
TWL DMA ExplainedTWL DMA Explained

Mark Jawad
Technical LeaderTechnical Leader

Software Development Support Groupp pp p

Intro /Intro /
Presentation BackgroundPresentation Background

Existing documentation on DMA makes a
lot of assumptions about the reader’s
knowledge of how [our] hardware works
Additional reference material is needed
for: “Thoughts on Developing for Nintendo
DSi”, presented at the 2009 Technical p
Conference
This presentation was developed to help This presentation was developed to help
meet those needs.

What is DMA?What is DMA?What is DMA?What is DMA?

DMA is an acronym for: Direct
Memory Accessy
– In other words, it’s something that can

touch memory and do so without relying touch memory and do so without relying
on a proxy

“DMA” can also be used as a verb“DMA” can also be used as a verb
–Meaning: to transfer data via DMA

controller

What’s a DMA Controller?What’s a DMA Controller?What s a DMA Controller?What s a DMA Controller?

A DMA Controller is an independent
processor who’s sole purpose is to p p p
move data from one location of
memory to anothermemory to another
–That’s all it does.

R d th it it Read some memory, then write it
somewhere else

How does it work?How does it work?How does it work?How does it work?

DMA ll ll DMA controllers are usually
programmed by other clients in the

(h h)system (such as the CPU)
–They idle until directed to do a transfery
DMA controllers operate in parallel
with other processing clients on the with other processing clients on the
system
–Allows those other clients to focus on –Allows those other clients to focus on

getting more important work done while
the DMA controller shuffles data aroundthe DMA controller shuffles data around

Things to Note about DMAThings to Note about DMAThings to Note about DMAThings to Note about DMA

DMA controllers are not part of the CPU
They can't see “inside” of the CPUy
– Cache, TCM, registers: all off-limits to DMA

Shares the same bus with the CPUShares the same bus with the CPU
Only one of the clients (CPU, DMA, DSP)
on a bus is allowed to access that bus at on a bus is allowed to access that bus at
any given time. The others must wait for
the one to relinquish access to the bus the one to relinquish access to the bus
before they can access it

Why use DMA instead of the CPU?Why use DMA instead of the CPU?Why use DMA instead of the CPU?Why use DMA instead of the CPU?

On Nitro/TWL, use it because it benefits
from burst access to main RAM – it can
move data faster than the CPU can when
Main RAM is either the source or dest (but
not both!)
Use it to transfer data that you don't want y
to end up in the CPU's caches
Use it to offload busy-work from the CPUUse it to offload busy work from the CPU
– Allowing the CPU to do other operations

Applications of DMAApplications of DMAApplications of DMAApplications of DMA

Use it to move data 'in the foreground'
while CPU does work 'in the background'
– (True for Nitro and legacy DMA controller)

Use it to move data 'in the background' g
while CPU does work 'in the foreground'
– (True for TWL's New DMA controller)()

Useable on all (valid) addresses except
TCMTCM

Pros and Cons of DMAPros and Cons of DMAPros and Cons of DMAPros and Cons of DMA
Pros:

Allows the CPU to
k t ti

Cons:
Does not have access
t d t i th CPU' work on computations

instead of wasting
time on 'simple' loads

to data in the CPU's
caches. This can cause
problems if not time on simple loads

and stores
Since CPU doesn't

problems if not
handled properly
Locks the bus while Since CPU doesn t

touch data, CPU cache
pollution can't occur –

Locks the bus while
active, potentially
stalling the CPU until

good for performance DMA is complete

DMA on NitroDMA on Nitro

DMA on Nitro:DMA on Nitro:
OverviewOverview

Each bus (ARM7, ARM9) has a CPU
and DMA controller attached to it
Each DMA controller is independently
programmableprogrammable
–But slaved to the associated ARM CPU

Each DMA controller has 4
programmable ‘channels’ that programmable channels that
operate independently of the others

DMA on Nitro:DMA on Nitro:
ChannelsChannels

E h h l hEach channel has:
–Source Address
–Destination Address
–Control Register (Num bytes to transfer, g (y ,

Transfer mode, etc)
One could think of each channel as a One could think of each channel as a
client of the bus
–So there are 4 DMA clients per bus–So, there are 4 DMA clients per bus
–And 1 CPU client per bus

DMA on Nitro:DMA on Nitro:
Channel SchedulingChannel Scheduling

After current client is done transferring,
the highest priority client in the list (with
an active data request) gets to run
– DMA0 > DMA1 > DMA2 > DMA3 > CPU

CPU has lower priority than DMA
controller, so will get 'locked out' when , g
any DMA channel is actively moving data
– CPU won't get bus until all DMAs complete!g p

