
0TMT H E A R C H I T E C T U R E F O R T H E D I G I T A L W O R L D

Nintendo DS Dev. Con. ‘04
Using the ARM946E-S Processor Core

1TMConfidential 1Nintendo DS Dev. Con. ’04

Agenda

Overview

New Instruction In detail

Pipeline & Avoiding Interlocks

Cache and TCM

Ed’s General Hints and Tips

2TMConfidential 2Nintendo DS Dev. Con. ’04

Internal Processor Features
ARM946E-S contains an internal ARM9E-S processor core

Five stage pipeline

Harvard bus architecture
Separate Instruction and Data Paths

Cache
Separate Instruction and Data side Cache’s
With lock down feature

Tightly Coupled Memory
For both Instruction and Data

Architecture v5TE
Thumb extensions
Saturated maths

Extended 32×16 multiplier
single cycle 32×16 and 16×16 multiplies

3TMConfidential 3Nintendo DS Dev. Con. ’04

ARM v5TE ISA Features

Architecture v5TE ISA contains full v4T ARM and Thumb instruction sets plus:

Improved support for interworking
Covered in ARM / Thumb Interworking module

Breakpoint instructions (ARM and Thumb)
Count Leading Zeros instruction
Extended coprocessor instructions - MCR2 etc.
Support for saturated mathematics
Packed half-word signed multiplication instructions
Double-word Load / Store instructions
Cache Preload instruction
Double-word coprocessor transfer instructions - MCRR/MRRC

4TMConfidential 4Nintendo DS Dev. Con. ’04

Agenda

Overview

New Instruction In detail

Pipeline & Avoid Interlocks

Cache and TCM

Ed’s General Hints and Tips

5TMConfidential 5Nintendo DS Dev. Con. ’04

Count Leading Zeros

CLZ{cond} Rd, Rm
returns number of binary zero bits before
the first binary one bit in a register value

source register is scanned from most
significant bit to least significant bit

executes in 1-cycle
(ARM9E-S/ARM102x)

result is 32 if no bits set, zero if bit 31 is set
Left shift of Rm by Rd will normalize Rm

Signed normalize requires 1 extra cycle

R0 = 0000 0010 1110 1101...0

CLZ R1, R0

0x6R1 =

MOV R0, R0 LSL R1

Rm = 1011 1011 0100 0000...0

EOR R1, R0, R0, LSL#1
CLZ R1, R1
MOV R0, R0, LSL R1

6TMConfidential 6Nintendo DS Dev. Con. ’04

New Signed Multiply Operations

T
Rm Rs

r

16 16

B T B

W option

16

SMULxy{cond} Rd, Rm, Rs

SMULWy{cond} Rd, Rm, Rs

SMLAxy{cond} Rd, Rm, Rs, Rn

SMLAWy{cond} Rd, Rm, Rs, Rn

SMLALxy{cond} RdLo, RdHi, Rm, Rs

Q flag is affected for SMLA instructions (but no
saturation)

x, y selects either Top or Bottom half of register

W selects the upper 32 bits of a 48-bit product

Do not affect NZCV (‘S’ is not allowed)

Rn
(RdHi,RdLo)

16 32/64

32 16

Rd
(RdHi,RdLo)

32/64

7TMConfidential 7Nintendo DS Dev. Con. ’04

Saturated Maths
Adding 1 to 0x7FFFFFFF causes a
transition from a positive value to a
negative value

Subtracting 1 from 0x80000000
causes a transition from a negative
value to a positive value

Saturating instructions recognize
this type of event and saturate the
result at either the most negative
values for subtract, or the most
positive value for addition

Often used to represent 1 to -1
“Q31” arithmetic
AXD can display Q31 format

- Most Positive Number0x7FFFFFFF

+ve

0x0

-ve

- Most Negative Number0x80000000

8TMConfidential 8Nintendo DS Dev. Con. ’04

Saturated Maths Instructions

Saturation is required by several telecom DSP algorithms
G.723.1 - VoIP
AMR - Adaptive MultiRate

QSUB{cond} Rd, Rm, Rn Rd = saturate(Rm - Rn)

QADD{cond} Rd, Rm, Rn Rd = saturate(Rm + Rn)

QDSUB{cond} Rd, Rm, Rn Rd = saturate(Rm - saturate(Rn×2))

QDADD{cond} Rd, Rm, Rn Rd = saturate(Rm + saturate(Rn×2))

