
1

Advanced Programming
Topics for Nintendo DS

Mark Jawad

Senior Software Engineer

Software Development Support Group

2

Topics

• Review of DS system
architecture

• Role of the ARM7
• Role of the ARM9
• ARM9 arch. review
• Code Gen review
• Bus review
• Caches and TCM
• Implications of what

we've learned so far
• Rules of THUMB

• Main Memory Display
Mode (+DMA)

• Card DMA
• Interrupt processing and

best-practices
• Fast data uploading

during V-Blank
• Asynchronous processing

3

Review of DS system architecture

Point out:

ARM9 + associated pieces

ARM7 + attached peripherals

Work Ram, and how it’s attached

4

Review of DS system architecture

5

Role of the ARM7
The "subprocessor"

• Intended for handling bulk of IO work
– Thus offloading repetitive tasks from the ARM9

• Can access hardware that ARM9 cannot
– Wireless, sound chip, power management, touchpad,

microphone, RTC, NVRAM (user settings), blinky
lights for system status, etc

• ARM7TDMI
– Von Neumann architecture
– Not as heavily pipelined as ARM9
– Has small Work RAM onboard

• Uses PXI protocol to talk to ARM9

ARM7TDMI is the same kind of chip used in the GBA; makes sense given the
GBA-compatible mode that DS has.

This is how we achieve hardware-level compatibility with the GBA.

Note that on a Von Neumann machine, there's only 1 single memory path
which is shared by code and data.

No separate code and data path.

The Work Ram is similar in idea to TCM, although it is connected via a
dedicated bus instead of being directly mounted on the core

6

Operation of ARM7

• Basic program operation
– Creates a bunch of interrupt handlers

– Drops into an idle loop

– Interrupt handlers takes care of most needs
• PXI requests, external device updates, etc

• Some requests are too heavy-weight to do in an
interrupt handler. These are sent to threads.

– Threads handle "long-term" tasks
• For audio, wireless, and other complex needs

• Thread schedules may cause delays

Many SDK APIs have Async variants due to the possibility of delay based on ARM7 thread
scheduling.

7

Notes on ARM7

• Doesn't have a cache
• Does have onboard RAM

– Has 64K of internal Work RAM
– Reserves all of the ARM7 / ARM9 “shared” Work Ram

space for exclusive use (32K)

• Has priority access to main RAM!
– Due mainly to Wireless and Audio needs
– This will impact your game

• But the amount depends on features used

96K of memory that it has exclusive access to.

That's still not enough room for all of the Wireless code, though

But more on that coming up..

8

ARM7 memory access patterns

• Most code / data lives in ARM7 dedicated
memory and shared work ram
– Not in main memory

– Very few code fetches from main memory

– Data transmissions to/from main memory are
occasional

• Auto-sampled data (TP, MIC)

• Audio data (samples, etc)

• Wireless complicates the picture a little

Need to discuss bus access pattern for all parts of the system here.

Audio data is transferred to FIFO by sound DMA. 32 bytes of data is
transferred at the first time, then 16 bytes thereafter.

For Microphone and touch panel, one or two u16 word(s) written at once
during the sampling.

Goes out to ram to write things like the X/Y button values, and RTC

9

ARM7 SDK Components

• "Mongoose" component
– Wireless code / data must be fetched from

Main Memory*

– So more traffic to main mem when wireless is
active

• Remember, no cache on ARM7

• "Ichneumon" component
– Wireless code / data is fetched from VRAM*

• But locks VRAM banks C, D

•Actually, the connection setup and teardown code is fetched from main
memory.

•The code that operates while the connection is established is within the
dedicated work ram + shared work ram

10

Role of the ARM9
The "main processor"

• Reserved for your game code
• Mostly under your control

– Some SDK pieces may be doing things you
weren't aware of...

• Threading
• TCM use
• Blocking on PXI command results

– ..but we give you SDK source so you do have
complete understanding

ARM9 is the most powerful chip in the system, and it's all yours!

You get direct access to important things like DS Game Card and Graphics
HW

11

ARM9 Architecture Review

• See slides from previous DevConf for
more detailed info on features, instructions

• Things worth noting:
– DSP instructions can be beneficial, but are

only accessible via ARM assembly code

– Put data into local vars wherever possible

– PLD (data preload) instruction is ignored

– Instruction Cache preload is supported

12

ARM9 Code Generation

• Compiler places literal pools after each function
– Any function that needs data other than the incoming

parameters

• What's a literal?
– Roughly: any data larger than a byte

• Which means pretty much everything

• Some literals can be placed in the actual instruction opcode
(rare)

• Most things (u32 and smaller) are stored in the literal pool

• For larger data, lit pool contains the address of the data

– Also: Addresses of any static or global variables

What are literals? Strings, fixed-point numbers, addresses, const ints, etc are
all literals.