DMA on Nitro:DMA on Nitro:
Bus SchedulingBus Scheduling

The SDK configures the HW such
that ARM7 bus requests are higher q g
priority than ARM9 bus requests
–Order is: –Order is:

ARM7 DMA > ARM7 CPU >
ARM9 DMA > ARM9 CPU ARM9 DMA > ARM9 CPU

Thus ARM7 DMA/CPU could cause
ARM9 DMA/CPU to stall when there’s
contention for a specific resourcep

DMA on Nitro:DMA on Nitro:
Operational ModesOperational Modes

Manual Start
Auto-startAuto start
Auto-start (continuous)

DMA on Nitro:DMA on Nitro:
Manual OperationManual Operation

Each channel can be programmed to
startup as soon as the scheduler p
allows
–When this happens the desired number –When this happens, the desired number

of units (of u16 or u32 size) will get
transferred then the channel will transferred, then the channel will
deactivate by setting itself to ‘disabled’

Thi i l k I di t This is also known as Immediate
Mode

DMA on Nitro:DMA on Nitro:
AutoAuto--start Operation (continuous)start Operation (continuous)
Each channel may be programmed to
automatically start based on an incoming
signal from some other part of the system
– Prime the channel with the number of units to

transfer, the source and destination addresses,
and source of start-up signal
Wh th i t i l i th – When the appropriate signal arrives the
transfer will run as soon as the scheduler
allows Afterwards the channel will relinquish allows. Afterwards the channel will relinquish
the bus until the next signal arrives.

DMA on Nitro:DMA on Nitro:
AutoAuto--start Operation (continuous)start Operation (continuous)
Continued from previous slide..
–Transfers will continue as long as Transfers will continue as long as

signals arrive
–Some auto-start transfer types might Some auto start transfer types might

automatically deactivate the channel
after a certain amount of workafter a certain amount of work

–Other types continue indefinitely and
require manual deactivationrequire manual deactivation

DMA on Nitro:DMA on Nitro:
AutoAuto--start Operation (onestart Operation (one--shot)shot)

Nearly identical to Auto-start
(continuous) mode, but will disable () ,
itself after the arrival of the first
signalsignal
This allows for one single transfer to
b k k d ff b h h dbe kicked off by the hardware

DMA on Nitro:DMA on Nitro:
Incoming signalsIncoming signals

Auto-start signals are similar to
interrupt signalsp g
–Raised by external devices when

“something important” happenssomething important happens

Auto-start signals come from a
i t f b d d ivariety of onboard devices

–Display hardware, graphics engines, p y g p g
card hardware, etc

DMA on Nitro:DMA on Nitro:
Outgoing signalsOutgoing signals

Each DMA channel can send an interrupt
to the CPU when it's done with it's work
– This way the CPU won’t have to poll for

completion of a given DMA channel
– It helps with asynchronous processing, which

requires that the CPU stay off of the bus
Bus access is required to talk to anything in I/O Bus access is required to talk to anything in I/O
space (including the DMA controller)
Polling the status of a DMA channel would therefore g
be disastrous, since we’d immediately stall until the
DMA completed

DMA on Nitro:DMA on Nitro:
Block TransfersBlock Transfers

DMA transfers lock the bus for the entire
duration of the transfer
– Which is: WORD_COUNT worth of units

Large WORD_COUNTs can cause system g y
imbalance because other clients may not
be able to get to the data they need in g y
time
– i.e. ARM9 can’t get to RAM if ARM7 DMA has g

locked the external memory interface.
– Can cause all sorts of problems

DMA on Nitro:DMA on Nitro:
Address UpdatesAddress Updates

S d d i i dd Source and destination address can
independently:
– Increment
–Decrement
–Stay at a fixed location
Destination address can also:Destination address can also:
– Increment for the current transfer and

then (when the current transfer is then (when the current transfer is
finished) reset to it’s starting address

DMA on TWLDMA on TWL

DMA on TWL:DMA on TWL:
OverviewOverview

Nitro’s existing “legacy” DMA
architecture is still fully availabley
–And still functions exactly as it used to

Can toggle if Nitro auto start bugs –Can toggle if Nitro auto-start bugs
should persist as they were, or be
corrected to conform to the original corrected to conform to the original
spec

Additi ll ’ dd d “N Additionally, we’ve added a “New
DMA” (NDMA) controller

DMA on TWL:DMA on TWL:
NDMA overviewNDMA overview

Adds 4 new channels + GCNT register
All transfers are 32bit units now
Provides more options, modes, auto-start
triggers than the legacy DMA doestriggers than the legacy DMA does
Has multiple new scheduling / priority
settingssettings
– Very important for maintaining system balance

