
CodeWarrior for NINTENDO DS
Technical FAQ

Rev. 1.0 2007 July 3

Freescale Semiconductor, Inc.

CodeWarrior for NINTENDO DS Technical FAQ

Table of Contents

1 FAQ ...4
1.1 Setup ... 4

1.1.1 CodeWarrior cannot find access paths.. 4
1.1.2 The IDE or Command Line Tools have suddenly started running slowly.................................... 4

1.2 C / C++ Compiler .. 5
1.2.1 The pragma "options align=" does not work .. 5
1.2.2 If the compiler gives priority to pragmas, why is an inline function not inlined when using

"#pragma inline_depth" while the preference panel is set to "Don't Inline".. 5
1.2.3 My disassembled code shows register r3 being unnecessarily saved to the stack..................... 6
1.2.4 Notes for using the profiler... 7
1.2.5 Inline function may not be inlined .. 7
1.2.6 Behavior becomes bad if the compiler option "Replace 8-bit memory access" in the "Nintendo

CodeGen" panel is enabled.. 7
1.2.7 The compiler option "Use Instance Manager" does not work.. 7

1.3 Assembler ... 8
1.3.1 What is the register which should be saved when making an assembler routine which is called

in a C source code?.. 8
1.4 Linker... 9
1.5 Libraries... 9
1.6 IDE .. 9

1.6.1 The Japanese character is garbled when I input Japanese character .. 9
1.6.2 How to open a source file with the internal editor temporarily when the "use external editor"

setting is enabled?.. 10
1.6.3 How to add / remove button on the toolbar?.. 10

1.7 Debugger... 11
1.7.1 The behavior of Debugger is not correct at an overlay area. .. 11
1.7.2 How can I prevent the locking of the .nef file by the IDE when debugging? 11

2 TIPS...12
2.1 TIPS about C/C++ programming... 12

2.1.1 How to access to a member variable of packed structure... 12
2.2 TIPS relevant to Windows environment.. 13

2.2.1 A project cannot be opened when the folder icon has changed.. 13

3 Miscellaneous ..14

 1

CodeWarrior for NINTENDO DS Technical FAQ

 2

CodeWarrior for NINTENDO DS Technical FAQ

Revision history
Rev. Date Outline

1.0 2007-July-03 New

 3

CodeWarrior for NINTENDO DS Technical FAQ

1 FAQ

1.1 Setup

1.1.1 CodeWarrior cannot find access paths

Select "Preferences..." in the "Edit" menu. Then check the "Source Trees" panel.

The settings for "NITROSDK_ROOT" and "IS_NITRO_DIR" are necessary for the stationery

and the example projects.

Name Type Value Comment

NITROSDK_ROOT Environment

Variable

CW_NITROSDK_ROOT The full path name for NitroSDK

should be set as a value of the

Environment Variable

"CW_NITROSDK_ROOT".

IS_NITRO_DIR Environment

Variable

IS_NITRO_DIR The full path name for

IS-NITRO-DEBUGGER should be set

as a value of the Environment

Variable "IS_NITRO_DIR".

1.1.2 The IDE or Command Line Tools have suddenly started running slowly

FlexLM is used to manage the license in CodeWarrior. This issue may arise if another product is

also using the FlexLM environment variable "LM_LICENSE_FILE". The slowdown may be the

result of a change in the search order.

Please try the following procedure if the license path (server name or file path) of another

product is also set as a value of the environment variable "LM_LICENSE_FILE".

 4

CodeWarrior for NINTENDO DS Technical FAQ

1) Check whether the license server for another product of another company specified with the

environment variable "LM_LICENSE_FILE" is running.

2) Place CodeWarrior higher in the search order before the path of other products. (A license

path is divided by a semicolon. i.e. ';')

for example:

LM_LICENSE_FILE = C:\Program Files\Freescale\CW for NINTENDO DS

V2.0 SP1\license.dat;(license path of another company's product)

3) Delete the environment variable "LM_LICENSE_FILE". (Make sure to backup the contents

before you delete it!)

The CodeWarrior IDE uses the license.dat file which exists in the installation folder, even

when the environment variable "LM_LICENSE_FILE" is not set. If you use the command

line tools, please copy the license.dat into the same folder as the command line tools.

1.2 C / C++ Compiler

1.2.1 The pragma "options align=" does not work

"#pragma options align" is not supported by the ARM compiler, however, the compiler

incorrectly does not display any warning when it is used.

The compiler has been modified such that "#pragma options align=native" and "#pragma

options align=native" are still accepted for backwards compatibility, but have no effect. Other

aligned options are flagged as warnings if the 'Illegal Pragmas' warning is enabled.