Lit pools mean more time on the bus (2x from normal code-only/data-only
lines)

13

ARM9 Code Generation

• Implications
– There’s at least 1 cache line with code + data

overlap

– No L2 cache means that the I-cache will need
to load the line from RAM, and the D-cache
will also load the line from RAM.

– Can be detrimental to performance-critical
functions

14

ARM9 Code Generation

• The more globals / statics accessed, the larger
the literal pool
– And you can see where that leads: program bloat

• Loading a global, static, et al takes 2 loads
– 1st one is PC-relative, gets the addr of the global from

the lit pool.

– 2nd one actually retrieves the data

• Pack static or global variables into a structure to
avoid the hit

15

Literal pool in this case points to 3 different / unique strings. So, can't compact
it via a single structure..

Well, you could, but you have to go out of your way...

16

ARM9 Code Generation

• Many ARM opcodes can have constant data of 8
significant bits or less
– Bypasses the literal pool
– Doesn't necessarily mean that you're limited to a

single byte
• 0xff
• 0x0e10
• 0x07000000

• Compiler always creates "complex" literal
instead of burning 2-3 insns to generate it
– i.e. 0x07000400

17

ARM9 Bus Review

18

ARM9 Bus Review

• Most important data moves via 16-bit bus
– Think about that for a second

• IO register space is 32-bit
– Graphics chip settings, 3d commands

– Sprite data (OAM) access

– Game Card access

• DMA incurs same penalties as CPU
– But benefits from "burst mode"

Burst Mode of DMA gives it an advantage for bulk data transfers, and is
described in the NITRO Programming Manual.

19

ARM9 Bus Review

• Not shown: VRAM contention
– If a bank is being used by the graphics

engines and you try to access it with CPU, a
stall occurs on ARM9

– Reverse: Causes graphics to flicker
– How much of a stall?

• Core clock : dot clock == 6:1
• ARM9 clock : dot clock == 12:1
• Most 2d data access takes multiple dot clocks

Obviously, if a bank isn't mapped to ARM9 then there's no contention..

Bottom line: don't access VRAM / graphics registers outside of v-blank

20

ARM9 Bus Review
Bus Arbitration

• What happens when ARM9 and ARM7 try
to access main memory at the same time?
– ARM7 wins (due to EXMEM priority setting)

– Once a client has the bus no one can interrupt
them

• How long does a client lock the bus?
• Duration of transaction!

• So don't do huge transfers; you stall all other
clients!

Problems caused by large bus transactions are mostly noticeable when
wireless is on or MIC sampling is turned on at a high frequency.

Odds are good that you'll see little problem with large transactions for many
single player games. But your audio use can impact that...

21

ARM9 Bus Review
Bus Arbitration

• Client Priority:
1. ARM7 DMA

2. ARM7 CPU

3. ARM9 DMA

4. ARM9 CPU

22

ARM9 Cache review

• 8KB I-Cache
• 4KB D-Cache

– Warning: Additional (active) threads eat up space due
to stack activity

• 32byte cache lines
– You can lock down a chunk of RAM

• 1k increments, 32byte aligned
– Tricky to use it correctly

• Usage puts pressure on existing lines
• You need to make sure that the code or data is linked with

the correct alignments

• Line must be filled before execution can resume

As noted earlier, you can only pre-load the instruction cache.

Also, the main thread stack is located in DTCM

23

ARM9 TCM review

• Tightly Coupled Memory
– 32KB ITCM

• Can store code+data

– 16KB DTCM
• Data only; never seems to be enough of it

– TCM access does not use the bus!

• TCM is not dynamically allocatable
– Well, tools don't support it nicely
– But you can build your own support anyways

• And you should. It's not too hard to do.

Main thread stack is allocated in DTCM by default

24

A Quick Summary..

