CodeWarrior for Nintendo DSi
Technical FAQ

Rev. 1.4 7 June 2010

2

Table of Contents

N 1
N R S (1| o PP P PP PRUPPPPRPN 1
1.1.1 CodeWarrior cannot find aCCESS PAtNS.........ccccuiiiiiiii e 1
1.1.2 The IDE or Command Line Tools have suddenly started running slowly............ccccccceeevivinnnnnnnn. 1
i O B 00 N o] 111 o 11 USSR PSSPR 2
1.2.1 The pragma "options align="does NOt WOIKcccccceiiiiiiiiiiiie e e e 2
1.2.2 If the compiler gives priority to pragmas, why is an inline function not inlined when
using "#pragma inline_depth", while the preference panel is set to "Don't Inline"...................... 2
1.2.3 My disassembled code shows register r3 being unnecessarily saved to the stack..................... 3
1.2.4 NOtes fOr USING the PrOfiler........ueei i e e e e s anerees 3
1.25 Inline function may NOt be INNNEA ... e 4
1.2.6 Unexpected behavior when compiler option "Replace 8-bit memory access" in the
"Nintendo CodeGen" panelis enabled ... 4
1.2.7 The compiler option "Use Instance Manager" does Not WOrK..........cccccvveeeeiiiiiiiieeeeee e, 4
1.2.8 Compiler crashes when an old or illegal pre-compiled header file is used............cccccccevvvnnrnnnnn. 4
1.2.9 Compiler for Nintendo DSi does not support the IPA Program modecccccvveveeeeeeieccivvnnnnnn. 4
I T N ==T 011 o] (=] SO OO PP PP R PPPTOPRPRTR 5
1.3.1 What is the register which should be saved when making an assembler routine which
iS called iN 8 C SOUICE COUB?ciiiiiiiiiie ettt s ettt ettt sttt e st e e snr e abn e e snneenne e 5
R I =T ST TP PRRURPTOPRPPTRN 6
LT I o] = LT T PP PP R PPPTOPRPRTRN 6
15.1 Using malloc() with the Nitro SDK rUNTIMEoooiiiiiiiiieece e 6
1.5.2 HOW L0 USE IOSIIEAIMLI ..ottt e s e san e e 6
1.5.3 [T o10 T o TaTo IR U o] oL fl 1 o] = 1= PSSR 7
LG | 5 PP PO PPPPPPPP 8
1.6.1 Japanese characters are garbled when linput them...........cccccco i, 8
1.6.2 How to open a source file with the internal editor temporarily when the
"use external editor” setting is enabled?..............oooii i ————— 9
1.6.3 How to add / remove button on the tOOIDAr?..........cocviiiiiiie e 9
A B 1= 18 o o =T PSR 10
1.7.1 The behavior of Debugger is not correct at an overlay area.ccccceeeeeeeiiiiiiiieeee e, 10
1.7.2 How can | prevent the locking of the .nef file by the IDE when debugging?ccccccceeeeeiiinns 10
I T PP 11
2.1 Tips about C/C++ PrOgraAMIMING.....coouetteiiieeeeeitteeeeateeeeeaatteeeesrbeeeessbbeeeesatbeeeesasbeeeesaabreeeesnnseeesareeas 11
211 How to access to a member variable of packed StruCtUre.............ocveiiiiiei i 11
2.2 TIPS relevant to WindOWS €NVIFONMENT........cuiiiiiiiiiiiiieiiiiit et et e e e e sibr e e snnneeeesnneas 12

2.2.1 A project cannot be opened when the folder icon has changed............ccccciiiiiis 12

Revision history

Rev. Date Outline

1.0 09 April 2008 New

1.1 15 April 2008 mac: adjust wording for TWL variables, adjust formatting for
readability

1.2 28 September 2009 1. Compiler crashes when an old or illegal pre-compiled

header file is used
2. CodeWarrior for DS does not support the feature IPA
File mode.
1.3 19 March 2010 Added sections 1.2.4, 1.2.6, and 1.5.1 from CodeWarrior for
NINTENDO DS Technical FAQ to be in parallel with Japanese

version of this document.

