL))
{
[/l Error generation
handl e_error();
return;
}
GaneWai t VBl ankl ntr () ;
}

/1 Mat chnmaki ng has conpl et ed

/1 Call back for when natchmaki ng has conpl et ed

voi d cb_anymatch(DWCError error, BOOL cancel, void* param)

{
if (error == DAC_ERROR _NONE)
{
if (cancel) s _cancel ed = TRUE;
el se s_mat ched = TRUE;
}
}
0 2005-2007 Nintendo 37 NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

7.2 Peer Matchmaking by Specifying Friends

This method performs matchmaking for friends registered in friend rosters.

Use the DAC_Connect ToFri endsAsync function to begin peer matchmaking by specifying friends,
as shown in Code 7-2 . The function's arguments are: the friend roster index array (the index list) of
friends to perform matchmaking, the number of elements in the index list, the desired number of
connected players including the host player, whether to allow matchmaking with friends from friend
rosters of other friends, a matchmaking completion callback and its parameters, and a player
evaluation callback and its parameters. (This callback is explained later.)

If NULL is specified for the index list, all friends in a friend roster are treated as matchmaking
candidates.

Peer matchmaking by specifying friends uses the DWC | ni t Fri endsMat ch function to specify the
friend roster.

Furthermore, because each player has a different friend roster and there is a high probability that a
different index list is specified. The success rate of matchmaking drops dramatically when you
disallow matchmaking with friends of friends

Code 7-2 Peer Matchmaking by Specifying Friends

static BOOL s_matched = FALSE;
static BOOL s_cancel ed = FALSE;

void do_friend_match(void)

{
/1 Start matchmaking with specifying friends
DWC Connect ToFri endsAsync(NULL, 0, 4, TRUE,
cb_friendmatch, NULL,
NULL, NULL);
/1 Poll to see if matchnmaki ng has conpl et ed
while (!'s_matched)
{
DWC ProcessFri endsiat ch();
if (DWC_GetlLastErrorEx(NULL, NULL))
{
/] Error generation
handl e_error();
return;
}
NTR-06-0429-001-F 38 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

GameWai t VBl ankl ntr();

/1 Mat chmaki ng has conpl et ed

/1 Call back for when nmatchmaki ng has conpl et ed

void cb_friendmatch(DWCError error, BOOL cancel, void* param)

{
if (error == DAC_ERROR _NONE)
{
if (cancel) s_cancel ed = TRUE;
el se s_mat ched = TRUE;
}
}

7.3 Evaluating Candidate Players for Matchmaking

During peer matchmaking, players who have been identified as matchmaking candidates can be
evaluated using game-specific criteria listed in order of preference.

When an evaluation callback is set as an argument of the function that starts peer matchmaking, that
callback is called every time a player is identified as a possible matchmaking candidate during
matchmaking. Use the DWC_Get Mat ch* Val ue function inside this callback to reference the
matchmaking index keys that were registered by the DAWC_AddMat chKey* function as shown in Code
7-3. Evaluate each player based on these values and use the evaluated value as the return value.
Players whose evaluated value is less than zero are removed as matchmaking candidates.

Note that this method is designed to make selecting players with the highest evaluated values easier,
but this method does not guarantee that players with the highest evaluated values will be selected for
matchmaking.

0 2005-2007 Nintendo 39 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

Code 7-3 Evaluating Candidate Players for Matchmaking

static const char* s_str_key = "anymatch_test";
static const int s_int_key = 10;

voi d do_anybody_mat ch(void)

{
/1 Set mat chmaki ng i ndex keys
DWC _AddMat chKeyString(0, "str_key", s_str_key);
DWC AddMat chKeylnt(0, "int_key", &s_int_key);

/1 Start matchmaki ng by specifying friends
DWC_Connect ToAnybodyAsync(4,
"str_key = "anymatch_test'"
cb_anymat ch, NULL,
cb_eval, NULL);

/1 Player evaluation callback

int cb_eval (int index, void* param)

{
int eval _int;
/1 Get the value for the matchnmaking i ndex key int_key
eval _int = DWC_Get Mat chl nt Val ue(i ndex, "int_key", -1);
if (eval _int >=0)
{
/] Sees which are close to |ocal value and takes it as eval uated val ue
return MATH ABS(s_int_key - eval _int) + 1;
}
el se
{
/1 Does not match make players that do not have the int_key key
return O;
}
}
NTR-06-0429-001-F 40 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

7.4 Server-Client Matchmaking

In server-client matchmaking among friends, the Nintendo DS systems take on clearly defined roles
as servers and clients. Server-client matchmaking is the same as peer matchmaking to the extent
that the completed network is a mesh network.

The server DS specifies the number of players allowed to connect (this number includes the server
DS), a matchmaking completion callback and its parameters, and a notify newly connected clients
callback and its parameters. The server DS calls the DAC_Set upGaneSer ver function and then
waits for the client Nintendo DS systems to connect. The code for this process is shown in Code 7-4.

The client Nintendo DS systems specify an index list of friends allowed to connect, a matchmaking
completion callback and its parameters, and a notify newly connected clients callback and its
parameters. The client DS calls the DAWC_Connect ToGaneSer ver Async function. With this function
configuration, the client Nintendo DS systems will try to connect if matchmaking has started with the
friend established as the server DS.

When server-client matchmaking completes, the server DS has a friend relationship with every
connected client DS. However, the client Nintendo DS systems may have friend relationships through
their friends via their connection to the server DS.