1.2.2 If the compiler gives priority to pragmas, why is an inline function not
inlined when using "#pragma inline_depth" while the preference panel is set to
"Don't Inline".

Pragmas generally receive a higher priority than preference panel compiler options, however,

the pragmas and the preference panel compiler options for inlining have a slightly complicated

relationship.

 5

CodeWarrior for NINTENDO DS Technical FAQ

The compiler preference panel option "InlineDepth" encompasses the operations of both

pragma "dont_inline" and pragma "inline_depth".

Value of compiler

option "InlineDepth"

Equivalent pragma expression

Don't Inline "dont_inline on"

Smart "dont_inline off" AND "inline_depth(smart)"

numeric 1 to 8 "dont_inline off" AND "inline_depth(n)" (n=1 to 8)

The pragma "dont_inline" overrides the pragma "inline_depth".

The following is a ranking of these pragmas and preference panel options is terms of priority:

[higher priority]

 |

 | - pragma "dont_inline"

 | - InlineDepth pref panel option set to "Don't Inline"

 | - pragma "inline_depth"

 | - InlineDepth pref panel option set to anything other than "Don't Inline"

 |

[lower priority]

If you control inlining by using pragmas while the "InlineDepth" preference panel option is set to

"Don't Inline", use the following order:

 #pragma dont_inline off

 #pragma inline_depth(smart)

1.2.3 My disassembled code shows register r3 being unnecessarily saved to the
stack

The CodeWarrior for NINTENDO DS 2.0 compiler uses the register r3 as a dummy to which it

can push even numbered registers in order to keep the alignment of stack area at 8-bytes

boundary when the number of registers which must be saved to the stack is an odd number.

At this time, register r3 is used only as a dummy.

(In the CodeWarrior for NINTENDO DS 1.2 or older compiler, "adding / subtracting to SP"

was used but there were the following problems with this method. So the method was

changed.

- The alignment of stack separates from 8-bytes boundary momentarily.

- 1 excessive instruction is necessary.)

 6

CodeWarrior for NINTENDO DS Technical FAQ

1.2.4 Notes for using the profiler

 The profiler keeps the working area on the memory area of the target

(IS-NITRO-EMULATOR or Ensata). If too large a number is set as the value for the 3rd

argument (maximum number of total of the functions which profiler analyzes) or the 4th

argument (maximum depth of function calling which profiler analyzes) of the ProfilerInit()

function, the target's memory is overflowed.

 The profiler does not support a thread and an interrupt. In the range which is analyzed by

a profiler, if calling a thread and generating an interrupt occur frequently, the profiler may

make a mistake in analyzing OR the data in the profiler's working area may be broken.

1.2.5 Inline function may not be inlined

The following functions are never inlined :

 Functions that return class objects that need destruction.

 Functions with class arguments that need destruction.

 Functions with variable argument lists.

1.2.6 Behavior becomes bad if the compiler option "Replace 8-bit memory
access" in the "Nintendo CodeGen" panel is enabled

This compiler option "Replace 8-bit memory access" is not supported in CodeWarrior for

NINTENDO DS 2.0. Please, never enable this compiler option in CodeWarrior for NINTENDO

DS 2.0.

This compiler option was used for coping with the restriction of the TEG board.

This compiler option was supported in only CodeWarrior for NINTENDO DS 1.2 or older.

1.2.7 The compiler option "Use Instance Manager" does not work

The compiler option "Use Instance Manager" is not supported in CodeWarrior for NINTENDO

DS.

 7

CodeWarrior for NINTENDO DS Technical FAQ

1.3 Assembler

1.3.1 What is the register which should be saved when making an assembler
routine which is called in a C source code?

The CodeWarrior for NINTENDO DS compiler is based on ATPCS (Arm Thumb Procedure Call

Standards) which is by ARM Ltd.

 Use registers r0-r3 to pass parameter values into routines, and to pass result values out.

Between subroutine calls you can use r0-r3 for any purpose. A called routine does not have

to restore r0-r3 before returning.

 Use registers r4-r11 to hold the values of a routine's local variables. In Thumb state, in

most instructions you can only use registers r4-r7 for local variables. A called routine must

restore the values of these registers before returning, if it has used them.

 Register r12 is the intra-call scratch register, ip. Between procedure calls you can use it for

any purpose. A called routine does not need to restore r12 before returning.

 Register r13 is the stack pointer, sp. You must not use it for any other purpose. The value

held in sp on exit from a called routine must be the same as it was on entry.