1.4 7 June 2010 Added section 1.5.2, “How to use iostream.h”

Added section 1.5.3, “Rebuilding Support Libraries”

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg.

U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2008-2010 Freescale Semiconductor, Inc. All rights reserved.

CodeWarrior for Nintendo DSi Technical FAQ

1 FAQ

1.1 Setup

1.1.1 CodeWarrior cannot find access paths

Select "Preferences..." in the "Edit" menu. Then check the "Source Trees" panel.
The settings for TWLSDK_ROOT and 1IS_TWL_DEBUGGER_DIR are necessary for the stationery

and the example projects.

Name Type Value Comment
TWLSDK_ROOT Environment CW_TWLSDK_ROOT The full path name for TWL SDK
Variable should be set as a value of the

Environment Variable

CW_TWLSDK_ROOT.

I1S_TWL_DEBUGGER_DIR | Environment IS_TWL_DEBUGGER_DIR | The full path name for the IS
Variable DEBUGGER should be set as a

value of the Environment Variable

IS_TWL_DEBUGGER DIR.

1.1.2 The IDE or Command Line Tools have suddenly started running slowly

FlexLM is used to manage the license in CodeWarrior for Nintendo DSi. This issue may arise if
another product is also using the FlexLM environment variable LM_LICENSE_FILE. The
slowdown may be the result of a change in the search order.

Please try the following procedure if the license path (server name or file path) of another product

is also set as a value of the environment variable LM_LICENSE_FILE.

1) Check whether the license server for another product of another company specified with the
environment variable LM_L ICENSE_FILE is running.

2) Place the CodeWarrior application higher in the search order before the path of other products.
A license path is divided by a semicolon (;).

For example:

CodeWarrior for Nintendo DSi Technical FAQ

LM_LICENSE _FILE = C:\Program Files\Freescale\CW for NINTENDO TWL
V1.0\license.dat;(license path of another company®s product)
3) Make a backup of the contents of the variable LM_LICENSE_FILE by copying the text to a
plain text file. Delete the environment variable LM_LICENSE_FILE.
The CodeWarrior IDE uses the license.dat file which exists in the installation folder, even
when the environment variable LM_LICENSE_FILE is not set. If you use the command line

tools, copy the license.dat into the same folder as the command line tools.

1.2 C/C++ Compiler

1.2.1 The pragma "options align=" does not work

#pragma options align is not supported by the ARM compiler, however, the compiler
incorrectly does not display any warning when it is used.

The compiler has been modified such that #pragma options align=native and #pragma
options align=native are still accepted for backwards compatibility, but have no effect.

Other aligned options are flagged as warnings if the 'lllegal Pragmas' warning is enabled.

1.2.2 If the compiler gives priority to pragmas, why is an inline function not
inlined when using "#pragma inline_depth”, while the preference panel is set to
"Don't Inline".

Pragmas generally receive a higher priority than preference panel compiler options, however, the
pragmas and the preference panel compiler options for inlining have a slightly complicated
relationship.

The compiler preference panel option "InlineDepth" encompasses the operations of both pragma

"dont_inline" and pragma "inline_depth".

Value of compiler option | Equivalent pragma expression

"InlineDepth"

Don"t Inline "dont_inline on"

Smart "dont_inline off"” AND "inline_depth(smart)"
numeric 1 to 8 “dont_inline off"" AND "inline_depth(n)" (n=1 to 8)

The pragma "dont_inline" overrides the pragma "inline_depth".

The following is a ranking of these pragmas and preference panel options is terms of priority:

CodeWarrior for Nintendo DSi Technical FAQ

[higher priority]

pragma *‘dont_inline"

InlineDepth pref panel option set to "Don"t Inline”
| - pragma "inline_depth"

|
|

[lower priority]

InlineDepth pref panel option set to anything other than "Don"t Inline"

If you control inlining by using pragmas while the "InlineDepth" preference panel option is set to

"Don't Inline", use the following order:

#pragma dont_inline off

#pragma inline_depth(smart)

1.2.3 My disassembled code shows register r3 being unnecessarily saved to the

stack

The CodeWarrior for Nintendo DSi 1.0 compiler uses the register r3 as a dummy to which it can

push even numbered registers in order to keep the alignment of stack area at 8-bytes boundary

when the number of registers which must be saved to the stack is an odd number.