Q flag will be set if saturation occurs during these instructions

9TMConfidential 9Nintendo DS Dev. Con. ’04

QADD Example

R1 = 0x7F000000

+
0x7F001000

0x7F001000Saturate

R2 = 0x00001000

+
0x80000000

R1 = 0x7F000000

0x7FFFFFFFSaturate

R3 = 0x01000000

Example 1 does not cross the most positive number boundary and therefore
no saturation take place

Example 2 crosses the most positive number boundary and the result is
saturated and the Q flag will be set

10TMConfidential 10Nintendo DS Dev. Con. ’04

QDADD Example
Q15 Q15

Inputs into the multiply
represent numbers
between 1 and -1

Result of multiply is in
Q30 format**

QDADD converts Rn to
Q31 format before
performing accumulation

** Note ARM handles the
case of -1*-1 correctly

SMULxy

QDADD

S 15 S 15

r

SS 30 Q30

+

Now
Q31S 30 0

Rm

S 30

Q31

11TMConfidential 11Nintendo DS Dev. Con. ’04

Load / Store Double Registers

LDR/STR{<cond>}D <Rd>, <addressing_mode>

Transfer two adjacent words in memory to / from any of the registers pairs
(r0,r1), (r2,r3), (r4,r5), (r6,r7), (r8,r9), (r10,r11) or (r12,r13)

Rd specifies the even numbered register. The immediately following odd
numbered registers is used for the second transfer.

Use same addressing modes as LDRH/STRH

Address is that of the lower of the two words loaded by the LDRD instruction.
The address of the higher word is generated by adding 4 to this address.

Address must be doubleword (8-byte) aligned.

12TMConfidential 12Nintendo DS Dev. Con. ’04

Cache Preload

PLD [Rn,<offset>]

Offset can be
An unsigned 12-bit immediate value (ie 0 - 4095 bytes).
A register, optionally shifted by an immediate value

This can be either added or subtracted from the base register:
Prefix the offset with ‘+’ (default) or ‘-’.

Tells the memory system that an access to the data at a specified address is
likely to occur soon.

Memory system can bring the data into cache ready for future accesses.

PLD is a hint instruction. On memory systems that do not support this
operations, it will behave as a NOP.

Unconditional

13TMConfidential 13Nintendo DS Dev. Con. ’04

Agenda

Overview

New Instruction In detail

Pipeline & Avoiding Interlocks

Cache and TCM

Ed’s General Hints and Tips

14TMConfidential 14Nintendo DS Dev. Con. ’04

Pipeline changes for ARM9E-S

FETCH DECODE EXECUTE MEMORY WRITE

Instruction
Fetch

Memory Access
Second Stage

Multiply
or Saturation

Shift + ALU

First Stage
Multiply

Reg
Read

Reg
Decode

ARM or Thumb
Inst Decode Reg

WriteARM9E-S

15TMConfidential 15Nintendo DS Dev. Con. ’04

Pipeline interlocks

Only applicable to ARM9 and later
These cores have longer pipelines which can increase throughput by allowing
subsequent instructions to begin execution while earlier instructions are completing
For example, following a load instruction, subsequent instructions can execute
immediately provided that they do not use the value being loaded

Basic types of interlock
LDR

Pipeline will interlock for (at least) one cycle if value loaded is used in next instruction
LDM

Pipeline will interlock for one cycle for every loaded register except the last
If the last register loaded is used in the next instruction, there will be one extra cycle of
interlock

MUL/MLA/QADD etc (9E only)
Result is not available until multiply/saturation operation is complete

How to avoid interlocks
Avoid using the result immediately if it is delayed

16TMConfidential 16Nintendo DS Dev. Con. ’04

LDR Interlock

1 2 3 4 5 6 7 8 9Cycle
Operation
ADD R1, R1, R2
SUB R3, R4, R1

ORR R8, R3, R4
AND R6, R3, R1
EOR R3, R1, R2

LDR R4, [R7]

F D E W

F D E W

F D E W

F D E W

F D WE

F D E W

I

M

I

F - Fetch D - Decode E - Execute I - Interlock M - Memory
W - Writeback

In this example it takes 7 clock cycles to execute 6 instructions, CPI of 1.2.

The LDR instruction immediately followed by a data operation using the same
register causes an interlock

17TMConfidential 17Nintendo DS Dev. Con. ’04

Optimal Pipelining

91 2 3 4 5 6 7 8Cycle
Operation
ADD R1, R1, R2
SUB R3, R4, R1

ORR R8, R3, R4
AND R6, R3, R1

EOR R3, R1, R2

LDR R4, [R7]

F D E W

F D E W

F D E W

F D E W

F D WE

F D E W

D

M

F - Fetch D - Decode E - Execute I - Interlock M - Memory
W - Writeback

In this example it takes 6 cycles to execute 6 instructions, CPI of 1.