The matchmaking completion callback is called when the client DS successfully connects to the
server DS, and also when a new client DS is added to the mesh network to which it belongs. The
newly connected client notification callback is called when a new client DS starts the connection to
the mesh network to which it belongs.

Code 7-4 Server/Client Matchmaking

static BOOL s_matched = FALSE;

voi d do_server_natch(void)
{
/1 Start matchmaki ng as server DS
DWC Set upGaneSer ver (4,
cb_sc_match, (void *)CB_CONNECT_ SERVER,
cb_sc_new, NULL);

while (1)

{
DWC ProcessFri endsiat ch() ;

if (DWC_GetlLastErrorEx(NULL, NULL))
{

/1 Error generation.

handl e_error();

0 2005-2007 Nintendo 41 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

return;

if (s_matched)

{
// |f connection has been nade with new client
init_new connection();
s_mat ched = FALSE;

}

GaneWi t VBl ankl ntr () ;

voi d do_client_match(void)

{
/1 Start matchmaking as client DS
DWC _Connect ToGaneSer ver Async(O,
cb_sc_match, (void *)CB_CONNECT_CLI ENT,
cb_sc_new, NULL);
/1 Poll to see if matchnmaking conpl et ed
while (!s_matched)
{
DWC Pr ocessFri endsiat ch() ;
if (DWC_GetlLastErrorEx(NULL, NULL))
{
/1 Error generation.
handl e_error();
return;
}
GaneWi t VBl ankl ntr () ;
}
/1 NMat chnmaki ng conpl et ed
}

/1 Callback for when mat chmaki ng conpl et ed

NTR-06-0429-001-F 42 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

BOOL sel f, BOOL isServer, int

or if the local systemis a

newl y connecting client cancels

void cb_sc_match(DWCError error, BOOL cancel,
i ndex, void* param)
{
if (error == DAC_ERROR _NONE)
{
if (!cancel)
{
/] Connection successful
s_mat ched = TRUE;
}
else if (self || isServer)
{
/1 |If local system cancels matchmaking,
/1 client DS and the server DS has cancel | ed mat chnmaki ng
s_cancel d = TRUE;
}
/* Do nothing even if some other
mat chneki ng */
}
}

/1 Callback to notify a newly connected client

void cb_sc_new int index, void* param)
{

OS _TPrintf("Newconer friend %].\n",
}

i ndex);

Because server-client matchmaking creates a mesh network similar to peer matchmaking, the client

Nintendo DS systems can continue to communicate even after the server DS disconnects. However,

because server-client matchmaking cannot continue to function without a server DS, it is

recommended that you implement a way to disconnect all Nintendo DS systems when the server DS

disconnects. The server DS can also filter client connection requests by calling the

DWC St opSCiat chi ngAsync function during matchmaking.

0 2005-2007 Nintendo 43

CONFIDENTIAL

NTR-06-0429-001-F
Released: August 15, 2007

NITRO-DWC Programming Manual

7.5

Increasing Matchmaking Speed

7.6

During peer matchmaking without specifying friends, you can increase the speed of matchmaking
using filters when getting a list of matchmaking candidates from the matchmaking server (see Code
7-1). The matchmaking candidate list stored on the matching server has various conditions attached.

Matchmaking is more likely to fail when this list is obtained unconditionally and matchmaking
candidates are filtered inside the evaluation callback. This also takes more time by repeatedly re-
obtaining the list and performing matchmaking. You can reduce matchmaking failures and increase
matchmaking speed using a filter function to form the obtained matchmaking candidate list into a list
of acceptable matchmaking candidates.

Conversely, matchmaking efficiency can drop and time may be lost if excessive filtering is performed
inside the evaluation callback in situations where the number of candidates is likely to be low (such as
when seeking players of the same skill level or in the same geographical region).

Consider the following when seeking to increase the matchmaking speed.

e Use afilter function to form a list of available candidates from the obtained matchmaking
candidate list

e Adopt a specification where matches are made aggressively without too much filtering inside the
evaluation callback

Names that Cannot be Used for Matchmaking Index Keys

There are certain key names that cannot be registered as Matchmaking Index Keys by the
DWC AddMat chKey* function because the key names are used by the library and the server. Do not
use any of the names listed in Table 7-1.

Table 7-1 Key Names That Cannot Be Used for Matchmaking Index Keys

country region hostname gamename gamever hostport
mapname gametype gamevariant numplayers numteams maxplayers
gamemode teamplay fraglimit teamfraglimit timeelapsed timelimit
roundtime roundelapsed password groupid player_ score_
skill_ ping_ team_ deaths_ pid_ team_t
score_t dwc_pid dwc_mtype dwc_mresv dwc_mver dwc_eval

NTR-06-0429-001-F
Released: August 15, 2007

44

[0 2005-2007 Nintendo
CONFIDENTIAL

NITRO-DWC Programming Manual

8 Sending and Receiving Data

8.1 Peer-to-Peer Data Exchange

Once matchmaking completes and the Nintendo DS system connections are established (that is, a mesh
network is formed), you must set up for data exchange before the Nintendo DS systems can communicate.