At this time, register r3 is used only as a dummy.

In the older compiler that shipped with CodeWarrior for Nintendo DS 1.2, you could use "adding /

subtracting to SP", but there were problems with this method.

1.2.4 Notes for using the profiler

The profiler keeps the working area on the memory area of the target
(IS-NITRO-EMULATOR or Ensata). If too large a number is set as the value for the 3rd
argument (maximum number of total of the functions which profiler analyzes) or the 4th
argument (maximum depth of function calling which profiler analyzes) of the
ProfilerInit() function, the target's memory is overflowed.

The profiler does not support a thread and an interrupt. In the range which is analyzed by a
profiler, if calling a thread and generating an interrupt occur frequently, the profiler may

make a mistake in analyzing OR the data in the profiler's working area may be broken.

CodeWarrior for Nintendo DSi Technical FAQ

1.2.5 Inline function may not be inlined

The following functions are never inlined:
® Functions that return class objects that need destruction.
® Functions with class arguments that need destruction.

® Functions with variable argument lists.

1.2.6 Unexpected behavior when compiler option "Replace 8-bit memory access”
in the "Nintendo CodeGen" panel is enabled

CodeWarrior for Nintendo DS 3.0 does not support the compiler option "Replace 8-bit memory
access." Do not enable this compiler option. This option is in the Nintendo CodeGen panel, under
the Code Generation category of the Target Settings panel.

This compiler option was supported in CodeWarrior for Nintendo DS 1.2 and earlier. The

compiler option was used to cope with the restriction of the TEG board.

1.2.7 The compiler option "Use Instance Manager" does not work

The compiler option "Use Instance Manager" is not supported in CodeWarrior for Nintendo DSi.

1.2.8 Compiler crashes when an old or illegal pre-compiled header file is used

When you use a new version compiler, you must delete the old pre-compiled header files first.
In TWL SDK, the pre-compiled header files are located in the following directory:
{$TwiISDK}\cache\include

1.2.9 Compiler for Nintendo DSi does not support the IPA Program mode

WARNING! Per-program IPA mode has not been fully-tested for ARM development. Use at your

own risk.

CodeWarrior for Nintendo DSi Technical FAQ

1.3 Assembler

1.3.1 What is the register which should be saved when making an assembler
routine which is called in a C source code?

The CodeWarrior for Nintendo DSi compiler is based on ATPCS (Arm Thumb Procedure Call
Standards) which is by ARM Ltd.

Use registers r0-r3 to pass parameter values into routines, and to pass result values out.
Between subroutine calls you can use r0-r3 for any purpose. A called routine does not have
to restore r0-r3 before returning.

Use registers r4-r11 to hold the values of a routine's local variables. In Thumb state, in most
instructions you can only use registers r4-r7 for local variables. A called routine must restore
the values of these registers before returning, if it has used them.

Register r12 is the intra-call scratch register, ip. Between procedure calls you can use it for
any purpose. A called routine does not need to restore r12 before returning.

Register r13 is the stack pointer, sp. You must not use it for any other purpose. The value
held in sp on exit from a called routine must be the same as it was on entry.

Register r14 is the link register, Ir. If you save the return address, you can use r14 for other
purposes between calls.

Register r15 is the program counter, pc. It cannot be used for any other purpose.

Register Synonym | Special Role in the procedure call standard

ri5 - pc Program counter.

ri4 - ir Link register.

ri3 - sp Stack pointer.

ri2 - 1p Intra-procedure-call scratch register.

ril v8 - ARM-state variable register 8.

rio v7 sl ARM-state variable register 7.

Stack limit pointer in stack-checked variants.

ro v6 sb ARM-state variable register 6.

Static base in RWPI variants.

r8 v5 - ARM-state variable register 5.

r7 v4 - Variable register 4.

ré v3 - Variable register 3.

r5 v2 - Variable register 2.

r4 vl - Variable register 1.

r3 ad - Argument/result/scratch register 4.
r2 a3 - Argument/result/scratch register 3.