The LDR instruction does not cause the pipeline to interlock

18TMConfidential 18Nintendo DS Dev. Con. ’04

LDM Interlock (1)

In this example it takes 9 clock cycles to execute 5 instructions, CPI of 1.8

The sub incurs a further cycle of interlock due to it using the highest specified register in the
LDM instruction

This would occur for any of the LDM variants, e.g. IA, DB, FD, etc.

1 2 3 4 5 6 7 8Cycle
Operation
LDMIA R13!, {R0-R3}
SUB R9, R7, R3

ORR R8, R4, R3
AND R6, R3, R1

STR R4, [R9]

9

F D E

F D E

F

F - Fetch D - Decode E - Execute I - Interlock M - Memory
MW - Simultaneous Memory and Writeback W - Writeback

W

F D E

F D E W

D WE

M MW MW WMW

III I

I I I I M

19TMConfidential 19Nintendo DS Dev. Con. ’04

LDM Interlock (2)

In this example it takes 8 clock cycles to execute 5 instructions, CPI of 1.6

During the LDM there are parallel memory and writeback cycles

1 2 3 4 5 6 7 8Cycle
Operation
LDMIA R13!, {R0-R3}
SUB R9, R7, R8

ORR R8, R4, R3
AND R6, R3, R1

STR R4, [R9]

9

F D E
F D E

F

F - Fetch D - Decode E - Execute I - Interlock M - Memory
MW - Simultaneous Memory and Writeback W - Writeback

W
W

D E
F D E W
D WE

F

MW MW MWM
I I I
I I I M

20TMConfidential 20Nintendo DS Dev. Con. ’04

Branching

A branch is executed in 3 cycles

Only the fetch and decode stages of the pipeline are flushed

1 2 3 4 5 6 7 8 9Cycle
Operation
BL label (0x03200)
ADD R0, R2, R8

ORR R8, R3, R4
STR R14, [R13, #-4]!

EOR R3, R1, R2

MUL R7, R0, R3

F D E W

F D

F D E W

F D E W

F

F D E W

Address
0x07328 LR

0x0732C

M

0x07330
0x03200
0x03204
0x03208

F - Fetch D - Decode E - Execute M - Memory
LR - Link Register Adjust W - Writeback

21TMConfidential 21Nintendo DS Dev. Con. ’04

Saturated Maths Interlock

F D E W

F D E W

F D E W

F D E W

F D I WE

F D E W

I

S

S

1 2 3 4 5 6 7 8 9Cycle
Operation
ADD R3, R7, R2
QDSUB R4, R1, R3
SUB R7, R0, R4
QADD R6, R2, R1
SMLATB R8, R3, R0, R6 m

EOR R3, R1, R2

F - Fetch D - Decode E - Execute I - Interlock M - Memory
m - 2nd Stage Multiply S - saturation W - Writeback

The SUB is interlocked for one cycle to allow the saturation of R4 from the QDSUB.

The SMLATB uses R6 for accumulation and therefore doesn’t incur an interlock.

QDSUB R4, R1, R3 ≡ R4 = saturate(R1 - saturate(R3 * 2))

QADD R6, R2, R1 ≡ R6 = saturate(R2 + R1)

22TMConfidential 22Nintendo DS Dev. Con. ’04

Multiply Interlock

1 2 3 4 5 6 7 8 9Cycle
Operation
SMULABB R0, R1, R2, R0
SMULATT R0, R1, R2, R0
ADD R5, R7, R9

SUB R1, R10, R0

F D E W

F D E W

F D WE

F D E W

F D E W

E WF D I

m

m

SMULABB R0, R3, R4, R0 m

SMULATT R0, R3, R4, R0 m

F - Fetch D - Decode E - Execute I - Interlock M - Memory
m - 2nd Stage Multiply W - Writeback

The SMULATT doesn’t incur an interlock as R0 is used for accumulation

The SUB incurs an interlock due to using R0 as a source operand

23TMConfidential 23Nintendo DS Dev. Con. ’04

Multiply Stall

1 2 3 4 5 6 7 8 9Cycle
Operation

F D E

F D E W

F D WE

F D E W

E E

S S

S S

F D E W

W

EOR R0, R10, R7
SMLAL R3, R6, R0, R1 m

ADD R5, R7, R9
BIC R12, R3, R5
SUB R1, R10, R7

F - Fetch D - Decode E - Execute S - Stall M - Memory
m - 2nd Stage Multiply W - Writeback

The SMLAL takes 3 cycles to execute

The ADD instruction is stalled until the multiply completes

24TMConfidential 24Nintendo DS Dev. Con. ’04

So why doesn’t ADD interlock?

