Hardware Overview

Steve Rabin

Software Development Support Group Nintendo of America Inc.

Objectives

Introduce features of the system

Feel for how it works

Feel for what's possible

Defining Hardware Features

- Dual Backlit LCDs
 - 256x192, 18bit color (256K colors)
- 3D + 2D Graphics
 - 3D comparable to N64
 - 2D better than Game Boy Advance
- Touch Panel
 - Bottom screen, pixel-level resolution
- Built-in Microphone
- Wireless Connectivity (10m range)
 - Local mode up to 16 units (wireless boot possible)
 - IEEE 802.11 Wireless LAN System

More Hardware Features

- Backward compatible with AGB games
- Dual ARM CPUs
 - ARM9 (66MHz) main CPU
 - ARM7 (33MHz) sub-CPU for processing:
 - Sound, wireless, touch, mic, buttons, RTC
- 4MB RAM, 656KB VRAM
- Card sizes: 8MB to 128MB (64Mb-1Gb)
 - EEPROM backup: 0.5KB, 8KB (4Kb, 64Kb)
 - Flash backup: 256KB (2Mb)

More Hardware Features

- Stereo speakers built into unit
 - Stereo headphone jack built-in
 - 16 channels of ADPCM audio

 English, Japanese, French, German, Italian, Spanish

- Real-time clock and player info
 - Nickname (10 unicode characters)
 - Birthday, user color (16 choices)

2D Graphics Overview

- Layers
 - 4 Background Layers
 - 4 OBJ (sprite) Layers
- Max 128 OBJ per screen (largest 64x64)
- Max 128 OBJ per line (8x8)
- 16 palettes of 256 colors each

2D Background Features

- Bitmap method
 - Single image
- Character method
 - Tile approach
- Backdrop
 - Single background color

2D OBJ (Sprite) Features

- Two types of OBJ
 - Character and Bitmap
- Features
 - Horizontal / Vertical Offset
 - Horizontal / Vertical Flip
 - Affine Transformations
 - Scaling, Rotating
 - Translucence
 - Mosaic
 - Pixelated abstraction
 - Priority Settings

3D Engine: Command FIFO

- Direct with function calls
 - Direct writing to GX command registers
 - Costly: load/store overhead
 - Costly: GX idle until next one
- Display lists
 - DMA ~3 cycles for 32b data
 - Commands can be packed
 - During DMA, do other work

3D Engine: Geometry Engine

- Coordinate transformation
- 4x4 matrix computation
- Lighting (4 parallel lights)
- Backface culling
- Clipping
- Matrix stack
- Box test, position test
- Primitives
 - Triangle, quads
 - Tri-strips, quad-strips

3D Engine: Poly/Vert RAM

- Polygon RAM
 - 2048 tris per 1/60th frame
 - 1706 quads per 1/60th frame
- Vertex RAM
 - 6144 verts per 1/60th frame
- Both double buffered
- Limits don't include
 - Culled polygons/vertices
- Limits do include
 - Clipped polygons/vertices
 - Can add up to 350 polys if wellstripped

3D Engine: Poly/Vert RAM

- Polygon RAM
 - 2048 tris per 1/60th frame
 - 1706 quads per 1/60th frame
- Vertex RAM
 - 6144 verts per 1/60th frame
- Both double buffered
- Limits don't include
 - Culled polygons/vertices
- Limits do include
 - Clipped polygons/vertices
 - Can add up to 350 polys if wellstripped

3D Engine: Rendering Engine

- Renders tris and quads
- Depth processing (Z/W buffer)
- Texture Mapping
 - Textures (8x8 to 1024x1024)
 - 4, 16, 256 color palette
 - Direct 5-5-5-1 RGBA
 - A5I3, A3I5 alpha textures
 - 4x4 texel compressed
- Alpha-blend, fog, anti-aliasing
- Toon shading, edge marking
- Highlight shading, shadow
- Clear image feature
 - Pre-store color/depth from VRAM

3D Engine: Line Buffer Method

- There is no framebuffer
- 48 lines at a time are rendered
- Eliminates contention over main memory during rendering
- Ramifications
 - Must use capture feature to accumulate over multiple frames
 - Drops line if rendering takes too long
 - Completely dependent on fill rate
 - Can be detected after frame is drawn

3D Engine: Rendering Lines

- 2126 available cycles to draw a line
- Cost: 1 cycle per pixel drawn
- Cost: 8 cycle overhead per polygon
- Headroom: 4 to 8 times overdraw

Horizontal Pixels	8	16	32	64	128	256
Number of Polys	132	88	53	29	15	8
Fill Rate (Pixels)	1070	1422	1702	1894	2006	2062

VRAM

VRAM

VRAM -3D Game Example

Display System

• 2 LCD Screens

- Elaborate display switching
 - Direct sources for either LCD
 - 2D, 3D, VRAM, Main Memory
 - Capture feature to grab current frame
 - Result can be used on next frame

Display System

Display System

- Tricks
 - 3D on 2 screens
 - Double Polys/Verts on 1 screen
 - Full Screen Motion Blur on 1 screen

- Requires
 - Max 30Hz frame rate (can't do 60Hz)
 - 192K of VRAM
 - Leaves 320K for 3D textures (vs 512K normally)

VRAM – Capture Memory

Graphics Tips

- One bone per vertex
 - Index into pre-built display lists and alter individual matrices
- Two or more bones per vertex
 - Blend on CPU using TCM
- Double poly trick: great for non-occluding background geometry
 - Sports games: Draw field and stadium 1st, draw players 2nd
 - Street fighting: Draw buildings/ground 1st, draw players 2nd
- Use 2D w/scrolling for skybox/skyline in the background

Graphics Tips

- Can't combine vertex colors and hw lighting
 - Try changing material settings to tint
- Decide up-front whether to use 4x4 texture compression
 - More planning required
 - Fragments VRAM
- 60fps easy to achieve, but 30fps is reasonable
 - 30fps allows double the time for CPU computations

File System

- Card memory can't be directly accessed
- Must use File System API
 - Treats card as a standard file system
 - Open/Read/Close commands
 - No seek time concept doesn't apply
- Theoretical transfer speed 5.96MB/s
 - About 100K per frame at 60fps
 - Compare to 2-3MB/s for Nintendo GameCube

File System Restrictions

- Max number of directories
 - **4**,096
- Max number of files
 - **61,440**
- File/dir names 127 characters or less
- File/dir names have no upper/lowercase distinction (for speed reasons)
- File/dir names can't contain:
 - ¥ / : ; * ? " < > |

Touch Panel

- Touch Panel is an analog resistor in 2D
 - Converted by ARM7 to [0,4095] in x & y
- Ask API for calibrated touched pixel
 - X [0,255], Y [0,191]
- Touch panel is calibrated in the IPL
 - No need to calibrate in-game

Touch Panel

- Can only detect one location at a time
 - Multiple locations results in average
- Can ask for
 - Instantaneous coordinate
 - Average of 4 samples during last frame
- Can use stylus or finger on touch panel
 - Player should calibrate for their preferred method for precise control

Touch Panel: Stylus

Touch Panel: Stylus

NINTENDEDS DEVELOPERS CONFERENCE

Touch Panel: Stylus

Stylus on Touch Panel

Stylus on Touch Panel

Finger on Touch Panel

Finger on Touch Panel

Conclusion

- Discussed
 - Hardware features
 - 2D, 3D, display system, VRAM
 - File system
 - Touch panel
- Understand the capabilities
- Design toward strengths