First, set up a receive buffer so each DS can receive data from other Nintendo DS systems. Call the
DWC Set RecvBuf f er function. For the ai d argument, specify the AID that serves as the ID nhumber
of each DS. The AID accepts values between 0 and N, where N is one less than the number of
Nintendo DS systems in the network. Therefore, if matchmaking four players completes, the four
Nintendo DS systems are assigned the AID numbers 0, 1, 2, and 3. If the DS system assigned AID =
1 leaves the network, the remaining systems maintain the assigned AID numbers 0, 2, and 3. Any
data that arrives before setting up the receive buffer is deleted.

Next, configure the send and receive callbacks using the DWC_Set User SendCal | back() and
DWC Set User RecvCal | back functions. Call the receive callback when a DS receives data from
another DS. Call the send callback immediately after transmission of specified data completes.

In this context, note that "transmission completes" means that the data has been passed to the lower
layer transmission function. It does not indicate that the partner DS has received the data.

To configure the connection close callback, call the DANC_Set Connecti onCl osedCal | back
function when the local or partner DS leaves the network by the procedure to officially disconnect
(see Code 8-1).

These settings are not cleared until the DAC_Shut downFr i endsMat ch function is called. Hence, it
is not always necessary to set them immediately after matchmaking completes.

Code 8-1 Setup for Data Exchange

static u8 s_RecvBuffer[3][SIZE RECV_BUFFER];

voi d prepare_conmuni cati on(void)

{
u8* pAi dLi st ;
int num= DWC Get Al DLi st(&pAidList);
int i, j;
for (i =0, j =0; i < num ++i)
{
if (pAidList[i] == DWC Get WAID())
{
j ++;
conti nue;
0 2005-2007 Nintendo 45 NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

/]l Set the receive buffer for AIDs other than |local AID
DWC Set RecvBuf fer(pAidList[i], & _RecvBuffer[i-j], SIZE RECV_BUFFER);

/1l Set the send call back
DWC Set User SendCal | back(cb_send);

/'l Set the receive callback
DWC Set User RecvCal | back(cb_recv);

// Set the connection close call back
DWC_Set Connecti onCl osedCal | back(cb_cl osed, NULL);

// Callback for sent data
void cb_send(int size, u8 aid)

{
OS TPrintf("to aid = % size = %\n", aid, size);

/1 Callback for received data
void cb_recv(u8 aid, u8* buffer, int size)
{
OS TPrintf("fromaid = % size = % buffer[0] = %\n",
aid, size, buffer[0]);

// Connection close call back
void cb_cl osed(DWCError error, BOOL isLocal, BOOL isServer, u8 aid, int
i ndex, void* param

{

if (error == DWC_ERROR_NONE)

{
if (isLocal)
{

OS TPrintf("d osed connection to aid %@ (friendListlndex = %).\n",
aid, index);
}
el se
{
NTR-06-0429-001-F 46 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

OS TPrintf("Connection to aid % (friendListlndex = %l)

//was cl osed.\n", aid, index);

}

There are two kinds of data transmission: reliable transmission and unreliable transmission. Both use
UDP communication, but as with TCP communication, reliable transmission does not experience
packet loss and maintains packet order. However, the tradeoff is that reliable transmission takes
longer to complete because every sent packet is checked upon receipt.

Because unreliable transmission uses UDP communication, problems with packet loss and packet
order can occur. However, transmission is very fast because no packets are checked or resent.

If data transmission occurs at a layer lower than the DWC library, the data accumulates in the send
buffer that has a size specified by the DWC | ni t Fri endsMat ch function. If the send buffer does not
have enough free space when reliable transmissions are attempted, any unsent data are retained as-
is. They are sent from inside the DWC_Pr ocessFri endsMat ch function as soon as space is freed in
the send buffer.

Note that the default maximum amount of data that can be sent at once is 1465 bytes. If you try to
send more than this maximum amount of data, the data is divided up and the send is suspended. You
can change the maximum size of the send buffer using the DAC_Set SendSpl i t Max function.
However, because communication devices with various settings need to be accommodated, do not
set a maximum size larger than the default maximum.

Do not delete the send buffer if data for transmission is retained and suspended in this way. Also be
aware that the next data set cannot be sent while data is retained and suspended.

Use the DAC | sSendabl eRel i abl e function to check if space is available in the send buffer, the
send target AID is valid, and reliable transmission is possible (see Code 8-2).

If you attempt to send more than the maximum amount of data using unreliable transmission, the
transmission will fail and FALSE will be returned.

0 2005-2007 Nintendo 47 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

8.2

Code 8-2 Sending Data

static u8 s_SendBuffer[SlIZE SEND BUFFER];

voi d send_data(void)

{

/1 Send data using unreliable transm ssion to all connected DS systens.
/1 lgnore local AIDif passed.
DWC SendUnr el i abl eBi t map(DWC _Get Al DBi t map(),

s_SendBuffer, SIZE SEND BUFFER);

/1 Check whether reliable transm ssion is possible for DS with Al D=0
if (!DWC_|IsSendabl eReliable(0)) return;

/1 Send data using reliable transm ssion to a specific DS
DWC SendRel i abl eBi t map(0, s_SendBuffer, SIZE SEND BUFFER);

Closing Connections

server.

Call the DWC_C oseAl | Connect i onsHar d function to close the connection with all Nintendo DS
systems in the mesh network. When the close process is executed, the connection close callback set
by DWC_Set Connect i onCl osedCal | back() is called before exiting this function. The close
notification also notifies other Nintendo DS systems that were connected and the connection close
callback is called.