5

CodeWarrior for Nintendo DSi Technical FAQ

ri a2 - Argument/result/scratch register 2.

ro al - Argument/result/scratch register 1.
Note:

Keep the alignment of stack area at 8-bytes boundary when you store register to stack area.
We recommend the method that you store even-number registers at once by using r3 as a

dummy when the number of registers which must be saved to the stack is odd-number.

1.4 Linker

(There is no FAQ information about the linker at this time.)

1.5 Libraries

1.5.1 Using malloc() with the Nitro SDK runtime

If you use the Nitro SDK runtime library, crt0.o, and want to use the malloc() function from

the MSL C library, you should first call the ___init_hardware() function, defined in the file:
{CodeWarrior install directory}\ARM_EABI_Support\Runtime\Runtime_ARM\
(Common_Source)__NITRO _eabi_init.c

from the runtime library.

It performs the necessary hardware initialization required for mal loc() to work.

1.5.2 How to use iostream.h

The iostream header is dependent on the use of malloc(). To use malloc(), you must call the
runtime function __init_hardware() in
ARM_EABI_Support\Runtime\Runtime_ARM\(Common_Source)\ NITRO eabi_init.c.
You will likely want to customize __init_hardware() (e.g. resize heap memory). This code can
be written into TwlStartUp() directly.

For example:

CodeWarrior for Nintendo DSi Technical FAQ

#include <twl.h>

#include <iostream.h>

extern "C" void __init_hardware(); // setup heap memory
extern "C" void TwiStartup(); // this func is called before C++ init:

// (__call_static_initializers())
void TwilStartUp(Q)

{

__init_hardware();

void TwIMain

{
OS_Init(Q);
OS_Printf(""Welcome to CodeWarrior for NINTENDO TWL\n™);
0S_Terminate();

}

1.5.3 Rebuilding Support Libraries

The DSi installation comes with pre-built standard C/C++ and runtime libraries. It is not normally
necessary for you to rebuild the libraries that were delivered with the product. It is not
recommended that you rebuild the support libraries. However, if needed, you can rebuild the
support libraries by using supplied makefiles. Only the cygwin bash command shell is supported
for the command-line environment. To rebuild the support libraries, the environment variable,

CWINSTALL, must be set by the user. In bash, this is usually done as in the following example:

> export CWINSTALL="C:/Program Files/Freescale/CW for NINTENDO DSi V1.3"

Quotes are required for paths containing spaces. CWINSTALL should be set to the root of the DSi

installation.

There are five unique makefiles used to build the necessary libraries. For example, to rebuild the

standard C libraries do the following:

> cd $(CWINSTALL)/ARM_EABI_Support/msl/MSL_C/MSL_ARM/Project
> make -f MSL_C.NITRO.mak clean
> make -f MSL_C.NITRO.mak

CodeWarrior for Nintendo DSi Technical FAQ

The remaining support libraries can be rebuilt similarly.

The C++ libraries can be rebuilt by changing directory to:
$(CWINSTALL)/ARM_EABI_Support/msi/MSL_C++/MSL_ARM/Project

and using the MSL_C++.NITRO.mak file. Precompiled headers are not used normally. If
necessary, however, you can rebuild them with: MSL_C++_Header .NI1TRO.mak.

> cd $(CWINSTALL)/ARM_EABI_Support/msl/MSL_C++/MSL_ARM/Project

> make -f MSL_C++_NITRO.mak clean

> make -f MSL_C++_NITRO.mak

Additional MSL support libraries can be rebuilt by changing directory to:
$(CWINSTALL)/ARM_EABI_Support/msl/MSL_Extras/MSL_ARM/Project
and using the MSL_Extras .NITRO.mak file.

> cd $(CWINSTALL)/ARM_EABI_Support/msl/MSL_Extras/MSL_ARM/Project
> make -f MSL_Extras.NITRO.mak clean

> make -f MSL_Extras.NITRO.mak

Finally, the runtime support libraries can be rebuilt by changing directory to:
$(CWINSTALL)/ARM_EABI_Support/Runtime/Runtime_ARM/Runtime_NITRO/(Projects)
and using the NITRO_Runtime.mak file.