 Register r14 is the link register, lr. If you save the return address, you can use r14 for other

purposes between calls.

 Register r15 is the program counter, pc. It can not be used for any other purpose.

Register Synonym Special Role in the procedure call standard

r15 - pc Program counter.

r14 - lr Link register.

r13 - sp Stack pointer.

r12 - ip Intra-procedure-call scratch register.

r11 v8 - ARM-state variable register 8.

r10 v7 sl ARM-state variable register 7.

Stack limit pointer in stack-checked variants.

r9 v6 sb ARM-state variable register 6.

Static base in RWPI variants.

r8 v5 - ARM-state variable register 5.

r7 v4 - Variable register 4.

r6 v3 - Variable register 3.

 8

CodeWarrior for NINTENDO DS Technical FAQ

r5 v2 - Variable register 2.

r4 v1 - Variable register 1.

r3 a4 - Argument/result/scratch register 4.

r2 a3 - Argument/result/scratch register 3.

r1 a2 - Argument/result/scratch register 2.

r0 a1 - Argument/result/scratch register 1.

<<Notice>>

Keep the alignment of stack area at 8-bytes boundary when you store register to stack area.

We recommend the method that you store even-number registers at once by using r3 as a

dummy when the number of registers which must be saved to the stack is odd-number.

1.4 Linker

(There is no information about the linker at this time.)

1.5 Libraries

(There is no information about libraries at this time.)

1.6 IDE

1.6.1 Japanese characters are garbled when I input them

Select "Preferences..." in the "Edit" menu of the CodeWarrior IDE, then confirm the "Font &

Tabs" panel. It is necessary to select a font (for example, in Japanese environment, "System"

etc.) which can display Japanese.

 9

CodeWarrior for NINTENDO DS Technical FAQ

For details, please refer to "IDE User Guide".

1.6.2 How to open a source file with the internal editor temporarily when the
"use external editor" setting is enabled?

There are the following ways to open a source file with the internal editor temporarily to set a

break point (etc...) when the "use external editor" setting is enabled.

 Use "Toggle external editor mode"

This is the icon at the rightmost (in default condition) of the tool bar of IDE. When this

icon is pushed condition, a file is opened by the external editor. When this icon is not

pushed condition, a file is opened by the internal editor. The default Key Binding for this

function is "Ctrl + J".

 Use "Alt" key

If you duble-click with "Alt" key or press "Alt + Enter" on a file name on the project

window, the file is opened with the internal editor.

Moreover, there is the following operation to open the place of a definition or a declaration with

the internal editor from the opened source file in the internal editor.

1) Right-click on the variable / type declaration / function / macro / class.

2) Left-click with "Ctrl" key or press "Ctrl + Enter" on the "Go to xxxx definition of xxxx" or "Go to

xxxx declaration of xxxx" on the pop-up menu.

1.6.3 How to add / remove button on the toolbar?

The following procedure can be used to add a button to the toolbar.

1) Select "Commands and Key Bindings..." in the "Edit" menu at CodeWarrior IDE to open the

"Customize IDE Commands" window.

2) Choose a function which you want to add to the toolbar, in the "Commands" pane or the

"Toolbar Items" pane. Then, drag and drop the icon which is on the left of the function name

to the arbitrary positions on the toolbar.

(A function without an icon cannot be added to the toolbar.)

The following procedure can be used to remove a button from the toolbar.

1) Right-click on the position of a button which you want to remove from the toolbar.

2) Select "Remove Toolbar item" on the pop-up menu.

 10

CodeWarrior for NINTENDO DS Technical FAQ

1.7 Debugger

1.7.1 The behavior of Debugger is not correct at an overlay area.

If you do not use API in NITRO-SDK for management of overlay, CodeWarrior Debugger can

not work correctly for the overlay.

This is because the CodeWarrior Debugger sets internal break points on the overlay

management functions of the "ROM File System (FS) API" in NITRO-SDK, and Debugger

watches the loading and unloading overlay modules.

As a result the Debugger knows the condition of overlay modules for displaying the correct

source file etc.

In the case of API not being used, the following warning dialogs are indicated at the time of

Debugger starting.

 [Unable to find needed symbol "FS_StartOverlay" in ARM9 Elf file.

Overlay debugging will not work correctly.]

 [Unable to find needed symbol "FS_UnloadOverlayImage" in ARM9 Elf file.

Overlay debugging will not work correctly.]

1.7.2 How can I prevent the locking of the .nef file by the IDE when debugging?

In the default state, when using the .nef file the IDE locks it. Therefore you cannot build from the

command-line while the IDE is using the .nef.