DMA on TWL:DMA on TWL:
NDMA channelsNDMA channels

Channels are more complex than on NTR
Each contains:
– Source Address
– Destination Address
– “Fill Data” value for cases when no source

address is required (for memset, etc)
– Multiple control registers

Complex transfer parameters, DMA scheduling

DMA on TWL:DMA on TWL:
Fill Data registerFill Data register

New source for written data
– Instead of continually reloading Instead of continually reloading

constant data from a fixed source
address, you instead program a add ess, you stead p og a a
constant 32bit value in the channel's
FDATA registerg

FDATA value is repeatedly written to
the destination addressthe destination address

DMA on TWL:DMA on TWL:
Fill Data benefitsFill Data benefits

When using Fill Data, the NDMA only
has to do sequential writes to the q
bus (no data reading is necessary)
This results in the fastest writes This results in the fastest writes
possible
–Effectively a free performance boost by

using this compared to the legacy DMA
Fill method

DMA on TWL:DMA on TWL:
Legacy vs NewLegacy vs New

L DMA f l k h b Legacy DMA transfers lock the bus
for the duration of the transfer
–As mentioned earlier, this can cause

other clients in the system to stall
NDMA introduces a time-slicing
approach so that no one channel pp
keeps ownership of the bus for too
longlong
–Thus allowing other clients regular bus

accessaccess

DMA on TWL:DMA on TWL:
NDMA Channel Time Slice ConfigNDMA Channel Time Slice Config
Each NDMA channel has two settings to
controls how the channel divides its time
Block Transfer Word Count (BTWC)
– This is the atomic unit (in number of u32s) ()

moved without interruption / rescheduling

Interval Timer (ICNT)()
– This is the amount of time (in terms of bus

clocks) to sleep before the next schedule
request

DMA on TWL:DMA on TWL:
Legacy Mode SchedulingLegacy Mode Scheduling

When NDMA’s Arbitration Method
flag is set to Legacy g g y
–DMA0 > DMA1 > DMA2 > DMA3 >

NDMA0 > NDMA1 > NDMA2 > NDMA3 > NDMA0 > NDMA1 > NDMA2 > NDMA3 >
DSP > CPU

DMA on TWL:DMA on TWL:
Legacy Scheduling NotesLegacy Scheduling Notes

All channels / clients are scheduled
according to NITRO rulesg
–Only clients requesting activity will be

consideredconsidered
–Active NDMA channels that are sleeping

due to ICNT timer won’t be considered due to ICNT timer won t be considered
for scheduling

DMA on TWL:DMA on TWL:
Legacy Mode Time SlicesLegacy Mode Time Slices

Legacy DMA, CPU and DSP run
according to NITRO rulesg
–Active transfers hold the bus until

WORDCNT units are movedWORDCNT units are moved

NDMA channels run according to
BTWC ICNT tti h lBTWC+ICNT settings per channel
–Active channels hold the bus until BTWC

u32’s are moved

DMA on TWL:DMA on TWL:
Round Robin SchedulingRound Robin Scheduling

When NDMA’s Arbitration Method
flag is set to Round Robing
–DMA0 > DMA1 > DMA2 > DMA3 >

[next entry in the RR set][next entry in the RR set]

RR Set consists of: {NDMA0, NDMA1,
NDMA2 NDMA3 DSP CPU}NDMA2, NDMA3, DSP_or_CPU}
–DSP_or_CPU: If DSP activity req’d, y q

schedule the DSP. Otherwise, schedule
the CPU

DMA on TWL:DMA on TWL:
RR Scheduling NotesRR Scheduling Notes

Legacy DMA channels schedule according
to NITRO rules
Active NDMA channels that are sleeping
due to ICNT timer won’t be considered for
scheduling
– Inactive NDMA channels won’t be scheduled

DSP and CPU must make requests to the
bus to be considered for schedulingbus to be considered for scheduling

DMA on TWL:DMA on TWL:
Round Robin Time SlicesRound Robin Time Slices

Similar to legacy, with exception of
CPU / DSP/
–These use the CPUCYCLE setting to

determine the amount of bus cycles determine the amount of bus cycles
they have access to at any one time;
it’s their version of the BTWCit s their version of the BTWC

DMA on TWL:DMA on TWL:
Address UpdatesAddress Updates

Basically the same as on NITRO
Source register adds a "use FDATA Source register adds a use FDATA
as the source" setting
S i t l t t Source register also can now reset to
the starting address after transfer is
finished