> cd $(CWINSTALL)/ARM_EABI_Support/Runtime/Runtime_ARM/Runtime_NITRO/(Projects)

> make -f NITRO_Runtime.mak clean

> make -f NITRO_Runtime.mak

1.6 IDE

1.6.1 Japanese characters are garbled when | input them

Select "Preferences..." in the "Edit" menu of the CodeWarrior IDE, then confirm the "Font & Tabs"
panel. It is necessary to select a font (for example, in Japanese environment, "System" etc.)
which can display Japanese.

For details, please refer to "IDE User Guide".

CodeWarrior for Nintendo DSi Technical FAQ

1.6.2 How to open a source file with the internal editor temporarily when the "use
external editor" setting is enabled?

There are the following ways to open a source file with the internal editor temporarily to set a

break point (etc...) when the "use external editor” setting is enabled.

® Use "Toggle external editor mode"
This is the icon at the rightmost (in default condition) of the tool bar of IDE. When this icon
is pushed condition, a file is opened by the external editor. When this icon is not pushed
condition, a file is opened by the internal editor. The default Key Binding for this function
is "Ctrl + J".

® Use "Alt" key
If you double-click with "Alt" key or press "Alt + Enter" on a file name on the project

window, the file is opened with the internal editor.

Moreover, there is the following operation to open the place of a definition or a declaration with
the internal editor from the opened source file in the internal editor.

1) Right-click on the variable / type declaration / function / macro / class.

2) Left-click with "Ctrl" key or press "Ctrl + Enter" on the "Go to xxxx definition of xxxx" or "Go to

xxxx declaration of xxxx" on the pop-up menu.

1.6.3 How to add / remove button on the toolbar?

The following procedure can be used to add a button to the toolbar.

1) Select Commands and Key Bindings. .. in the "Edit" menu at CodeWarrior IDE to open the
Customize IDE Commands window.

2) Choose a function which you want to add to the toolbar, in the "Commands" pane or the
"Toolbar Items" pane. Then, drag and drop the icon which is on the left of the function name
to the arbitrary positions on the toolbar.

(A function without an icon cannot be added to the toolbar.)

The following procedure can be used to remove a button from the toolbar.
1) Right-click on the position of a button which you want to remove from the toolbar.

2) Select Remove Toolbar on the pop-up menu.

CodeWarrior for Nintendo DSi Technical FAQ

1.7 Debugger

1.7.1 The behavior of Debugger is not correct at an overlay area.

You must use the API in the TWL SDK for management of overlays for the CodeWarrior
Debugger to work correctly. This is because the CodeWarrior Debugger sets internal breakpoints
on the overlay management functions of the "ROM File System (FS) API" in TWL SDK.

The debugger watches the loading and unloading overlay modules. As a result the debugger

monitors the condition of overlay modules for displaying the correct source file etc.

If you do not use the API, the following warning messages will be displayed when the debugger
starts.
® [Unable to find needed symbol "FS_StartOverlay" in ARM9 EIf file.
Overlay debugging will not work correctly.]
® [Unable to find needed symbol "FS_UnloadOverlaylmage" in ARM9 EIf file.

Overlay debugging will not work correctly.]

1.7.2 How can | prevent the locking of the .nef file by the IDE when debugging?

In the default state, when using the .nef file the IDE locks it. Therefore you cannot build from

the command-line while the IDE is using the .nef.

To avoid this uncheck the check-box Cache symbolics between runs on the "Debugger
Settings” panel in the target settings window.
In addition, you cannot immediately build after changing this setting, since the .nef file was

locked already. It will be unlocked after you start your next debugging session.