The server DS in server-client matchmaking calls this DAC_Cl oseAl | Connect i onsHar d function
even if there are no other connected systems at the time. This function call frees any remaining
regions of memory that were used for matchmaking and restores the communication state to the
online state. Calling this function does not close the connection with Nintendo Wi-Fi Connection

The following functions are also provided: the DWC_Cl oseConnect i onHar d function closes a
connection by specifying an AID and the DIWC_Cl oseConnect i onHar dBi t map function closes
multiple connections by specifying an AID bitmap. These functions are designed for use in unusual
circumstances, such as closing connections for a DS that becomes unavailable for communication
because the power is turned off.

NTR-06-0429-001-F 48 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch

The buffer sizes specified by the DAWC | ni t Fri endsMat ch function become the buffer sizes
adopted internally by the DWC. When data is sent using reliable communication, the Send buffer
stores data for which ACK is not returned. The Receive buffer stores data that did not reach the
Receive buffer in the correct order.

With reliable communication, you need as much capacity as possible to deal with instantaneous
network interruptions. The Send and Receive buffers both need to be large enough to handle as
much interruption time as the game's specifications permit.

Although the Send and Receive buffers are generally not used with unreliable communication, you
still need a Send buffer of at least 1 kbyte and a Receive buffer of at least 128 bytes, because DWC
uses reliable communication internally when connecting peer-to-peer.

Table 8-1 Yardstick for Buffer Sizes

Kind of Communication Yardstick for Buffer Size Comments

Send buffer | Compute buffer size as: (allowable duration in seconds of | Minimum of

size instantaneous interruption as per the game specs) x 1 kbyte
Reliable (amount of reliable data per second) + (total size of reliable
Communication) data). o

Receive Minimum of

buffer size | Total size of reliable data = 7 x (number of divisions inthe | 128 pytes
data being sent) + (size of data being sent) + 15

Send buffer (Max. data size for unreliable communication)+ 2 bytes Minimum of
Unreliable size 1 kbyte
Communication Recei
ecelve Minimum of 128 bytes
buffer size

Note: The number of divisions in the data sent indicates the number into which the data is divided
when the total data size exceeds the maximum amount of data that can be sent at any one time.
This is specified by the DWC_Set SendSpl i t Max function (default size: 1,465 bytes).

The following shows an example of how to calculate the required size of the Send and Receive
buffers.

Assume that:

e The game spec allows an instantaneous interruption to last for as long as 1 second.
e Communication is performed once every 3 frames.

e The maximum amount of data that can be sent at one time is 64 bytes.

e The game is sending 100 bytes of data using reliable communication.

0 2005-2007 Nintendo 49 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

In this case, the required size of the Send and Receive buffers is:

1 (second) x (60 (frames) +3) x (7 x 2 (divisions) + 100 (bytes) + 15) = 2580 (bytes).

8.4 Emulating Delays and Packet Loss

The DWC library can emulate delays and packet loss for sending and receiving data. For send delays,
the send data is copied to another buffer and kept for a specified amount of time. This data will not be
sent to the partner because the data is deleted when the connection is closed. For this reason, using
only the receive delay is recommended.

The packet loss rate (in units of percent), the delay time (in units of milliseconds), and the AID of the

receiving DS are specified in Code 8-3.

Code 8-3 Emulating Delays and Packet Loss

voi d set_trans_emnul ation(void)

{
DWC_Set SendDrop(30, 0);
DWC_Set RecvDrop(30, 0);
DWC_Set SendDel ay(300, 0);
DWC Set RecvDel ay(300, 0);
}
NTR-06-0429-001-F 50 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

8.5 Amount of Data Sent and Received

Table 8-1 shows the amount of data transmitted during reliable and unreliable communication.

Table 8-1 Communication Data Breakdown

Send Data ltems Send Data Size
Preamble 192 hits (24 bytes)
MAC 24 bytes
LLC 8 bytes
IP 20 bytes
UbDP 8 bytes
Reliable Communications Unreliable
Communications
DATA Header send Data send REEEE Data send
check

15 bytes 7 + XXX bytes 5 bytes XXX bytes
FCS 4 bytes
B (random time for avoiding packet MAX 600 ps (microseconds)
collision)

Note: The header send and receive check are sent before and after the “data send” event during
reliable communication.

Although you can find the data send time for each transmission based on the formula Preamble +
(MAC + LLC + IP + UDP + DATA+ FCS) x 4 + B [us], it is difficult to accurately calculate the amount
of data sent and received. This is due to the fact that the transmission time varies depending on
factors such as the number of retries required due to bandwidth conditions, the number of sent
packets, and the amount of transmission standby to avoid packet collisions.

This section provides figures obtained in experiments for the amount of data sent/received.

0 2005-2007 Nintendo 51 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

Experiments were conducted by measuring throughput, CPU load, and the packet loss ratio while

varying conditions such as the use of reliable or unreliable communication, the AP model and

manufacturer, the amount of radio usage, the send size, and the send frequency. As a result, the

following became clear.

Send frequency (the number of packets issued) is greatly affected by the presence of back-off
time (including empty intervals between communication and random time for avoiding packet
collisions) of the header part and wireless communication

In a four-unit mesh network where data is sent at a rate of once every three frames and the radio
noise is under 10%, the upper limit of send size is in the range 120-150 bytes

In a four-unit mesh network where data is sent at a rate of once every three frames and the radio
noise is around 50%, the upper limit of send size is in the range 100-120 bytes

When using reliable communication, traffic congestion occurs easily because congestion is
exacerbated by the need to repeatedly resend data when the network is busy. Once this occurs,
recovery time is extended.