The result of a data processing operation is not written back to the register
bank until the end of the Writeback cycle

This is two cycles after the instruction has completed the Execute stage
Why is there no interlock?

The core implements “data forwarding paths” to allow results to be made
available to subsequent instructions before they are written to the register bank

WRITE
BACKDECODE EXECUTEFETCH MEMORY

25TMConfidential 25Nintendo DS Dev. Con. ’04

ARM9E cycle counts (1)

ARM9E presents only summary cycle information
Not detailed cycle-by-cycle breakdown
Must also present cycle information for both memory interfaces

Time to execute is not always equal to Result delay
Data memory access instructions “complete” before the loaded value is available to
subsequent instructions

Below is the cycle information for data processing instructions

Instruction Cycles I bus D bus Comment
Data Op 1 1S 1I Normal case, PC not destination
Data Op 2 1S+1I 2I Register-controlled shift, PC not destination
Data Op 3 2S+1N 3I PC destination register
Data Op 4 2S+1N+1I 4I Register-controlled shift, PC destination

These cycle times are constant and determinate

Data dependency issues are not relevant here

26TMConfidential 26Nintendo DS Dev. Con. ’04

ARM9 cycle counts (2)

LDM is similar to the ARM7TDMI case
Delay on next instruction is shorter, though, unless an interlock occurs

Instruction Cycles I bus D bus Comment
LDM 2 1S+1I 1S+1I Loading 1 register, not the PC
LDM n 1S+(n-1)I 1N+(n-1)S Loading n registers (n>1), not including PC

LDM n+1 1S+nI 1N+nS+1I Loading n registers (n>1), not including PC and
last value loaded using in next instruction

LDM n+4 2S+1N+(n+1)I 1N+(n-1)S+4I Loading n registers, including PC

Note that single-register case always incurs a 1-cycle interlock

Normal case takes one cycle per register (two cycles shorter than 7TDMI)

One cycle interlock occurs when last value loaded is used in next instruction

27TMConfidential 27Nintendo DS Dev. Con. ’04

ARM9E cycle counts (3)

Other instructions:
STR - 1 cycle
STM - 2 cycles for one register, n cycles for n registers
MUL - 3-5 cycles, +1 for long
SWP* - 2 cycles
SWI - 3 cycles
CDP - 1 cycle plus co-processor busy cycles
MRC* - 1 cycle if coprocessor not busy
MCR - 1 cycle if coprocessor not busy
MUL/MLA - 2 cycles (set flags=4)
MULL/MLAL - 3 cycles (set flags=5)
SMULxy/SMULWx - 1 cycle
SMLALxy - 2 cycles
QADD* etc - 1 cycle

Instructions mark * incur +1 cycle if result is used immediately by next instruction

Unexecuted instructions
Instruction which are not executed because the condition code is failed always take 1 cycle.

28TMConfidential 28Nintendo DS Dev. Con. ’04

Agenda

Overview

New Instruction In detail

Pipeline & Avoiding Interlocks

Cache and TCM

Ed’s General Hints and Tips

29TMConfidential 29Nintendo DS Dev. Con. ’04

TCM Operations

ARM946E-S
I TCM is located at address 0x0
D TCM base address is user defined
TCM space cannot be cacheable

Instruction fetches from D TCM address range access AHB
Data access into I TCM address range allowed

ARM9E-S
Instruction

TCM
Interface

Data
TCM

Interface
Data
TCM

Data

TCM
Bridge

Instruction
TCMInstr

30TMConfidential 30Nintendo DS Dev. Con. ’04

ARM946E-S Cache Operations

Cache supports streaming

Write buffer is drained
before cache line fills
when the drain write buffer command is executed
Non cacheable, non bufferable accesses bypass write buffer

Data CacheData

ARM9E-S Write Buffer AHB
Interface AHB

Instruction CacheInstr

31TMConfidential 31Nintendo DS Dev. Con. ’04

Cache Lockdown (1)

Part of the cache may be locked down to avoid eviction
granularity varies from core to core

This might be needed to provide guaranteed real-time performance

Requires short software routine to control linefills
example routines are provided
victim counter range is then restricted (cp15 register 9)

Locked down lines are immune from replacement
can still be ‘flushed’ - locking mechanism must then be cleared

32TMConfidential 32Nintendo DS Dev. Con. ’04

Cache Lockdown

This is a 4-way associative cache with 4 ways, each containing 32 lines (sets).
A single victim counter selects the way in which the replacement takes place.
Lockdown fixes a base value for victim counter so that ways below this are entirely
immune from replacement.
Lockdown has granularity of a way (1/4 of cache size).