• Bus contention for Main Ram or VRAM can stall
the ARM9, slowing down your game

• No need for the bus:
– TCM access

– In-cache code and data access

• Needs the bus:
– Main Memory access

– VRAM access

– Some memory-mapped I/O registers

25

..and some numbers

• Bus speed: 33.514MHz
• ARM9 speed: 67.028MHz
• Bus Width ↔ Main Memory: 16bits
• ARM9 Cache line: 32 bytes

• ARM instructions: 32bits each
• THUMB instructions: 16bits each

• D-Cache: 1024 32-bit words total
– Some of it lost to literal pool & code overlap
– And stacks for additional threads

26

32bit ARM Code:

Implications: I-Cache miss

16bit THUMB Code:

Stalled Running

•ARM9 goes 40+ cycles in the time that it takes the bus to fill an entire cache
line (ie, 20 bus cycles)

•Then gets to execute (AT MOST) 8 or 16 instructions before needing
another cache line

•If that cache line isn't available, then the process repeats

27

Run the numbers

• On I-Cache miss:
– ARM: 40+8 cycles of time for 8 instructions

– THUMB: 40+16 cycles of time for 16
instructions

• D-Cache miss is similar
– 40 cycles later, you get your data

– Hope you wanted more than 1 word from the
cache line

ARM:

•8/48 = 1/6 = 16% efficiency

•80 instructions could take up to 480 cycles when i-cache always misses

THUMB:

•16/56 = 2/7 = 28% efficiency

•80 instructions could take up to 285 cycles when i-cache always misses

One could argue that ARM code is 1.5x (or more) efficient than THUMB,

but THUMB makes up for it by virtue of cache wins. Might end up being a tie,

but we’re thinking that THUMB is a slight win overall.

28

Implications

• Your game is memory bound

• This is why Cache and TCM are so
incredibly important
– And why all the interrupt handlers are in TCM

• Locality is key to performance

29

Don't Panic!
250+ games on DS and no one
has really noticed. Consumers
don't care. So this only impacts
you if you are really pushing the

hardware.

30

Also might impact you if you're
inadvertently running at < 20Hz

31

Rules of THUMB

• Use 16bit THUMB instructions
– As fast as 32bit instructions, but ½ the size

• Crams more code into the Instruction Cache

– Switching ARM↔THUMB is free ("blx" insn)

– May cause literal pool to be slightly larger

– But great if you are tight on RAM
• And who isn't?

– Easy to do:
•#include <nitro/code_16.h>

32

Rules of THUMB

• Functions that aren’t called often ought to be in
THUMB mode anyway
– Initialization code is usually large. THUMB it!

• Functions that are simple should be in THUMB
mode too
– Most “getter” functions are suitable
– Simple Boolean tests, too

• Disassemble your code in both ARM and
THUMB and choose the version that gives best
size/cycle tradeoff

If there is more than one bit operation (mask, shift, insert, extract) then ARM
code is usually the winner.

But for cases where simple loads, stores, or comparisons are done then
THUMB is usually 0 to 3 instructions larger and is half the size of ARM code.

33

Rules of THUMB

• Remember when I said that THUMB instructions
were just as fast as ARM instructions?
– Not exactly true.. there's interlock involved with most

of them which causes some stalls on each cycle

– But you're totally stalled by the bus most of the time
anyways so it doesn't really matter

– And you get 2x THUMB code per cache line, so
realistically you're getting more work done

• SDK defaults to 100% ARM code (for both
processors) unless you specify otherwise

Try running your game with THUMB code!

34

Rules of THUMB
Some downsides

• Fewer registers available means more
traffic to the stack
– Most instructions can only access r0-r7

– Limited instructions for access of r8-r15

• No win for branch-heavy calls
– Jumping to other functions usually take 2 16-

bit instructions back-to-back
• so 32bits per branch - not a win

35

And now for
something different

36

Main Memory Display Mode

• Possible Use:
– Can use it while 2d/3d is being captured to VRAM

– Generate a data on the fly or show static screen

– Manually post-process a captured image

• Notes:
– Once the mode is active, you MUST keep feeding it

new data

– Otherwise, it uses last data in the FIFO (ugly!)

– Takes more hand holding than VRAM display mode

Anybody using this? Would love some feedback on that.

Why use it?

1. Frees up VRAM for other purposes

2. You can be drawing the screen just ahead of the DMA read stream

Why not use it?

1. Can't exec auto-start DMAs

37

Main Memory Display Mode
DMA

• Uses AutoStart signal from LCDC
– Data copy happens when the pixel display FIFO has

room for another 4 words
– Transfers 4 u32's, then goes idle (off bus)
– Still Enabled, though, so channel is "locked"

• DMA completes when you hit V-Blank
– You'll need to re-start the DMA for each upcoming

frame
– Do re-start during V-Blank

• Can’t use other auto-start DMA modes
– Immediate mode DMA ok, though

It's not necessary to pre-draw the whole screen before starting the transfer,
but make sure not to let it grab garbage.