Note: Radio noise is generated by using WMIest Tool from another DS.

Based on the experimental results above, Nintendo titles communicate as listed below.

Four-unit mesh network, unreliable communication
Nth frame: Send to Party 1

(N+1)th frame: Do not send

(N+2)th frame: Send to Party 2

(N+3)th frame: Do not send

(N+4)th frame: Send to Party 3

(N+5)th frame: Do not send

(Repeats from this point on)
Communication every 60 to 104 bytes

Four-unit server-client type connection, reliable communication
Send frequency is three frames with a usual send size of 1 to 40 bytes (up to 256 bytes).

NTR-06-0429-001-F 52 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

9 HTTP Communication

The DWC library provides the GHTTP library to upload and download data using HTTP. You can use
this feature alone without the matchmaking and friend relationship features.

9.1 Preparing to Use the GHTTP Library

You need to initialize the GHTTP library before using it by calling the DWC | ni t GHTTP function as
shown in Code 9-1.

Specify NULL for the argument. The returned value will always be TRUE.
If the DWC | ni t GHTTP function has been called and the connection to the Internet has been

established, the GHTTP library features are available for use.

Code 9-1 Initializing the GHTTP Library

void init_ghttp(void)

{
/[l Initialize DAC |ibrary
init_dwe();
/] Make connection to |nternet
if (connect_to_ inet()) return;
/1 Initialize GHTTP
DWC | ni t GHTTP(NULL);

}

9.2 Uploading Data

Code 9-2 shows the uploading data process. To upload data to the HTTP server using the GHTTP
library, you must first call the DAC_GHTTPNewPost function and create a DANCGHTTPPost type object.
Next, use the DAC_GHTTPPost AddSt ri ng function to add the data you want to upload to this object.

For the arguments of the DAWC_GHTTPPost AddSt r i ng function, specify the pointer to the
DWCGHTTPPost type object, the pointer to the key string that specifies the data, and the pointer to the
actual data (the value string) that you want to add.

The key and value strings are both copied and saved in the library.

Both strings must terminate with NULL. When NULL is specified for the value string, the string that
contains only the NULL terminator is specified.

To begin the actual data upload, use the DWC Post GHTTPDat a function. For the arguments of this

0 2005-2007 Nintendo 53 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

function, pass the upload URL destination, the pointer to the DACGHTTPPost type object, and the
completion callback and its parameters.

After the upload starts, all of the communication processes are carried out inside the
DWC _Pr ocessGHTTP function. Call this function approximately once per game frame.

The DWCGHTTPPost type object is released immediately after the upload completes and the
completion callback returns.

In Code 9-2, the actual data sent to the HTTP server is a string similar to the one below.
"keyl=val uel&key2=val ue2"

If data has been already added to identical DACGHTTPPost type objects, the following string is
added .

"keyl=val uel&key2=val ue2&key3=val ue3&ey4=val ued

Code 9-2 Uploading Data

static int s_send_cb_|evel = 0;

voi d post _ghttp_data(void)

{
int req;
DWCGHTTPPost post ;
/| Create the DWCCHTTPPost type object
DWC_CGHTTPNewPost (&post) ;
/1 Set the data to upload to the DWCCGHTTPPost type obj ect
DWC GHTTPPost AddStri ng(&post, "keyl", "val uel");
DWC GHTTPPost AddStri ng(&post, "key2", "val ue2");
/1 Start upl oading data
s_send_cb_| evel ++;
req = DAWC _Post GHTTPDat a("http://ww.test.net", &post, cb_post, NULL);
if (regq <0)
{
/1 Error generation.
handl e_error();
return;
}
while (s_send _cb_|evel)
{
NTR-06-0429-001-F 54 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

/1 Proceed with the upl oad process
DWC ProcessGHTTP() ;

GaneWi t VBl ankl ntr () ;

if (DWC_GetlLastErrorEx(NULL, NULL))

{
/1 Error generation.
handl e_error();
return;

}

/1 Data upl oad has succeeded

/1 Callback for when upl oad has conpl et ed
voi d cb_post(const char* buf, int buflen, DWGHTTPResult result, void* paran
{

s_send_cb_I evel - -;

9.3 Downloading Data

The library provides two functions for downloading data from the HTTP server: the simple
DWC_Get GHTTPDat a function and the expanded DWC_Get GHTTPDat aEx function shown in Code 9-3.

For the arguments of the DAWC_Get GHTTPDat aEx function, pass the data download URL target, the
size of the receive buffer, whether to release the receive buffer after the download completes, a
callback to obtain the communication state and its parameters, and a completion callback and its
parameters.

0 2005-2007 Nintendo 55 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

If the receive buffer size is set to zero, 2048 bytes are initially secured for the memory region.
Additional 2048 byte chunks are then secured for receive data up to the limit of the heap region
allocated by the application.

If a callback for getting the communication status has been specified, the callback will be called when
the download sequence status changes (for example, when requests are being sent and data is being
received). If data is being received, you can also check the received data size.

When the download completes, the completion callback is called. If the settings are configured to
release the receive buffer after the download completes, the buffer is released immediately after the
process has exited from this completion callback. Consequently, ensure received data is copied for
use.