DMA on TWL:DMA on TWL:
Operational ModesOperational Modes

Manual Start
Auto-startAuto start
Auto-start with data limit

DMA on TWL:DMA on TWL:
ManualManual--Start SetupStart Setup

Program the channel:
–Source Address (or fill data)Source Address (or fill data)
–Destination Address

Word Count to transfer–Word Count to transfer
–Timeslice data (BTWC,ICNT)
–Address incrementer settings
–Set the Immediate Mode flag + Enable g

flag

DMA on TWL:DMA on TWL:
ManualManual--Start OperationStart Operation

Transfer will begin as soon as the
channel is scheduled to run
Transfer is time-sliced as mentioned
earlierearlier
–So, occasionally paused then resumed

Transfer will be ongoing until
WordCnt u32’s have been movedWordCnt u32 s have been moved
–After which, the channel will deactivate

DMA on TWL:DMA on TWL:
AutoAuto--Start SetupStart Setup

Program the Channel
–Source Address (or fill data)Source Address (or fill data)
–Destination Address

Word Count–Word Count
–Timeslice data
–Address incrementer settings
–Device to monitor for autostart signalg
–Set the Repeat flag + Enable flag

DMA on TWL:DMA on TWL:
AutoAuto--Start OperationStart Operation

After device signal is raised the transfer
will be scheduled to start
Transfer is time-sliced as mentioned
earlier
Transfer will be ongoing until WordCnt
u32’s have been movedu32 s have been moved
– Afterwards the channel will reset for next time
– Like on Nitro the process may repeat forever Like on Nitro, the process may repeat forever

until manually deactivated, or may auto-stop
according to signal source device rules

DMA on TWL:DMA on TWL:
AutoAuto--Start with data limit SetupStart with data limit Setup

Program the Channel
– Source Address (or fill data)
– Destination Address
– Word Count (for individual transfers)
– Total Word Count (to determine when to stop)
– Timeslice data
– Address incrementer settings
– Device to monitor for autostart signalg
– Set the Enable flag

DMA on TWL:DMA on TWL:
AutoAuto--Start w/ AutoStart w/ Auto--Stop OperationStop Operation
After device signal is raised the transfer
will be scheduled to start
Transfer is time-sliced as mentioned
earlier
Transfer will be ongoing until WordCnt
u32’s have been movedu32 s have been moved
– Afterwards the channel will reset for next time
– The process will repeat until TotalWordCnt The process will repeat until TotalWordCnt

u32’s are moved. Then, it becomes disabled

DMA on TWL:DMA on TWL:
NotesNotes

Ch l i h d i d Channels are either deactivated or
enabled
Enabled channels may be idle
– If waiting for Auto-Start signalIf waiting for Auto Start signal
–Are sleeping for ICNT duration
SRL / DRL (address reload) doesn't SRL / DRL (address reload) doesn t
happen after BTWC; it happens once
Word Count u32's have been Word Count u32 s have been
transferred

DMA on TWL:DMA on TWL:
NotesNotes

BTWC can be smaller than WCNT value
BTWC can be larger than WCNT valueg
– Won’t hold on to the bus longer than

necessary, so no need to worry about this

WCNT can be smaller than TCNT value
WCNT can be larger than TCNT valueWCNT can be larger than TCNT value
– “Auto-Start with data limit” transfers won’t

move more than TCNT u32’s. move more than TCNT u32 s.

NDMAs will not transfer “too much” data

Closing ThoughtsClosing Thoughts

SummarySummarySummarySummary

All the stuff you know from Nitro is
still there
Powerful NDMA features can really
make your life easiermake your life easier
Use DMA to offload ‘trivial’ data
copying work from the CPU
–And experience a slight performance And experience a slight performance

boost in the process

Things to considerThings to considerThings to considerThings to consider

Auto-start DMA is the way that
background (asynchronous) loading g (y) g
happens from the DS Card ROM.
NDMA can be used to stream data NDMA can be used to stream data
into and out of WRAM, which could

f lprove useful

Things to considerThings to considerThings to considerThings to consider

Think carefully about how to avoid
starving the CPUg
–Try using auto-start DMAs wherever

possiblepossible
–Keep legacy DMA transfers small

W t h t f ARM7 DMA th till –Watch out for ARM7 DMAs; they can still
stall your ARM9 if both access main RAM

–Experiment with BTWC + ICNT settings
for NDMA channels

Things to considerThings to considerThings to considerThings to consider

Place interrupt callbacks + data in TCM
– Otherwise CPU processing could stall during an

interrupt if DMA has locked the bus

Use the new Fill feature for fast memset
Make sure to flush / invalidate the CPU
cache as appropriate so that DMA moves pp p
correct data

Questions?Questions?
Email support@noa.compp