Roughly: Transfer activity happens around time that line is being drawn to
LCD; goes idle during H-Blank

38

Card DMA

• Card DMA functions similarly to Main
Memory Display DMA
– DMA channel is enabled for duration of entire

transfer
– Card AutoStart signal tells it to do some work

• Only one u32 is transferred at a time!
• Then goes idle (off the bus)

– The cycle repeats until transfer is complete
• Once all data is transferred, DMA is set to

Disabled

Remember: If the SDK usually checks a DMA channel before attempting to
use it.

If the channel is marked as "Enabled", the SDK will stall until it goes to
"Disabled".

So bad things happen if (for example) your FS and GX are set to use the
same DMA channel.

•Technically, the auto-start only happens on a per-card-page basis. Our SDK
sorta hides this from you to make life easier.

39

Rules for Async Card read

• Follow the CARD_ReadRomAsync
guidelines
– Make sure that all data is aligned to 512byte

boundaries on the card (.rsf can specify this)
– Read multiples of 512bytes
– Target destination must be 32byte aligned

• Use DMA channel 3
• Use higher channel numbers for GX & WM

• Cache Notes

Async is best if you can pre-load data before you actually need to display it.

Pre-load your splash screens while the first one is being displayed.

Pre-load your menu while the final splash screen is being displayed.

Take a best-guess at what level the player will be playing, and pre-load as
much as you can before the user requests to move from your menus into the
game.

This is the only way to get that GBA-like quality of "instantaneous" level loads

Cache notes: upcoming patch to SDK 4.x will make large data loads happen
faster, due to invalidating the entire cache rather than one line at a time.

40

Interrupt processing

• Get in, then get out
• If possible, just set some flags and deal with it later
• Sometimes you do have do actual work, but make it quick

• This is an embedded device
– Not a lot of time to burn; cycles are precious
– Try to put the callbacks in ITCM

• You will destabilize the system if you take too
long in a callback or interrupt handler!
– SDSG has seen WAY too many cases of “heavy

lifting” taking place within an interrupt handler
– And we’ve seen the chaos it causes.
– We thought you ought to know…

41

V-Blank Handler
60Hz (during production)

#include <nitro/itcm_begin.h>

NITRODEVCAPS _devCaps;

static void handle_vbl_intr(void)
{
 if (
 _devCaps.m_dwMaskResource & NITROMASK_RESOURCE_VBLANK
)
 NITROToolAPIVBlankInterrupt();

 // set the flag saying that we've
 // dealt with the interrupt.
 OS_SetIrqCheckFlag(OS_IE_V_BLANK);
}
#include <nitro/itcm_end.h>

42

V-Blank Handler
60Hz (finalrom)

#include <nitro/itcm_begin.h>

static void handle_vbl_intr(void)
{
 // set the flag saying that we've
 // dealt with the interrupt.
 OS_SetIrqCheckFlag(OS_IE_V_BLANK);
}

#include <nitro/itcm_end.h>

43

Speaking of V-Blank...

44

Fast data upload for V-Blank

• Don’t wait until V-Blank to decide what
data to upload

• Determine all necessary info ahead of time
– Function that you’ll use to do the upload
– Source and Destination Addresses
– Byte count to xfer, VRAM offset

• Put this info in a list or queue
• Then run through the list when V-Blank

hits and dispatch it all

Actually, you might want one list for 3d items, and then another list for
everything else. This is because the 3d V-Blank window is quite small, and
happens at the beginning of the V-Blank period.

45

Why?

• Will simplify game logic

• Will simplify V-Blank processing

• Makes the most of V-Blank time

46

Fast data upload for V-Blank
// can only call during V-Blank
GX_LoadOBJPltt(pObjPltt, 0, 32);

// want ability to call this anytime during the frame
defer(GX_LoadOBJPltt, pObjPltt, 0, 32);

// so main loop looks something like..
while(true)
{
 // ...
 OS_WaitVBlankIntr();
 dispatch_deferred_functions_then_clear();
 // ...
}

47

This effectively gets us:

while(true)
{
 // ...
 OS_WaitVBlankIntr();
 GX_LoadOBJPltt(pObjPltt, 0, 32); // was deferred
 // ...
}

• But you can dynamically have many different calls
• And they can vary on each frame
• Gives us immense flexibility