If the settings are configured not to release the receive buffer, the GHTTP library will not release the
receive buffer. At a convenient time, release the pointer to the receive buffer passed by the completion
callback argument in the application. To release the receive buffer, use the DAWC_Fr ee function.

The DWC_Get GHTTPDat a function has the same behavior as DWC_Get GHTTPDat aEx function with
the arguments buf f er| en setto O, buf f er _cl ear setto TRUE, and pr ogr essCal | back set to
NULL.

After downloading starts, all communication processes occur inside the DAC_Pr ocessGHTTP

function. Call this function approximately once every game frame.

Code 9-3 Downloading Data

static char s_recvBuffer[2][SlIZE RECV_BUFFER];
static int s_get _cb level = 0;

voi d get _ghttp_data(void)

{
/1 Start data downl oad using sinple function
s_get _cb_Il evel ++;
req = DAWC Get GHTTPData("http://ww. test.net", chb_get, GET_TYPE NORVAL);
if (regq<0)
{
/1 Error generation.
handl e_error();
return;
}
/1 Start data downl oad usi ng expanded function
s_get _cb_Il evel ++;
req = DWC_Get GHTTPDat aEx("http://ww. test. net",
RECV_SI ZE, TRUE,
NTR-06-0429-001-F 56 0 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

NULL, cb_get, GET _TYPE_EX);

if (regq<0)

{
/1 Error generation
handl e_error();
return;

}

while (s_get _cb_level)

{
/1 Proceed with the downl oad process
DWC ProcessGHTTP() ;
GaneWi t VBl ankl ntr () ;

}

if (DWC_GetlLastErrorEx(NULL, NULL))

{
/1 Error generation.
handl e_error();
return;

}

/! Data downl oad has succeeded

/1 Callback for when downl oad has conpl et ed
void cb_get(const char* buf, int buflen, DAWGHTTPResult result, void* paranm

{
s_get _chb_l evel --;
if (result == DWC_GHTTP_SUCCESS)
{
if ((int)param == GET_TYPE NORVAL)
{
M _CpuCopy8(buf, s recvBuffer[0], SIZE RECV_BUFFER);
}
else if ((int)param== GET_TYPE EX)
{
M _CpuCopy8(buf, s recvBuffer[1], SIZE RECV_BUFFER);
0 2005-2007 Nintendo 57 NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

9.4 Closing the GHTTP Library

Call the DWC_Shut downGHTTP function to close the GHTTP library.

You must call the DWC | ni t GHTTP() and DWC_Shut downGHTTP function the same number of times.
If you do not call these functions the same number of times, memory secured by the GHTTP library

will not be freed.

NTR-06-0429-001-F 58 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

10 Communication Errors

The DWC library provides an error handling system for all DWC modules. In this system, DWC errors
are treated like application errors.

10.1 Error Handling

You can obtain the error status in the DWC library using DANC_CGet Last Er r or Ex function, as shown
in Code 10-1. The error classification is the return value. The arguments are the error code and the
pointer to the storage location for the error handling type.

The error code is 0 or a negative number. If you are going to show the error code, be sure to invert
the sign so the value is shown as a positive number. However, if it is a recoverable error and the DS
was not disconnected from Nintendo Wi-Fi Connection, you do not need to display the error code.

The error process type indicates the recovery process required after the error occurs, and a routine
error process can be created for each value.

Once the error state has been entered, the DWC library will reject most functions. To return from the

error state, call the DAWC_C ear Er r or function.

Code 10-1 Error Handling Process

voi d mai n_| oop(void)

{
while (1)
{
DWC ProcessFri endsiat ch() ;
handl e_error(); // Error-handling process
GaneWi t VBl ankl ntr () ;
}
}

/1 Error-handling process

voi d handl e_error(void)

{
int dwcError, ganeError;
dwcError = handle_dwc_error();
ganeError = handl e_gane_error();
O 2005-2007 Nintendo 59 NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

int handl e_dwc_error(void)
{
i nt errcode;
DWCError err;
DWCEr r or Type errtype;

/'l Get the error
err = DWC Get Last Error Ex(&errcode, &errtype);

/1 |If there is no error, return w thout doing anything
if (err == DW _ERROR NONE) return O;

[/l Clear the error
DWC ClearError();

/1 Display an error nessage
di sp_error_nessage(err);
[/ |If error code is -10000 or |ower, display the code as a positive numnber

if (errcode <= -10000) disp_nessage("%", -l1l*errcode);

if (errtype == DWC_ETYPE_SHUTDOWN_FM)
{
/1 End the FriendsMatch process
DWC_Shut downFri endsMat ch() ;

}
else if (errtype == DWC ETYPE_ DI SCONNECT)

{
/* End the FriendsMatch process and perform cl eanup on Internet
connection */
DWC_Shut downFri endsMat ch() ;
di sconnect _func();
}
else if (errtype == DWC _ETYPE_FATAL)
{
/1 Fatal Error, so nothing can be done after pronpting to turn power off
while (1) ;
}
/[* If only a minor error, you can just clear the error and resune the

Fri endsivat ch process */

NTR-06-0429-001-F 60 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

return err;

10.2 List of Error Codes

This list provides the main error codes that occur during the matchmaking and friend relationship
process.