Victim
Counter

Data

way 2

TAG
Line 0
Line 1

Line 30
Line 31

Locked down
lines

Data

way 0

TAG

Line 1
Line 0

Line 30
Line 31

Data

way 1

TAG

Line 1
Line 0

Line 30
Line 31

Data

way 3

TAG
Line 0
Line 1

Line 30
Line 31

33TMConfidential 33Nintendo DS Dev. Con. ’04

Agenda

Overview

New Instruction In detail

Pipeline & Avoiding Interlocks

Cache and TCM

Ed’s General Hints and Tips

34TMConfidential 34Nintendo DS Dev. Con. ’04

Fixed Point 3D: Geometry

Critical Functions are:
Dot Product
Cross Product
Matrix Vector Product
Vector Normalise
Reciprocal (1/x)
Reciprocal Square Route (1/Sqrt(x))

Choose number format carefully for greater efficiency
S15.16 & S1.30 good as general purpose formats
Use 16bit or 8bit for object data and rescale

Saturated arithmetic and Short (16x16) MUL’s. Operations useful
Don’t be afraid to use long MUL’s.

SMULL & SMLAL generating intermediate results of 64bits
All precision maintain and no fix up required until end of summation.

See Dot Product example…

35TMConfidential 35Nintendo DS Dev. Con. ’04

Fixed Point 3D: Dot Product Example

;Function: math3dDot
;
; Purpose : Multiplies two f1616 values as above but hopefully much quicker!
;
; Parameters :
; r0 Pointer to the 1st vector.
; r1 Pointer to the 2nd vector.
;
; Returns :
; f16.16 The dot product of the two vectors.

math3dDot

STMFD sp!, {r4-r7}

LDMIA r0, {r2,r3,r4} ; Get Vector1 (r2=x,r3=y,r4=z)
LDMIA r1, {r5,r6,r7} ; Get Vector2 (r5=x,r6=y,r7=z)

SMULL r1, r0, r2, r5 ; (r0,r1) = x1 * x2
SMLAL r1, r0, r3, r6 ; (r0,r1) = (r0,r1) + (y1 * y2)
SMLAL r1, r0, r4, r7 ; (r0,r1) = (r0,r1) + (z1 * z2)

MOV r1, r1, LSR #16 ; Get low half word of result
ADD r0, r1, r0, LSL #16 ; Get high halfword

LDMFD sp!, {r4-r7} ; Restore the work registers.
mov pc,lr

36TMConfidential 36Nintendo DS Dev. Con. ’04

Fixed Point 3D: Geometry

Block Float
Dynamic Range without FP overhead
Localised 3D data tends toward narrower ranges

E.g. Obj and View space data

Normalize based on exponent for group of values
E.g. object by object basis
Gives better dynamic range without overhead of full FP
ARM9E has CLZ instruction, very useful here

	Nintendo DS Dev. Con. �e04
	Agenda
	Internal Processor Features
	ARM v5TE ISA Features
	Agenda
	Count Leading Zeros
	New Signed Multiply Operations
	Saturated Maths
	Saturated Maths Instructions
	QADD Example
	QDADD Example
	Load / Store Double Registers
	Cache Preload
	Agenda
	Pipeline changes for ARM9E-S
	Pipeline interlocks
	LDR Interlock
	Optimal Pipelining
	LDM Interlock (1)
	LDM Interlock (2)
	Branching
	Saturated Maths Interlock
	Multiply Interlock
	Multiply Stall
	So why doesn�ft ADD interlock?
	ARM9E cycle counts (1)
	ARM9 cycle counts (2)
	ARM9E cycle counts (3)
	Agenda
	TCM Operations
	ARM946E-S Cache Operations
	Cache Lockdown (1)
	Cache Lockdown
	Agenda
	Fixed Point 3D: Geometry
	Fixed Point 3D: Dot Product Example
	Fixed Point 3D: Geometry