Fast data upload for V-Blank

not actual code

48

Notes on the Deferred Function
Handler

• Can call any number of functions
– Limited by RAM

– FIFO call order

• Each call can have between 0-4 params

• System provides temporary storage space
in case you need to record a value in time

// 3 params
GX_LoadOBJPltt(pObjPltt, 0, 32);

49

Fast data upload for V-Blank
(code)

asm void dispatch_deferred_functions_then_clear(register dfpPtr list)
{

stmfd sp!,{r4-r10,lr}
ldr curPtr, [list, #8] // get start of list
ldr lastPtr, [list, #0] // get end of list

cmp curPtr, lastPtr // compare curPtr-lastPtr
beq finish // branch if curPtr == lastPtr
mov dfpBlockPtr, list // stash away list pointer for later

loop:
// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr} // load ctrlWord + procAddr
mov argsToLoad, bytesToSkip, LSL #28 // lower 4 bits are num args to load
mov bytesToSkip, bytesToSkip, LSR #4 // remaining bits are bytes to skip

// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad

// now load the appropriate set of registers based on the condition bits. order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only

add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call
cmp curPtr, lastPtr // set flags to result of: (curPtr - lastPtr)
bmi loop // branch if (curPtr < lastPtr) ; ie, we haven't reached the end

finish:
// now set curPtr back to bufferStart
ldr r0, [dfpBlockPtr, #8] // start of list
str r0, [dfpBlockPtr, #0] // cur now == start of list
ldmfd sp!,{r4-r10,pc} // load multiple (frame descending) w/ update

}

50

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

51

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

52

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

53

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

54

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

55

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

56

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

57

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

58

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

59

Fast data upload for V-Blank
(code)

// 1) load packed control word + functionAddr
// 2) then extract num args + bytes to skip from control word
ldmia curPtr!, {bytesToSkip,procAddr}
mov argsToLoad, bytesToSkip, LSL #28
mov bytesToSkip, bytesToSkip, LSR #4
// argsToLoad got converted to condition bits.. move em into CPSR_FLAGS
msr CPSR_F, argsToLoad
// now load the appropriate set of registers based on the condition bits.

 // order is: n,z,c,v
ldmvsia curPtr!, {r0} // <cond>vs == v flag only
ldmcsia curPtr!, {r0-r1} // <cond>cs == c flag only
ldmeqia curPtr!, {r0-r2} // <cond>eq == z flag only
ldmmiia curPtr!, {r0-r3} // <cond>mi == n flag only
add curPtr, curPtr, bytesToSkip // add any left over bytes
blx procAddr // make the call

60

Fast data upload for V-Blank
(code)

void GX_LoadOBJPltt(const void *pSrc, u32 offset, u32 szByte)

{

 SDK_NULL_ASSERT(pSrc);

 SDK_ASSERT(offset + szByte <= HW_OBJ_PLTT_SIZE);

 SDK_ALIGN2_ASSERT(offset);

 SDK_ALIGN2_ASSERT(szByte);

 GXi_DmaCopy16(GXi_DmaId, pSrc, (void *)(HW_OBJ_PLTT + offset),
szByte);

}

61

Fast data upload via
Deferred Function Calls

• No more if / switch logic at V-Blank
– Or worse

• Maximize upload time

• "Fire and forget" graphics upload
commands during game logic

• Flexible function call system

• Can be used for other things, too

62

One small problem...
(which we've mentioned before)

• Might not want to upload a huge chunk of
data via single DMA
– because it blocks all clients on the device

• Problematic when Audio and Wireless are
in heavy use

• Solution: Chunk up your data uploads into
smaller DMAs so that the other clients get
access to Main Memory

Experiment to see what works best. Start with 1KB chunks and scale up or
down from there.

63

Async functions

• Not all functions are equally asynchronous

• Some dispatch work to ARM7, others to
the DMA controller, and yet others queue
work for separate threads

• Functions such as FS_ReadFileAsync will
actually fall into synchronous mode if the
parameters aren’t “perfect”

64

Recap

• ARM7 CPU operation

• ARM9 CPU operation
– And interaction with main memory

• Bus operation

• DMA controllers

• V-Blank handling

• And More!

65

Take-away

• Come away with a better, deeper
understanding of overall system design
– And how to fit into it

• Knowledge to build engine and game code
to make best use of Nintendo DS

66

Advanced Programming
Topics for Nintendo DS

Mark Jawad

Senior Software Engineer

Software Development Support Group