If the last three digits of an error code are 010 or 020, these errors are likely to occur if the GameSpy
server is in an unstable state (for example, during maintenance).

e 61010 A communication error occurred with the GameSpy GP server during GP server login.
e 61020 A communication error occurred with the GameSpy GP server during GP server login.
e 61070 A login timeout error occurred during GP server login.

e 71010 A communication error occurred with the GameSpy GP server while synchronizing
friend rosters.

e 80430 Connection to the client DS failed for server-client matchmaking because the server DS
that the Client DS was attempting to connect with or the client DS connected to the
server DS was powered off.

e 81010 A communication error occurred with the GameSpy GP server during matchmaking.

e 81020 A communication error occurred with the GameSpy master server during matchmaking.

e 84020 Communication from the GameSpy master server was interrupted during matchmaking.
Either the master server is down or the firewall is blocking UDP.

e 85020 A communication error occurred with the GameSpy master server during matchmaking.

e 85030 The GameSpy master server DNS failed during matchmaking. All error codes with 030
as the last three digits indicate DNS errors.

e 86420 NAT negotiations failed the set number of times during one matchmaking session.
There may be a problem with the router. In server-client matchmaking, this error only
occurs when the client DS that has started connecting and NAT negotiation has failed
one time.

e 97003 A socket error has occurred in a lower layer than the DWC library after matchmaking
completes.

Error codes with 1010 or 1020 as the last four digits and error code 85020 are known to occur
frequently in the NITRO Wi-Fi library for NitroWiFi, Version 1.0 RC2 and earlier, when TCP transfers
with the GameSpy server are delayed.

0 2005-2007 Nintendo 61 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

11 Network Storage Support

The DWC library can store data onto the network storage server provided by GameSpy. Code 11-1
shows you how to use this feature.

To access this storage server, complete the process up to the login using the DAC_Logi nAsync
function. Next, log in to the storage server using the DAC_Logi nToSt or ageSer ver Async function.

The data to save on the storage server can have public or private attributes. If the data is saved using
the DWC_SavePubl i cDat aAsync function, the data attributes are public and other players can
reference the data.

If the data is saved using the DWC_SavePr i vat eDat aAsync function, the data attributes are private
and other players cannot reference the data.

To load data from the storage server, call the DAWC_LoadOanPubl i cDat aAsync function to load your
own public data, DWAC_LoadOmPr i vat eDat aAsync function to load your own private data, and the
DWC LoadO her sDat aAsync function to load the friend data saved in your friend roster. Friends are
specified by the friend roster index.

When saving or loading data completes, the appropriate callback set by the
DWC Set St or ageSer ver Cal | back function is called. These callbacks are always called in the
order that the save and load functions were called.

A string that combines key and value can be specified as saved data. The key/value combinations are
repeated by delimiting with\ \ , as in \ \ narme\ \ mari o\ \ st age\ \ 3. If this example data is specified,
“mar i 0" will be registered in the key value name and “3” is registered in the key value stage as a
string.

To load data saved on the storage server, specify the keys that you want to retrieve as
\'\ name\\ st age, separating the name and stage with \ \ .

In this case, the string that you can get with a load callback would be in the format of
\\ nane\\ nario\\stage\\3.

If you attempt to load a key that does not exist on the storage server or a key that was saved by a
friend who used the private attribute, the success argument of the callback function will be FALSE. If
you specify multiple keys to load and only some of the keys fall into these two categories, the
success argument will be TRUE, but these keys will not be included with the loaded data.

After storage server processing completes, call the DAC _Logout Fr onSt or ageSer ver function to
log out from the storage server (as in Code 11-1).

Code 11-1 Accessing the Storage Server

static int s _cb_level = 0;

static BOOL s_storage_| ogi ned = FALSE;

voi d access_net _storage(void)

NTR-06-0429-001-F 62 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

/'l Login to the storage server
if (!DWC _Logi nToSt or ageServer Async(cb_storage_l ogin, NULL))
{
OS_TPrintf("DWC _Logi nToSt or ageSer ver Async() failed.\n");
return;

/1 Wait for login to storage server to conplete
while (!s_storage_| ogi ned)
{

DWC Pr ocessFri endsiat ch() ;

if (DWC_GetlLastErrorEx(NULL, NULL))
{

/1 Error generation

handl e_error();

return;

GaneWi t VBl ankl ntr () ;

/1 Set callbacks for the tinme when saving and | oadi ng conpl ete
DWC_Set St or ageSer ver Cal | back(cb_save_storage, cb_| oad_storage);

/] Save public data
s_chb_| evel ++;
if (!DWC_SavePublicbDat aAsync("\\nane\\mario\\stage\\3", NULL))
{
OS _TPrintf("DWC SavePubl i cDataAsync() failed.\n");
return;

[/l Save private data

s_cb_l evel ++;

if (!DWC _SavePrivat eDat aAsync("\\id\\100", NULL))

{
OS TPrintf("DWC _SavePrivat eDat aAsync() failed.\n");
return;

/1l Wait for saving to conplete
while (s_cb_level > 0)
{

DWC Pr ocessFri endshat ch() ;

0 2005-2007 Nintendo 63 NTR-06-0429-001-F
CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

if (DWC_GetlLastErrorEx(NULL, NULL))

{
/1 Error generation
handl e_error();
return;

}

GaneWi t VBl ankl ntr () ;