10

CodeWarrior for Nintendo DSi Technical FAQ

2 TIPS

2.1 Tips about C/C++ programming

2.1.1 How to access to a member variable of packed structure

Usually, an integer variable should be aligned at 4-bytes boundary because 4-bytes access
instruction is used to access to integer variable. If the alignment of the integer variable separates
from 4-bytes boundary as a result of packing the structure (because, there is char variable or
short variable before the integer variable, etc...), it is necessary to shift the top address of the
packed structure to adjust the alignment of the integer variable. For example:
typedef struct {
u8 dstMac[6] _ attribute__ ((aligned(1)));
u8 srcMac[6] _ attribute__ ((aligned(1)));

ulé type __attribute__((aligned(1)));
u32 n2 __attribute__((aligned(1))):
} TEST_PACKET;

{
TEST_PACKET packet_a;

TEST_PACKET packet_b;

It is necessary to shift the top address of the structure to the 12-bytes boundary for accessing to
the variable "n2" correctly. However, the value which can be wused for
__attribute__ ((aligned(x)) is only the number of factorials of 2 (1, 2, 4, 8, 16, 32, 64,
etc ...).

In such a case, there is the following method.

char packet_data_a[sizeof(ul6) + sizeof(TEST_PACKET)]
__attribute__ ((aligned(4))):

char packet_data_b[sizeof(ul6) + sizeof(TEST_PACKET)]
__attribute__ ((aligned(4))):

TEST_PACKET* packet_a = (TEST_PACKET*)&packet_data_ a[sizeof(ul6)];

TEST_PACKET* packet_b

(TEST_PACKET*)&packet_data_b[sizeof(ul6)];

11

CodeWarrior for Nintendo DSi Technical FAQ

2.2 TIPS relevant to Windows environment

2.2.1 A project cannot be opened when the folder icon has changed.

In Windows XP (or later), you can change the icon of a folder. However, CodeWarrior cannot
open the project if the icon of the folder which contains the project file has changed, because
CodeWarrior interprets the attribute of this folder as read only. This is because the "Read-only"
attribute flag of folder and the "System" attribute flag of folder are used as "customized" flag of
folder in Windows XP.

Note: For more information, see http://support.microsoft.com/kb/326549/en-us
Do not do customizing (changing the icon of the folder, etc...) for folders which contain
CodeWarrior project files. Execute the following command at the command prompt. to recover

the attribute of the folder:
attrib -R -S [folder name]

12

	1 FAQ
	1.1 Setup
	1.1.1 CodeWarrior cannot find access paths
	1.1.2 The IDE or Command Line Tools have suddenly started running slowly

	1.2 C / C++ Compiler
	1.2.1 The pragma "options align=" does not work
	1.2.2 If the compiler gives priority to pragmas, why is an inline function not inlined when using "#pragma inline_depth", while the preference panel is set to "Don't Inline".
	1.2.3 My disassembled code shows register r3 being unnecessarily saved to the stack
	1.2.4 Notes for using the profiler
	1.2.5 Inline function may not be inlined
	1.2.6 Unexpected behavior when compiler option "Replace 8-bit memory access" in the "Nintendo CodeGen" panel is enabled
	1.2.7 The compiler option "Use Instance Manager" does not work
	1.2.8 Compiler crashes when an old or illegal pre-compiled header file is used
	1.2.9 Compiler for Nintendo DSi does not support the IPA Program mode

	1.3 Assembler
	1.3.1 What is the register which should be saved when making an assembler routine which is called in a C source code?

	1.4 Linker
	1.5 Libraries
	1.5.1 Using malloc() with the Nitro SDK runtime
	1.5.2 How to use iostream.h
	1.5.3 Rebuilding Support Libraries

	1.6 IDE
	1.6.1 Japanese characters are garbled when I input them
	1.6.2 How to open a source file with the internal editor temporarily when the "use external editor" setting is enabled?
	1.6.3 How to add / remove button on the toolbar?

	1.7 Debugger
	1.7.1 The behavior of Debugger is not correct at an overlay area.
	1.7.2 How can I prevent the locking of the .nef file by the IDE when debugging?

	2 TIPS
	2.1 Tips about C/C++ programming
	2.1.1 How to access to a member variable of packed structure

	2.2 TIPS relevant to Windows environment
	2.2.1 A project cannot be opened when the folder icon has changed.