To avoid this turn off the check-box "Cache symbolics between runs" on the "Debugger

Settings" panel in the target settings window.

In addition, you cannot immediately build after changing this setting, since the .nef file was

locked already. It will unlocked after you start your next debugging session.

 11

CodeWarrior for NINTENDO DS Technical FAQ

2 TIPS

2.1 TIPS about C/C++ programming

2.1.1 How to access to a member variable of packed structure

Usually, an integer variable should be aligned at 4-bytes boundary because 4-bytes access

instruction is used to access to integer variable.

If the alignment of the integer variable separates from 4-bytes boundary as a result of packing

the structure (because, there is char variable or short variable before the integer variable, etc...),

it is necessary to shift the top address of the packed structure to adjust the alignment of the

integer variable.

For Example)

 typedef struct {

 u8 dstMac[6] __attribute__((aligned(1)));

 u8 srcMac[6] __attribute__((aligned(1)));

 u16 type __attribute__((aligned(1)));

 u32 n2 __attribute__((aligned(1)));

 } TEST_PACKET;

 {

 TEST_PACKET packet_a;

 TEST_PACKET packet_b;

It is necessary to shift the top address of the structure to the 12-bytes boundary for accessing to

the variable "n2" correctly.

However, the value which can be used for "__attribute__((aligned(x))" is only the number of

factorials of 2 (1, 2, 4, 8, 16, 32, 64, etc ...).

In such a case, there is the following method.

 12

CodeWarrior for NINTENDO DS Technical FAQ

 char packet_data_a[sizeof(u16) + sizeof(TEST_PACKET)] __attribute__((aligned(4)));

 char packet_data_b[sizeof(u16) + sizeof(TEST_PACKET)] __attribute__((aligned(4)));

 TEST_PACKET* packet_a = (TEST_PACKET*)&packet_data_a[sizeof(u16)];

 TEST_PACKET* packet_b = (TEST_PACKET*)&packet_data_b[sizeof(u16)];

2.2 TIPS relevant to Windows environment

2.2.1 A project cannot be opened when the folder icon has changed.

In Windows XP (or later), you can change the icon of a folder.

However, CodeWarrior cannot open the project if the icon of the folder which contains the

project file has changed, because CodeWarrior thinks that the attribute of this folder is read

only.

This is because the "Read-only" attribute flag of folder and the "System" attribute flag of folder

are used as "customized" flag of folder in Windows XP.

(Public information by Microsoft Co. : http://support.microsoft.com/kb/326549/en-us)

Do not do customizing (changing the icon of the folder, etc...) for folders which contain

CodeWarrior project files.

If you are in such a state, please execute the following command at the command prompt. (to

recover the attribute of the folder.)

attrib -R -S [folder name]

 13

CodeWarrior for NINTENDO DS Technical FAQ

3 Miscellaneous

(There is no miscellaneous information at this time.)

 14

	1 FAQ
	1.1 Setup
	1.1.1 CodeWarrior cannot find access paths
	1.1.2 The IDE or Command Line Tools have suddenly started running slowly

	1.2 C / C++ Compiler
	1.2.1 The pragma "options align=" does not work
	1.2.2 If the compiler gives priority to pragmas, why is an inline function not inlined when using "#pragma inline_depth" while the preference panel is set to "Don't Inline".
	1.2.3 My disassembled code shows register r3 being unnecessarily saved to the stack
	1.2.4 Notes for using the profiler
	1.2.5 Inline function may not be inlined
	1.2.6 Behavior becomes bad if the compiler option "Replace 8-bit memory access" in the "Nintendo CodeGen" panel is enabled
	1.2.7 The compiler option "Use Instance Manager" does not work

	1.3 Assembler
	1.3.1 What is the register which should be saved when making an assembler routine which is called in a C source code?

	1.4 Linker
	1.5 Libraries
	1.6 IDE
	1.6.1 Japanese characters are garbled when I input them
	1.6.2 How to open a source file with the internal editor temporarily when the "use external editor" setting is enabled?
	1.6.3 How to add / remove button on the toolbar?

	1.7 Debugger
	1.7.1 The behavior of Debugger is not correct at an overlay area.
	1.7.2 How can I prevent the locking of the .nef file by the IDE when debugging?

	2 TIPS
	2.1 TIPS about C/C++ programming
	2.1.1 How to access to a member variable of packed structure

	2.2 TIPS relevant to Windows environment
	2.2.1 A project cannot be opened when the folder icon has changed.

	3 Miscellaneous