// Load |ocal saved data
s_chb_| evel ++;
if (!DWC _LoadOmbDat aAsync("\\id\\stage", NULL))
{
OS TPrintf("DWC _LoadOwmDat aAsync() failed.\n");
return;
}
/'l Load ones own private save data
s_cb_l evel ++;
if (!DWC _LoadOmPrivat eDat aAsync(“\\id”, NULL))
{
OS TPrintf(“DWC_LoadOmPrivat eDat aAsync() failed.\n”);
return;
}
/1 Load another player's saved data
s_cb_l evel ++;
if (!DWC _LoadQ hersbDat aAsync("\\name", 0, NULL))
{
OS TPrintf("DWC _LoadO her sDat aAsync() failed.\n");
return;

/1 Wait for loading to conplete
while (s_cb_level > 0)

{

DWC Pr ocessFri endshat ch() ;

if (DWC_GetlLastErrorEx(NULL, NULL))

{
[/ Error generation
handl e_error();
return;

}

GaneWai t VBl ankl ntr () ;

NTR-06-0429-001-F 64 O 2005-2007 Nintendo

Released: August 15, 2007 CONFIDENTIAL

NITRO-DWC Programming Manual

/1 Log out from storage server
DWC Logout Fr onfst or ageSer ver () ;

// Callback for the tune when |l ogged in to storage server
void cb_storage_|l ogin(DWCError error, void* param)

{
if (error == DAC_ERROR _NONE)
{
s_storage_| ogi ned = TRUE;
s_cb_l evel = 0;
}
}

/1 Callback for when data is saved to storage server
voi d cb_save_storage(BOOL success, BOOL isPublic, void* param)

{
OS TPrintf("result %, isPublic %l.\n", success, isPublic);

s_cb_l evel --;

/1 Callback for the tine when data | oaded from storage server
voi d cb_| oad_storage(BOOL success, int index, char* data, int |len, void* param

)

{
OS TPrintf("result %, index %, data '%', |len %\n",
success, index, data, len);
s_cb_l evel --;
}
0 2005-2007 Nintendo 65 NTR-06-0429-001-F

CONFIDENTIAL Released: August 15, 2007

NITRO-DWC Programming Manual

Microsoft, Windows, Internet Explorer and Visual Studio are registered trademarks or trademarks of Microsoft Corporation in the
United States and other countries.

Metrowerks and CodeWarrior are registered trademarks or trademarks of Metrowerks Inc. in the United States and other countries.
Avid, Softimage, SOFTIMAGE|3D and SOFTIMAGE|XSI are registered trademarks or trademarks of Avid Technology Inc.

Maya, Discreet and 3ds max are registered trademarks or trademarks of Autodesk Inc./Autodesk Canada Inc. in the United States and
other countries.

Adobe, Photoshop, Acrobat and Acrobat Reader are registered trademarks or trademarks of Adobe Systems Incorporated.
OPTPiX, web technology and iMageStudio are registered trademarks or trademarks of Web Technology Corp.

All other company names and product names mentioned in this document are the registered trademarks or trademarks of the
respective companies.

© 2005-2007 Nintendo

The contents of this document cannot be
duplicated, copied, reprinted, transferred,
distributed or loaned in whole or in part without
the prior approval of Nintendo.

NTR-06-0429-001-F 66 0 2005-2007 Nintendo
Released: August 15, 2007 CONFIDENTIAL

	1 Introduction
	2 User Management Under NITRO-DWC
	2.1 Managing Wi-Fi User Information
	2.1.1 User ID and Player ID
	2.1.2 The Difference Between a User ID and Player ID
	2.1.3 Player Information by Game: Login ID
	2.1.4 Information for Nintendo Wi-Fi Connection Authentication Saved by Games

	2.2 Friend Management Overview
	2.2.1 Building Friend Relationships
	2.2.2 Building Friendships Using DS Wireless Communications
	2.2.3 Building Friendships Using Friend Registration Keys
	2.2.4 Friend Information Saved by Games

	2.3 Exception Handling
	2.3.1 Removing the Association Between a DS and a DS Card

	3 DWC Initialization
	4 Creating User Data
	5 Connection Process
	5.1 Connecting to the Internet
	5.2 Disconnecting from the Internet
	5.3 Connecting to the Nintendo Wi-Fi Connection Server

	6 Creating Friend Rosters and Information
	6.1 Exchanging Friend Information via DS Wireless Communications
	6.2 Exchanging Friend Registration Keys
	6.3 Synchronizing Friend Rosters
	6.4 Obtaining Friend Information Types
	6.5 Obtaining Friend Status

	7 Matchmaking
	7.1 Peer Matchmaking Without Specifying Friends
	7.2 Peer Matchmaking by Specifying Friends
	7.3 Evaluating Candidate Players for Matchmaking
	7.4 Server-Client Matchmaking
	7.5 Increasing Matchmaking Speed
	7.6 Names that Cannot be Used for Matchmaking Index Keys

	8 Sending and Receiving Data
	8.1 Peer-to-Peer Data Exchange
	8.2 Closing Connections
	8.3 Yardstick for Buffer Size Specified by DWC_InitFriendsMatch
	8.4 Emulating Delays and Packet Loss
	8.5 Amount of Data Sent and Received

	9 HTTP Communication
	9.1 Preparing to Use the GHTTP Library
	9.2 Uploading Data
	9.3 Downloading Data
	9.4 Closing the GHTTP Library

	10 Communication Errors
	10.1 Error Handling
	10.2 List of Error Codes

	11 Network Storage Support

